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Abstract
In the present paper, we give upper and lower bounds for the spectral
norm of g-circulant matrix, whose the first row entries are the classical
Horadam numbers U;a‘b). In addition, we also establish an explicit
formula of the spectral norm for g-circulant matrix with the first row
a,b a,b a,b
(U™ [P U

n—1
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1. Introduction and Preliminaries

Many generalizations of the Fibonacci and Lucas sequences have been introduced and
studied [1-4]. Here we use the classical Horadam sequence {US*" },,en, which is defined
in [4]:

(1.1) Ul = AUl 4 BuleY ule? =a, Ult? =,

where a,b € R and A% + 4B > 0. Obviously, if we choose A = B = 1 in (1), then the
generalized Fibonacci sequence {F}\*" },,c  is obtained. Further more, when a = 0,b = 1
and a = 2,b = 1, the sequence {FT(La,b)}neN reduces to the well-known Fibonacci sequence
{Fn}nen and Lucas sequence {Ly }nen, respectively.

For the Horadam sequence {Uﬁa’b)}ngz\r, the following generalization of the Binet’s
formula of Fibonacci number holds [4]:

(1.2) UL = cra™ + 28",
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where
(1.3) . _a(A®+4B) 4 (2b— aA)VA2 + 4B
' T 2(A% + 4B) ’
. _ a(A®+4B) — (2b — aA)VA2 + 4B
T 2(A2 + 4B) ’
(1.4) a:A+\/A2+4Bﬂ:A—\/A2+4B

2 2

Recently, there has been much interest in investigation of some special matrices. Akbu-
lak and Bozkurt [5] found the lower and upper bounds for the spectral norms of Toeplitz
matrices A = [F;_;]i";—1 and B = [L;_j];’;=;, then Shen [6] generalized these results.
Solak [7,8] gave the upper and lower bounds for the spectral norms of circulant matrices
whose entries are Fibonacci and Lucas numbers. Then Ipek [9] investigated an improved
estimation for the spectral norms of these matrices. In addition, there have been several
articles focus on the spectral distribution and norms of g-circulant matrices. Bose et
al. [10] listed the limiting spectral distribution for a class of g-circulant matrices with
heavy tailed input sequence. Zhou and Jiang [11] derived some explicit formulas for the
spectral norms of g-circulant matrices whose the first row entries are Fibonacci number,
Lucas number and their powers.

Besides, Shen et al. [12] gave some feasible computational formulas for the determi-
nants and inverses of the circulant matrices A, =Circ(F1, F»,--- , F,) and B,,=Circ(L1,
Ly, -+, Ly), then Yazlik and Taskara [13] generalized all results from [12]. Stanimirovié
fobes) — ({895 j = 1,2,--+ ,n) of type

2%

et al. [4] defined an n x n Toeplitz matrix U
s, where

u

(1.5) u{® =

2,7

U, i j+s>0,
0, i—j+s<0.

then the inverse of the matrix u;"’b’o) was derived, and correlations between the ma-
trix u&“’b’m and the generalized Pascal matrices of the first and the second kinds were
considered. In addition, Shen and He [14] also established an explicit formula of the
Moore-Penrose inverse for the matrix u;“’b’*”.

In this paper, let Ay and A2 be two g-circulant matrices, whose the first row entries

are (U, U™ .. UlDyand (USSP, U2, [UD]?), respectively. We give

upper and lower bounds for the spectral norm of matrix Ay, and establish an explicit

formula of the spectral norm for matrix A2, then generalize the main results in [11].
Now we give some preliminaries related to our study. A matrix A € M, is called a

g-circulant matrix if it is of the form

ao ai az an—1

an—g An—g+1 an—g+2 ce An—g—1

(1.6) A= An—2g On—2g+1 An—2g+4+2 *** (An—2g—1
Qg Ag+1 Ag+2 T ag—1

where g is a nonnegative integer and each of the subscripts is understood to be reduced
modulo n. Obviously, when g =1 or g = n + 1, the g-circulant matrix A reduces to the
standard circulant matrix.
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For any A = [aij] € Mm,n. The well-known Frobenius (or Euclidean) norm of matrix
Ais

Al = [fD]

i=1 j=1

and also the spectral norm of matrix A is

|All2 =,/ max \;(AHA)
1<i<n

where \; (A7 A) is eigenvalue of A7 A and A7 is conjugate transpose of matrix A. Then
the following inequality holds:

1
1.7 —||Allr < [|All2 < ||A
(1.7) \/ﬁl\ I <Al < lAllF
Lemma 1'% An n x n matriz Qg is unitary if and only if (n,g) = 1, where Qg is
a g-circulant matriz with the first row (1,0,---,0).
Lemma 2% A is q g-circulant matriz with the first row (ao, a1, ,an—-1) if and
only if A = Q4C, where C is a circulant matriz with the first row (ag, a1, ,an-1).

Lemma 319 Let A = [a;;] € My, is a nonnegative matriz, Then its spectral radius
p(A) satisfies the following inequality

(1.8) min Za” < p(A) < max Za”

1<i<n 1<i<n

Lemma 4 For the Horadam sequence {U,(la’b)}neN satisfying B # —1 and B+ A # 1,
the following identity 4s valid:

S ey MUY+ BAUSYR  2(a®B 4 abA — b2)[1 — (—B)"]
(1.9) ) ;") = (I—B2_ 4 (1 + B)(A? 4+ 4B) ’

i

Il
=}

where M = a2 — (aA — b)? — 204B) Biabat B)[1=(=B)"]

Proof: From B+ A # 1, we get a # £1 and S # %1, applying identities UT(La,b) _
c1a” 4 c2" and aff = — B, then the following is valid

n—1 n—1

Z[Ui(a’b)]2 = 2(0104 + B =6 Z o4 Z B% 4 2c1co Z (aB)’
i=0 i=0
5 1— a2n 9 _ 5277, _ (Oéﬁ)
- C1'1—0/2+62 62+2CIC2' 1—apB

G (a4 ) — (G A 1 (a4 B

(1—a?)(1-p5%)

1-(-B)"
e

By using identities « + 8 = A and a — 8 = vV A% + 4B, we have

=24 2b — aA _g+2bfa(a+ﬂ)_bfaﬂ
‘T2 o/ayaB 2 20a-B)  a-B’
o @ 2b—aA a 2b—a(la+p) _aa—b
‘T2 o/@taB 2 2(a-p) a—p’
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So we obtain
c;a_—ﬂb ot l;—_ag .5)2 — 2c1c208
[a(a+ B) — b]* — 2¢c1c2a8 = (aA — b)? + 2c1¢2B.
Since ¢? 4 ¢2 = a® — 2c1¢2 and
A" + AP = (10" + c28™)? — 2cica(aB)” = [USP)? — 2c1¢2(—B)",
(0B (a2 + &) = BUSYP — 2esea(~B)"H.

n—1
While cico = a?BtabA—b? hence
)

62a + 01,6’ = (c2ax+ clﬂ)2 — 2cic20f8 = (

A244B
’S[U;a,b)]z = (@A—b)? —2ic5(1 + B)[1 - (—B)"] - [UK"2 + BAUSYP?
pr (I+apB)? = (a+B)?
1—(-B)"
ey
a2 abA—b2)[1—(—=B)" a, a,
B a? — (aA— b) _ 2(0+B)( B-t42bf41;) i—-(=B"] _ [Ué b)]z +B2[U7(Lfm2
- (1—B)2— A2

2(a’B 4 abA — b*)[1 — (—B)"]
(1+ B)(A%2+4B) '
Thus the proof is completed. a

2. Main Results
Theorem 1 Let Ay be as the matriz in (1.6), with a; = Ul b>( =0,1,---,n—1)

k3

in the first row of Au. If B# —1, B+ A# 1 and (n,g) = 1, then we have

M — [UW’) +B2[U<“b>]2 2(a?B + abA — b?)[1 — (—B)"]

< ||A
— Az (1+ B)(A2 +4B) < vl
< 1 |b—aBl( —|of*) , [b—ac|(—|6]")
~ VAT14B 1— o] 1—18] ’
where o — A+\/132+4B7 8= Aﬂ/,;x2+43 and M = a2_(aA_b)2_2(1+B)(a234:4a2bf4—;2)[1—(—B)"].

Proof: Applying the definition of Frobenius norm and formula (1.9), we have

n—1
n Z[Ui(a’b)]z
1=0

_ n(M—[Ué“’b)]2+BQ[UT(f”{)]2 2(a2B+abA7b2)[1f(fB)"])

AU E

(1-B)? — A2 (1+ B)(A2 + 4B)

2
where M = a® — (aA — b)? — 2014 B)(a? BT;&; =B Hence from (1.7), we obtain

[Avlz = fl\flU\IF

M— [U<“ )2 + B2AUSY12 2(a2B + abA — b2)[1 — (—B)"]
— A2 (1+ B)(A?+4B)
On the other hand, using the results from Lemma 1 and Lemma 2, one can verify

AT Av = (Q,0) 7 Q,C = Cc"(Qy)"Q,Cc =Cc"1,c=c"C,
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where C is a circulant matrix with the first row (U, U ... U} and I, is an
identity matrix. Hence the spectral norm of matrix Ay is the same as that of C. Let
f(z) = Z?:_ol Ui(“’b>xi be a scalar-valued polynomial, and 7, be an n X n circulant matrix

with the first row (0,1,---,0), then we get

n—1

a,b) i

() = YU,
=0

hence
n—1 n—1 n—1
\b) i \b) i ,b i
Mollz = 1Cll2 = | Y- U mllz < DTS wnllz < 01U il
i=0 i=0 i=0
Since 7w, = I,,, then we have
l7n]l2 = max Ai(mlmy,) = 1.

Note that |a] # 1 and |3] # 1, hence we obtain

n—1
[Avlz < Zwym—zm +ef| < |cl|2\a| +IC2|ZI5I
=0 =0 =0
n — n 1 bf 1-— b— 1-— n
_ |Cl| - |aof +les| 18" _ [I af|(1 —|a]™) n |b—aca|(1—18]")
1—|af 1—|ﬂ| a-p 1~ o 1—18
_ 1 [\b—aﬂ\(l— lo™) n [b—ac|(l - Iﬂln)}
VA2 1 4B 1—|af 1— 1B ’
where o = ATV ATHB ”22+43, 8= A-VATHB V’ngB. Thus the proof is completed. O

Example Let Ar be a 4-circulant matriz of the order 5 with the first row (Fo(o‘fl), 117'1(0‘71)7
0.1
14 ); then

12
V15 < ||Ap|2 <3+ N

Theorem 2 Let Ay2 be as (1.6), with a; = [Ui(a’b)]2(i =0,1,---,n—1) in the first
row of Ay2. If B# —1, B+ A# 1 and (n,g) = 1, then we have the following identity

— [P + BAUSYE | 2(a’B + abA — 61— (-B)"]
(1—B)2— A2 (1+ B)(A% + 4B) ’

2 2 2(14+B)(a®?B+abA—b%)[1—(—B)"]
where M = a® — (aA — b)* — T iB .

A2z =

Proof: Applying the results from Lemma 1 and Lemma 2, the following is valid
(Au2)"Ayz = (Q40)"QyC = C™(Qy)"Q,C = C 1 C = CMC,

where C = [c;;] € M, is a circulant matrix with the first row ([US*?]2, [U{*?]?,--- | [UD]?).
Hence the spectral norm of matrix A2 is the same as that of C.
Since the circulant matrix C is normal, there exists a unitary matrix V € M, such
that VICV = diag(M1, X, -+ , A\n), where ); is eigenvalue of C, hence
VECHCY =diag(IM [, D2l Anf).

Thus, the spectral norm of C'is given by its spectral radius. Also since C' is nonnegative,
its spectral radius p(C') satisfies the following inequality:

min E Cij <p g max g Cij
1<z<n 1<1<n
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While
2": o Ti:l[U(a,b)]z M- [USPP 4+ BAUSY?  2(a?B + abA — b1 — (—B)"
ot v P k h (1-B)2 - A2 (14 B)(A2 +4B)
for any i = 1,2,--- ,n, where M = a* — (aA — b)? — 2<1+B)<a23:“;’f4;;2)Df(fB)n]. Hence
M —[USPP2 + B UY)? 2(a2B + abA — b?)[1 — (—B)"]
Avzll2 = [[Cll2 =

(1-B)2-— A2 (14 B)(A2+4B)
Thus the proof is completed. O

In the particular case A = B = 1,a = 0 and b = 1 from Theorem 2, we get the
spectral norm for g-circulant matrix with the first row (F027 F2 ... ,F,%_l), which is the
known result in [11].

Corollary 1 Let A2 be as (1.6), with a; = F2 (i =0,1,--- ,n — 1) in the first row
of Ap2. If (n,g) =1, then we have
[ Ap2|l2 = FrnFn-1.

Proof: We select A= B = 1,a =0 and b = 1 in Theorem 2, then the following is
valid
[Ap2ll2 = Fi = Faoy + (1),
Thus, the proof is completed from the following identity
FuFpo1 = (Ff = Fi 1) = FapiFpo — F = (-1)". O

In the case A = B = 1,a = 2 and b = 1 from Theorem 2, we obtain the following
result in [11].

Corollary 2 Let A2 be as (1.6), with a; = L?(i = 0,1,--- ,n — 1) in the first row
of Ar2. If (n,g) = 1, then we have the following identity

[Azz2ll2 = LnLp—1 + 2.
Proof: When A =B =1,a =2 and b =1 in Theorem 2, then we have
[Apzlla = L3 — Li_y — 5(—1)" +2.
On the other hand, applying identities F,, +L,, = 2F,11 and F,11F,_1—F2 = (=1)",
then we have
L2 L2, = (2Fu1—Fo)? = (2F, — Fu1)?
= A(Fi—Fu1Fo—F) 4 (F2 —FyFy 1 —Fr_1) +5F,F_y
3(=1)" +5F,Fy_1,

hence, the following is valid

L} —L: | —LnLn = 3(=1)"+5F,Fn1— (2Fu1 — F)(2F, — Fr_1)
= 3(=1)"4+4(FuFy 1 — Fpy1Fn) +2F, 1 F 1 +2F;
= 3(-1)"+2(Fut1Fnr — F2)
5(—1)".
Thus the proof is completed. a

3. Numerical tests

In this section, we list the results for Fibonacci and Lucas numbers in Table 1. Em-
ploying the formulas in above corollaries, the numerical results demonstrate that the
explicit identities of spectral norms of g-circulant matrices hold exactly.
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Table 1. Numerical results of a; = F?, L2

n 7 9

g 2 3 4 5 6 2 4 5 7 8
||.AF2||2 104 104 104 104 104 714 714 714 714 714
[[ALz]2 524 524 524 524 524 3574 3574 3574 3574 3574
FoFn_1 104 104 104 104 104 714 714 714 714 714

LnLn_14+2 524 524 524 524 524 3574 3574 3574 3574 3574

4. Conclusion

In this paper we introduce the notion of the classical Horadam numbers Ui(a"b), then
give upper and lower bounds for the spectral norm of g-circulant matrix, whose the
first row entries are (U™, U ... U*")) In addition, we also establish an explicit

n—1

formula of the spectral norm for g-circulant matrix with the first row ([Uéa’b)]Q, [Ul(a’b)}Z,
,[U:ffl{)]g). In two particular cases A = B =1,a = 0,b=1and A = B = 1l,a =
2,b =1, we obtain the known results from [11].
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