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Abstract: Considerable effort in the field of periodontal tissue engineering has been expended in the 
construction of advanced biomatrix for the treatment of periodontal diseases caused by poor oral 
hygiene, malnutrition, genetic factors, and systemic disorders. With these in mind, the ultimate goal 
of this investigation is to fabricate sophisticated scaffolds using jellyfish collagen (JC) and aqueous 
Salvadora persica (Miswak) extracts. Rhizostoma pulmo species JC was isolated and characterized in 

depth. Miswak was extracted using two different methods. The extraction yield was calculated to be 
14.2 ± 0.9% and 17.1 ± 0.4% for Methods I and II, respectively. Gas chromatography-mass 
spectroscopy (GC-MS) results revealed the extract to be composed of 1,8-cineole (49.3%), benzyl 
nitrile (36.2%), benzyl isothiocyanate (5.9%), limonene (2.4%), eugenol (0.8%), and palmitic acid 
(0.3%). Total phenolic content and antioxidant capacities of the extracts were also determined by 
spectrophotometric means. Human periodontal ligament fibroblast cells were isolated and expanded. 
Cell viability on JC and miswak extract-laden JC scaffolds was determined by 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium Bromide (MTT) assay. Microarchitectures of the JC, 0.05 and 0.1% 
miswak extract-laden JC scaffolds and also cellular behaviors on these surfaces were evaluated by 
scanning electron microscopy (SEM) analysis. This study suggests that miswak extract-laden JC 

scaffolds would present new opportunities for periodontal tissue engineering. 
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INTRODUCTION 

 
Periodontal ligament fibroblast (PDLF) cells, 
embryologically-derived from the 
ectomesenchymal tissue of the dental follicle 
and embedded in the periodontal tissue, are a 

connective tissue element with spindle-shaped 
fibroblastic morphology (1,2). The periodontal 
tissue is a complex structure, which consists 
of gingiva, periodontal ligament (PDL), 
cementum and the alveolar bone (3). When 
the microbial equilibrium shifts in favor of 
pathogens due to deteriorating oral hygiene, 

also referred to as the periodontitis, a common 
chronic inflammatory gingival disease, causes 
loss of tooth-supporting constituents (e.g., 

PDL, alveolar bone) (3,4). In the pathogenesis 

of the periodontitis, there are gingival 
inflammation, gingival pocket formation, 
periodontal ligament destruction and finally 
alveolar bone resorption. With the progression 
of the disease, loss of tooth may also occur. 

Interestingly, recent studies have 
demonstrated that periodontitis is related to 
many systemic diseases such as diabetes 
mellitus, cardiovascular diseases, and 
rheumatoid arthritis (5,6). 
 
Current treatment approaches for 

maintenance or regeneration of damaged 
tooth-supporting constituents caused by 
periodontal diseases aim at fabricating novel 
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bioengineered scaffolds by taking advantage 
of translational medicine & tissue engineering 
concepts which employ the knowledge of cells, 

materials, soluble factors, and so on for their 
use in clinical arena (7,8). Different synthetic 
or naturally-derived biopolymers and/or their 

composites with biominerals have evolved 
since last decades in periodontal tissue 
engineering applications (9–11). 
 
Collagen is a structural extracellular matrix 
protein and can easily be extracted from many 

tissue types (e.g., skin, tendon). It has unique 
properties such as self-assembling into fibrillar 
structures under physiological conditions, high 
level biocompatible and biodegradability, 
mechanical and homeostatic qualities, which 
make it a significant candidate in regenerative 
medicine applications (12–14). However, 

there are limitations in the use of mammalian-
derived collagen in clinical purposes because 
they tend to carry some risks such as bovine 
spongiform encephalopathy and foot-and-
mouth disease. In addition, collagen from 
porcine skin or tendon is not preferred by the 
patients due to religious concerns (15,16). 

Thus, marine-derived collagen is considered to 
be an alternative and probably a safer source 
in the construction of bioengineered scaffolds 
compared to mammals. In the current 
literature, jellyfish-derived collagen has been 
used as a hybrid construct for chondrogenesis 

of human mesenchymal stem cells (hMSCs) 
(15,17), a composite scaffold for osteogenic 
differentiation of human adipose-derived 

MSCs (18) and an aptasensor substrate for 
detection of blood thrombin levels in different 
neurological diseases (19). Furthermore, it 
has been reported that jellyfish-derived 

collagen has the potential to activate bone 
marrow-derived dendritic cells, which also 
proves its immunoregulatory function (20). 
 
Medicinal plants, which are almost as old as 
human history, have been used in various 
civilizations of the world for thousands of years 

to treat many health problems (21–23). 
Miswak, also recommended by the World 
Health Organization as an oral hygiene tool for 
mechanically removing plaque and food 
residues from the teeth, has great potential 
due to its substantial components such as 

minerals (e.g., sulfur, chlorides, fluorides, 
silica) and phytochemicals (e.g., tannins, 
benzyl isothiocyanate) which are related to 
dental care (24,25). Although aqueous, 
alcoholic, or nonpolar extracts of miswak 
contain various antimicrobial agents, it was 
reported that the aqueous extract had shown 

better antimicrobial activity compared to other 
solvents (26). 
 
In this work, 3-dimensional (3D) hybrid 
constructs were fabricated using marine-
derived collagen and miswak extracts for 
periodontal tissue engineering applications. 

Aqueous extracts from miswak sticks were 
prepared using two different methods to 
evaluate the extraction yield. The bioactive 

constituents in the miswak extracts were then 
analyzed by GC-MS. Total phenolic contents 
and antioxidant activities were also 

determined spectrophotometrically. Jellyfish 
collagen was isolated and well-characterized 
using different analysis methods (e.g., SDS-
PAGE, GC-MS, Lowry assay, TGA and ATR-
FTIR). Human periodontal ligament fibroblast 
cells were isolated, expanded and seeded on 

jellyfish collagen and miswak extract-laden 
jellyfish collagen scaffolds. MTT assay was 
applied to determine the number of viable cells 
on prepared scaffolds. Finally, the scaffold and 
cell/scaffold constructs were observed by 
scanning electron microscopy to evaluate the 
micro-architecture and cellular behaviors on 

these surfaces. 
 
MATERIALS AND METHODS 
 
Materials 
S. persica sticks (origin of Pakistan) were 
purchased from a local seller of medicinal 

herbs in vacuum bags in the wet form. 
Rhizostoma pulmo species jellyfishes were 
collected from the coast of Dardanelles 
(Abydus), Çanakkale, Turkey. All chemicals 
were provided from Merck (Millipore-Sigma, 
Germany) unless otherwise noted. 

 
Preparation of miswak extracts 
The extraction process was carried out 

according to the procedure described by 
Abhary and Al-Hazmi (26), with slight 
modifications. Briefly, the outer layer of 
miswak sticks was carefully removed, and the 

sticks were cut into small pieces, then dried in 
an incubator (Memmert UN55, Germany) at 40 
°C for three days. The dried miswak pieces 
were milled (IKA M20, Germany) to obtain a 
fine powder. Two different methods were 
applied in order to obtain aqueous extracts of 
miswak. The dried miswak powder was 

suspended in Milli-Q water (Merck-Millipore, 
Germany) at a ratio of 5 % (w/v), and the 
suspension was vigorously stirred at room 
temperature (RT) for three days (described as 
Method I). Similarly, the suspension (5 %, w/v 
in Milli-Q water) was infused in a rotary-

evaporator (Buchi, Rotavapor R210, 
Switzerland) at 80 °C for 1 h (described as 
Method II). The solutions were then 
centrifuged at 6000 rpm for 15 minutes, and 
the resulting supernatants were filtered 
through Whatman No. 43 filter paper 
(Macherey-Nagel, Germany) under reduced 

pressure. The solutions were then 
concentrated using Rotary-evaporator and the 
miswak extracts were frozen at -26 °C, then 
freeze-dried (LyoQuest, Telstar, Spain) for 
overnight to obtain water-soluble miswak 
extracts. The lyophilized extracts were kept at 
-26 °C until the time of analysis. The 
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extraction yields were calculated using the 
equation given below. Step-by-step procedure 
of miswak extraction can be seen in Figure 1. 

 

 
Figure 1. Step-by-step representation of the extraction process of Salvadora persica (Miswak). Raw 
miswak sticks (1), removing of outer layer (2), cutting (3), milling (4), obtaining fine powders (5), 

Method I (6a), Method II (6b), centrifugation (7), filtration (8), concentrated sticky miswak solution 
(9), lyophilization (10) and obtaining dry form of miswak extracts (11). 
 
Yield (%) = [(initial weight (dry) – lyophilized weight) / initial weight (dry)] x 100   (1). 
 

Gas Chromatography-Mass spectroscopy 

analysis of extracts  
In order to identify the chemical composition 
of miswak extracts, the GC-MS analysis was 
conducted according to our previous study 
(21). Initially, lyophilized miswak extracts 
were dissolved in Milli-Q water and filtered 
through a 0.22 µm sterile filter. Then, the 

extracts were loaded an instrument (Thermo 
MS Finnigan Trace DSQ, USA), with a DB-WAX 
column (30 m x 0.25 mm i.d.; film thickness 
0.25 μm). The oven temperature was adjusted 
as described as follows: 50 °C for 1 minute, 
followed by an increase rate of 3 °C / minute 
up to 220 °C. Helium as a carrier gas was set 

to flow at a rate of 1 mL/minute. All data were 

evaluated using the Xcalibur software.  
 
Total phenolic content analysis of 
extracts 
The total phenolics of each extract were 

colorimetrically assessed according to the 
Folin-Ciocalteu method reported in the 
literature by Singleton and Rossi (27). In 
short, each extract (10 mg) was dissolved in 1 
mL of Milli-Q water at RT. Then, 900 µL of Milli-
Q water, 5 mL of Folin reagent (0.2 N) and 4 
mL of sodium carbonate solution (7.5 %, w/v) 

were added into each 100 µL of sample. The 
samples were left to stand in the dark at RT 
for 2 hours for color development and the 

absorbance at 765 nm was measured against 

blank solution (Shimadzu UV-mini 1240, 
Japan). The results were presented as mg of 
gallic acid equivalent (GAE) per g of dry 
weight. 
  
CUPRAC assay for antioxidant capacity of 
extracts 

The antioxidant capacity levels of each extract 
were ascertained using the method described 
by Apak et al. (28). Following their work, 20 
μL of each sample was mixed with 1 mL of 
CuCl2.2H2O (0.01 M, prepared in Milli-Q 
water), 1 mL of neocuproine (7.5x10-3 M, 
prepared in ethanol), 1 mL of ammonium 

acetate solution (1 M in Tris-buffer, pH = 7.0) 

and 1.08 mL of Milli-Q water, each solution 
was allowed to rest at RT for 30 minutes in the 
dark. The absorbance was measured at 450 
nm against the blank solution and the 
antioxidant capacity of extracts was expressed 

in terms of mg Trolox per liter. 
 
Isolation and characterization of marine-
derived collagen from R. pulmo 
Jellyfish collagen (JC) was isolated from R. 
pulmo and characterized well according to the 
studies previously published by our group 

(18,19). Briefly, jellyfish was cut into medium-
sized pieces after being caught and transferred 
to our laboratory. Jellyfish pieces were then 
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immersed into 99.9 % ethyl alcohol and 
treated with 0.1 M NaOH for 24 hours in order 
to dehydrate and remove any non-collagen 

substances, respectively. Before being 
digested with pepsin (600–1200 U/mg) for 
three days, jellyfish pieces were blended (IKA 

T18 Basic, Germany) in 0.5 M acetic acid (1-
gram sheet per 100 mL solution). Following, 
the viscous solution was centrifuged at 10000 
g for 1 minute and dialyzed against 0.02 M 
dibasic sodium phosphate (pH 8.8) for three 
days for the purpose of inactivating the 

enzyme. The pepsin-soluble JC was frozen at -
86 °C and freeze-dried overnight. The 
lyophilized form of the JC was stored at -86 °C 
until use in the experiments. In order to 
characterize pepsin-soluble JC, various 
experiments were carried out such as modified 
Lowry assay (for determining the protein 

concentration and purity), SDS-poly 
acrylamide gel electrophoresis (SDS-PAGE) 
(for determining the protein size, distribution, 
etc.), thermogravimetric analysis (TGA) (for 
determining the thermal properties), ATR-
FTIR, contact angle measurement, amino acid 
composition analysis using GC-MS and also 

hydroxyproline content analysis (for both raw 
and pepsin-soluble JC). The results related to 
the analyses have been pointed out in the 
papers mentioned above. 
 
Fabrication of hybrid constructs from JC 

and miswak extracts 
To produce hybrid constructs from JC and 
miswak extracts, JC was first dissolved in Milli-

Q water at a ratio of 3 % (w/v). Then, the 
solution was poured into a 48-well plate, 
frozen immediately at -86 °C and then freeze-
dried overnight (18). In order to enhance the 

mechanical properties of prepared scaffolds, 
cross-linking process was conducted using N-

hydroxysuccinimide (NHS) / N-(3-
dimethylaminopropyl)-N’-ethylcarbodiimide 
hydrochloride (EDC) prepared in 2-(N-

morpholino)ethanesulfonic acid (MES) buffer 
(pH 5.5) according to the method described by 
Buttafoco et al. (29), with slight modifications. 

In short, MES buffer was mixed with 99% 
ethanol at a ratio of 1:9 (v/v) and cross-linkers 
were dissolved in this solution. The scaffolds 
were then immersed in ethanol (≥ 99 %) for 
10 minutes and cross-linked for 8 hours at 
room temperature with gentle agitation (Incu-

Shaker Mini, Benchmark Scientific, USA). The 
scaffolds were then thoroughly rinsed with 
Milli-Q water to eliminate excess cross-linker 
and freeze-dried overnight. The dimensions of 
the cross-linked scaffolds were measured to 
be h = 3 mm and Ø = 6 mm. Following this, 
lyophilized miswak extract was separately 

dissolved in Milli-Q water at ratios of 0.05 and 
0.1 % (w/v), 200 µL of each extract solution 
was loaded into cross-linked scaffolds. Finally, 
the miswak extract-laden JC hybrid constructs 
were frozen at -86 °C and lyophilized 
overnight.  
 

Swelling test 
Liquid handling capacities of the JC and 
miswak extract-laden JC scaffolds were 
determined by inserting the scaffolds in 30 mL 
of phosphate-buffer saline (PBS) solution (pH 
= 7.4) at 37 °C for 10 minutes. Initially, all of 

the dry scaffolds were weighed (Wo) before 
being immersed in PBS. After 10 minutes, the 
scaffolds were removed, gently wiped for any 

adsorbed buffer and weighed again (Ws). The 
swelling ratio of scaffolds was calculated using 
the equation given below. Three independent 
measurements were carried out for the test 

(30). 

 
Swelling ratio (%) = [(Ws - Wo) / Wo] x 100     (2). 

 
Isolation and expansion of human 
periodontal ligament fibroblast cells 

Human periodontal ligament fibroblast 
(hPDLF) cells were isolated from root surfaces 
of healthy premolars as described previously 
by Inanc et al. (9), with slight modifications. 
The experimental design was reviewed and 
approved by Clinical Research Ethics 

Committee, Faculty of Medicine, Çanakkale 
Onsekiz Mart University (permission number: 
2016-02-04). Informed written consent was 
also obtained from each donor. Immediately 
after extraction, teeth were washed repeatedly 
(5 – 8 times) using sterile PBS (pH = 7.4) 
containing 5% penicillin-streptomycin in order 

to eliminate debris and blood located on dental 
surfaces. The periodontal layers were then 
scraped off gently middle third of the teeth 
roots and minced using a sterile surgical blade. 
Minced tissues were enzymatically digested in 
0.1 % collagenase (Type I, 0.25 - 1.0 FALGPA 
units/mg solid) for 45 minutes in a CO2 

incubator (Panasonic, Japan), and the cell 
suspension was centrifuged (Hettich, 

Germany) at 300 g for 5 minutes. The pellet 
was then re-suspended in a culture medium 
consisting of DMEM (Dulbecco’s modified 
Eagle’s medium) supplemented with 10% fetal 
bovine serum (FBS), 1% penicillin-
streptomycin, 1% non-essential amino acid 

stock solution, and %1 L-glutamine (all from 
Biological Industries, USA), transferred to 6-
well plates and propagated at 37 °C, 5% CO2 
and 95% relative humidity conditions. The 
cells were passed when reaching 80-90% 
confluency. The spindle-shape fibroblastic 
morphology of hPDLF cells was observed by an 

inverted-phase contrast microscope 
(PrimoVert, Zeiss, Germany). Cells in the 
passages between 2 – 5 were used in the 
experiments. 
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Cell seeding on JC and miswak extract-
laden JC scaffolds 
JC and miswak extract-laden JC scaffolds were 

sterilized under UV (254 nm) exposure for 2 
hours in a laminar air flow cabinet (Bio II 
Advance, Telstar, Spain). hPDLF cells were 

then seeded at a density of 2.4 x 105 
cells/scaffolds and growth in DMEM high 
glucose supplemented with 10% fetal bovine 
serum (FBS), 1% penicillin-streptomycin, 1% 
nonessential amino acid stock solution, and 
1% L-glutamine by replenishing the growth 

medium every 2 – 3 days. The culture was 
maintained under standard culture conditions 
(at 37 °C, 5% CO2 and 95% relative humidity) 
for 3, 7 and 14 days. Cell proliferation was 
quantified using MTT assay kit (Cell Growth 
Determination Kit, MTT based, CGD1, Merck) 
by following manufacturer’s instructions at a 

wavelength of 570 nm on days 3, 7 and 14. 
 
Scanning electron microscopy 
The surface morphology of fabricated JC and 
miswak extract-laden JC scaffolds and cellular 
behaviors on these surfaces were observed by 
field-emission scanning electron microscopy 

(FE-SEM JFM 7100F EDS, JEOL, Japan). After 
being fixed with 2.5% glutaraldehyde 
(prepared in PBS) for at least 24 hours, the 
specimens were rinsed repeatedly with PBS 
(pH 7.2 – 7.4) and immersed in an ethanol 
series (50, 70, 80, 90, 95, and 100 %) for 

dehydration. Samples dried at RT were then 
sputter-coated with Pd-Au for 90 seconds so 
as to improve the electron conductivity in 

order to achieve better SEM micrographs. 
Images were taken at 10 kV and different 
magnification levels in a high vacuum. 
 

Statistical analysis 
One-way analysis of variance (ANOVA) by 
followed Tukey tests were performed using 
Origin Pro8SR0 (v8.0724, Origin Lab 
Corporation, MA, USA) software to evaluate 
the results. Only variables with a confidence 
level higher than 95 % (p ≤ 0.05) were 

considered to be statistically significant. The 
mean ± standard deviation of variables was 
also calculated with Microsoft Office 
Professional Plus 2016 Excel. The results 
presented in this study are the average of at 
least three independent measurements. 

 

RESULTS AND DISCUSSION 
 
The performance of the extraction 

processes 
The techniques and also solvents used in the 
extraction process could affect the quantity 

and composition of bioactive compounds of 
miswak extract. According to the results, the 
extraction yields were found to be 14.2 ± 0.9 
% and 17.1 ± 0.4 % for the Method I and II, 
respectively. In other studies related to the 
miswak extraction, various solvents or their 

mixtures were studied to achieve maximum 
crude extract. To this end, Mohamed and Khan 
(31) have tested 80% methanol, 80% ethanol, 
80% acetone and water to determine the 
effects of such solvents on extraction yield of 
dried miswak (origin of Saudi Arabia). They 
have reported that highest yield was obtained 

when using 80% methanol (1.02 ± 0.05 %, 
w/w) compared to water (0.56 ± 0.01 %, 
w/w). Interestingly, another study found that 
the yield of methanolic extract of Salvadora 
persica L. (origin of South of Algeria) was 45% 
(32). 
 

Evaluating the GC-MS results 
The biologically active constituents of aqueous 
miswak extract (Method II) were assessed 
with GC-MS. Six major compounds 
representing 95.1% of the aqueous miswak 
extract were detected. The main compound 

was found to be 1,8-cineole (49.3%) in 
addition to benzyl nitrile (36.2%), benzyl 
isothiocyanate (5.9%), limonene (2.4%), 

eugenol (0.8%) and palmitic acid (0.3%) 
(Figure 2A). These findings correspond with 
the results reported by Noumi et al. (33) and 
Naeini et al. (34). Among these compounds, 

benzyl nitrile and benzyl isothiocyanate have 
a significant role in the antibacterial repertoire 
of miswak extract (35). On the other hand, the 
differences in the yields (%) and chemical 
composition might be related to geological 
conditions, the season of the plant collection 
and in particular climate (36). 
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Figure 2. GC-MS analysis (A), total phenolic content (B), total antioxidant activity (C) and 
macroscopic images of the fabricated scaffolds (D). 
 
Total Extractable phenolics 
The total extractable phenolics of Salvadora 
persica were evaluated through total phenolic 

content (TPC) analysis. TPC of Salvadora 
persica was found to be 28.79 ± 7.79 and 37.7 
± 4.0 µg GAE/mg dry weight for Method I and 
II, respectively. No significant difference (* p 
> 0.05, n = 3) was found when evaluating the 
data concerning Methods I and II statistically 

(Figure 2B). According to the study reported 
by Chelli-Chentouf et al. (32), the TPC of 
Hoggar Salvadora persica was 70 µg GAE/mg 

dried weight. Similarly, a study by Taha et al. 
(37) ascertained that TPC of Salvadora persica 
was calculated as 52.6 µg GAE/mg dried 
weight. 

 
The Trolox equivalent antioxidant 
capacity of extract 
Oxidative stress stimulated by free radicals 
might cause many problems in the human 
body. Antioxidant intake is thus crucial to 
protect the body from free radicals. Cupric 

reducing antioxidant capacity (CUPRAC) 
method was performed to determine the 
antioxidant levels of aqueous miswak extracts 
in terms of mg Trolox/L. The study revealed 
that the antioxidant activity of the aqueous 

extract was found to be 59.17 ± 6.23 and 92.5 

± 4.09 mg Trolox/L for Method I and II, 
respectively (Figure 2C). This difference is 
probably due to the high temperature applied 
in Method II (** p < 0.05, n = 3). The 
antioxidant activities of the miswak species 
have been determined by applying different 
methods such as DPPH and ABTS in the 

literature (31,33). The present study reports 
the antioxidant activity levels of Salvadora 
persica extracts in terms of mg Trolox/L for the 
first time in the literature. When comparing 
the results with another study published by 
our group (21), we concluded that a sufficient 

antioxidant capacity was achieved in Method 
II.  
 

Construction of bioengineered scaffolds 
The results related to the isolation and 
characterization of JC were discussed in depth 
in the studies previously published by our 
group (18,19). Structural integrity is one of 
the main challenges to be overcome when 

using jellyfish-derived atelocollagen to 
fabricate novel bioengineered scaffolds which 
have a proper pore size, mechanical stability, 

and so on. To address this challenge, MES 
buffer containing at least 80-90 % ethanol 
(15) or acetone (38) (v/v) is essential for 
successful cross-linking of such scaffolds. On 

the other hand, when aqueous miswak 
extracts were loaded into cross-linked JC 
scaffolds at ratios of 0.05 and 0.1 %, the 
morphology of miswak extract-laden JC 
scaffolds slightly shrunk depending on the 
loaded extract ratio (Figure 2D). It has been a 
well-known issue that swelling ratio decreases 

as the degree of cross-linking increases (39). 
So as to enlighten the effect of the cross-
linking process on interconnected pores in the 
scaffolds, swelling rates (%) of JC and miswak 
extract-laden JC scaffolds were investigated. 

The swelling ratio of JC scaffold was found to 

be 3291.23 ± 309.74%, whereas 0.05 and 
0.1% miswak extract-laden JC scaffolds were 
2836.75 ± 341.31% and 2822.52 ± 376.16%, 
respectively. According to results presented by 
Tronci et al. (40), the highest swelling ratio of 
collagen type I-based scaffold (derived from 
rat tail) was found as 1996 ± 182%. Our 

findings indicate that JC-based scaffolds have 
shown remarkable swelling properties when 
comparing to mammalian-derived 
alternatives. Lastly, the changes in the 
morphology and swelling ratio might have 
arisen from the sticky organic compounds 
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(such as terpenes) in the miswak extract 
(34,41). 
 

In vitro study 
Periodontal layers of healthy premolars were 
scraped and digested with collagenase type I 

to isolate the primary hPDLF cells (Figure 3A – 
C). The isolated cells were then expanded at 
standard culture conditions. While hPDLF cells 
in the culture environment showed spindle or 
stellate-shaped morphology at early passages, 
the appearances of the most cells changed to 

a spindle-shaped fibroblastic morphology 
(42,43) and organized in a swirl pattern (44). 
The microscopic images of isolated hPDLF cells 
are seen in Figure 3D. The cells were seeded 

onto JC and miswak extract-laden JC scaffolds, 
and the cell viability was determined by MTT 
assay on the 3rd, 7th and 14th days.  Figure 4 

reveals the fabricated scaffolds to have no 
cytotoxic effects on hPDLF cells. Although cell 
attachment was observed both JC and miswak 

extract-laden JC scaffolds, it was seen that the 
cell viability on miswak extract-laden JC 
scaffolds, unexpectedly, remained slightly low 
compared to JC scaffold (* p < 0.05, n = 3). 
Furthermore, there was no remarkable change 
in cell viability on 0.05 and 0.1% miswak 

extract-laden JC scaffolds (** p > 0.05, n = 3) 
depending on time points. We believe that the 
pore size of the miswak extract-laden JC 
scaffolds has affected cell proliferation (45). 

 

 
Figure 3. Healthy premolar (A), scraped periodontal layers (B, C) and human periodontal ligament 
fibroblast cells at Passage 3 (D). Scale bar: 500 µm. 
 

 
Figure 4. Cell viability assay (MTT-based) for jellyfish collagen (3%), 0.05% and 0.1% miswak 
extract-laden jellyfish collagen (3%) scaffolds on days 3, 7 and 14. 
 
Morphology of scaffolds and cell adhesion 
The pore size distributions, 3D 
interconnections between pores, surface 

roughness, and so on are the fundamental 
parameters to be considered in the 
construction of useful scaffolds for tissue 
engineering and regenerative medicine. The 

macroporosity of JC, 0.05 and 0.1 % miswak 
extract-laden JC scaffolds were measured in 
the range of 70 – 100 µm, 30 – 60 µm, and 20 

– 50 µm, respectively (Figure 5). The results 
are also consistent with swelling test 
measurements. As can be seen in Figure 5, 
although JC scaffolds are highly porous, the 
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pore size of miswak extract-laden JC scaffolds 
slightly shrunk depending on the increase in 
miswak ratio loaded into scaffolds. On the 

other hand, SEM micrographs revealed hPDLF 

cells to spread and cover the surfaces of 
prepared scaffolds on days 3, 7 and 14 to the 
extent allowed by pore size. These findings are 

also in close agreement with the MTT results. 
 

 
Figure 5. Scanning electron microscopy micrographs (500x) demonstrate the microarchitecture 

(white arrows) of the prepared scaffolds and hPDLF cell proliferation (yellow arrows) on these 
surfaces on days 3, 7 and 14. Scale bars: 10 µm. 
 
CONCLUSION 
 

Understanding the role of bioactive molecules 

derived from medicinal plants in cellular 
behaviors is substantial with regard to 
transferring this knowledge to translational 
medicine concept. Among many medicinal 
plants, Salvadora persica has the remarkable 
potential in maintaining and regulating the 
oral health due to the presence of some unique 

constituents. To that aim, we fabricated hybrid 
bioengineered scaffolds using jellyfish collagen 
and miswak extract. We then sought to 
evaluate the cellular behaviors of hPDLF such 
as attachment, growth, and proliferation in 
both JC and miswak extract-laden JC scaffolds. 
Miswak extract-laden JC scaffolds supported 

to cell attachment, but could not affect 

sufficient cell proliferation and growth 
compared to JC scaffolds. These results 
demonstrate that miswak extract has a 
significant influence on the pore size 
distribution of JC-based scaffolds. On the other 

hand, the antimicrobial effects of miswak 
extracts have been intensely studied in the 
literature, but there are no studies regarding 
the use of miswak extracts in periodontal 
tissue engineering applications. As a result, we 
believe that miswak extract-laden JC scaffolds 
could be a notable candidate for periodontal 

tissue regeneration in the future. 
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