Hacettepe Journal of Mathematics and Statistics
Volume 44 (1) (2015), 121127

Applications of k-Fibonacci numbers for the
starlike analytic functions

Janusz Sokot* , Ravinder Krishna Raina ' and Nihal Yilmaz Ozgiir

Abstract

The k-Fibonacci numbers Fy , (k > 0), defined recursively by Fi o =
0,Fr1 =1 and Fipn = kFkn + Fi,n—1 for n > 1 are used to define
a new class 8£®. The purpose of this paper is to apply properties of
k-Fibonacci numbers to consider the classical problem of estimation of
the Fekete—Szegd problem for the class 8£*. An application for inverse
functions is also given.
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1. Introduction

Let D = {z:|z] < 1} denote the unit disc on the complex plane. The class of all
holomorphic functions f in the open unit disc D with normalization f(0) =0, f'(0) =1
is denoted by A and the class 8§ C A is the class which consists of univalent functions in D.
We say that f is subordinate to F' in D, written as f < F, if and only if f(z) = F(w(2))
for some w € A, |w(z)| < 1, z € D.

Recently, N. Yilmaz Ozgiir and J. Sokot [5] defined and introduced the class $L£*
of shell-like functions as the set of functions f € A which is described in the following
definition.
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1.1. Definition. Let k be any positive real number. The function f € A belongs to the
class 8L if it satisfies the condition that

zf' (2 _
(1.1) J{(i)) < pr(2), z € D,
where
N b _k—Vk2+4
12) w2 =~ e e e D.

For k = 1, the class 8£* becomes the class 8L of shell-like functions defined in [3], see
also [4].

It was proved in [5] that functions in the class 8£* are univalent in D. Moreover, the
class 8L* is a subclass of the class of starlike functions 8*, even more, starlike of order
k(k* 4 4)~'/2/2. The name attributed to the class S£* is motivated by the shape of the
curve

e= {ﬁk(e“) St e [0,2m)\ {w}} .

The curve € has a shell-like shape and it is symmetric with respect to the real axis. Its
graphic shape, for k = 1, is given below in Fig.1.
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Fig. 1. ﬁl(ew) : y2 = —(‘/3712;2(:/5;71)2.

For k < 2, note that we have
~ +i arccos(k2/4) _ 2 —-1/2
Pk € - k(k +4) )
and so the curve € intersects itself on the real axis at the point w; = k(k? + 4)~1/2.
Thus € has a loop intersecting the real axis also at the point ws = (k? 4 4)/(2k). For
k > 2, the curve C has no loops and it is like a conchoid, see for details [5]. Moreover,
the coefficients of py are connected with k-Fibonacci numbers.

For any positive real number k, the k-Fibonacci number sequence {F n}, is defined
recursively by

(1.3) Fk,O =0, Fk71 =1 and Fk,n = ka,n + Fkynfl for n > 1.



When k = 1, we obtain the well-known Fibonacci numbers F),. It is known that the nt"
k-Fibonacci number is given by

(k —7e)" — 7

V2 +4
where 7, = (k — Vk2 +4)/2. f pr(z) =1+ 3 07 | Pr,nz", then we have
(1.5) 5k,n = (Fk,n_1+Fk,n+1)Tn, n=123,...,

see also [5].

(14)  Fp, =

1.2. Lemma. [5] If f(2) = z+ 3 anz™ belongs to the class SL*, then we have
n=2

(1.6)  lan| < 7" Fin,

where 7, = (k — Vk? +4)/2. Equality holds in (1.6) for the function
z
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(1.7) :Z+w22+(k2+1)(@+1>23+~-.

2. The classical Fekete—Szego functional

A typical problem in geometric function theory is to study a functional made up of
combinations of the coefficients of the original function. Let 8§ be the class of univalent
functions f(z) = z+a2z® +azz*+- - mappingD = {2z € C : |z| < 1} into C (the complex
plane). The classical Fekete-Szegd functional is £y = |az — Aa3|, 0 < A < 1. Over the
years, many results have been found for the classical functional £y. Fekete and Szego [1]
bounded £ by 1+ 2exp(—2A/(1 — X)), for 0 < A < 1 and f € 8, where § denotes the
subclass of A consisting of functions univalent in . This inequality is sharp for each A.
In particular, for A = 1, one has |az — a3| < 1 if f € 8. Note that the quantity as — a3
represents S;(0)/6, where Sy denotes the Schwarzian derivative (f”/f') — (f"/f")?/2
of locally univalent functions f in ID. It is interesting to consider the behavior of £, for
subclasses of the class §. The Fekete—Szego problem is to determine sharp upper bound
for Fekete—Szeg6 functional £y over a family F C 8. In the literature, there exists a
large number of results about inequalities for as — a3 corresponding to various subclasses
of 8. In the present paper we obtain the Fekete-Szegd inequalities for the class SLF.
Before we consider how the Taylor series coefficients of functions in the class S£* might
be bounded, let us first recall this problem for the Caratheodory functions. Let P denote
the class of analytic functions p in D with p(0) = 1 and Re {p(z)} > 0.

2.1. Lemma. [2] Let p € P with p(z) =14 c1z+ caz+ -+, then
(2.1)  |en| <2, for n>1.

If |e1] = 2, then p(z) = p1(z) = (1 + z2)/(1 — z2) with x = c¢1/2. Conversely, if
p(2) = p1(z) for some |z| = 1, then ¢1 = 2z. Furthermore, we have

(2.2) ez —er/2] <2 —|ea)?/2.
If |er < 2| and |c2 — c1/2| = 2 — |c1|?/2, then p(z) = p2(z), where

1+ 7wz + z(wz+x)
1+ 3wz — z(wz + )

p2(2)



and x = c1/2, w = (2ca — c1)/(4 — |e1]?). Com;ersely, if if p(2) = p2(z) for some |z| < 1
and w =1, then ¢; = 2z, w = (2c2 — ¢3) /(4 — |e1]?) and |c2 — ¢1/2| = 2 — |e1|?/2.

2.2. Theorem. Ifp(z) =1+ piz+p222+--- and

14 172> _k—VE2+4 D
22277—k_f726 i

P) =< bee) = T s
k

then we have

(VEZ+4—k)k
2

(23) ;| <

and

) i< 02 {EEEDR L

The above estimations are sharp.

Proof. If p < p, then there exists an analytic function w such that |w(z)| < |z| in D and
p(2) = pr(w(z)). Therefore, the function

- 2

is in the class P(0). It follows that

=l+cz+cz+--- (z€D)

2\ ,2
_ az _ayE o,
(2.5)  w(z) = 3 + (cz 2) 5 +

and

2 2 2 2
- c1 7\ 2 ~ c12 1\ 2
pk(w())—1+pk1{2 < 2)2 }+pk,2{2+(c2 2>2+ }Jr

1 1 ~ 1
—1+pklclz+{f (627%)1? 1+10fpk2}z2+---
(2.6) = ().
From (1.5), we find the coefficients py,» of the function pi given by

ﬁk,n = (Fk:,nfl + Fk,n+1)Tn

This shows the relevant connection pr with the sequence of k-Fibonacci numbers

2)=1+ Zﬁknzn
n=1
=14 (Fro+ Fe2)mhz + (Fog + Fra)mez” 4 -
(2.7) =1+ kmz+ (K +2)172° + (K* +3k)122° +-- - .

If p(2) = 14+ p1z + p22® + -+ -, then by (2.6) and (2.7), we have

(2.8) pP1 = kaCl
2
and
k 2 kK +2
(29) p2:%(02—%)+( 2— )cfﬁf.



From (2.8) and (2.1) we directly obtain (2.3). From (2.9) and (2.2), we obtain

k e k> +2
lp2| = ’% (Cz - i) + gﬁﬂf

2 4
<[ (- 9|+ |85 2t
- kl;kl <2 _ %Mz) n (k"’:?) lea| 72
(2.10) = k|| + o1 ((k* +2)772 — k7] -

4
Since 7, = (k — Vk? +4)/2, so it is easily verified that

(k(k — VEZ +4))(k* + 3)
2

(2.11) (K> +2)777 — k|| = + k%42

We want to show that (2.11) is positive for & > 0. Notice that
(k — VE2 + 4)(k® + 3k) N (k* +2)VEk2 + 4 — k* — 4k
3 .

K +2=
kE+VE2+4

(2.12)

Thus, (2.11) is positive when

(213) (K +2)VE2 +4> K +4k, k>0,

or equivalently, when

@11) {F+2vieta) > B+, k>0
The inequality (2.14) yields the inequality

(2.15) 4k*+16 >0, k>0,

which is evidently true, and hence (2.11) is positive. Therefore, (k* +2)7¢ — |7%| > 0 and
from (2.10), we obtain

2
ool < kil + 45 (2 4 2)77 — ki)

< k|mk| + (k:2 + 2)7’;3 — k|7

= (K" +2)m
k—vVEk2+4)k
Thus, the equality in estimations (2.3), (2.4) are attained by the coefficients of the func-
tion given by(2.7). O

2.3. Theorem. Let A be real. If f(2) = z 4+ a2z’ + azz® + - - - belongs to SL*, then

(2.16)  |az — Aa3| < (k(k — Vk2 +4)/2 4+ 1) (K> + 14+ E*|)]).

The above estimation is sharp. If A < 0, then the equality in (2.16) is attained by the
function fi given in (1.6), and by the function — fir(—z) when XA > 0.

Proof. For given f € 8L, define p(z) =1+ p1z + paz® 4+ - by

2f'(2)
f(2)

where p < px in D. Hence
24 2a22" +3a32° + - = {24 a22" +az’ + - P {1+ prztp®+-}

=p(z) (z€D),



and
az =p1, 2a3=piaz+ ps.

Therefore, |az — Aaz| = |(praz +p2)/2 + Ap?|. Using this and the bounds (2.3), (2.4) and
(1.6), we obtain

las — Aa3| = |(praz + p2)/2 — Api|
Ip1|laz] + [p2]

< +[Allpi|

2
< k(- VE2+4)/2 - k(k —VE2 +4)/2 4+ (k* +2)(k(k — VE2 +4)/2 + 1)
- 2

T

_ B (k(k—VE2+4)/2+ 1)+ (K +2)(k(k — VK2 +4)/2 +1)
2

ST

= (k> + 1) (k(k — VE2+4)/2+1) + A {W;_k)k}

= (k(k — VK2 +4)/2 + 1) (K + 1+ E*|\]).

O

2.4. Corollary. Ifg(z) = 2+ 3. bn2™, |2| < 70(g), ro(g) > 1/4, is an inverse to f € SL*,
n=2

then we have

(2.17)  |b2] <

)

(k= VK> +4)k
2
(2.18)  |bs] < (k(k — VE2 +4)/2 +1)(3k> + 1).

The above estimation is sharp. The equalities are attained by the function —if,;l(iz),
where fi is given in (1.6).

Proof. For each f € 8, the Koebe one-quarter theorem ensures that the image of D under
f contains the disc of radius 1/4. If f(z) = z + a22® + a3z + - -+ is univalent in D then,
f has the inverse f~! with the expansion

(2.19)  fTU2) =2z —a22® + (205 —a3)2® 4+ -, |z| <7o(f), ro(f) > 1/4.
It was proved in [5] that functions in the class 8£* are univalent in D. From Lemma 1.2

and (2.19), we obtain the inequality (2.17). Also, from Theorem 2.3 (with A = 2) and
(2.19), we obtain the inequality (2.18). If f € 8L, then the function —ify(iz) satisfies



(1.1), so it belongs to the class 8£* too. Moreover, from (1.6), we have
—ifi ' (i2)
(k= VE2+4)k
2

2
=z+1 z

_{2(0« VETEDEY' e (TR @H)}m...
(k= Vi + 4k V’;Q“)kz? (k= VRE T A2+ DEE £ D e

This shows that the equalities in (2.17) and (2.18) are attained by the second and third
coefficients of the function —if, '(i2). O

=z+1
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