CERTAIN SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

V Ravichandran*, Yasar Polatoglu[†], Metin Bolcal[†], and Arzu Sen[†]

Received 24:12:2004 : Accepted 05:12:2005

Abstract

In the present investigation, we consider certain subclasses of starlike and convex functions of complex order, giving necessary and sufficient conditions for functions to belong to these classes.

Keywords: Starlike functions, Convex functions, Starlike functions of complex order, Convex functions of complex order.

2000 AMS Classification: 30 C 45

1. Introduction

Let $\mathcal A$ be the class of all analytic functions

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$

in the open unit disk $\Delta = \{z \in \mathbb{C}; |z| < 1\}$. A function $f \in \mathcal{A}$ is subordinate to an univalent function $g \in \mathcal{A}$, written $f(z) \prec g(z)$, if f(0) = g(0) and $f(\Delta) \subseteq g(\Delta)$.

Let Ω be the family of analytic functions $\omega(z)$ in the unit disc Δ satisfying the conditions $\omega(0) = 0$, $|\omega(z)| < 1$ for $z \in \Delta$. Note that $f(z) \prec g(z)$ if there is a function $w(z) \in \Omega$ such that $f(z) = g(\omega(z))$.

Let S be the subclass of A consisting of univalent functions. The class $S^*(\phi)$, introduced and studied by Ma and Minda [5], consists of functions in $f \in S$ for which

$$\frac{zf'(z)}{f(z)} \prec \phi(z), \ (z \in \Delta).$$

^{*}Department of Computer Applications, Sri Venkateswara College of Engineering, Sriperumbudur 602 105, India. E-mail: vravi@svce.ac.in

 $^{^\}dagger Department$ of Mathematics, Faculty of Sciences and Arts, Kültür University, İstanbul. E-mail: (Y. Polatoglu) y.polatoglu@iku.edu.tr (M. Bolcal) m.bolcal@iku.edu.tr (A. Sen) a.sen@iku.edu.tr

The functions $h_{\phi n}$ $(n=2,3,\ldots)$ are defined by

$$\frac{zh'_{\phi n}(z)}{h_{\phi n}(z)} = \phi(z^{n-1}), \ h_{\phi n}(0) = 0 = h'_{\phi n}(0) - 1.$$

The functions $h_{\phi n}$ are all functions in $S^*(\phi)$. We write $h_{\phi 2}$ simply as h_{ϕ} . Clearly,

(2)
$$h_{\phi}(z) = z \exp\left(\int_{0}^{z} \frac{\phi(x) - 1}{x} dx\right).$$

Following Ma and Minda [5], we define a more general class related to the class of starlike functions of complex order as follows.

1.1. Definition. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ , which satisfies $\phi(0) = 1$, $\phi'(0) > 0$, and which maps the unit disk Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $S_b^*(\phi)$ consists of all analytic functions $f \in \mathcal{A}$ satisfying

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \phi(z).$$

The class $C_b(\phi)$ consists of the functions $f \in \mathcal{A}$ satisfying

$$1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \prec \phi(z).$$

Moreover, we let $S^*(A, B, b)$ and C(A, B, b) $(b \neq 0, \text{ complex})$ denote the classes $S_b^*(\phi)$ and $C_b(\phi)$ respectively, where

$$\phi(z) = \frac{1+Az}{1+Bz}, \ (-1 \le B < A \le 1).$$

The class $S^*(A, B, b)$, and therefore the class $S_b^*(\phi)$, specialize to several well-known classes of univalent functions for suitable choices of A, B and b.

The class $S^*(A, B, 1)$ is denoted by $S^*(A, B)$. Some of these classes are listed below:

- (1) $S^*(1,-1,1)$ is the class S^* of starlike functions [1, 2, 7].
- (2) $S^*(1,-1,b)$ is the class of starlike functions of complex order introduced by Wiatrowski [12].
- (3) $S^*(1,-1,1-\beta)$, $0 \le \beta < 1$, is the class $S^*(\beta)$ of starlike functions of order β . This class was introduced by Robertson [8].
- (4) $S^*(1,-1,e^{-i\lambda}\cos\lambda), |\lambda| < \frac{\pi}{2}$ is the class of λ -spirallike functions introduced by Spacek [11].
- (5) $S^*(1,-1,(1-\beta)e^{-i\lambda}\cos\lambda)$, $0\leq\beta<1$, $|\lambda|<\frac{\pi}{2}$, is the class of λ -spirallike functions of order β . This class was introduced by Libera [4].

Let ST(b) denote $1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right)$. Then we have the following:

- (6) $S^*(1,0,b)$ is the set defined by |ST(b) 1| < 1.
- (7) $S^*(\beta, 0, b)$ is the set defined by $|ST(b) 1| < \beta, 0 \le \beta < 1$.
- (8) $S^*(\beta, -\beta, b)$ is the set defined by $\left|\frac{ST(b)-1}{(ST(b)+1)}\right| < \beta, \ 0 \le \beta < 1.$
- (9) $S^*(1,(-1+\frac{1}{M}),b)$ is the set defined by |ST(b)-M| < M.
- (10) $S^*(1-2\beta,-1,b)$ is the set defined by $\operatorname{Re}ST(b)>\beta,\, 0\leq \beta<1.$

To prove our main result, we need the following Lemma due to Miller and Mocanu:

1.2. Lemma. [6, Corollary 3.4h.1, p.135] Let q(z) be univalent in Δ and let $\varphi(z)$ be analytic in a domain containing $q(\Delta)$. If $zq'(z)/\varphi(q(z))$ is starlike, then

$$zp'(z)\varphi(p(z)) \prec zq'(z)\varphi(q(z))$$

implies that $p(z) \prec q(z)$, and q(z) is the best dominant.

Let C be the class of convex analytic functions in $\Delta.$ We will also need the following result:

1.3. Lemma. [10, Theorem 2.36, p. 86] For $f, h \in C$ and $g \prec h$, we have $f * g \prec f * h$.

2. A necessary and Sufficient Condition

We begin with the following:

2.1. Lemma. Let ϕ be a convex function defined on Δ and satisfying $\phi(0) = 1$. As in Equation (1) let $h_{\phi}(z) = z \exp\left(\int_0^z \frac{\phi(x)-1}{x} dx\right)$, and let $q(z) = 1 + c_1 z + \cdots$ be analytic in Δ . Then

(3)
$$1 + \frac{zq'(z)}{q(z)} \prec \phi(z)$$

if and only if for all $|s| \le 1$ and $|t| \le 1$, we have

(4)
$$\frac{q(tz)}{q(sz)} \prec \frac{sh_{\phi}(tz)}{th_{\phi}(sz)}.$$

Proof. Our result and its proof are motivated by a similar result of Ruscheweyh [rus] for functions in the class $S^*(\phi)$. Also see Ruscheweyh [10, Theorem 2.37, pages 86-88].

Let q(z) satisfy (3). Since the function

$$p(z) = \int_0^z \left(\frac{s}{1 - sx} - \frac{t}{1 - tx}\right) dx$$

is convex and univalent in Δ for $s,t\in\overline{\Delta}:=\Delta\cup\{z\in\mathbb{C}:|z|=1\},\ s\neq t,$ by Lemma 1.2 we have:

(5)
$$\left(\frac{zq'(z)}{q(z)}\right) * p(z) \prec (\phi(z) - 1) * p(z).$$

For an analytic function h(z) with h(0) = 0, we have

(6)
$$(h * p)(z) = \int_{sz}^{tz} h(x) \frac{dx}{x},$$

and using (6), we see that (5) is equivalent to

$$\int_{sz}^{tz} \left(\frac{q'(x)}{q(x)} \right) dx \prec \int_{sz}^{tz} \left(\frac{\phi(x)-1}{x} \right) dx,$$

which gives the desired assertion (4) upon exponentiation.

To prove the converse, let us assume that (4) holds. By taking t = 1 in (4), we have

(7)
$$\frac{q(z)}{q(sz)} \prec \frac{sh_{\phi}(z)}{h_{\phi}(sz)},$$

and therefore we have

(8)
$$\frac{q(z)}{q(sz)} = \frac{sh_{\phi}(\phi_s(z))}{h_{\phi}(s\phi_s(z))},$$

where $\phi_s(z)$ are analytic in Δ and satisfy $|\phi_s(z)| \leq |z|$. Thus we can find a sequence $s_k \to 1$ such that $\phi_{s_k} \to \phi^*$ locally uniformly in Δ , where $|\phi^*(z)| \leq |z|$ $(z \in \Delta)$. Therefore, by making use of (8), we have for any fixed $z \in \Delta$,

$$1 + \frac{zq'(z)}{q(z)} = \lim_{k \to \infty} \left[\frac{s_k q(s_k z) - q(z)}{(s_k - 1)q(z)} \right]$$

$$= \lim_{k \to \infty} \frac{\phi_{s_k}(z)}{h_{\phi}(\phi_{s_k}(z))} \left[\frac{h_{\phi}(s_k \phi_{s_k}(z)) - h_{\phi}(\phi_{s_k}(z))}{s_k \phi_{s_k}(z) - \phi_{s_k}(z)} \right]$$

$$= \frac{\phi^*(z) h'_{\phi}(\phi^*(z))}{h_{\phi}(\phi^*(z))}.$$

This shows that

$$1 + \frac{zq'(z)}{q(z)} \in \left(\frac{zh'_{\phi}}{h_{\phi}}\right)(\Delta) = \phi(\Delta), \ (z \in \Delta),$$

which completes the proof of our Lemma 2.1.

By making use of Lemma 2.1, we now have the following:

2.2. Theorem. Let ϕ be a convex function defined on Δ which satisfies $\phi(0) = 1$, and $h_{\phi}(z) = z \exp\left(\int_{0}^{z} \frac{\phi(x)-1}{x} dx\right)$ be as in Equation (1). The the function f belongs to $S_{b}^{*}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

(9)
$$\left(\frac{sf(tz)}{tf(sz)}\right)^{\frac{1}{b}} \prec \frac{sh_{\phi}(tz)}{th_{\phi}(sz)}.$$

Proof. Define the function q(z) by

(10)
$$q(z) := \left(\frac{f(z)}{z}\right)^{1/b}.$$

Then a computation show that

$$1 + \frac{zq'(z)}{q(z)} = 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right).$$

The result now follows from Lemma 2.1.

As an immediate consequence of Theorem 2.2, we have:

2.3. Corollary. Let $\phi(z)$ and $h_{\phi}(z)$ be as in Theorem 2.2. If $f \in S_b^*(\phi)$, then we have

(11)
$$\left(\frac{f(z)}{z}\right)^{\frac{1}{b}} \prec \frac{h_{\phi}(z)}{z}.$$

3. Another Subordination Result

In this section, we prove the following without the assumption that the function ϕ is convex. We only require that the function ϕ be starlike with respect to the origin.

3.1. Corollary. If $f \in S_b^*(\phi)$, then we have

(12)
$$\left(\frac{f(z)}{z}\right)^{\frac{1}{b}} \prec \frac{h_{\phi}(z)}{z},$$

where $h_{\phi}(z)$ is given by (2).

Proof. Define the functions p(z) and q(z) by

$$p(z) := \left(\frac{f(z)}{z}\right)^{1/b}, \quad q(z) := \frac{h_\phi(z)}{z}.$$

Then a computation yields

$$1 + \frac{zp'(z)}{p(z)} = 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right)$$

and

$$\frac{zq'(z)}{q(z)} = \frac{zh'_{\phi}(z)}{h_{\phi}(z)} - 1 = \phi(z) - 1.$$

Since $f \in S_b^*(\phi)$, we have

$$\frac{zp'(z)}{p(z)} = \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec \phi(z) - 1 = \frac{zq'(z)}{q(z)}.$$

The result now follows by an application of Lemma 1.1

4. The Fekete-Szegö inequality

In this section, we obtain the Fekete-Szegö inequality for functions in the class $S_b^*(\phi)$.

4.1. Theorem. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$. If f(z) given by Equation (1) belongs to $S_b^*(\phi)$, then

$$|a_3 - \mu a_2^2| \le 2 \max \left\{ 1; \left| \frac{B_2}{B_1} + (1 - 2\mu)bB_1 \right| \right\}.$$

The result is sharp.

Proof. If $f(z) \in S_b^*(\phi)$, then there is a Schwarz function w(z), analytic in Δ , with w(0) = 0 and |w(z)| < 1 in Δ and such that

(13)
$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) = \phi(w(z)).$$

Define the function $p_1(z)$ by

(14)
$$p_1(z) := \frac{1+w(z)}{1-w(z)} = 1 + c_1 z + c_2 z^2 + \cdots$$

Since w(z) is a Schwarz function, we see that $\Re p_1(z) > 0$ and $p_1(0) = 1$. Define the function p(z) by

(15)
$$p(z) := 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) = 1 + b_1 z + b_2 z^2 + \cdots$$

In view of the equations (13), (14) and (15), we have

(16)
$$p(z) = \phi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right).$$

Since

$$\frac{p_1(z)-1}{p_1(z)+1} = \frac{1}{2} \left[c_1 z + (c_2 - \frac{c_1^2}{2}) z^2 + (c_3 + \frac{c_1^3}{4} - c_1 c_2) z^3 + \cdots \right]$$

and therefore

$$\phi\left(\frac{p_1(z)-1}{p_1(z)+1}\right) = 1 + \frac{1}{2}B_1c_1z + \left[\frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2) + \frac{1}{4}B_2c_1^2\right]z^2 + \cdots,$$

from this equation and (16), we obtain

$$b_1 = \frac{1}{2}B_1c_1$$

and

$$b_2 = \frac{1}{2}B_1(c_2 - \frac{1}{2}c_1^2) + \frac{1}{4}B_2c_1^2.$$

Since

$$\frac{zf'(z)}{f(z)} = 1 + a_2z + (2a_3 - a_2^2)z^2 + (3a_4 + a_2^3 - 3a_3a_2)z^3 + \cdots,$$

from Equation (15), we see that

(17)
$$bb_1 = a_2$$
,

$$(18) bb_2 = 2a_3 - a_2^2,$$

or equivalently we have

$$a_2 = bb_1 = \frac{bB_1c_1}{2},$$

$$a_3 = \frac{1}{2} \left\{ bb_2 + b^2b_1^2 \right\}$$

$$= \frac{b}{4}B_1c_1 + \frac{c_1^2}{8} \left\{ b^2B_1^2 - b(B_1 - B_2) \right\}.$$

Therefore we have

(19)
$$a_3 - \mu a_2^2 = \frac{bB_1}{4} \left\{ c_2 - vc_1^2 \right\}$$

where

$$v := \frac{1}{2} \left[1 - \frac{B_2}{B_1} + (2\mu - 1)bB_1 \right].$$

We recall from [5] that if $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is a function with positive real part,

$$|c_2 - \mu c_1^2| \le 2 \max\{1, |2\mu - 1|\},\$$

the result being sharp for the functions given by

$$p(z) = \frac{1+z^2}{1-z^2}, \quad p(z) = \frac{1+z}{1-z}.$$

Our result now follows from an application of the above inequality, and we see that he result is sharp for the functions defined by

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) = \phi(z^2)$$

and

$$1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) = \phi(z).$$

This completes the proof of the theorem.

References

- [1] Duren, P. L. Univalent Functions, (Springer-Verlag, 1983).
- [2] Goodman, A.W. *Univalent Functions, Vol I & II*, (Mariner publishing Company Inc., Tampa Florida, 1983).
- [3] Keogh, F. R. and Merkes, E. P. A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
- [4] Libera, R. J. Some radius of convexity problems, Duke Math. J. 31, 143–157, 1964.
- [5] Ma, W. and Minda, D. A Unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, 157–169, 1994.
- [6] Miller, S. S. and Mocanu, P. T. Differential Subordinations: Theory and Applications, (Series of Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Basel, 2000).
- [7] Pommerenke, Ch. R. Univalent functions, (Vandenhoeck, ruprecht in Göttingen, 1975).
- [8] Robertson, M.S. On the theory of univalent functions, Ann. Math. 37, 374-408, 1936.
- [9] Ruscheweyh, St. A subordination theorem for Φ -like functions, J. London Math. Soc. 13, 275–280, 1976.
- [10] Ruscheweyh, St. Convolutions in Geometric Function Theory, (Seminaire de Mathematiques Superieures 83, Les Presses de l'Universite de Montreal, 1982).
- $[11]\,$ Spacek, L. $Prispeek\ k\ teori\ funki\ prostych,$ Casopis pest Math. Fys. ${\bf 62},\ 12–19,\ 1933.$
- [12] Wiatrowski, P. The coeffecient of a certain family of holomorphic functions, Zest. Nauk. Math. przyord. ser II. Zeszyt. 39, 57–85, 1971.