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Abstract

In this paper the concept of an L-fuzzy prime submodule ofM is given,
and some fundamental lemmas are proved. Also a characterization of
an L-fuzzy prime submodule is given. Finally, we show that an L-fuzzy
prime submodule is inherited by an R-module epimorphism.
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1. Introduction

Zadeh in [6] introduced the notion of a fuzzy subset µ of a non-empty set X as a
function from X to [0, 1]. Goguen in [1] generalized the notion of fuzzy subset of X to
that of an L-fuzzy subset, namely a function from X to a lattice L.

In [5], Rosenfeld considered the fuzzification of algebraic structures. Liu [2], introduced
and examined the notion of a fuzzy ideal of a ring. Since then several authors have
obtained interesting results on L-fuzzy ideals of R and L-fuzzy modules. See [4] for a
comprehensive survey of the literature on these developments.

In [3] the notion of fuzzy prime submodule of M over [0, 1] is given in terms of fuzzy
singletons. In Section 3 of this paper, we generalize their definition to any complete lattice
L when R is a commutative ring with identity. In Theorem 3.6 we give a characterization
of L-fuzzy prime submodules which is one of the original results obtained in this paper.
In Section 4, we investigate the behaviour of L-fuzzy prime submodules under R-module
homomorphisms, which constitutes another original result of our work.

2. Preliminaries

Throughout this paper R is a commutative ring with identity, M a unitary R-module
and L stands for a complete lattice with least element 0 and greatest element 1. 0M
denotes the zero element of M .

An element α ∈ L, 1 6= α, is called a prime element in L if for all a, b ∈ L if a∧ b ≤ α
implies a ≤ α or b ≤ α.

∗Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey.

E-mail: uacar@hacettepe.edu.tr



18 U. Acar

Given a nonempty set X, an L-fuzzy subset µ is a function from X to L. We denote
by F (X) the set of all L-fuzzy subsets of X. For µ, ν ∈ F (X) we say µ ⊆ ν if and only
if µ(x) ≤ ν(x), for all x ∈ X. Also, µ ⊂ ν if and only if µ ⊆ ν and µ 6= ν.

Let µ ∈ F (X) and t ∈ L. Then the set µt = {x ∈ X | µ(x) ≥ t} is called the level
subset of X with respect to µ. By an L-fuzzy point xr of X, x ∈ X, r ∈ L \ {0}, we mean
xr ∈ F (X) defined by

xr(y) =

{

r if y = x,

0 otherwise.

If xr is an L-fuzzy point of X and xr ⊆ µ ∈ F (X), we write xr ∈ µ. For A ⊆ X the
characteristic function of A, χA ∈ F (X), is defined by

χA(x) =

{

1 if x ∈ A,

0 otherwise.

The following are two very basic definitions given [4].

2.1. Definition.

a) Let ξ ∈ F (R). Then ξ is called an L-fuzzy ideal of R if for all x, y ∈ R,
(i) ξ(x− y) ≥ ξ(x) ∧ ξ(y),
(ii) ξ(xy) ≥ ξ(x) ∨ ξ(y).

b) Let µ ∈ F (M). Then µ is called an L-fuzzy R-module of M if for all x, y ∈ M
and for all r ∈ R,
(i) µ(x− y) ≥ µ(x) ∧ µ(y),
(ii) µ(rx) ≥ µ(x),
(iii) µ(0M ) = 1

Let S(M) denote the set of all L-fuzzy R-modules ofM and I(R) the set of all L-fuzzy
ideals of R. We note that when R = M , then µ ∈ S(M) if and only if µ(0M ) = 1 and
µ ∈ I(R).

An example of an L-fuzzy R-module M with R = Z, M = Z6, is

µ(x) =







1 if x = 0,
1
3

if x = 2, 4,
1
4

if x = 1, 3, 5.

The following are two basic operations which will be used to define an L-fuzzy prime
submodule.

2.2. Definition. Let ξ ∈ F (R) and µ ∈ F (M). Define the composition ξ ◦ µ, and
product ξµ respectively as follows: For all w ∈M ,

(ξ ◦ µ)(w) = sup{ξ(r) ∧ µ(x) | r ∈ R, x ∈M, w = rx},

(ξµ)(w) = sup

{
n

inf
i=1
{ξ(ri) ∧ µ(xi)}

∣
∣
∣
∣
ri ∈ R, xi ∈M, n ∈ N, w =

n∑

i=1

rixi

}

,

where as usual the supremum of an empty set is taken to be 0.
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The product can be also expressed as

(ξµ)(w) = sup{ξ(r1) ∧ ξ(r2) ∧ · · · ∧ ξ(rn) ∧ µ(x1) ∧ µ(x2) ∧ · · · ∧ µ(xn)

| ri ∈ R, xi ∈M, n ∈ N, w =
n∑

i=1

rixi}

=
∨

{
n∧

i=1

{
ξ(ri) ∧ µ(xi)

}
∣
∣
∣
∣
ri ∈ R, xi ∈M, n ∈ N, w =

n∑

i=1

rixi

}

Notice that ξ ◦ µ is the case n = 1 in the definition of ξµ. Thus ξ ◦ µ ⊆ ξµ.

To give an example of the product of ξ ∈ F (R) and µ ∈ F (M) with R = Z and

M = Z6, let ξ(r) =

{
1
2

if r ∈ 2Z,
1
5

otherwise
and µ(x) =







1 if x = 0,
1
3

if x = 2, 4,
1
4

if x = 1, 3, 5.

Then:

(ξµ)(0) = sup{ξ(0) ∧ µ(1)
︸ ︷︷ ︸

0=0.1

, ξ(2) ∧ µ(3)
︸ ︷︷ ︸

0=2.3

, ξ(2) ∧ µ(1) ∧ ξ(−1) ∧ µ(2)
︸ ︷︷ ︸

0=2.1−1.2

, . . .}

= sup{
1

2
∧ 1,

1

2
∧
1

4
,
1

2
∧
1

4
∧
1

5
, . . .} =

1

2
,

(ξµ)(1) = sup{ξ(1) ∧ µ(1)
︸ ︷︷ ︸

1=1.1

, ξ(7) ∧ µ(1)
︸ ︷︷ ︸

1=7.1

, ξ(2) ∧ µ(2) ∧ ξ(−1) ∧ µ(3)
︸ ︷︷ ︸

1=2.2−1.3

, . . .}

= sup{
1

4
∧
1

5
,
1

5
∧
1

4
,
1

3
∧
1

2
∧
1

5
∧
1

4
, . . .} =

1

5
,

(ξµ)(2) = sup{ξ(2) ∧ µ(1)
︸ ︷︷ ︸

2=2.1

, ξ(2) ∧ µ(4)
︸ ︷︷ ︸

2=2.4

, ξ(2) ∧ µ(2) ∧ ξ(−1) ∧ µ(2)
︸ ︷︷ ︸

2=2.2−1.2

, . . .}

= sup{
1

2
∧ 1,

1

2
∧
1

3
,
1

2
∧
1

4
∧
1

5
, . . .} =

1

3
.

If we continue in this way we obtain (ξµ)(x) =







1
2

if x = 0
1
3

if x = 2, 4
1
5

if x = 1, 3, 5.

The following lemma can be found in [7,8], It gives the basic operations between L-
fuzzy ideals and L-fuzzy modules where L is a complete lattice satisfying the infinite
distributive law (completely distributive in the sense of Goguen).

2.3. Lemma. Let ξ ∈ I(R), ν, µ ∈ S(M) and let L be a complete lattice satisfying the

infinite distributive law. Then:

1) ξµ ⊆ ν if and only if ξ ◦ µ ⊆ ν.
2) Let rt ∈ F (R), xs ∈ F (M) be fuzzy points. Then rt ◦ xs = rtxs = (rx)t∧s.
3) If ξ(0R) = 1 then ξν ∈ S(M).
4) Let rt ∈ F (R) be a fuzzy point. Then for all w ∈M ,

(rt ◦ µ)(w) =

{

t ∧ sup{µ(x) | x ∈M, w = rx} ∃x ∈M with w = rx,

0 otherwise.

We give an example with R = Z and M = Z6 to illustrate rt ◦ µ.
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Let 2 1

2

∈ R and µ(x) =







1 if x = 0,
1
3

if x = 2, 4,
1
4

if x = 1, 3, 5.

Then µ ∈ S(M) and

(2 1

2

◦ µ)(2) = sup{2 1

2

(2) ∧ µ(1)
︸ ︷︷ ︸

2=2.1

, 2 1

2

(2) ∧ µ(4)
︸ ︷︷ ︸

2=2.4

, 2 1

2

(1) ∧ µ(2)
︸ ︷︷ ︸

2=1.2

, 2 1

2

(5) ∧ µ(4)
︸ ︷︷ ︸

2=5.4

. . .}

= sup{
1

2
∧
1

4
,
1

2
∧
1

3
, 0 ∧

1

3
, 0 ∧

1

3
, . . .} =

1

3
.

Thus (2 1

2

◦ µ)(x) =







1
2

if x = 0,
1
3

if x = 2, 4,

0 if x = 1, 3, 5

and (2 1

2

◦ µ)(x) /∈ S(M) since (2 1

2

◦ µ)(0) 6= 1.

The following theorem gives a relation between L-fuzzy modules onM and submodules
of M . It is a very practical method to construct an L-fuzzy module on M .

2.4. Theorem. [8] Let µ ∈ F (M). Then µ is an L-fuzzy module if and only if for all

t ∈ L such that µt 6= ∅, µt is an R-submodule of M .

2.5. Definition. [4] For a non-constant ξ ∈ I(R), ξ is called an L-fuzzy prime ideal of

R if for any L-fuzzy points xr, ys ∈ F (R),

xrys ∈ ξ implies that either xr ∈ ξ or ys ∈ ξ.

We give an example with R = Z3 and L = {a, b, c, d} where the ordering is given by
the diagram: a

b

??¡¡¡¡¡
c

__>>>>>

d

@@¢¢¢¢¢

^^=====

Then ξ(x) =

{

a if x = 0,

c if x = 1, 2
is an L-fuzzy prime ideal in R.

3. L-Fuzzy Prime Submodules

In this section, we will give a characterization of an L-fuzzy prime submodule of M .

3.1. Definition. [8] For µ, ν ∈ S(M), ν is called an L-fuzzy submodule of µ if and only
if ν ⊂ µ. In particular, if µ = χM , then we say ν is an L-fuzzy submodule of M .

3.2. Definition. Let ν be an L-fuzzy submodule of µ. ν is called an L-fuzzy prime

submodule of µ if for rt ∈ F (R), xs ∈ F (M) (r ∈ R, x ∈M, s, t ∈ L),

rtxs ∈ ν implies that either xs ∈ ν or rtµ ⊆ ν.

In particular, taking µ = χM , if for rt ∈ F (R), xs ∈ F (M) we have

rtxs ∈ ν implies that either xs ∈ ν or rtχM ⊆ ν,

then ν is called an L-fuzzy prime submodule of M .

The following theorem says that L-fuzzy prime submodules and L-fuzzy prime ideals
coincide when R is considered to be a module over itself.

3.3. Theorem. If M = R, then ν ∈ F (R) is an L-fuzzy prime submodule of M if and

only if ν ∈ F (R) is an L-fuzzy prime ideal.
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Proof. Let ν be an L-fuzzy prime submodule of M . Since ν ∈ S(M) and R is a commu-
tative ring, ν ∈ I(R).

For arbitrary as, bt ∈ F (R), asbt ∈ ν implies as ∈ ν or btχM ⊆ ν.

If as ∈ ν, then ν is an L-fuzzy prime ideal.

If btχM ⊆ ν, then btχM (bm) ≤ ν(bm), ∀m ∈M . Since R has an identity b = b1, and
btχM (b1) = t ≤ ν(b) implies that t = bt(b) ≤ ν(b), hence bt ∈ ν.

Conversely, let ν be an L-fuzzy prime ideal of R. Then ν ⊂ χR and ν ∈ S(M). Now
let rtxs ∈ ν, for any rt ∈ F (R), xs ∈ F (M).

If xs ∈ ν, then ν is an L-fuzzy prime submodule of M .

If xs /∈ ν then rt ∈ ν =⇒ rtχM (rm) = t ≤ ν(r) ≤ ν(rm) by the definition of L-fuzzy
ideal of R. Thus, rtχM ⊆ ν. ¤

The following theorem, which relates fuzzy prime submodule to prime submodules of
the module, will be needed in the proof of Theorem 3.6.

3.4. Theorem. Let ν be an L-fuzzy prime submodule of µ. If νt 6= µt, t ∈ L, then νt is
a prime submodule of µt.

Proof. Let νt 6= µt and rx ∈ νt for some r ∈ R, x ∈ M . If rx ∈ νt, then ν(rx) ≥
t =⇒ (rx)t = rtxt ∈ ν, and since ν is an L-fuzzy prime submodule of µ, either xt ∈ ν
or rtµ ⊆ ν.

case1: If xt ∈ ν then t ≤ ν(x), so x ∈ νt.

case2: Let rtµ ⊆ ν. Then for any w ∈ rµt, w = rz, for some z ∈ µt. So µ(z) ≥ t, and

t = t ∧ µ(z) ≤ sup
w=rx

{t ∧ µ(x)} = rtµ(w) ≤ ν(w).

Thus t ≤ ν(w), that is w ∈ νt. Thereby rµt ⊆ νt. ¤

3.5. Corollary. Let ν be an L-fuzzy prime submodule of M . Then

ν∗ = {x ∈M | ν(x) = ν(0M )}

is a prime submodule of M .

Proof. Clear from Theorem 3.4. ¤

The following theorem is the main result of section 3. It generalizes the work in [3]
from [0, 1] to a complete lattice L.

3.6. Theorem.

a) Let N be a prime submodule of M and α a prime element in L. If µ is the fuzzy

subset of M defined by

µ(x) =

{

1 if x ∈ N,

α otherwise

for all x ∈M , then µ is an L-fuzzy prime submodule of M .

b) Conversely, any L-fuzzy prime submodule can be obtained as in (a).

Proof. a) Since N is a prime submodule of M , N 6=M , we have that µ is a non-constant
L-fuzzy submodule of M . We show that µ is an L-fuzzy prime submodule of M .

Suppose rt ∈ F (R), xs ∈ F (M) are such that rtxs ∈ µ and xs /∈ µ.

If xs /∈ µ then µ(x) = α, hence x /∈ N .

If rtxs ∈ µ, then (rx)t∧s(rx) ≤ µ(rx) =⇒ t ∧ s ≤ µ(rx).
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If µ(rx) = 1, then rx ∈ N . Since x /∈ N and N is a prime submodule of M , we have
rM ⊆ N . Hence µ(rm) = 1, for all m ∈M . Thus rtχM (rm) = t ≤ µ(rm).

If µ(rx) = α, then (t ∧ s) ≤ α and s 6≤ α implies t ≤ α because α is a prime element in
L. So rtχM (w) = t ≤ α ≤ µ(w), for all w ∈M .

b) Let µ be an L-fuzzy prime submodule of M . We show that µ is of the form

µ(x) =

{

1 if x ∈ N,

α otherwise

for a prime submodule N of M and for a prime α element in L.

Claim 1. µ∗ = {x ∈M | µ(x) = µ(0M )} is a prime submodule of M .

Since µ is a nonconstant L-fuzzy prime submodule of M , µ∗ 6=M .

For all r ∈ R,m ∈ M , if rm ∈ µ∗ implies that (rm)µ(0M ) = rµ(0M )mµ(0M ) ∈ µ, then
mµ(0M ) ∈ µ or rµ(0M )χM ⊆ µ.

Case 1: If mµ(0M ) ∈ µ, then µ(0M ) ≤ µ(m) and µ(0M ) ≥ µ(m) (definition of fuzzy
module). Hence µ(0M ) = µ(m), so m ∈ µ∗

Case 2: If rµ(0M )χM ⊆ µ, then µ(0M ) ≤ µ(rm), thus rm ∈ µ∗ for all m ∈M .

0M ∈ N and µ(0M ) = 1. For all x ∈ µ∗, µ(0M ) = µ(x) = 1. Now, µ∗ = N .

Claim 2. µ has only two values.

Since µ∗ is a prime submodule of M , µ∗ 6=M . Then there exists z ∈M \µ∗. We will
show that µ(y) = µ(z) < µ(0M ), for all y ∈M such that y /∈ µ∗. Then

z /∈ µ∗ =⇒ µ(z) < 1 = µ(0M ),

so z1 /∈ µ and zµ(z) = z11µ(z) ∈ µ. Thus 1µ(z)χM ⊆ µ, since w = 1w, for all w ∈ M , we
have µ(z) ≤ µ(w).

Let w = y. Then, µ(z) ≤ µ(y). Similarly, µ(y) ≤ µ(z). Hence, µ(z) = µ(y).

Claim 3. Let µ(z) = α, then α is a prime element in L.

First, let t ∧ s ≤ α and s 6≤ α. Suppose x ∈M \ µ∗. Then xs /∈ µ. Hence

1txs = xt∧s ∈ µ =⇒ 1tχM ⊆ µ,

and for all w ∈M , 1tχM (w) ≤ µ(w). Let w = x. Then, t = 1tχM (x) ≤ µ(x) = α.

Thus, every L-fuzzy prime submodule of M is of the form

µ(x) =

{

1 if x ∈ N,

α otherwise,

where N is a prime submodule of M and α is a prime element in L. ¤

This theorem is particularly useful in deciding whether or not a fuzzy submodule is
prime. The following example illustrates this.

3.7. Example. Let M = Z be a module over R = Z. Then

µ(x) =

{

1 if x ∈ 3Z,
1
4

otherwise

is an L-fuzzy prime submodule of Z since 3Z is prime submodule of Z and 1
4
is a prime

element in [0, 1].
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4. L-Fuzzy Prime Submodules of Homomorphic Modules

In this section, we investigate the behaviour of L-fuzzy prime submodules ofM under
an R-module epimorphism. Firstly, we recall the definition of image and inverse image
of an L-fuzzy subset under a R-module homomorphism. From now on, M and M1 are
R-modules.

4.1. Definition. Let f be a R-module homomorphism from M to M1, µ ∈ F (M) and
ν ∈ F (M1). Then f(µ) ∈ F (M1) and f

−1(ν) ∈ F (M) are defined by

f(µ)(w) =

{
sup

m∈f−1(w)

µ(m) if f−1(w) 6= ∅,

0 otherwise,

and f−1(ν)(m) = ν(f(m)), for all w ∈M1, m ∈M .

In the next two theorems we show that both the image and the inverse image of
an L-fuzzy prime submodule under a R-module epimorphism are again L-fuzzy prime
submodules. Here we need to assume that the complete lattice L is distributive.

4.2. Theorem. Let f be an R-modules epimorphism from M to M1, and suppose that

L is distributive. If µ is an L-fuzzy prime submodule of M such that χker f ⊆ µ, then
f(µ) is an L-fuzzy prime submodule of M1.

Proof. We have f(µ)(w) = sup
w=f(m)

µ(m).

Claim 1: f(µ) is an L-fuzzy submodule of M1.

(i) For all ω1, ω2 ∈M1,

f(µ)(ω1) ∧ f(µ)(ω2) = [ sup
ω1=f(m1)

µ(m1)] ∧ [ sup
ω2=f(m2)

µ(m2)]

= sup
ω1=f(m1),ω2=f(m2)

{µ(m1) ∧ µ(m2)}

≤ sup
ω1=f(m1),ω2=f(m2)

µ(m1 −m2)

≤ sup
ω1−ω2=f(m1−m2)

µ(m1 −m2) = f(µ)(ω1 − ω2).

(ii) For all ω1 ∈M1 and for all r ∈ R,

f(µ)(ω1) = sup
ω1=f(m)

µ(m) ≤ sup
ω1=f(m)

µ(rm) = sup
rω1=rf(m)=f(rm)

µ(rm)

= f(µ)(rω1).

(iii) It is clear that f(µ)(0M1
) = 1. Thus f(µ) is an L-fuzzy submodule of M1.

Claim 2: f(µ) is an L-fuzzy prime submodule of M1.

Since µ is an L-fuzzy prime submodule of M , µ is of the form

µ(x) =

{

1 if x ∈ N,

α otherwise,

where N = µ∗ is a prime submodule of M and α is a prime element in L.

Subclaim: If µ∗ is a prime submodule of M and χker f ⊆ µ, then f(µ∗) is a prime
submodule of M1.

Let x ∈ ker f . Then

χker f (x) = 1 ≤ µ(x) =⇒ µ(x) = µ(0M ) =⇒ x ∈ µ∗.



24 U. Acar

Thus ker f ⊆ µ∗.

For all r ∈ R, ω ∈ M1, rω ∈ f(µ∗), there exists z ∈ µ∗ such that rω = f(z). Since
f is an epimorphism there exists m ∈ M such that rω = rf(m) = f(z). Now rm ∈ µ∗,
and µ∗ is a prime submodule of M , so either m ∈ µ∗ or rM ⊆ µ∗.

If m ∈ µ∗, then ω = f(m) ∈ f(µ∗).

If rM ⊆ µ∗, then rM1 = f(rM) ⊆ f(µ∗). Thus f(µ∗) is an L-fuzzy prime submodule
of M1, and α is a prime element in L, so by Theorem 3.6, for all ω ∈M1,

f(µ)(ω) =

{

1 if ω ∈ f(µ∗),

α otherwise.

Hence f(µ) is an L-fuzzy prime submodule of M1. ¤

4.3. Example. Let f be a homomorphism from Z to Z defined by f(x) = 2x, and let

µ(x) =

{

1 if x ∈ 3Z,
1
4

otherwise

be an L-fuzzy prime submodule of Z. Then:

f(µ)(0) = sup{µ(n) | f(n) = 0} = µ(0) = 1,

f(µ)(1) = 0, since f−1(1) = ∅,

f(µ)(2) = sup{µ(n) | f(n) = 2} = µ(1) = 1
4
,

f(µ)(3) = 0, since f−1(3) = ∅,

f(µ)(4) = sup{µ(n) | f(n) = 4} = µ(2) = 1
4
,

f(µ)(5) = 0, since f−1(5) = ∅.

If we continue this way we find that

f(µ)(x) =







1 if x ∈ 6Z,
1
4

if 0 6= x ∈ 2Z− 6Z,

0 if 0 6= x ∈ Z− 2Z,

is not an L-fuzzy prime submodule of Z. This shows that the assumption that f be an
epimorphism in Theorem 4.2 cannot be dropped.

4.4. Theorem. Let f be a R-module epimorphism from M to M1. If ν is an L-fuzzy
prime submodule of M1, then f−1(ν) is anL-fuzzy prime submodule of M .

Proof. Let ν be an L-fuzzy prime submodule of M1. Then

ν(x) =

{

1 if x ∈ ν∗,

α otherwise,

where ν∗ is a prime submodule of M1 and α is a prime element in L.

Claim: f−1(ν∗) is a prime submodule of M .

For all r ∈ R, m ∈M , if

rm ∈ f−1(ν∗) =⇒ rf(m) ∈ ν∗,

then f(m) ∈ ν∗ or rM1 ⊆ ν∗.

If f(m) ∈ ν∗, then m ∈ f−1(ν∗).
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If rM1 ⊆ ν∗, then

rf(M) = f(rm) ⊆ ν∗ =⇒ rM ⊆ f−1(ν∗).

Hence

f−1(ν)(x) =

{

1 if f(x) ∈ ν∗,

α otherwise
=

{

1 if x ∈ f−1(ν∗),

α otherwise,

where f−1(ν∗) is a prime submodule of M and α a prime element in L.

Thus, f−1(ν) is an L-fuzzy prime submodule of M . ¤
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