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Estimation and orthogonal block structure
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Abstract

Estimators with good behaviors for estimable vectors and variance com-
ponents are obtained for a class of models that contains the well known
models with orthogonal block structure, OBS, see [15], [16] and [1], [2].
The study observations of these estimators uses commutative Jordan
Algebras, CJA, and extends the one given for a more restricted class
of models, the models with commutative orthogonal block structure,
COBS, in which the orthogonal projection matrix on the space spanned
by the means vector commute with all variance-covariance matrices, see
[7].
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1. Introduction
Models with orthogonal block structure, OBS, are mixed models with the family

ν =
{∑m

j=1 γjQj ; γ ∈ Rm+
}
, of variance-covariance matrices where the Q1, ...,Qm are

pairwise orthogonal orthogonal projection matrices, POOPM, summing to the identity
matrix, In. These designs were introduced by [15] and [16], and continue to play an
important part in the theory of randomized block designs, see for instance [1] and [2].
Refer to [9] and [18] for historical developments of the mixed model. The inference
for these models is centered on the estimation of treatment contrasts, see [10]. These
estimators are obtained from the orthogonal projections of the observation vector, Y , on
the strata which are the range spaces 51, ...,5m, of the Q1, ...,Qm. Namely the problem
of obtaining estimators from more than one strata has been dealt in detail. Then the
weights to be given to each strata have to be estimated, see again [10].
We intend to follow a different approach using commutative Jordan algebras, CJA, to
study the algebraic structure of these models. CJA are useful in discussing the algebraic
structures of the models in a way that is convenient for deriving estimators both of
variance components and estimable vectors through the introduction of sub-vectors. For
our purpose it is convenient to write the mixed model as

(1.1) Y =

w∑
i=0

Xiβi,

where β0 is fixed and β1, ...,βw are random independent with null mean vectors and cross
covariance matrices as well variance-covariance matrices θ1Ig1 , ..., θmIgw . This formula-
tion enables an easy characterization of mixed models with OBS. Then when matrices
M i = XiX

′
i, i = 1, ..., w, commute they generate, as we will see, the CJA A(M). This

is the smallest CJA of symmetric matrices that contains M = {M1, ...,Mw}. We re-
call, see [12], that these algebras are linear subspaces constituted by symmetric matrices
and containing their squares. We will show that when matrices of M commute and
constitute a basis for A(M) the models has OBS. Then we may use the sub-models
Y j = AjY , j = 1, ...,m, to obtain estimators for estimable vectors that are BLUE what-
ever the variance components. Following [21] we say that this estimators are uniformly
BLUE, UBLUE. They are quite distinct from the ones for contrasts which are weighted
means with estimated weights. Now no weight estimation is required and all estimable
vectors may be treated as an unified approach. We point out that estimable contrasts
are uni-dimensional estimable vectors so we have a widening of the class of estimable pa-
rameters and results that does not depend on weight and, as we shall see, have optimal
properties.

Moreover we also obtain, using the sub-models, estimators for variance components
which, when quasi-normality is assumed, also have optimal properties.

The role played by the CJA rests on the obtention of the sub-models which have
variance-covariance matrices γjIgj , with gj = rank(Qj), j = 1, ...,m. The homoscedas-
ticity of these sub-vectors leads to optimal estimators derived from each strata. Then the
cross covariance matrices, 6 Σ(Y j ;Y

′
j), are null which are the combinations of estimators

derived from different sub-vectors. We will also consider a special class of models with
OBS, the commutative orthogonal block structure, COBS, in which T , the orthogonal
projection matrix on the space Ω spanned by the mean vector commutes with the ma-
trices in principal basis of a CJA A, pb(A). Then, whatever the γ1, ..., γm, the matrix T
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will commute with

(1.2) V =

m∑
j=1

γjQj ,

which, see [23], ensures that whatever the estimable vector ψ it’s least square estimator,
LSE, is the Best linear unbiased estimator, BLUE. We will say, see [21], that models
with COBS have LSE that are UBLUE and show that, for theses models, the LSE are
identical with the estimators we obtained for the general case of models with OBS.

2. Commutative Jordan Algebras

We already refer the importance of CJA in these models. We now point out that, see
[17], the matrices of M commute if and only if they are diagonalized by the same orthog-
onal matrix P . Then M will be contained in the CJA A(P ) constituted by the matrices
diagonalized by P , thus M is contained in a CJA if and only if it’s matrices commute.
Since intersecting CJA gives a CJA, the intersection A(M) of all CJA containing M will
be the least CJA containing M, so we say that it is generated by M.

[19] showed that any CJA, A, has an unique basis, the pb(A) of A, constituted by
POOPM. As stated by [5], Jordan algebras are used to present normal orthogonal models
in a canonical form. Moreover:

(1) any family of POOPM is the principal basis of the CJA constituted by their
linear combination;

(2) any orthogonal projection matrix, OPM, belonging to a CJA, A, will be sum of
matrices in pb(A);

(3) if the matrices in pb(A1) are some of matrices in pb(A2) we have A1 ⊂ A2.
We recall that the product of two symmetric matrices is symmetric if they commute,
then the product of two OPM that commute will be an OPM since it is symmetric and
it is idempotent.

Given an OPM K that commutes with the matrices of K = {K1, ...,Km} = pb(A),
the non null matricesKKj andKcKj , j = 1, ...,m, withKc = In−K, will be POOPM
thus constituting the principal basis of a CJA, A. We can order the matrices in pb(A) so
that the first are products by K of matrices in pb(A) and the last m− z will be products
by Kc also of matrices in pb(A). Clearly we have A ⊂ A. Those pairs of CJA appear
in the theory of models with COBS. Models with this structure was also studied in [11],
[5], [6] and [8]. A is now the CJA with principal basis Q = {Q1, ...,Qm} when ν(∇) is
the family of variance-covariance matrices and T playing the part of K.

Let µ = X0β0 be the mean vector of the model. WithQ = {Q1, ...,Qm} = pb(A(M))
let the row vectors of Aj constitute an orthonormal basis for the range space of Qj ,
R(Qj), j = 1, ...,m, we have

(2.1)
{
AjA

>
j = Igj , j = 1, ...,m

A>j Aj = Qj , j = 1, ...,m
,

with gj = rank(Qj), j = 1, ...,m. Let us take X0,j = AjX0 and represent by P j ,
j = 1, ...,m, and P c

j , j = 1, ...,m, the OPM on Ωj = R(X0,j) and it’s orthogonal
complement Ω⊥j , j = 1, ...,m.

2.1. Lemma. If the model has COBS we have TQj 6= 0n×n if and only if X0,j 6= 0gj×k,
assuming X0 to be n× k, j=1,...,m.

Proof. We have TQj = 0n×n if and only if R(TQj) = {0n}, so, if the model has
COBS, R(TQj) = R(QjT ) = QjR(T ) = QjR(X0) = A>j AjR(X) = A>j R(AjX) =

A>j R(X0,j) and, since the column vectors of A>j are linearly independent, R(TQj) =
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A>j R(Xj) = {0n} if and only if R(X0,j) = {0n} which is equivalent to X0,j = 0gj×k,
j = 1, ...,m.

2.2. Corollary. If the model has COBS we have TQj 6= 0n×n if and only if P j 6= 0gj×gj ,
j = 1, ...,m.

2.3. Corollary. If the model has COBS we have TQj 6= 0n×n if and only if Q̄j =

A>j P jAj 6= 0n×n, j = 1, ...,m.

Proof. A>j P jAj = (A>j P j)(A
>
j P j)

> so, see [20],

rank(XjP jAj) = rank(A>j P j), j = 1, ...,m.

Now the column vectors of A>j are linearly independent so A>j P jAj = 0n×n. This is
rank(A>j P j) = rank(A>j P jAj) = 0 if and only if P j = 0gj×gj , j = 1, ...,m. Thus,
according to Corollary 2.2, TQj 6= 0n×n only when Q̄j 6= 0n×n.

2.4. Corollary. If the model has COBS we can order the TQ1, ...,TQm and the

Q̄1, ..., Q̄m

to have TQj 6= 0n×n [Q̄j 6= 0n×n], if and only if j ≤ z.

2.5. Proposition. If the model has COBS we have TQj = Q̄j, j = 1, ..., z.

Proof. Since TQj [Q̄j ], j = 1, ..., z, are symmetric and idempotent matrices they are
OPM. So we have only to show that R(TQj) = R(Q̄j), j = 1, ..., z. Now

rank(A>j P j) = rank(A>j P jP jAj) = rank(A>j P jAj) = rank(Q̄j), j = 1, ..., z,

so that

R(Q̄j) = R(A>j P jAj) = R(A>j P j), j = 1, ..., z,

since the first is a subspace of the last set with the same dimension.
Besides this

R(QjTQj) = R(QjT ) = QjR(T ) = QR(X) =

= A>j AjR(X) = A>j R(AjX) = A>j R(Xj) = A>j R(P j) = R(A>j P j) = R(Q̄j),

j = 1, ...,m, which establish the thesis.

2.6. Corollary. Putting T c = In − T and Q̄•j = A>j P
c
jAj, j = z + 1, ...,m, when the

model has COBS we have T cQj = Q̄•j , j = z + 1, ...,m.

Proof. According to Corollary 2.4 we have T cQj = Qj −TQj = Qj , j = z+ 1, ...,m,
as well as A>j P c

jAj = A>j Aj −A>j P jAj = Qj − Q̄j = Qj , j = z+ 1, ...,m, so the thesis
is established.

2.7. Corollary. When the model has COBS the CJA with principal basis
{TQ1, ...,TQz,T

cQz+1, ...,T
cQm} and {Q̄1, ..., Q̄z, Q̄

•
z+1, ..., Q̄

•
m} are identical.

Proof. The result follows from Corollary 2.6 and Proposition 2.5.

2.8. Corollary. If the model has COBS we have T =
∑z
j=1A

>
j P jAj.

Proof. We have T =
∑z
j=1 TQj so the thesis follows from Proposition 2.5.
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3. Mixed Models

We now characterize mixed models with OBS and COBS. If the matrices of M =
{M1, ...,Mw} commute they will generate a CJA, A(M), as we saw in Section 2. With

Q = {Q1, ...,Qm} = pb(A(M)) we have M i =

m∑
j=1

bi,jQj , i = 1, ..., w, putting B = [bi,j ]

and ψi = {j : bi,j 6= 0}, i = 1, .., w, it is easy to see that the OPM on R(M i) = R(Xi)

is
∑
j∈ψi

Qj . Moreover the OPM on R(

w∑
i=1

M i) = R([X1...Xw]) will be
m∑
j=1

Qj . Thus we

have R([X1...Xw]) = Rn if and only if In =

m∑
j=1

Qj , which is, as we saw, one of the

requirements on the POOPM that appear on the variance-covariance matrices of models
with OBS. The mixed models will have variance-covariance matrices

(3.1) V (θ) =

w∑
i=1

θiM i =

w∑
i=1

θi(

m∑
j=1

bi,jQj) =

m∑
j=1

γjQj ,

where γj =

w∑
i=1

bi,jθi, j = 1, ...,m, so γ ∈ R(B>)+, with ∇+ the family of vectors of

sub-space ∇ with non-negative components.
For the variance-covariance matrices of the model to be all the positive semi-definite

matrices given by linear combination of Q1, ...,Qm we have to have

R(B>) = Rm,
this is matrix B must be invertible which occur when and only when M is a basis for
A(M). Then, see [4], the family M will be perfect. We now establish

3.1. Proposition. The mixed model enjoys OBS when M is a perfect family and

R([X1...Xw] = Rw.

Proof. When R([X1...Xw]) = Rw but M is not perfect we can always complete it
adding some random effect terms to the model. We then restrict ourselves to perfect M
families.
Going over to models with COBS we establish

3.2. Proposition. T commutes with the matrices of M if and only if it commutes with
matrices of Q.

Proof. If T commutes with the matrices of M, the matrices of

Mo = {T ,M1, ...,Mw}
commute so they will generate a CJA A(Mo) that containsMo, then containing T , and
the matrices of Q that will commute. Inversely if T commutes with the matrices of Q it
commutes with matrices of M since M i =

∑m
j=1 bi,jQj , i = 1, ..., w.

3.3. Corollary. If a model has OBS and T commutes with the matrices of M it has
COBS.

4. Estimation

In this section we will use the sub-models Y j = AjY , j = 1, ...,m to obtain estimators
for estimable vectors. Taking µj = Ajµ, j = 1, ...,m, where µj = 0gj , j = z+ 1, ...,m, a
model with generalized OBS, GOBS, has the homoscedastic partition Y =

∑m
j=1A

>
j Y j
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where the Y 1, ...,Y m have mean vectors µ1, ...,µm, and variance-covariance matrices
γ1Ig1 , ..., γmIgm .

Now ψ = Gβ is estimable, see for instance [13], if and only if G = UX0, so that
ψ = Uµ =

∑z
j=1U jµj =

∑z
j=1ψj with U j = UA>j and ψj = U jµj , j = 1, ..., z. Now

we establish

4.1. Proposition. ψ̃ =
∑z
j=1 ψ̃j , with ψ̃j = U jP jY j, j = 1, ..., z, is an unbiased

estimator of ψ, and if ψ∗ =
∑z
j=1ψ

∗
j with ψ∗j = W jY j is another unbiased estimator

of ψ, j = 1, ..., z, ψ∗ is an unbiased estimator of ψ, with6 Σ(ψ̃) ≤6 Σ(ψ∗) where ≤ indicates
that 6 Σ(ψ∗)−6 Σ(ψ̃) is positive semi-definite.

Proof. Since the mean vector of P jY j is P jµj = µj , j = 1, ..., z, ψ∗ is an unbiased
estimator of ψ and it is well known that6 Σ(ψ̃j) ≤6 Σ(ψ∗j ), j = 1, ..., z. Now the Y 1, ...,Y m

have null variance-covariance matrices, so

(4.1)

{
6 Σ(ψ̃) =

∑z
j=1U j6 Σ(ψ̃j)U

>
j =

∑z
j=16 Σ(ψ̃j)

6 Σ(ψ∗) =
∑z
j=1U j6 Σ(ψ∗j )U

>
j =

∑z
j=16 Σ(ψ∗j )

and U j6 Σ(ψ̃j)U
>
j ≤ U j6 Σ(ψ∗j )U

>
j , j = 1, ..., z.

4.2. Proposition. When the model has COBS the ψ̃ are LSE.

Proof. Since the models enjoys COBS we have T =
∑z
j=1A

>
j P jAj and ψ̃ =∑z

j=1 ψ̃j =
∑z
j=1U jP jY j = U

(∑z
j=1A

>
j P jAj

)
Y = UTY = Uµ̃, with µ̃ the LSE

of µ, so the thesis is established.
This result is interesting since in COBS the LSE are UBLUE, being BLUE whatever

θ, see [23]. Thus we validate the above proposition showing that our "sub-optimal esti-
mator" is "optimal" when the model enjoys COBS. In the previous phrase "sub-optimal"
must be taken in the sense of Proposition 4.1 and "optimal" in the sense of the LSE being
UBLUE.

Let us put qj = rank(P c
j), j = 1, ...,m, as well as D = {j; qj>0}, and

(4.2) γ̃j =
Y >j P

c
jY j

qj
, j ∈ D.

It is also well known that, if γ∗j = I>j W jY j , j ∈ D is a quadratic unbiased estimator
of γj , j ∈ D, we have var(γ̃j) ≤ var(γ∗j ), j ∈ D. Let us get the following Proposition.
We leave out its proof which can be seen in [17], page 395.

4.3. Proposition. If Y is quasi-normal we have

(4.3) var

∑
j∈D

cj γ̃j

 ≤ var
∑
j∈D

cjγ
∗
j

 .

5. An application

The mixed model

Y =

w∑
i=0

Xiβi,

where β0 is fixed and the β1, ...,βw are random independent vectors with null mean
vector and variance-covariance matrices σ2

1Ig1 , ..., σ
2
wIgw have GOBS, see for instance

[14], when the matrices M i = XiX
>
i , i = 1, ..., w commute.

Namely these matrices will belong to a CJA A, with pb(A) = {Q1, ...,Qm}, so that
M i =

∑m
j=1 bi,jQj , i = 1, ..., w. Note that to consider an extension of OBS we can replace
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ν by ν(∇) =
{∑m

j=1 γjQj ; γ ∈ ∇+

}
, where ∇+ is the family of vectors belonging to

subspace ∇ with non negative components. Then the model will have GOBS. This
application is itself an extension of the one given, see [7], [3] and [14], for models with
COBS, and the identity of the two algebras for models with COBS enables us to carry
out an unified treatment for models with GOBS.

These models have variance-covariance matrices

(5.1) V (σ2) =

w∑
i=1

σ2
iM i =

m∑
j=1

γjQj ,

with γj =
∑w
i=1 bi,jσ

2
i , j = 1, ...,m so that now we have γ ∈ R(B>)+, where B = [bi,j ].

We point out that for V (σ2
1) = V (σ2

2) implying σ2
1 = σ2

2 the matrices M1, ...,Mw

have to be linearly independent. Then the row vectors of B that are the column vectors
of B>, are linearly independent and we have σ2 = B>

+
γ, where A+ indicates MOORE-

PENROSE inverse of matrix A. Then, if Y is quasi-normal we may apply Proposition
4.3.

6. Final Remarks

Least squares estimators, LSE, have been widely used due to this algebraic structure
and to having minimum variance.covariance matrices, under general conditions, whatever
the variance components.
Following [21] we may say that, then, the LSE are UBLUE. Now these conditions rest
on T commuting with the variance-covariance matrices of the model.
We showed that this commutativity condition was not necessary thus extending the
class of models for which we have UBLUE for estimable vectors.We also showed that
those UBLUE are LSE when the commutativity condition holds. Thus our results may
be considered as an extension of the well known results on UBLUE that are LSE, for
instance see [22] and [23].
Besides this we obtain an optimal result for estimators of linear combinations

∑m
j=1 cjγj .

We point out that in mixed models such as those considered in the application we have
σ2 = (B>)+γ so we can apply that result to the components of σ̃2 = (B>)+γ̃ whenever
Y is quasi normal.
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