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Abstract
The boundedness, closed range, invertibility, compactness and closed-
ness of multiplication operators on Orlicz-Lorentz spaces are character-
ized in this paper.
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1. Introduction
Let f a complex-valued measurable function defined on a σ-finite measure space

(X,A, µ). For λ ≥ 0, define Df (λ) the distribution function of f as

(1.1) Df (λ) = µ ({x ∈ X : |f(x)| > λ}) .
Observe that Df depends only on the absolute value |f | of the function f and Df may
assume the value +∞.

The distribution function Df provides information about the size of f but not about
the behavior of f itself near any given point. For instance, a function on Rn and each
of its translates have the same distribution function. It follows from (1.1) that Df is a
decreasing function of λ (not necessarily strictly) and continuous from the right.

Let (X,µ) be a measurable space and f and g be a measurable functions on (X,µ)
then Df enjoy the following properties for all λ1, λ2 ≥ 0:

(1) |g| ≤ |f | µ-a.e. implies that Dg ≤ Df ;
(2) Dcf (λ) = Df

(
λ
|c|

)
for all c ∈ C r {0};
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(3) Df+g(λ1 + λ2) ≤ Df (λ1) +Dg(λ2);
(4) Dfg(λ1λ2) ≤ Df (λ1) +Dg(λ2).

For more details on distribution function see [7].
By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{λ > 0 : Df (λ) ≤ t}, t ≥ 0

where we use the convention that inf ∅ = ∞. f∗ is decreasing and right-continuous.
Notice

f∗(0) = inf{λ > 0 : Df (λ) ≤ 0} = ‖f‖∞,

since

‖f‖∞ = inf{α ≥ 0 : µ({x ∈ X : |f(x)| > α}) = 0}.

Also observe that if Df is strictly decreasing, then

f∗(Df (t)) = inf{λ > 0 : Df (λ) ≤ D(f)t} = t.

This fact demonstrates that f∗ is the inverse function of the distribution functionDf . Let
F(X,A) denote the set of all A-measurable functions on X. Let (X,A0, µ) and (Y,A1, ν)
be two measure spaces.

Two functions f ∈ F (X,A0) and g ∈ F (X,A1) are said to be equimeasurable if they
have the same distribution function, that is, if

(1.2) µ ({x ∈ X : |f(x)| > λ}) = ν ({y ∈ Y : |g(y)| > λ}) , for all λ ≥ 0.

So then there exists only one right-continuous decreasing function f∗ equimeasurable
with f . Hence the decreasing rearrangement is unique.

In what follows, we gather some useful properties of the decreasing rearrangement
function:

a) f∗ is decreasing.
b) f∗(t) > λ if and only if Df (λ) > t.
c) f and f∗ are equimeasurables, that is

Df (λ) = Df∗(λ) for all λ ≥ 0.

d) If |f | ≤ lim infn→∞ |fn| then f∗ ≤ lim infn→∞ f
∗
n.

e) If E ∈ A, then (χE)∗ (t) = χ[0,µ(E))(t).
f) If E ∈ A, then (fχE)∗ (t) ≤ f∗(t)χ[0,µ(E))(t).

A weight is a nonnegative locally integrable function on Rn that takes values in (0,∞)
almost everywhere. Therefore, weights are allowed to be zero or infinite only on a set of
Lebesgue measure zero.

Let ϕ : [0,∞)→ [0,∞) be a convex function such that

(1) ϕ(x) = 0 if and only if x = 0;
(2) limx→∞ ϕ(x) =∞.

Such as function is known as a Young function. A Young function is strictly increasing,
in fact, let 0 < x < y then 0 < x

y
< 1 and hence, we might write

x =

(
1− x

y

)
0 +

x

y
y.



993

Since ϕ is convex, we have

ϕ(x) = ϕ

((
1− x

y

)
0 +

x

y
y

)
≤
(

1− x

y

)
ϕ(0) +

x

y
ϕ(y)

< ϕ(y).

A Young function is said to satisfy the ∆2-condition if there exists a nonnegative
constant x0 and k such that

(1.3) ϕ(2x) ≤ kϕ(x) for x ≥ x0.

If x0 = 0, we say that ϕ satisfy globally the ∆2-condition. The smaller constant k which
satisfy (1.3) is denoted by k∆.

1.1. Claim. If ϕ is a Young function such that satisfy the ∆2-condition, then for each
r ≥ 0 there exists a constant k∆(r) such that

(1.4) ϕ(rx) ≤ k∆(r)ϕ(x)

for x > 0 large enough.

Proof of the claim. If r > 0, we can choose n ∈ N such that r ≤ 2n. Then we can applied
(1.3) n-times and use the fact that ϕ is increasing to obtain

ϕ(rx) ≤ ϕ(2nx) ≤ knϕ(x),

and hence we have (1.4). �

1.2. Example. The function ϕ1(x) = xp

p
with p > 1 is a Young function which satisfy

globally the ∆2-condition with k∆ = 2p

p
.

1.3. Example. The function ϕ2(t) = tp log(1 + t) with p ≥ 1 and t ≥ 0 is a Young
function which satisfy the ∆2-condition, indeed, since

lim
t→∞

ϕ2(2t)

ϕ2(t)
= lim
t→∞

2ptp log(1 + 2t)

tp log(1 + t)
= 2p−1.

Also, ϕ2 satisfy globally the ∆2-condition.
In fact, since for each t ≥ 0 we have (1 + t)2 ≥ 1 + 2t, then

ϕ2(2t) = 2ptp log(1 + 2t)

≤ 2p+1tp log(1 + 2t)

≤ 2p+1ϕ2(2t).

1.4. Lemma. A Young function ϕ satisfy the ∆2-condition if and only if there exist
constants λ > 1 and t0 > 0 such that

tp(t)

ϕ(t)
< λ

for all t ≥ t0, where p is the right derivate of ϕ.

Proof. Suppose that ϕ satisfy the ∆2-condition, then there exists a constant k > 0 such
that

kϕ(t) ≥ ϕ(2t) =

∫ 2t

0

p(s) ds >

∫ 2t

t

p(s) ds
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for t large enough, since p is increasing, then we have∫ 2t

t

p(s) ds > tp(t);

hence, for t large enough, we obtain

tp(t)

ϕ(t)
≤ k.

Conversely, if

tp(t)

ϕ(t)
< λ

for all t ≥ t0, then∫ 2t

t

p(s)

ϕ(s)
ds < λ

∫ 2t

t

ds

s
= λ log 2.

Since p(s) = ϕ′(s), we have

log

(
ϕ(2t)

ϕ(t)

)
< λ log 2,

which implies that

ϕ(2t) < 2λϕ(t). �

The following result show us that the Young functions which satisfy the ∆2-condition
have a cross rate less than the function tp for some p > 1.

1.5. Theorem. If ϕ is a Young function which satisfy the ∆2-condition, then there exist
constants λ > 1 and C > 0 such that

ϕ(t) ≤ Ctλ

for t large enough.

Proof. By (1.4) we can write∫ t

t0

p(s)

ϕ(s)
ds < λ

∫ t

t0

ds

s

where t ≥ t0. Then

log

(
ϕ(t)

ϕ(t0)

)
< λ log

(
t

t0

)
,

therefore

ϕ(t) <
ϕ(t0)

tλ0
tλ.

And the proof is complete. �

1.6. Example. The following are Young functions:

(1) ϕ(x) = |x|p
p

with p > 1.
(2) ϕ(x) = e|x| − |x| − 1.
(3) ϕ(x) = e|x|

δ

− 1 with δ > 1.

(4) ϕ(x) =

{
0, if 0 ≤ x ≤ 1

+∞, otherwise.
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Related with the Young function ϕ, we define, for t ≥ 0 the complementary function
of Young function as

ψ(t) = sup{ts− ϕ(s) : s ≥ 0}.

1.7. Example. If ϕ(t) = 1
p
tp with p > 1 and t ≥ 0, then its complementary function is

ψ(t) = 1
q
tq where 1

p
+ 1

q
= 1.

Indeed, by definition we have

ψ(t) = sup

{
ts− 1

p
sp : s ≥ 0

}
,

next, for t > 0 fixed, we can consider the function

g(s) = ts− 1

p
sp, with s ≥ 0.

It is not hard to check that g achieved its maximum at s = t
1
p−1 which is given by

g
(
t

1
p−1

)
=

1

q
tq.

Hence

ψ(t) = sup

{
ts− 1

p
sp : s ≥ 0

}
=

1

q
tq.

1.8. Proposition. If ϕ is a Young function, then its complementary function ψ is also
a Young function.

Proof. It is clear that ψ(0) = 0 if and only if x = 0. Now, we just need to show that ψ
is a convex function. To this end, let us choose t1, t2 ∈ [0,+∞) and λ ∈ [0, 1]. Then, by
definition of ψ we have

ψ(λt1 + (1− λ)t2) = sup{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0}.

On the other hand

λψ(t1) = λ sup{st1 − ϕ(s) : s ≥ 0} ≥ λ(st1 − ϕ(s)) ∀ s ≥ 0

and

(1− λ)ψ(t2) = (1− λ) sup{st2 − ϕ(s) : s ≥ 0} ≥ (1− λ)(st2 − ϕ(s)) ∀ s ≥ 0.

From the last two inequalities, we have

s(λt1 + (1− λ)t2)− ϕ(s) = λ(st1 − ϕ(s)) + (1− λ)(st2 − ϕ(s))

≤ λψ(t1) + (1− λ)ψ(t2)

for all s ≥ 0. Which means that λψ(t1) + (1− λ)ψ(t2) is an upper bound of the set

{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0},

then

ψ(λt1 + (1− λ)t2)) ≤ ψ(t1) + (1− λ)ψ(t2),

and so ψ is convex. �

1.9. Theorem (Young’s Inequality). Let ψ be the complementary function of ϕ. Then

ts ≤ ϕ(s) + ψ(t)

where t, s ∈ [0,+∞).
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Proof. Let t, s ∈ [0,+∞). Then

ψ(t) = sup{st− ϕ(s) : s ≥ 0}
≥ st− ϕ(s) ∀ s ≥ 0,

then

ψ(t) + ϕ(s) ≥ st,

and the proof is complete. �

For more details on Young functions see [10].

2. Weighted Lorentz-Orlicz Spaces
The aim of this section is to present basic results about Lorentz-Orlicz spaces. We

have tried to make the proofs as self-contained and synthetic as possible.

2.1. Definition (Luxemburg norm). Let ϕ be a Young function. For any measurable
function f on X,

‖f‖ϕ,w = inf

{
ε > 0 :

∫ ∞
0

ϕ

(
f∗(t)

ε

)
w(t) dt ≤ 1

}
∈ [0,∞).

Where it is understood that inf(∅) = +∞.

2.2. Remark. In this article, we will not always require that the Luxemburg norm actually
be a norm. ‖ · ‖ϕ,w is indeed a quasinorm. A quasinorm is a functional that is like a
norm except that it does only satisfy the triangle inequality with a constant C ≥ 1, that
is, ‖f + g‖ ≤ C(‖f‖+ ‖g‖) where C ≥ 1.

2.3. Lemma. For any measurable function f on X, ‖f‖ϕ,w = 0 if and only if f = 0
µ-almost everywhere.

Proof. Clearly ‖f‖ϕ,w = 0 if and only if
∫∞

0
ϕ
(
f∗(t)
ε

)
w(t) dt ≤ 1 ∀ ε > 0. It follows that

‖f‖ϕ,w = 0 if and only if
∫ ∞

0

ϕ (αf∗(t))w(t) dt = 0 ∀ α > 0

if and only if ϕ (αf∗(t))w(t) = 0 µ− a.e. ∀ α > 0

if and only if f∗(t) = 0 µ− a.e.

if and only if Df (λ) = 0 µ− a.e.
if and only if f = 0 µ− a.e. �

Identification of almost everywhere equal functions. As with Lp spaces, one identifies
the function which are µ-almost everywhere equal. This means that one works with
the equivalence classes of the equivalence relation defined by the µ-almost everywhere
equality. From now on, this will be done without further mention. Consequently, one
write:

(2.1) ‖f‖ϕ,w = 0 if and only if f = 0.

2.4. Lemma. If 0 < ‖f‖ϕ,w < ∞ then
∫∞

0
ϕ
(

f∗(t)
‖f‖ϕ,w

)
w(t) dt ≤ 1. In particular,

‖f‖ϕ,w ≤ 1 is equivalent to
∫∞

0
ϕ (f∗(t))w(t) dt ≤ 1.
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Proof. For all b > ‖f‖ϕ,w, we have∫ ∞
0

ϕ

(
f∗(t)

b

)
w(t) dt ≤ 1.

Letting b decrease to ‖f‖ϕ,w, one obtains the first result by monotone convergence. The
second statement follows from this and lemma 2.8. �

2.5. Proposition. The gauge ‖ · ‖ϕ,w is a quasinorm on the vector space of all the
measurable functions f such that ‖f‖ϕ,w <∞.

Proof. It is already seen that (2.1) holds under identification of a.e. equal functions.
It is clear that for all real λ, ‖λf‖ϕ,w = |λ|‖f‖ϕ,w.
It remains to prove the triangle inequality. Let f and g be two measurable functions

such that 0 < ‖f‖ϕ,w + ‖g‖ϕ,w <∞. Then∫ ∞
0

ϕ

(
(f + g)∗(t)

2(‖f‖ϕ,w + ‖g‖ϕ,w)

)
w(t) dt

≤
∫ ∞

0

ϕ

(
f∗(t/2) + g∗(t/2)

2(‖f‖ϕ,w + ‖g‖ϕ,w)

)
w(t) dt

=

∫ ∞
0

ϕ

(
‖f‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)

f∗(t/2)

‖f‖ϕ,w
+

‖g‖ϕ,w
2(‖f‖ϕ,w + ‖g‖ϕ,w)

g∗(t/2)

‖g‖ϕ,w

)
w(t) dt

≤ ‖f‖ϕ,w
2(‖f‖ϕ,w + ‖g‖ϕ,w)

∫ ∞
0

ϕ

(
f∗(t/2)

‖f‖ϕ,w

)
w(t) dt

+
‖g‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)

∫ ∞
0

ϕ

(
g∗(t/2)

‖f‖ϕ,w

)
w(t) dt

=
‖f‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)
2

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(2t) dt

+
‖g‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)
2

∫ ∞
0

ϕ

(
g∗(t)

‖f‖ϕ,w

)
w(2t) dt

≤ ‖f‖ϕ,w
‖f‖ϕ,w + ‖g‖ϕ,w

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(t) dt

+
‖g‖ϕ,w

‖f‖ϕ,w + ‖g‖ϕ,w

∫ ∞
0

ϕ

(
g∗(t)

‖f‖ϕ,w

)
w(t) dt

≤ 1.

Where the last but one inequality follows from the convexity of ϕ and the fact that w is
nonincreasing and the last inequality from lemma 2.4. Therefore

‖f + g‖ϕ,w ≤ 2 (‖f‖ϕ,w + ‖g‖ϕ,w) .

As a consequence, the set of all measurable functions f such that ‖f‖ϕ,w <∞ is a vector
space. �

2.6. Definition. Let ϕ be a Young function. We define the weighted Lorenz-Orlicz
spaces

Lϕ,w =

{
f : X → C measurable :

∫ ∞
0

ϕ(αf∗(t))w(t) dt <∞, for some α > 0

}
.

It follows from proposition 1.8 that if Lϕ,w is a weighted Lorentz-Orlicz space, then
Lψ,w is also a weighted Lorenz-Orlicz space.
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2.7. Proposition (Hölder’s type inequality). For f ∈ Lϕ,1 and g ∈ Lψ,1∫
X

|fg| dµ ≤ 2‖f‖ϕ,1‖g‖ψ,1.

In particular, fg ∈ L1.

Proof. If ‖f‖ϕ,1 = 0 or ‖g‖ψ,1 = 0, one concludes with lemma 2.8.
Assume now that 0 < ‖f‖ϕ,1, ‖g‖ψ,1. Because of Young’s inequality: st ≤ ϕ(s) +ϕ(t)

we have ∫
X

|fg|
‖f‖ϕ,1‖g‖ψ,1

dµ ≤
∫ ∞

0

f∗(t)g∗(t)

‖f‖ϕ,1‖g‖ψ,1
dt

≤
∫ ∞

0

ϕ

(
f∗(t)

‖f‖ϕ,1

)
dt+

∫ ∞
0

ψ

(
g∗(t)

‖g‖ψ,1

)
dt

≤ 2.

Therefore∫
X

|fg| dµ ≤ 2‖f‖ϕ,1‖g‖ψ,1. �

2.8. Lemma. Let {fn}n∈N be a sequence in Lϕ,w. Then, the following assertions are
equivalent:
(a) limn→∞ ‖fn‖ϕ,w = 0;
(b) For all α > 0, lim supn→∞

∫∞
0
ϕ(αf∗n(t))w(t) dt ≤ 1;

(c) For all α > 0, limn→∞
∫∞

0
ϕ(αf∗n(t))w(t) dt = 0.

Proof. The equivalence (a)⇔ (b) is a direct consequence of the definition of ‖ · ‖ϕ,w. Off
course (c)⇒ (b) is obvious. As ϕ is convex and ϕ(0) = 0 for all t ≥ 0 and 0 < ε ≤ 1, we
have

ϕ(t) = ϕ

(
(1− ε)0 + ε

t

ε

)
≤ (1− ε)ϕ(0) + εϕ

(
t

ε

)
,

that is

ϕ(t) ≤ εϕ
(
t

ε

)
t ≥ 0, 0 < ε ≤ 1.

From which (b)⇒ (c) follows easily. �

2.9. Theorem. The space Lϕ,w is a quasi-Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in Lϕ,w. Let us choose ε̃ > 0 such that
ε̃ϕ−1

(
ε
k0

)
< 1

n+m
for n,m ∈ N and ε > 0, k0 > 0. For such ε̃ there exists n0 ∈ N such

that

‖fn − fm‖ϕ,w < ε̃.

If n,m ≥ n0. By the definition of the Luxemburg quasi-norm we can use k0 > 0 in such
a way that k0 < ε̃ and∫ ∞

0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt ≤ 1.

Let E = {x ∈ X : |fn(x)− fm(x)| > ε}, then

εχE(x) ≤ |fn(x)− fm(x)|.
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And hence

εχ∗E(t) ≤ (fn − fm)∗(t),

εχ(0,µ(E))(t) ≤ (fn − fm)∗(t).

Therefore∫ ∞
0

ϕ

(
ε

k0
χ(0,µ(E))(t)

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt.

Then ∫ µ(E)

0

ϕ

(
ε

k0

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt

⇒ ε̃

∫ Dfn−fm(ε)

0

w(t) dt ≤ ε̃ϕ−1

(
ε

k0

)∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt

⇒ ε̃

∫ Dfn−fm(ε)

0

w(t) dt ≤ 1

n+m

⇒ ε̃ lim
n,m→∞

∫ Dfn−fm(ε)

0

w(t) = 0.

Since w > 0, we must have limn,m→∞Dfn−fm(ε) = 0 which means that {fn}n∈N is a
Cauchy sequence in measure, then some subsequence {fnk}k∈N converges almost every-
where to a measurable function f , that is, fnk → f µ-a.e.

Let α > 0. By lemma 2.8 there exists a large enough integer n(α) such that∫ ∞
0

ϕ (α(fn − fm)∗(t))w(t) dt ≤ 1, ∀ m,n ≥ n(α).

With Fatou’s lemma this gives∫ ∞
0

ϕ (α(fn − f)∗(t))w(t) dt ≤ lim inf

∫ ∞
0

ϕ (α(fn − fm)∗(t))w(t) dt ≤ 1

∀ m ≥ n(α). Therefore fn − f belongs to Lϕ,w, but fn ∈ Lϕ,w, so that f ∈ Lϕ,w.
Moreover, as lim supm→∞

∫∞
0
ϕ (α(fm − f)∗(t))w(t) dt ≤ 1 for all α > 0, we have

limm→∞ ‖fm − f‖ϕ,w = 0. This proves that Lϕ,w is complete. �

2.10. Theorem. Simple functions are dense in Lϕ,w.

Proof. Suppose f ∈ Lϕ,w. We may assume that f ≥ 0. Note that if Df (λ) = ∞, then
limt→∞ f

∗(t) = 0. It follows that Df (λ) <∞.
Hence, given ε, δ > 0, we can find a simple function sn ≥ 0 such that sn(x) = 0 when

f(x) ≤ ε and f(x) − ε ≤ sn(x) ≤ f(x) when f(x) > ε except on a set of measure less
than δ. It follows that

µ ({x ∈ X : |f(x)− sn(x)| > ε}) < δ.

Next, choose n ∈ N such that n ≥ 1
ε
, then

(f − sn)∗(t) = inf{ε > 0 : Df−sn(ε) < δ ≤ t}.

Thus

(f − sn)∗(t) ≤ 1

n
for t ≥ δ,

since sn ≤ f , then s∗n(t) ≤ f∗(t), for each t > 0. Since n > 1
ε
, we have

(f − sn)∗(t) ≤ 1

n
< ε,
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next, ∫ ∞
0

ϕ

(
(f − sn)∗(t)

k

)
w(t) dt ≤

∫ ∞
0

ϕ

(
1

nk

)
w(t) dt.

Let a =
∫∞

0
w(t) dt, then

‖f − sn‖ϕ,w = inf

{
k > 0 :

∫ ∞
0

ϕ

(
(f − sn)∗(t)

k

)
w(t) dt ≤ 1

}
=

1

nϕ−1
(

1
a

) → 0 as n→∞. �

3. Multiplication Operator
Let F (X) be a function space on non-empty set X. Let u : X → C be a function such

that u · f ∈ F (X) whenever f ∈ F (X).
Then, the transformation f 7→ u · f on F is denoted by Mu. In case F (X) is a

topological space and Mu is continuos, we call it a multiplication operator induced by u.
Multiplication operators generalize the notion of operator given by a diagonal ma-

trix. More precisely, one of the results of operator theory is a spectral theorem, which
states that every self-adjoint operator on a Hilbert space is unitarily equivalent to a
multiplication operator on an L2 space.

These operators received considerable attention over the past several decades specially
on Lp spaces and Bergman spaces and they played an important role in the study of
operators on Hilbert spaces.

For more details on these operators we refer to Abrahamese [1], Axler [4], Douglas [6],
Halmos [8] and Takagi [12].

3.1. Example. Consider the Hilbert space X = L2[−1, 3] of complex-valued square
integrable functions on the interval [−1, 3]. Define the operator

Mu(x) = u(x)x2,

for any function u ∈ X. This will be a self-adjoint bounded linear operator with norm
9. Its spectrum will be the interval [0, 9] (the range of the function x → x2 defined on
[−1, 3]). Indeed, for any complex number λ, the operator Mu − λ is given by

(Mu − λ)(x) = u(x)(x2 − λ).

It is invertible if and only if λ is not in [0, 9], and then its inverse is

(Mu − λ)−1(x) =
u(x)

x2 − λ .

which is another multiplication operator.

For a systematic study of the multiplication operators on different spaces we refer to
[1, 3, 4, 5, 9, 11].

3.2. Remark. In general, the multiplication operators on measurable spaces is not 1−1.
Indeed, let (X,A, µ) be a measure space and

A = X r supp(u) = {x ∈ X : u(x) = 0}.
If µ(A) 6= 0 and f = χA then for any x ∈ X we have f(x)u(x) = 0 which implies that
Mu(f) = 0, therefore ker(Mu) 6= {0} and hence Mu is not 1−1.

If, on the contrary, Mu is 1−1, then µ(X r supp(u)) = 0. On the other hand, if
µ(X r supp(u)) = 0 and µ is a complete measure, then Mu(f) = 0 implies f(x)u(x) =
0 ∀ x ∈ X, then {x ∈ X : f(x) 6= 0} ⊆ X r supp(u) and so f = 0 µ-a.e. on X.

Hence, if µ(X r supp(u)) = 0 and µ is a complete measure, then Mu is 1−1.
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3.3. Proposition. Mu is 1−1 on Y = Lϕ,w(suppu).

Proof. Let Y = Lϕ,w(suppu) = {fχsuppu : f ∈ Lϕ,w}. Indeed, if Mu(f̃) = 0 with
f̃ = fχsuppu ∈ Y , then f(x)χsuppu(x)u(x) = 0 for all x ∈ X, and so

f(x)u(x) = 0 ∀ x ∈ supp(u),

⇒ f(x) = 0 ∀ x ∈ supp(u),

⇒ f(x)χsuppu(x)(x) = 0 ∀ x ∈ X.

Then f̃ = 0 and the proof is complete. �

In what follows, boundedness and invertibility of the multiplication Mu are charac-
terized in terms of the boundedness and invertibility of the complex valued measurable
function u respectively.

3.4. Theorem. The linear transformation Mu : f → u · f on the Orlicz-Lorentz space
Lϕ,w is bounded if and only if u is essentially bounded. Moreover

‖Mu‖ = ‖u‖∞.

Proof. Let u ∈ L∞(µ), note |(uf)(x)| ≤ ‖u‖∞|f(x)|, thus
{x : |(uf)(x)| > λ} ⊆ {x : ‖u‖∞|f(x)| > λ}

=

{
x : |f(x)| > λ

‖u‖∞

}
then

Duf (λ) ≤ Df
(

λ

‖u‖∞

)
and so {

λ > 0 : Df

(
λ

‖u‖∞

)
≤ t
}
⊆ {λ > 0 : Duf (λ) ≤ t}.

From this we have

inf{λ > 0 : Duf (λ) ≤ t} ≤ inf

{
λ > 0 : Df

(
λ

‖u‖∞

)
≤ t
}

≤ inf{α‖u‖∞ > 0 : Df (α) ≤ t}
= ‖u‖∞ inf{α > 0 : Df (α) ≤ t}.

Hence

(uf)∗(t) ≤ ‖u‖∞f∗(t).
Then ∫ ∞

0

ϕ

(
(uf)∗(t)

‖u‖∞‖f‖ϕ,w

)
w(t) dt ≤

∫ ∞
0

ϕ

(
‖u‖∞f∗(t)
‖u‖∞‖f‖ϕ,w

)
w(t) dt

=

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(t) dt ≤ 1.

Hence f ∈ Lϕ,w and

(3.1) ‖Muf‖ϕ,w ≤ ‖u‖∞‖f‖ϕ,w.
Conversely, suppose Mu is a bounded operator. If u is not essentially bounded function,
then for every n ∈ N, the set En = {x ∈ X : |u(x)| > n} has a positive measure. Now,
we know that

χ∗En(t) = χ0,µ(En)(t),
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and note

{x : nχEn(x) > λ} ⊆ {x : |uχEn(x)| > λ},
then

DnχEn (λ) ≤ DuχEn (λ),

from this we have

{λ > 0 : DuχEn (λ) ≤ t} ⊆ {λ > 0 : DnχEn (λ) ≤ t}.
Hence

inf{λ > 0 : DnχEn (λ) ≤ t} ≤ inf{λ > 0 : DuχEn (λ) ≤ t}.
That is,

(uχEn)∗(t) ≥ n(χEn)∗(t).

This gives us

1 ≥
∫ ∞

0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt

≥
∫ ∞

0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt,

and so {
k > 0 :

∫ ∞
0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt ≤ 1

}
⊆
{
k > 0 :

∫ ∞
0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt ≤ 1

}
,

thus

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt ≤ 1

}
,

which means that

‖MuχEn‖ϕ,w ≥ n‖χEn‖ϕ,w,
this contradicts the boundedness of Mu. Hence u must be essentially bounded.

Next, clearly by (3.1) we obtain

(3.2) ‖Mu‖ ≤ ‖u‖∞.
For ε > 0, let E = {x ∈ X : |u(x)| ≥ ‖u‖∞ − ε} (observe that µ(E) > 0), then

{x ∈ X : (‖u‖∞ − ε)χE(x) > λ} ⊆ {x ∈ X : |uχE(x)| > λ},
then

D(‖u‖∞−ε)χE (λ) ≤ DuχE (λ)

and so

{λ > 0 : DuχE (λ) ≤ t} ⊆ {λ > 0 : D(‖u‖∞−ε)χE ≤ t}
from this we have

inf{λ > 0 : D(‖u‖∞−ε)χE ≤ t} ≤ inf{λ > 0 : DuχE (λ) ≤ t}.
Therefore

(uχE)∗(t) ≥ (‖u‖∞ − ε)(χE)∗(t),
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then ∫ ∞
0

ϕ

(
(‖u‖∞ − ε)(χE)∗(t)

‖MuχE‖ϕ,w

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(uχE)∗(t)

‖MuχE‖ϕ,w

)
w(t) dt ≤ 1,

which implies that

‖(‖u‖∞ − ε)χE‖ϕ,w ≤ ‖MuχE‖ϕ,w,

and

(‖u‖∞ − ε)‖χE‖ϕ,w ≤ ‖MuχE‖ϕ,w,

hence

‖u‖∞ − ε ≤
‖MuχE‖ϕ,w
‖χE‖ϕ,w

,

which provide that

‖Mu‖ ≥ ‖u‖∞ − ε ∀ ε > 0

and so

‖Mu‖ ≥ ‖u‖∞.

Therefore

‖Mu‖ = ‖u‖∞. �

We will need the following well known result.

3.5. Theorem. Let T ∈ B(X,Y ) whereX and Y are Banach spaces. Then T is bounded
below if and only if T is 1−1 and has closed range.

For the proof of theorem 3.5 see [2].

3.6. Corollary. Mu : Lϕ,w(suppu) → Lϕ,w(suppu) has closed range if and only if Mu

is bounded below on Lϕ,w(suppu).

This result is clear since Mu is 1−1 on Lϕ,w(suppu). Moreover, if u 6= 0 µ-a.e. on X
with µ a complete measure, then we have the following result.

3.7. Corollary. If µ 6= 0 µ-a.e. on X and µ is a complete measure, then

Mu : Lϕ,w(X,A, u)→ Lϕ,w(X,A, u)

has a closed range if and only if Mu is bounded below on Lϕ,w(X,A, u).

3.8. Theorem. Mu : Lϕ,w(suppu) → Lϕ,w(suppu) has a closed range if and only if
there exists δ > 0 such that |u(x)| > δ µ-a.e. on suppµ.

Proof. If there exists a δ > 0 such that |u(x)| ≥ δ µ-a.e. on supp(u), then for f ∈ Lϕ,w
and t > 0 we have

{x : |δfχsupp(u)(x)| > λ} ⊆ {x : |ufχsupp(u)(x)| > λ},

and so

Dδfχsupp(u)
(λ) ≤ Dufχsupp(u)

(λ),

then

{λ > 0 : Dufχsupp(u)
(λ) ≤ t} ⊆ {λ > 0 : Dδfχsupp(u)

(λ) ≤ t},

from this we have

inf{λ > 0 : Dδfχsupp(u)
(λ) ≤ t} ≤ inf{λ > 0 : Dufχsupp(u)

(λ) ≤ t},
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thus

(ufχsupp(u))
∗(t) ≥ δfχ∗supp(u)(t),

then we shall note that{
k > 0 :

∫ ∞
0

ϕ

(
(ufχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
⊆{

k > 0 :

∫ ∞
0

ϕ

(
(δfχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

Hence

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(δfχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(ufχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
,

which means that

‖δfχsupp(u)‖ϕ,w ≤ ‖Mufχsupp(u)‖ϕ,w,

thus

‖Mufχsupp(u)‖ϕ,w ≥ δ‖fχsupp(u)‖ϕ,w.

Therefore Mu has closed range.
Conversely, assume thatMu has closed range on Lϕ,w(supp(u)). SinceMu : Lϕ,w(supp(u))→

Lϕ,w(supp(u)) is 1−1, then Mu is bounded below, then there exists an ε > 0 such that

‖Muf‖ϕ,w ≥ ε‖f‖ϕ,w

for all f ∈ Lϕ,w(supp(u)). Let E = {x ∈ supp(u) : |u(x)| < ε/2}.
If µ(E) > 0, then we can find a measurable set F ⊆ E such that χF ∈ Lϕ,w(supp(u)).

Then

{x : |uχF | > λ} ⊆
{
x :
∣∣∣ ε
2
χF

∣∣∣ > λ
}

and so

DuχF (λ) ≤ D ε
2
χF (λ),

from this we have

{λ > 0 : D ε
2
χF (λ) ≤ t} ⊆ {λ > 0 : DuχF (λ) ≤ t},

then

inf{λ > 0 : DuχF (λ) ≤ t} ≤ inf{λ > 0 : D ε
2
χF (λ) ≤ t}

that is,

(uχF )∗(t) ≤
( ε

2
χF
)∗

(t),

and so

(uχF )∗(t) ≤ ε

2
(χF )∗(t).
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Therefore

‖MuχF ‖ϕ,w = inf

{
ε > 0 :

∫ ∞
0

ϕ

(
(uχF )∗(t)

ε

)
w(t) dt ≤ 1

}
≤ inf

{
ε > 0 :

∫ ∞
0

ϕ

( ε
2
(χF )∗(t)

ε

)
w(t) dt ≤ 1

}
=
ε

2
‖χF ‖ϕ,w,

which is a contradiction. Therefore µ(E) = 0. This completes the proof. �

3.9. Corollary. If µ 6= 0 µ-a.e. on X, and µ is a complete measure, then Mu has a
closed range on Lϕ,w(X,A, µ) if and only if there exists δ > 0 such that |u(x)| ≥ δ µ-a.e.
on X.

Proof. The result follows as a consequence of

Lϕ,w(X,A, µ) = Lϕ,w(suppu) �

3.10. Theorem. The set of all multiplication operators on Lϕ,w is a maximal abelian
subalgebra of the set B(Lϕ,w), the algebra of all bounded linear operators on Lϕ,w.

Proof. Let

H = {Mu : u ∈ L∞}
and consider the operator product

Mu ·Mv = Muv,

where Mu,Mv ∈ H. Let us check that it is a Banach algebra. Let u, v ∈ L∞, then
|u| ≤ ‖u‖∞ and |v| ≤ ‖v‖∞, therefore

‖uv‖∞ ≤ ‖u‖∞‖v‖∞,
this implies that the product is an inner operation, moreover the usual function product
is associative, commutative and distributive respect to the sum and the scalar product,
thus we conclude that H is a subalgebra of B(Lϕ,w). Now, we like to check that it is a
maximal subalgebra, that is, given N ∈ B(Lϕ,w), if N commute with H, we have to prove
that N ∈ H. Consider the unit function e : X → C defined by e(x) = 1 for all x ∈ X.
Let N ∈ B(Lϕ,w) be an operator which commute with H and let χE the characteristic
function of a measurable set E. Then

N(χE) = N [MχE (e)]

= MχE [N(e)]

= χE ·N(e)

= N(e) · χE
= Mw · χE ,

where w = N(e). Similarly

(3.3) N(s) = Mw(s)

for any simple function.
Now, let us check that w ∈ L∞. By way of contradiction, assume that w /∈ L∞, then

the set

En = {x ∈ X : |w(x)| > n}
has a positive measure for each n ∈ N. Note that

Mw(χEn)(x) = wχEn(x) ≥ nχEn(x)
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for all x ∈ X. By the monotonicity property of the distribution function we have

DwχEn (λ) ≥ DχEn

(
λ

n

)
.

From this

{λ > 0 : DwχEn (λ) ≤ t} ⊆
{
λ > 0 : DχEn

(
λ

n

)
≤ t
}
.

Then

inf

{
λ > 0 : DχEn

(
λ

n

)
≤ t
}
≤ inf{λ > 0 : DwχEn (λ) ≤ t}.

Putting α = λ
n
, we have

‖wχEn‖ϕ,w ≥ n‖χEn‖ϕ,w,
since χE is a simple function, then by (3.3) we have

Mw(χEn) = N(χEn).

Hence

‖N(χEn)‖ϕ,w ≥ n‖χEn‖ϕ,w.
Therefore N is an unbounded operator. This is a contradiction to the fact that N is
bounded.

So then w ∈ L∞ and by theorem 3.4 Mw is bounded.
Next, given f ∈ Lϕ,w, there exists a nondecreasing sequence {sn}n∈N of measurable

simple functions such that limn→∞ sn = f , then by (3.3) we have

N(f) = N(lim sn)

= limN(sn)

= limMw(sn)

= Mw(lim sn)

= Mw(f).

Therefore N(f) = Mw(f) for all f ∈ Lϕ,w and thus we conclude that N ∈ H. �

3.11. Corollary. The multiplication operator is invertible on B(Lϕ,w) if and only if is
invertible on L∞.

Proof. Let Mu be invertible. Then there exists N ∈ B(Lϕ,w) such that

(3.4) Mu ·N = N ·Mu = I

where I represent the identity operator. Let us check that N commute with H.
Let Mw ∈ H, then

(3.5) Mw ·Mu = Mu ·Mw.

Applying N to (3.5) and by (3.4) we obtain

N ·Mw ·Mu ·N = N ·Mu ·Mw ·N,
N ·Mw · I = I ·Mw ·N,
N ·Mw = Mw ·N,

and thus we conclude that N commute with H. By theorem 3.10 N ∈ H, then there
exists g ∈ L∞ such that N = Mg, hence

Mu ·Mg = Mg ·Mu = I,

this implies that ug = gu = 1 µ-a.e., which means that u is invertible on L∞.
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On the other hand, assume u is invertible on L∞, that is, 1
u
∈ L∞, then

Mu ·M 1
u

= M 1
u
·Mu

= M( 1
u )u

= M1 = I,

which means that Mu is invertible on B(Lϕ,w). �

For the sake of completeness and the convenience of the reader, we gives here one
definition and one lemma which will play an important role on the coming results.

3.12. Definition. Let T be an operator. A subspace V of X is said to be invariant
under T (or simply T -invariant) whenever

T (V ) ⊆ V.

3.13. Lemma. Let T : X → X be an operator. If T is compact and M is a closed
T -invariant subspace of X, then T |M is compact.

Proof. Let {xn}n∈N be a subsequence inM ⊆ X. Then {xn}n∈N ⊆ X, thus there exists a
subsequence {xnk}k∈N of {xn}n∈N such that T (xnk ) converges in X, but T (xnk ) ⊆ T (M)

since {xnk}k∈N ⊆ M . Then T (xnk ) converges on T (M) ⊆ M = M . Therefore T (xnk )
converges on M , hence T |M is compact. �

3.14. Theorem. Let Mu be a compact operator. For ε > 0 define

Aε(u) = {x ∈ X : |u(x)| ≥ ε},
and

Lϕ,w(Aε(u)) = {fχAε(u) : f ∈ Lϕ,w}.
Then Lϕ,w(Aε(u)) is a closed invariant subspace of Lϕ,w under Mu. Moreover

Mu

∣∣
Lϕ,w(Aε(u))

is a compact operator.

Proof. Let h, s ∈ Lϕ,w(Aε(u)) and α, β ∈ R. Then h = fχAε(u) and s = gχAε(u) where
f, g ∈ Lϕ,w thus

αh+ βs = α(fχAε(u)) + β(gχAε(u))

= (αf + βg)χAε(u) ∈ Lϕ,w(Aε(u)),

which means that Lϕ,w(Aε(u)) is a subspace of Lϕ,w.
Next, for all h ∈ Lϕ,w(Aε(u)) we have

Muh = uh

= u(fχAε(u))

= (uf)χAε(u),

where uf ∈ Lϕ,w. Therefore Mu ∈ Lϕ,w(Aε(u)), which means that Lϕ,w(Aε(u)) is an
invariant subspace of Lϕ,w under Mu.

Now, let us show that Lϕ,w(Aε(u)) is a closed set. Indeed, let g a function belonging
to the closure of Lϕ,w(Aε(u)) then there exists a sequence {gn}n∈N in Lϕ,w(Aε(u)) such
that

gn → g in Lϕ,w
Just remain to exhibit that g belongs to Lϕ,w(Aε(u)). Note that

g = gχAε(u) + gχAcε(u).
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Next, we want to show that gχAcε(u) = 0. In fact, given ε1 > 0 there exists n0 ∈ N such
that

‖gχAcε(u)‖ϕ,w = ‖(g − gn0 + gn0)χAcε(u)‖ϕ,w
= ‖(g − gn0)χAcε(u)‖ϕ,w
≤ ‖g − gn0‖ϕ,w < ε1.

Thus, gχAcε(u) = 0 which means that g = gχAε(u), that is, g ∈ Lϕ,w(Aε(u)). Finally by
lemma 3.13 we have

Mu

∣∣
Lϕ,w(Aε(u))

is a compact operator. And the proof is now complete. �

3.15. Theorem. Let Mu ∈ B(Lϕ,w). Then Mu is compact if and only if Lϕ,w(Aε(u))
is finite dimensional for each ε > 0.

Proof. If |u(x)| ≥ ε, we should note that

|ufχAε(x)| ≥ εfχAε(u)(x)

and so

{x : εfχAε(u)(x) > λ} ⊆ {x :
∣∣ufχAε(u)(x)

∣∣ > λ},

thus

DεfχAε(u)(λ) ≤ DufχAε(u)(λ),

then

{λ > 0 : DufχAε(u)(λ) ≤ t} ⊆ {λ > 0 : DεfχAε(u)(λ) ≤ t}

from this we have

inf{λ > 0 : DεfχAε(u)(λ) ≤ t} ≤ inf{λ > 0 : DufχAε(u)(λ) ≤ t}

that is

(εfχAε(u))
∗(t) ≤ (ufχAε(u))

∗(t).

Hence {
k > 0 :

∫ ∞
0

ϕ

(
(ufχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
⊆{

k > 0 :

∫ ∞
0

ϕ

(
ε(fχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

Therefore

inf

{
k > 0 :

∫ ∞
0

ϕ

(
ε(fχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(ufχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

And hence

(3.6) ‖MufχAε(u)‖ϕ,w ≥ ε‖fχAε(u)‖ϕ,w.

Now, if Mu is a compact operator, then Lϕ,w(Aε(u)) is a closed invariant subspace of
Lϕ,w under Mu and by lemma 3.13

Mu

∣∣
Lϕ,w(Aε(u))
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is a compact operator. Then by (3.6) Mu

∣∣
Lϕ,w(Aε(u)) has a closed range in Lϕ,w(Aε(u))

and it is invertible, being compact Lϕ,w(Aε(u)) is finite dimensional.
Conversely, suppose that Lϕ,w(Aε(u)) is finite dimensional for each ε > 0. In partic-

ular, for each n, Lϕ,w(A 1
u

(u)) is finite dimensional, then for each n, define un : X → C
as

un(x) =

{
u(x) if |u(x)| ≥ 1

n

0 if |u(x)| < 1
n
.

Then we find that

((un − u) · f)∗(t) ≤ ‖un − u‖∞f∗(t) ∀ t > 0.

Consequently

‖Munf −Muf‖ϕ,w ≤ ‖un − u‖∞‖f‖ϕ,w

≤ 1

n
‖f‖ϕ,w,

which implies thatMun converges toMu uniformly. As Lϕ,w(Aε(u)) is finite dimensional
so Mun is a finite rank operator. Therefore, Mun is a compact operator and hence Mu

is a compact operator. �
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