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Some results on o-ideal of o-prime ring

Selin Tiirkmen™® and Neset Aydin'

Abstract

Let R be a o-prime ring with characteristic not 2, Z(R) be the center of
R, I be a nonzero o-ideal of R, «a, 3 : R — R be two automorphisms, d
be a nonzero (a, §)-derivation of R and h be a nonzero derivation of R.
In the present paper, it is shown that (i) If d (I) C Cs, 5 and 8 commutes
with o then R is commutative. (i) Let o and 8 commute with o. If
a € I'NSs (R) and [d(I),a], 5 C Ca,p then a € Z(R). (iii) Let «,f
and h commute with o. If dh(I) C Cq,p and h(I) C I then R is
commutative.
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1. Introduction

Let R be an associative ring with center Z (R) . R is said to be 2-torsion free if whenever
2x = 0 with z € R, then z = 0. Recall that a ring R is prime if aRb = 0 implies a = 0 or
b= 0. An involution o of a ring R is an additive mapping satisfying o (zy) = o (y) o ()
and o2 (z) = z for all z,y € R. A ring R equipped with an involution ¢ is said to be o-
prime if aRb = aRo(b) = 0 implies a = 0 or b = 0. Note that every prime ring which has
an involution o is a o-prime but the converse is in generally not true. An example, due to
Shuliang [8], if R® denotes the opposite ring of a prime ring R, then R x R° equipped with
the exchange involution oes, defined by oez(z,y) = (y,x), IS Oep-prime but not prime.
An additive subgroup I of R is said to be an ideal of R if xr,rx € I for all x € I and
r € R. An ideal I which satisfies o (I) = I is called a o- ideal of R. An example, due to

Rehman (8], Set R = {( 8 b

a b c —b . 0 b .
0(0 c)i(O “ ).Itlseasytocheckthatlf{(0 0)\b€Z}lsa
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| a,b,c € Z ;. We define a map o : R — R as follows:
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o-ideal of R. Note that an ideal I of a ring R may be not a o-ideal. Let R = Z X Z.
Consider a map o : R — R defined by o((a,b)) = (b,a) for all (a,b) € R. For an ideal
I =7Zx{0} of R, I is not a o-ideal of R since o(I) = {0} X Z # I. S, (R) will denote the
set of symmetric and skew symmetric elements of R. i.e. Sy (R) = {zx € R |0 (z) = +x}.
As usual the commutator zy — yz will be denoted by [z,y] = zy — yz. An additive
mapping h : R — R is called a derivation if h(zy) = h(z)y + zh(y) holds for all
z,y € R. For a fixed a € R, the mapping I, : R — R is given by I, () = [a,z] is a
derivation which is said to be an inner derivation which is determined by a. Let o and
B be two maps of R. Set Co3 = {c € R|ca(r) = (r)cfor all r € R} and known as
(c, B)-center of R. In particular, C1,; = Z (R) is the center of R, where 1 : R — R
is identity map. As usual the (o, 8)-commutator aa (b) — B (b)a will be denoted by
la,b],, 5 = aa (b) — B (b) a. An additive mapping d : R — R is called an (o, 8)-derivation
if d(zy) = d(z)a(y) + B (z)d(y) holds for all z,y € R. For a fixed a € R, the mapping
Io: R — Ris given by I, (z) = [a,z], 4 is an (o, 8)-inner derivation which is determined
by a.

Many studies have been objected the relationship between commutativity of a ring and
the act of derivations defined on this ring. These results have been generalized by many
authors in several ways. Herstein [2| proved that if R is a prime ring of characteristic
not 2, d is a nonzero derivation of R and a € R such that [a,d (R)] = 0 then a €
Z (R). N. Aydin and K. Kaya [1] proved that if R is a prime ring of characteristic not
2, I is a nonzero right ideal of R, o and 7 are two automorphisms of R, d : R — R
is a nonzero (o, 7)-derivations of R and a € R such that (i) d(I) C Z(R) then R is
commutative. (i4) [d(R),a], . C Ca,p then a € Z(R). In [5], this result was extended
to on a o-ideal of a o-prime rfng by L. Oukhtite and S. Salhi. On the other hand, Posner
[7] proved that if R is a prime ring of characteristic not 2 and d1, d2 are derivations of R
such that the composition dids is also a derivation; then one at least of di, d2 is zero. K.
Kaya [3] proved that if R is a prime ring of characteristic not 2, I is a nonzero ideal of
R, o and 7 are two automorphisms of R, di : R — R is a nonzero (o, 7)-derivations of R
and dz is a nonzero derivation of R such that did2(I) C Cy, - then R is commutative. In
[4], Posner’s result was extended to a nonzero o-ideal of a o-prime ring by L. Oukhtite
and S. Salhi. Motivated by these results, we follow this line of investigation.

In this paper, our main goal is to extend these results on a o-ideal of a o-prime ring.

Throughout the present paper, R is a o-prime ring, Z (R) is the center of R and «, 8
are two automorphisms of R. We use the following basic commutator identities:

[z,y2] = y [z, 2] + [z,y] 2
[ry, 2] =z [y, 2] + [z, 2]y
[zy, Z%, =y, 2], t[TB8))y=2ya(z)]+z2], 5y

[i2:8052] = [0 2lasot] 1ol g

The material in this work is a part of first author’s PH. Dissertation which is supervised
by Prof. Dr. Neget Aydin.

2. Results

For the proof of our theorems, we give the following known Lemmas.

2.1. Lemma. [6, Theorem 2.2] Let I be a nonzero o-ideal of o-prime ring R. If a,b in
R are such that alb =0 = alo (b) then a =0 or b= 0.
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2.2. Lemma. [5, Lemma 4| Let R be a o-prime ring with characteristic not two, d be a
derivation of R satisfying do = £od and I be a nonzero o-ideal of R. If d* (I) = 0 then
d=0.

2.3. Lemma. Let I be a nonzero o-ideal of R and a € R. If Ia = 0 (or al = 0) then
a=0.

Proof. Since [ is a o-ideal, we know that IR C I. By hypothesis, we have IRa C Ia = 0.
Thus, we get IRa = 0. Moreover, since I is invariant under o, we have o (I) Ra = 0. It
follows that

IRa=0(I)Ra=0
Using o-primeness of R, we get

a=0
Similarly, using RI C I, one can show that if a/ = 0 then a = 0. O
2.4. Lemma. Let a,b € R.

i) Ifb,ab € Ca,3 and a (orb) € S, (R) thena € Z(R) or b=0.
ii) Ifa,ab € Cq,p and a (orb) € So (R) thena =0 orbe Z(R).

Proof. i) By the hypothesis, we have [ab, T]a,ﬁ = 0 for all » € R. Expanding this equation
by using b € C4,, holding for all r € R
0=[ab,7], 5 =albr], 5+ [a,B(r)]b
=la,B(r)]b
Since b € Cu, 3, we get
(2.1) [a, R]Rb=0

In the event of a € S, (R), we derive o ([a, R]) Rb = 0. Using the last obtained equation
together with (2.1), we yield

[a, R)Rb =0 ([a, R]) Rb=0
Applying the o-primeness of R, we have
a€Z(R)orb=0

In case of b € S, (R), from (2.1), we get [a, R] Ro (b) = 0. Using the last obtained
equation together with (2.1), we find

[a, R] Rb = [a, R] Ro (b) =0
Applying the o-primeness of R,
a€Z(R)orb=0

is obtained.
ii) Since ab € Cq,, we have [ab, 7], ; = 0 for all 7 € R. Expanding this equation by
using a € Cq g, holding for all r € R

0 = [ab, r]a’ﬁ =ala(r))+ [a,r]aﬁ b
=a[b,a(r)]
Since a € Ca,g,
aR[b,R] =0

is obtained. After here, it is similar as above. O
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2.5. Lemma. Let I be a nonzero o-ideal of R and h be a nonzero derivation of R. If
h(I) C Z(R) then R is commutative.

Proof. For any x,y € I and r € R, using hypothesis,
0=[r,h(zy)] = [rh(z)y+zh(y)]
=h(@)[ryl+[rh(@)]y+zlrh @)+ [rah(y)
=h(z)[ry]+ [r, 2] h (y)
And so,
h(z)[r,yl +[r,alh(y) =0, Vo,y € ,r € R
is obtained. In the last equality, = is taken instead of r and we obtain h (z) [x,y] = 0 for
all z,y € I. Substituting y by zy where z € I, it holds that
(2.2)  h(z)I[z,y] =0, Vaz,ye Tl
It is supposed that z € INS, (R) . In (2.2) , replacing y with o (y) , we get h (x) Io ([z,y]) =
0 for all y € I. According to Lemma 2.1, it is derived that
(2.3) h(z)=0orze Z(R), Vx€INS,(R)
Assume that = € I. In this case, x — o (z) € I N Ss(R). So, from (2.3), we have
h(zx—o(z))=0o0rz—0o(z) € Z(R)forallz € I. Weset A={z € I|h(zxz—o(x)) =0}
and B={z€l|z—o(x)€ Z(R)}. It is clear that A and B are additive subgroups of
I such that I = AU B. But, a group can not be an union of two of its proper subgroups.
Therefore, it is implied I = A or I = B. In the former case, h () = h (o (z)) for all z € I.

In (2.2), replacing y by o (y) and z by o (), we have h (z) Io ([z,y]) =0 for all z,y € I.
And so,

h(z)I[z,y] =h(z)Io([z,y]) =0, Vo,y €1
is obtained. By Lemma 2.1, get h(z) = 0 or x € Z (R) for all z € I. In the latter case,
x—o(x) € Z(R) for all z € I. This means [z,r] = [0 (z),r] forallz € I,r € R. In (2.2),
taking o (y) instead of y, we get h (x) Io ([z,y]) = 0 for all z,y € I. And so,

h(@) Iz, y] = h(z)Io([z,y]) =0, Yo,y € I
is derived. According to Lemma 2.1, we have h(z) =0 or z € Z (R) for all z € I. So,
both the cases yield either

h(zr)=0o0orz e Z(R), Ve €1

Now, weset K ={z €I |h(z)=0}and L={z €l |z€ Z(R)}. Each of K and L is
an additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a
group can not be the set-theoretic union of two proper subgroups, hence I = K or I = L.
In the former case, h (I) = 0. So, we have h = 0. But, h is a nonzero derivation of R. So,
from the latter case, we get I C Z(R). Therefore, R is commutative. O

2.6. Lemma. Let I be a nonzero o-ideal of R, d be a (a,p)-derivation of R and
a € R Ifad(I) = o(a)d(I) = 0 and B commutes with o (or d(I)a = d(I)o (a) =
0 and oo commutes with o) then a =0 or d = 0.
Proof. For any « € I and r € R, using ad (I) = 0, we get

0=ad(zr) =ad(z)a(r)+ap (z)d(r)

=af(z)d(r)

It becomes

aB(l)d(r) =0, Vr e R
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Similarly, using o (a) d (I) = 0, we derive
o(a)B(I)d(r)=0,VreR
And so,
aB(l)d(r)=0c(a)B(I)d(r)=0, Vr € R
is obtained. Since 8 commutes with o, 8 (I) is a nonzero o-ideal of R. Therefore, according
to Lemma 2.1, we have
a=0o0rd=0
Let us consider d(I)a = d(I)o (a) = 0 and o commutes with 0. Since « (I) is a nonzero

o-ideal of R, one can show that a = 0 or d = 0 similarly as above. (]

2.7. Lemma. Let I be a nonzero o-ideal of R and d be a («,3)-derivation of R. If
d(I) =0 and a (or B) commutes with o then d = 0.
Proof. By hypothesis, it holds that for all z € I and r € R

0=d(rz)=d(r)a(z)+B(r)d(z)

=d(r)a(z)

Thus, we get

d(r)a(l)=0, Vr e R
Since a commutes with o, « (I) is a nonzero o-ideal of R. Therefore, by Lemma 2.3, we
have d = 0.

Suppose that 8 commutes with o. For any « € I and r € R, from the hypothesis, we
get

O0=d(zr)=d(x)a(r)+ B (x)d(r)
=pB(x)d(r)
So, it yields that
B(I)d(r)=0,VreR
Since S commutes with o, 3 (I) is a nonzero o-ideal of R. Therefore, by Lemma 2.3, we

have d = 0. O

2.8. Theorem. Let R be a o-prime ring with characteristic not 2, I be a monzero o-
ideal of R and d be a nonzero («, B)-derivation of R such that 8 commutes with o. If
d(I) C Cqa,p then R is commutative.

Proof. By hypothesis, d (z°) = d () a (z)+ 8 () d (z) € Ca,p for all 2 € I. Using d (z) €
Ca,3, we get 28 (x)d(x) € Ca,p. Since charR # 2, we obtain § (z)d (z) € Cq,p which
means [ (z)d (z) ,r]aﬁ = 0 for all r € R,z € I. Expanding this equation by using
d(z) € Cu,p, we arrive

0=[8(x)d(x),r]4s=PB)[d(@),r],s+B(z,r])d(z)
= B([z,r])d(z)
Since d (z) € Cq,g, it follows that
(2.4)  B(z,r])Rd(z) =0, Ve eI, r € R

Assume that z € I NS, (R). In (2.4) taking o (r) instead of r and using the fact that
B commutes with o, we have o (8 ([z,r])) Rd(z) = 0 for all z € I,r € R. Since R is
o-prime, we derive

z€Z(R)ord(z)=0, Ve eINS, (R)
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Assume that x € I. In this case, x — o (z) € I NS, (R) . Therefore, we have z — o (z) €
Z(R)ord(z—o(xz))=0forallz € I.Set A ={zel|d(x—o(x)) =0} and B =
{rel|lxz—o(x) € Z(R)}. It is clear that A and B are additive subgroups of I such
that I = A U B. But, a group can not be an union of two of its proper subgroups.
Therefore, we yield either I = A or I = B. In the former case, d(z) = d (o (z)) for all
x € I. In (2.4) substituting = by o (z) and r by o (r) and using the fact that S commutes
with o, we have o (8 ([z,r])) Rd (z) = 0 for all z € I,r € R. Since R is o-prime, we arrive
z € Z(R) or d(z) =0 for all z € I. In the latter case, z — o (z) € Z(R) for all z € I.
This means, [z,7] = [0 (x),r] for all » € R. In (2.4), replacing r by o (r) and using the
fact that 8 commutes with o, we get o (8 ([z,r])) Rd(z) =0 for all z € I,r € R. Since R
is o-prime, we have x € Z (R) or d (z) = 0 for all = € I. As a result, both the cases yield
either

zr€Z(R)ord(z)=0,Vzel

Now,weset K ={z €l |d(z)=0}and L={z €|z € Z(R)}.Eachof K and L is an
additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a group
can not be the set-theoretic union of two of its proper subgroups, hence I = K or I = L.
In the former case, d (I) = 0. Since S commutes with o, by Lemma 2.7, we obtain d = 0.
But, d is a nonzero («, 3)-derivation of R, then I must be contained in Z (R). So, R is
commutative. O

2.9. Lemma. Let R be a o-prime ring with characteristic not 2, I be a nonzero o-ideal
of R, d be a (o, B)-derivation of R such that 8 commutes with o and h be a derivation
of R satisfying ho = +oh. If dh(I) =0 and h(I) C I then d=0 or h =0.
Proof. By hypothesis, it holds that for all z,y € I
0 = dh (zy)
=dh(z)a(y) + B (h(x))d
=B (h(x))d(y) +d(@)a(
And so,
B(h(z)d(y) +d(x)a(h(y) =0, Vz,y €1
Since h (I) C I, we take h () instead of x. Using the hypothesis, we get
B (h*(x))d(I)=0, Vz eI

Moreover, replacing « by o (z) in the above obtained relation and using the fact that 8
commute with ¢ and ho = +oh, we derive

o (B (h*(z)))d(I)=0, Vz eI
And so,
B(h* () d(I)=0c (B (h*(2)))d(I)=0, Vo eI

Since 8 commutes with o, by Lemma 2.6, we yield either h? (I) = 0 or d = 0. Since
ho = £oh, by Lemma 2.2, we have h = 0 or d = 0. ]

2.10. Lemma. Let R be a o-prime ring with characteristic not 2, I be a nonzero o-ideal
of R, d be a nonzero (a, 8)-derivation of R such that 8 commutes with o. If a € INS, (R)
and [d(I),al, 5 =0 then a € Z (R).
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Proof. Forany z,y € I, from the hypothesis, we have [d([z, y]), al,, 5 = 0. Since d([z, y]) =
[d(z),yl, s — [d(y), 2], 5, We get

[4@) el 5.a] = [d@)0)ys.0] . veyer

In the above obtained relation, applying [[a, b]aﬁ ,c] , = [[a, c}a”@ ,b] + [a, [b, cﬂaﬁ

a,B

for all a,b,c € R and using the hypothesis, it becomes
d(y),x ,a] = [d x), ,a]
[4@) o)y 500] | = [ld@). 0o 500]

= @) alosv] |+l (@) a5

=[d(z),ly,all, 4
And so,

(A2l sa]  =[d@),[y.all,, Vay el

o,

is obtained. In the last equation, substituting by a and using the hypothesis, we yield
[d(a), [y, a]l, s =0, Vy €1
The mapping 4) : R — R is given by I (1) = [d(a), 7], 5 is a (a, §)-derivation which

is determinated by d (a) and I, : R — R is given by I, (r) = [r,a] is a derivation which
is determinated by a. So, we derive

(]d(a)la) (I)=0
Since a € I N S, (R), we have I,0 = £ol,. Therefore, by Lemma 2.9, we have

d(a) € CaporacZ(R)
Assume that a ¢ Z (R) which means that d(a) € Cq,p. From the hypothesis, we get
d([z,a]) = [d(2),d], 3 — [d(a),z], ;=0 for all z € I. That is,
(25)  d([I,a]) =0
On the other hand, by hypothesis, we have [d(xy),a]aﬁ = 0 for z,y € I. Expanding
this equation, it becomes d (x) a ([y, a]) 4+ B ([z, a]) d (y) = 0 for all x,y € I. Taking [z, a]
instead of x and using (2.5), we derive 8 ([[z,a],a])d(I) = 0 for all z € I. In this

equation, replacing x by o (z) and using the fact that 8 commutes with o, we obtain
o (Blz,a]l,a])d(I) =0 for all z € I. And so, we yield

B([[z,al,al)d(I) = o (B([[x,a],a]))d(I) =0, Vz €I
Since 8 commutes with o, by Lemma 2.6, it implies that d = 0 or [[z,a],a] = 0 for all

xz € 1. That is, d = 0 or I2 (I) = 0. Since a € I'N S, (R), we have [,0 = +0l,. So, by
Lemma 2.9, we have d = 0. This is a contradiction which completes the proof. ]

2.11. Theorem. Let R be a o-prime ring with characteristic not 2, I be a nonzero
o-ideal of R, d be a nonzero (a, 3)-derivation of R such that o, 8 commute with o. If
a€1NnSs;(R) and [d(I),a], 5 C Cap thena € Z (R).

Proof. By hypothesis, [ (a?), ] € Ca,p. Expanding this, it becomes

[d(a®),a],, , = [d(a)a () pB(a)d(a),al, 4
= d(a) aa,a] + [d(a), a], z o (a) + B (a) [d(a),d], 4
+ B ([a,a]) d(a)
= [d(a),a], 5 (a) + B (a)[d(a),a], 5 € Cap
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And so,
[d(a),a], sa(a)+ B (a)[d(a),a], 5 € Cap

is obtained. In the above obtained relation, using [d(a), a],, 5 € Ca,s, we have 283 (a) [d (@) ,a],, 5 €
Ca,s. Since charR # 2, we get

(26)  Bla)ld(a),al, s € Cap

Since a € IN S, (R), it is clear that 3 (a) € S (R) . Using the hypothesis together with
(2.6), according to Lemma 2.4 (¢), we yield either

a€Z(R) or [d(a),a], ;=0
Assume that a ¢ Z (R) which means [d (a),a], 5 = 0. On the other hand, by hypothesis,
it holds that [d ([a,z]),a], 5 € Ca,p. So,

[d([a.a]) a5 = [[d (@) 2], 5. 0]
is obtained. Using the hypothesis, we have
[[d(a) ,x]a,ﬂ,a] , € Cap Vo€l

— [[d (ac)gz](mj ,a] s € Cap

a,B

Replacing = by ax and using [d (a),a], 5 = 0, it becomes

B(0) [[d(a).al, 500 € Cap Vel

)

We know that 3 (a) € So (R) and [[d (a), 7], 5, a] . € Cq,p. Therefore, by Lemma 2.4

s

= 0forallz € I. Applying the identity [[a, b5 ,c} =

(2) , we derive [[d (a) ,x}aﬁ ,a] w8

a,B

[[a, d., P ,b] + [a,[b,c]],, g for all a,b,c € R and using the assumption, we arrive
, s ,

«,

[d(a),[2,a]l, 5 =0, Ve eI

The mapping y) : R — R is given by Iy (1) = [d(a),7], 5 is a (o, B)-derivation which
is determinated by d (a) and I, : R — R is given by I, (r) = [r,a] is a derivation which
is determinated by a. So,

(a La) (I) =0

is obtained. Since a € I NS, (R), we have I,0 = +0l,. According to Lemma 2.9, we
yield either

Id(a) =0or Ia =0

which means d (a) € Ca,g. On the other hand, by hypothesis, we have [d(az),d], ;5 € Ca,p
for all z € I. So, we get

(2.7)  d(a)a([z,a]) + B(a)[d(z),a], 3 € Cap, VT €T
Commuting (2.7) with a, it follows that

0=[d(@a(l.a) +8@)d) al, ;.0
= [d(a) a((z,a]) al, 5 + [8(@)[d () .al, 5 .a]
= (@) ([lz,a] a]) +[d(a) ], s @ (]
+8(a) [[d() al,5.0]  +B(aa)ld().al,,
= d(@)a((fz,a] a]) + 5 () [[d(2) .al, 5 .a]

a,B

o,B
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And so, it becomes

d(a)a([[z,d],a]) + B (a) [[d(m) ,a]a,ﬁ,a} =0 Vel

a,

Using [d (z) ,a], 5 € Ca,p, we have d (a) a([[z,a] ,a]) = 0 for all z € I. Since d (a) € Ca,3,
d(a) Ra([[z,a],a]) =0, Vz €T

is obtained. In the above obtained relation, taking o (z) instead of z and using the fact
that o commutes with o, we derive

d(a) Ro (o ([[z,a] ;a])) =0, Y € 1
And so, we yield

d(a) Ra ([[z,a],a]) = d(a) Ro (a([[z,a],a])) =0, Yz € I
Since R is o-prime, we get d(a) = 0 or [[z,a],a] = 0 for all z € I. That is, d(a) =
0 or I2(I) = 0. Since I,0 = +0l,, by Lemma 2.9, we have d(a) = 0. In (2.7), using
d(a) = 0, it becomes

B(a)ld(z),al, 5 € Cap, Vo €I
We know that 8 (a) € S, (R) and [d(z),a], 5 € Ca,s from the hypothesis. Therefore,
according to Lemma 2.4 (i), we have [d (z),a], 5 = 0 for all z € I. Since a € I N S, (R)

and 8 commutes with o, by Lemma 2.10, we derive a € Z (R). This is a contradiction
which completes the proof. O

2.12. Theorem. Let R be a o-prime ring with characteristic not 2, I be a nonzero o-
ideal of R, d be a nonzero («a, B)-derivation of R such that o and 8 commute with o and
h be a nonzero derivation of R which commutes with o. If dh(I) C Cag and h(I) C I
then R is commutative.

Proof. For any z,y € I, from the hypothesis, we have dh ([z,y]) € Cq . Expanding this
identity, it follows that

dh [z, y]) = d([h(2),y] + [z, h (y)])
[( )(w%y] —[d(y),h (@), 5+ [d(@),h ()4,

=[d ( )Jl(y)]a,ﬂ [d(y),h(z)], s € Cap
And it becomes
[d(z),h (W] s —d), h(2)], 5 € Cap, Yo,y €l

Since h(I) C I, we replace y by h(y). So, we arrive [d(z),h> (y)]a 5 € Cap for all
x,y € I. That is,

[d (I) ’ h2 (I)] o,B c COQB
Using the fact that h(I) C I and h commutes with o, we assure h? (I) C IN S, (R).

In additional, we know that from the hypothesis @ and § commute with o. Thereby,
according to Theorem 2.11, it yields h? (I) C Z (R). So, for all z,y € I

R ([e,y)) = h([h () y] + [z, h (1))
= [n* (@) ,y] +2[h (2) , h ()] + [z, ()]
=2[h(z),h(y)] € Z(R)
is obtained. Since charR # 2, we have [h(z),h (y)] € Z (R) for all z,y € I. Thus,
[h (1), h(D)] C Z(R)
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Using h (I) C INSs (R), by Theorem 2.11, we derive h (I) C Z (R) . According to Lemma
2.5, it implies that R is commutative. O
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