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On the spectral norms of some special g-circulant
matrices
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Abstract

In the present paper, we give upper and lower bounds for the spectral
norm of g-circulant matrix, whose the �rst row entries are the classical
Horadam numbers U (a,b)

i . In addition, we also establish an explicit
formula of the spectral norm for g-circulant matrix with the �rst row
([U

(a,b)
0 ]2, [U

(a,b)
1 ]2, · · · , [U (a,b)

n−1 ]2).
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1. Introduction and Preliminaries

Many generalizations of the Fibonacci and Lucas sequences have been introduced and
studied [1-4]. Here we use the classical Horadam sequence {U (a,b)

n }n∈N , which is de�ned
in [4]:

U (a,b)
n = AU

(a,b)
n−1 +BU

(a,b)
n−2 , U

(a,b)
0 = a, U

(a,b)
1 = b,(1.1)

where a, b ∈ R and A2 + 4B > 0. Obviously, if we choose A = B = 1 in (1), then the
generalized Fibonacci sequence {F (a,b)

n }n∈N is obtained. Further more, when a = 0, b = 1

and a = 2, b = 1, the sequence {F (a,b)
n }n∈N reduces to the well-known Fibonacci sequence

{Fn}n∈N and Lucas sequence {Ln}n∈N , respectively.
For the Horadam sequence {U (a,b)

n }n∈N , the following generalization of the Binet's
formula of Fibonacci number holds [4]:

U (a,b)
n = c1α

n + c2β
n,(1.2)
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where

c1 =
a(A2 + 4B) + (2b− aA)

√
A2 + 4B

2(A2 + 4B)
,(1.3)

c2 =
a(A2 + 4B)− (2b− aA)

√
A2 + 4B

2(A2 + 4B)
,

α =
A+
√
A2 + 4B

2
, β =

A−
√
A2 + 4B

2
.(1.4)

Recently, there has been much interest in investigation of some special matrices. Akbu-
lak and Bozkurt [5] found the lower and upper bounds for the spectral norms of Toeplitz
matrices A = [Fi−j ]

n
i,j=1 and B = [Li−j ]

n
i,j=1, then Shen [6] generalized these results.

Solak [7,8] gave the upper and lower bounds for the spectral norms of circulant matrices
whose entries are Fibonacci and Lucas numbers. Then �pek [9] investigated an improved
estimation for the spectral norms of these matrices. In addition, there have been several
articles focus on the spectral distribution and norms of g-circulant matrices. Bose et
al. [10] listed the limiting spectral distribution for a class of g-circulant matrices with
heavy tailed input sequence. Zhou and Jiang [11] derived some explicit formulas for the
spectral norms of g-circulant matrices whose the �rst row entries are Fibonacci number,
Lucas number and their powers.

Besides, Shen et al. [12] gave some feasible computational formulas for the determi-
nants and inverses of the circulant matrices An=Circ(F1, F2, · · · , Fn) and Bn=Circ(L1,
L2, · · · , Ln), then Yazlik and Taskara [13] generalized all results from [12]. Stanimirovi¢
et al. [4] de�ned an n × n Toeplitz matrix U

(a,b,s)
n = [u

(a,b,s)
i,j ](i, j = 1, 2, · · · , n) of type

s, where

u
(a,b,s)
i,j =

{
U

(a,b)
i−j+1, i− j + s ≥ 0,

0, i− j + s < 0.
(1.5)

then the inverse of the matrix U
(a,b,0)
n was derived, and correlations between the ma-

trix U
(a,b,0)
n and the generalized Pascal matrices of the �rst and the second kinds were

considered. In addition, Shen and He [14] also established an explicit formula of the
Moore-Penrose inverse for the matrix U

(a,b,−1)
n .

In this paper, let AU and AU2 be two g-circulant matrices, whose the �rst row entries
are (U (a,b)

0 , U
(a,b)
1 , · · · , U (a,b)

n−1 ) and ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2, · · · , [U (a,b)

n−1 ]2), respectively. We give
upper and lower bounds for the spectral norm of matrix AU , and establish an explicit
formula of the spectral norm for matrix AU2 , then generalize the main results in [11].

Now we give some preliminaries related to our study. A matrix A ∈ Mn is called a
g-circulant matrix if it is of the form

A =


a0 a1 a2 · · · an−1

an−g an−g+1 an−g+2 · · · an−g−1

an−2g an−2g+1 an−2g+2 · · · an−2g−1

...
...

...
. . .

...
ag ag+1 ag+2 · · · ag−1

(1.6)

where g is a nonnegative integer and each of the subscripts is understood to be reduced
modulo n. Obviously, when g = 1 or g = n+ 1, the g-circulant matrix A reduces to the
standard circulant matrix.
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For any A = [aij ] ∈Mm,n. The well-known Frobenius (or Euclidean) norm of matrix
A is

‖A‖F =

[ m∑
i=1

n∑
j=1

|aij |2
] 1

2

and also the spectral norm of matrix A is

‖A‖2 =
√

max
1≤i≤n

λi(AHA)

where λi(A
HA) is eigenvalue of AHA and AH is conjugate transpose of matrix A. Then

the following inequality holds:

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F(1.7)

Lemma 1[15] An n × n matrix Qg is unitary if and only if (n, g) = 1, where Qg is
a g-circulant matrix with the �rst row (1, 0, · · · , 0).

Lemma 2[15] A is a g-circulant matrix with the �rst row (a0, a1, · · · , an−1) if and
only if A = QgC, where C is a circulant matrix with the �rst row (a0, a1, · · · , an−1).

Lemma 3[16] Let A = [aij ] ∈Mn is a nonnegative matrix, Then its spectral radius
ρ(A) satis�es the following inequality

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij .(1.8)

Lemma 4 For the Horadam sequence {U (a,b)
n }n∈N satisfying B 6= −1 and B±A 6= 1,

the following identity is valid :

n−1∑
i=0

[U
(a,b)
i ]2 =

M − [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
,(1.9)

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: From B ± A 6= 1, we get α 6= ±1 and β 6= ±1, applying identities U (a,b)
n =

c1α
n + c2β

n and αβ = −B, then the following is valid

n−1∑
i=0

[U
(a,b)
i ]2 =

n−1∑
i=0

(c1α
i + c2β

i)2 = c21

n−1∑
i=0

α2i + c22

n−1∑
i=0

β2i + 2c1c2

n−1∑
i=0

(αβ)i

= c21 ·
1− α2n

1− α2
+ c22 ·

1− β2n

1− β2
+ 2c1c2 ·

1− (αβ)n

1− αβ

=
c21 + c22 − (c22α

2 + c21β
2)− (c21α

2n + c22β
2n) + (αβ)2(c21α

2n−2 + c22β
2n−2)

(1− α2)(1− β2)

+2c1c2
1− (−B)n

1 +B
.

By using identities α+ β = A and α− β =
√
A2 + 4B, we have

c1 =
a

2
+

2b− aA
2
√
A2 + 4B

=
a

2
+

2b− a(α+ β)

2(α− β) =
b− aβ
α− β ,

c2 =
a

2
− 2b− aA

2
√
A2 + 4B

=
a

2
− 2b− a(α+ β)

2(α− β) =
aα− b
α− β .
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So we obtain

c22α
2 + c21β

2 = (c2α+ c1β)
2 − 2c1c2αβ =

(
aα− b
α− β · α+

b− aβ
α− β · β

)2

− 2c1c2αβ

= [a(α+ β)− b]2 − 2c1c2αβ = (aA− b)2 + 2c1c2B.

Since c21 + c22 = a2 − 2c1c2 and

c21α
2n + c22β

2n = (c1α
n + c2β

n)2 − 2c1c2(αβ)
n = [U (a,b)

n ]2 − 2c1c2(−B)n,

(αβ)2(c21α
2n−2 + c22β

2n−2) = B2[U
(a,b)
n−1 ]2 − 2c1c2(−B)n+1.

While c1c2 = a2B+abA−b2

A2+4B
, hence

n−1∑
i=0

[U
(a,b)
i ]2 =

a2 − (aA− b)2 − 2c1c2(1 +B)[1− (−B)n]− [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1 + αβ)2 − (α+ β)2

+2c1c2
1− (−B)n

1 +B

=
a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
− [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2

+
2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

Thus the proof is completed. 2

2. Main Results

Theorem 1 Let AU be as the matrix in (1.6), with ai = U
(a,b)
i (i = 0, 1, · · · , n− 1)

in the �rst row of AU . If B 6= −1, B ±A 6= 1 and (n, g) = 1, then we have√
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
≤ ‖AU‖2

≤ 1√
A2 + 4B

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
,

where α =
A+
√

A2+4B

2
, β =

A−
√

A2+4B

2
andM = a2−(aA−b)2− 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: Applying the de�nition of Frobenius norm and formula (1.9), we have

‖AU‖2F = n

n−1∑
i=0

[U
(a,b)
i ]2

= n

(
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)

)
,

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
. Hence from (1.7), we obtain

‖AU‖2 ≥ 1√
n
‖AU‖F

=

√
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

On the other hand, using the results from Lemma 1 and Lemma 2, one can verify

(AU )
H
AU = (QgC)HQgC = CH(Qg)

HQgC = CHInC = CHC,
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where C is a circulant matrix with the �rst row (U
(a,b)
0 , U

(a,b)
1 , · · · , U (a,b)

n−1 ) and In is an
identity matrix. Hence the spectral norm of matrix AU is the same as that of C. Let
f(x) =

∑n−1
i=0 U

(a,b)
i xi be a scalar-valued polynomial, and πn be an n×n circulant matrix

with the �rst row (0, 1, · · · , 0), then we get

C = f(πn) =

n−1∑
i=0

U
(a,b)
i πi

n,

hence

‖AU‖2 = ‖C‖2 = ‖
n−1∑
i=0

U
(a,b)
i πi

n‖2 ≤
n−1∑
i=0

‖U (a,b)
i πi

n‖2 ≤
n−1∑
i=0

|U (a,b)
i |‖πn‖i2.

Since πH
n πn = In, then we have

‖πn‖2 =
√

max
1≤i≤n

λi(πH
n πn) = 1.

Note that |α| 6= 1 and |β| 6= 1, hence we obtain

‖AU‖2 ≤
n−1∑
i=0

|U (a,b)
i | =

n−1∑
i=0

|c1αi + c2β
i| ≤ |c1|

n−1∑
i=0

|α|i + |c2|
n−1∑
i=0

|β|i

= |c1|
1− |α|n

1− |α| + |c2|
1− |β|n

1− |β| =
1

α− β

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
=

1√
A2 + 4B

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
,

where α =
A+
√

A2+4B

2
, β =

A−
√

A2+4B

2
. Thus the proof is completed. 2

Example Let AF be a 4-circulant matrix of the order 5 with the �rst row (F
(0,−1)
0 , F

(0,−1)
1 ,

· · · , F (0,−1)
4 ), then

√
15 ≤ ‖AF ‖2 ≤ 3 +

12√
5
.

Theorem 2 Let AU2 be as (1.6), with ai = [U
(a,b)
i ]2(i = 0, 1, · · · , n− 1) in the �rst

row of AU2 . If B 6= −1, B ±A 6= 1 and (n, g) = 1, then we have the following identity

‖AU2‖2 =
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
,

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: Applying the results from Lemma 1 and Lemma 2, the following is valid

(AU2)HAU2 = (QgC)HQgC = CH(Qg)
HQgC = CHInC = CHC,

where C = [cij ] ∈Mn is a circulant matrix with the �rst row ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2, · · · , [U (a,b)

n−1 ]2).
Hence the spectral norm of matrix AU2 is the same as that of C.

Since the circulant matrix C is normal, there exists a unitary matrix V ∈ Mn such
that V HCV = diag(λ1, λ2, · · · , λn), where λi is eigenvalue of C, hence

V HCHCV = diag(|λ1|2, |λ2|2, · · · , |λn|2).

Thus, the spectral norm of C is given by its spectral radius. Also since C is nonnegative,
its spectral radius ρ(C) satis�es the following inequality:

min
1≤i≤n

n∑
j=1

cij ≤ ρ(C) ≤ max
1≤i≤n

n∑
j=1

cij
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While
n∑

j=1

cij =

n−1∑
k=0

[U
(a,b)
k ]2 =

M − [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)

for any i = 1, 2, · · · , n, where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
. Hence

‖AU2‖2 = ‖C‖2 =
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

Thus the proof is completed. 2

In the particular case A = B = 1, a = 0 and b = 1 from Theorem 2, we get the
spectral norm for g-circulant matrix with the �rst row (F 2

0 , F
2
1 , · · · , F 2

n−1), which is the
known result in [11].

Corollary 1 Let AF2 be as (1.6), with ai = F 2
i (i = 0, 1, · · · , n− 1) in the �rst row

of AF2 . If (n, g) = 1, then we have

‖AF2‖2 = FnFn−1.

Proof: We select A = B = 1, a = 0 and b = 1 in Theorem 2, then the following is
valid

‖AF2‖2 = F 2
n − F 2

n−1 + (−1)n,
Thus, the proof is completed from the following identity

FnFn−1 − (F 2
n − F 2

n−1) = Fn+1Fn−1 − F 2
n = (−1)n. 2

In the case A = B = 1, a = 2 and b = 1 from Theorem 2, we obtain the following
result in [11].

Corollary 2 Let AL2 be as (1.6), with ai = L2
i (i = 0, 1, · · · , n− 1) in the �rst row

of AL2 . If (n, g) = 1, then we have the following identity

‖AL2‖2 = LnLn−1 + 2.

Proof: When A = B = 1, a = 2 and b = 1 in Theorem 2, then we have

‖AL2‖2 = L2
n − L2

n−1 − 5(−1)n + 2.

On the other hand, applying identities Fn+Ln = 2Fn+1 and Fn+1Fn−1−F 2
n = (−1)n,

then we have

L2
n − L2

n−1 = (2Fn+1 − Fn)
2 − (2Fn − Fn−1)

2

= 4(F 2
n+1 − Fn+1Fn − F 2

n) + (F 2
n − FnFn−1 − F 2

n−1) + 5FnFn−1

= 3(−1)n + 5FnFn−1,

hence, the following is valid

L2
n − L2

n−1 − LnLn−1 = 3(−1)n + 5FnFn−1 − (2Fn+1 − Fn)(2Fn − Fn−1)

= 3(−1)n + 4(FnFn−1 − Fn+1Fn) + 2Fn+1Fn−1 + 2F 2
n

= 3(−1)n + 2(Fn+1Fn−1 − F 2
n)

= 5(−1)n.

Thus the proof is completed. 2

3. Numerical tests

In this section, we list the results for Fibonacci and Lucas numbers in Table 1. Em-
ploying the formulas in above corollaries, the numerical results demonstrate that the
explicit identities of spectral norms of g-circulant matrices hold exactly.
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Table 1. Numerical results of ai = F 2
i , L

2
i

n 7 9
g 2 3 4 5 6 2 4 5 7 8
‖AF2‖2 104 104 104 104 104 714 714 714 714 714
‖AL2‖2 524 524 524 524 524 3574 3574 3574 3574 3574
FnFn−1 104 104 104 104 104 714 714 714 714 714
LnLn−1 + 2 524 524 524 524 524 3574 3574 3574 3574 3574

4. Conclusion

In this paper we introduce the notion of the classical Horadam numbers U (a,b)
i , then

give upper and lower bounds for the spectral norm of g-circulant matrix, whose the
�rst row entries are (U

(a,b)
0 , U

(a,b)
1 , · · · , U (a,b)

n−1 ). In addition, we also establish an explicit

formula of the spectral norm for g-circulant matrix with the �rst row ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2,

· · · , [U (a,b)
n−1 ]2). In two particular cases A = B = 1, a = 0, b = 1 and A = B = 1, a =

2, b = 1, we obtain the known results from [11].
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