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Abstract

In this study a group sequential test of non-parametric statistics is
examined in order to compare two groups of survival data. A new
general form for a group sequential test of non-parametric statistics is
given. The distribution of test statistics, obtained at the end of each
stage, have been derived for this general form. In addition, an example
based on a simulated data set is used to illustrate the test process that
covers the group sequential test of non-parametric statistics in the given
general form.
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Ware family.

1. Introduction

In any experiment or survey, data is accumulated over a period of time especially
in industrial acceptance sampling and clinical trials. Because of ethical, administrative
and economic reasons, interim analyses of accumulated data are conducted. Sequential
tests were proposed because a fixed sample test is not useful for such data. However,
sometimes, continuous data monitoring can be a serious practical burden. So it is most
convenient to analyze the data in groups, thus accumulating data is analyzed at intervals
rather than at every new observation. This is the major difference between Sequential
Tests and Group Sequential Tests (GSTs). GSTs are convenient to conduct, they support
the early stopping a trial, and can achieve most of the benefits of sequential tests (namely,
lower expected sample sizes and shorter average study lengths).

For instance, in a phase III clinical trial, if an early stopping occurs, the hypothesis that
there is no difference between the effects of treatments on survival times of individuals is
rejected and subsequent patients are assigned to the superior treatment. In a phase III
clinical trial, the primary interest is to investigate the effects of alternative treatments
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on survival rates. If the distribution of the survival data in a study is not known exactly,
non-parametric statistics can be used for those comparisons.

The principle of GSTs is based on the tests given by Pocock [9] and O’Brien&Fleming
[6]. These tests are used for equal group sizes, whereas the tests based on the alpha
spending approach, given by Lan&DeMets [5] and Kim&DeMets [4], and on the beta
spending approach given by Pampallona&Tsiatis [7], can be used for either equal or
unequal group sizes.

Tsiatis [12] and DeMets&Gail [2] described the GST of the log-rank statistic and Slud
&Wei [10] presented the Wilcoxon test. These papers formed the basis of the usage of
GST methods for survival analysis.

In the literature, the expressions for the calculation of the GST of non-parametric
statistics for survival data lack clarity, and the case of tied observations (which occur
when two individuals have the same survival time) is not considered. The aim of this
study is to give the GSTs of non-parametric statistics for survival data in a general form,
including ties and censored observations. Furthermore the distribution of the general
form of GSTs for non-parametric statistics is derived, and a simulation study carried out
to clarify the application of the GSTs of these non-parametric statistics. Test statistics
were calculated after a fixed number of failure times.

In the second section, the non-parametric tests, frequently used for the analysis of
survival data have been presented, and the general form of non-parametric statistics,
which can be used for the comparison of survival data under the proportional hazards
assumption, is given.

In the third section, it is shown that the test statistics in the given general form
obtained at the end of each analysis, follow a normal distribution. Thus, it is appropriate
to make GSTs of non-parametric statistics in this general form. Hence, the hypothesis
tests can be conducted by using group sequential boundaries.

Finally, the fourth section covers a simulated example and its results for a fixed event
approach.

2. Non-parametric Test Statistics

Non-parametric statistics are frequently used for the comparison of survival distri-
butions which come from different courses of treatment. Also these methods need less
assumptions compared to other methods.

In clinical trials, two groups of survival data, including censored observations, can
be compared with respect to their hazard function or survival function after monitoring
a certain number of individuals in sequence. Non-parametric tests, developed for these
comparisons, are the log-rank test, the Wilcoxon test, and tests of the Tarone-Ware and
Gρ,γ families.

In these tests, two groups of survival times (death times) are considered together and
ordered as t1 < t2 < · · · < tδ. When tied observations occur, only δ′ of the δ failure
times are different. Let τAj be the number of deaths in treatment A, ηAj the number of
individuals at risk in treatment A, τj the total number of deaths, ηj the total number
of individuals at risk and ωj the weight function at the time (tj) of the j th death,
j = 1, . . . , δ. Here 2 × 2 cross tables, structured as in Table 1. are constructed over all
death times, which follow a hypergeometric distribution when τAj or τBj is given. Then
the information obtained from these tables are combined to test whether the two survival
data have the same distribution.
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Table 1. Number of deaths at the time tj of the j th death in each of the

two groups of individuals.

Treatment Number of Number of survivors Number at risk

deaths at tj beyond tj just before tj

A τAj ηAj − τAj ηAj

B τBj ηBj − τBj ηBj

Total τj ηj − τj ηBj

The score statistic U can be computed over any treatment arm. In the presence of tied
observations we have:

(1) U =

δ′∑

j=1

ωj(τAj − εAj),

where εAj = E(τAj), and the variance of the score statistic (1) is:

V (U) =
δ′∑

j=1

ω2
jϑAj ,

where ϑAj = V (τAj). Then the test statistic is as follows:

S =
U2

V
∼ χ2

1.

Here U/
√
V ∼ N(0, 1).

Proportional hazards can be evaluated by using curves obtained with the Kaplan-
Meier estimators. Let lnλ = θ under the assumption of proportional hazards, that is,
hA(t) = λhB(t). The statistics are computed by using the relevant ωj values that are
given in Table 2.

Table 2. Non-parametric tests and their weights.

Tests ωj

Log-rank 1

P-P Wilcoxon Ŝ(tj)

Gehan Wilcoxon nj

Tarone-Ware family (nj)
ρ

Gρ,γ family [Ŝ(tj−1)]
ρ[1− Ŝ(tj−1)]

γ

As long as the curves satisfy the proportional hazards assumption, the log-rank test
must be used. Otherwise, the Tarone-Ware test is less powerful than the Wilcoxon test,
Tarone&Ware [11]. When the ratio of the hazard functions decrease, the tests based on
the Gρ,γ family can be used.

3. A General Form for GSTs of non-parametric statistics

One may want to make a GST of H0 : θ = 0 or (λ = 1) against H0 : θ 6= 0 or (λ 6= 1).
When the i th analysis is conducted, let the number of failure times be δi, where in the
presence of tied observations, only δ′i of these times are different, let τBj,i denote the
number of deaths in treatment B, ηBj,i the number of individuals at risk in treatment B;
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τj,i the total number of deaths, ηj,i the total number of individuals at risk and ωj,i the
weight functions for i = 1, . . . , N . Then

εBj,i =
ηBj,iτj,i

ηAj,i + ηBj,i

and

ϑBj,i =
ηAj,iηBj,iτj,i

(
ηAj,i + ηBj,i − τj,i

)
(
ηAj,i + ηBj,i − 1

)(
ηAj,i + ηBj,i

)2 .

The score statistic is,

Uδ′
i
=

δ′i∑

j=1

ωj,i
(
τBj,i − εBj,i

)
.

Variance of Uδ′
i
is,

Vδ′
i
=

δ′i∑

j=1

ω2
j,iϑBj,i.

Let ηAj,i
∼= ηBj,i and θ ∼= 0 (λ ∼= 1), then from the variance of the hypergeometric

distribution, ϑBj,i
∼= τj,i

4
, and the variance is obtained as,

Vδ′
i
=

1

4

δ′i∑

j=1

ω2
j,iτj,i.

The differences Uδ′
1
, Uδ′

2
− Uδ′

1
, . . . , Uδ′

N
− Uδ′

N−1
are independent for the score statistics

series {Uδ′
1
, . . . , Uδ′

N
}, and the series forms a Markov chain with continuous state space

and time. So it can be expressed with a Brownian-Motion process (Jennison [3]). Also
Uδ′

i
∼ N

(
θVδ′

i
, Vδ′

i

)
, (Whitehead [13]).

By the property of the Brownian-Motion process with drift θ,

X1 = Uδ′
1
− 0 ∼ N

(
θt1, t1

)

X2 = Uδ′
2
− Uδ′

1
∼ N

(
θ(t2 − t1), (t2 − t1)

)

...

XN = Uδ′
N−1

− Uδ′
N
∼ N

(
θ(tN − tN−1), (tN − tN−1)

)
.

Now Uδ′
i
∼ N

(
θti, ti

)
, where Uδ′

i
= Xi +Xi−1 + · · ·+X1. When this result is compared

with the result given by Whitehead [13], it is evident that the series {Uδ′
1
, . . . , Uδ′

N
}

can be viewed as a Brownian-Motion process with drift parameter θ observed at times
{Vδ′

1
, . . . , Vδ′

N
}. Therefore,

Uδ′
i
∼ N

(
θ
1

4

δ′i∑

j=1

ω2
j,iτj,i,

1

4

δ′i∑

j=1

ω2
j,iτj,i

)
.

Also it is evident that,

Cov
(
Uδ′

i
, Uδ′

i−1

)
=

1

4

δ′i−1∑

j=1

ω2
j,iτj,i.
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In this case, under the null hypothesis,

Uδ′
i√
Vδ′

i

∼ N(0, 1).

Let Xi = Uδ′
i
− Uδ′

i−1
be a new random variable. Then

(2)

X∗
i =

Xi√
Vδ′

i
− Vδ′

i−1

= 2

( δ′i∑

j=1

ω2
j,iτj,i −

δ′i−1∑

j=1

ω2
j,iτj,i

)−1/2(
Uδ′

i
− Uδ′

i−1

)
.

Consequently, the distribution of X∗
i , given by (2), is as follows:

X∗
i ∼ N

[
θ

2

( δ′i∑

j=1

ω2
j,iτj,i −

δ′i−1∑

j=1

ω2
j,iτj,i

)1/2

, 1

]
.

The test statistic is defined as follows:

(3) Si =

i∑

`=1

X∗
` .

As given in Parlak [8], the statistic in (3) follows a normal distribution. That is:

Si ∼ N

[
θ

2

i∑

`=1

( δ′∑̀

j=1

ω2
j,`τj,` −

δ′`−1∑

j=1

ω2
j,`τj,`

)1/2

, i

]
.

Because of this distributional property, the given general form for non-parametric sta-
tistics is appropriate to GSTs. Here the test statistic we are interested in is calculated
using the weights given in Table 2. When the number of failure times, δ′i, are equal for
each stage the following condition holds:

δ′i∑

j=1

τj,i −
δ′i−1∑

j=1

τj,i = δ′0

The expected value of X∗
i in (2) is denoted by ∆. It is evident that Si ∼ N(i∆, i). In this

case the series {S1, . . . , SN} of test statistics can be used to test the null hypothesis using
Pocock’s or O’Brien&Fleming’s critical values. By comparing the statistics Si defined
in (3) with Pocock’s or O’Brien&Fleming’s critical value (Ci), we can make a decision
about the hypothesis as below:

1. We stop to reject H0 if | Si |≥ Ci, i = 1, . . . , N − 1. Otherwise, we continue to
the next stage.

2. We stop to reject H0 if | SN |≥ CN . Otherwise, we stop to accept H0 (Jennison
[3]).

4. A Simulated Example

In this section, we present an application of GSTs for survival data. Survival analysis
requires data from observations that is collected over a period of time. So, using a
simulated data set was the most convenient way of obtaining data for this study. A
Minitab macro was prepared to generate the data. The monitoring time was taken to
be a three year period, namely 1095 study days. All parameters were determined as
exceptional simulation conditions. Entrance of patients into the study was assumed
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to follow a Poisson distribution with a mean of 0.95 in order to allow the entrance of
approximately one patient for each study day. Because patients are assigned to the
treatment arms randomly, a Bernoulli distribution with a probability of success of 0.5
was chosen; survival times from the beginning of the treatment to the censoring or to
the failure of individuals on treatments A and B, were taken to follow an exponential
distribution with means 2114 and 1332, respectively, in order to find evidence against
the null hypothesis stating the equivalence of the two survival distributions, and also to
permit right censored observations. Occurrences at the end (right-censoring/failure) of
the period follow a Bernoulli distribution with a failure probability of 0.002. So the failure
number will be small and at the end of the 1095 th study day there will be individuals
alive who are at risk, permitting the test to conclude properly. Under these conditions,
1000 iterations were made and 1551 individuals generated. The entrance time of the first
observation was taken as the beginning of the study.

The aim was to make a GST of the hypothesis that the effects of the treatments on
survival times are equivalent, and to determine the superior treatment with a minimum
number of failures. From Figure 1, which was obtained from retrospective simulated data,
it is seen that the hazard functions for the two treatment arms do not cross. Because
the proportional hazards assumption is satisfied, non-parametric statistics can be used,
particularly the log-rank test.

Figure 1. Cumulative hazard versus time

It is assumed that,

H0 :θ = 0⇐⇒ (lnλ = 0)⇐⇒ (λ = 1)

H1 :θ = ∓0.470⇐⇒ (lnλ = ∓0.470)⇐⇒ (λ = 1.6orλ = 0.625).

While testing those hypothesis, one may want to determine the design for a particular
type one error probability, power and stage number from the beginning. Then, the num-
ber of failures for each stage can be determined with Pocock’s or O’Brien &Fleming’s
designs. On the other hand, sometimes the analysis may be conducted after a predeter-
mined random number of failures. In this situation each Pocock’s or O’Brien &Fleming’s
critical value is used, but the power of the test will be different for each test.
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Let α = 0.05, (1−β) = 0.90 and N = 5. For the log-rank test, in O’Brien &Fleming’s
and Pocock’s test designs, for i = 1, . . . , 5, δi = 40 and δi = 46 failures, respectively,
must have occurred at each stage to conduct the test. Otherwise, if it is decided to use
a fixed sample size corresponding to N = 1, 190 failures would be expected to conduct
the test. However, as O’Brien and Fleming’s test design was chosen, the analysis has
been conducted after every 40 failures. This is the major advantage of group sequential
designs.

In Table 3. L-R, P-PW, W and T-W are used instead of log-rank, Peto-Peto Wilcoxon,
Gehan Wilcoxon and Tarone-Ware statistics, and also O-F and P represent O’Brien&
Fleming’s and Pocock’s GST boundaries, respectively.

Table 3. Results of GSTs of non-parametric statistics.

Total Number

of Failures Test Statistics Boundaries(Ci)

Stage A B L-R P-PW W T-W O-F P

1 17 23

279 th day 40 1.635 1.635 1.695 1.665 4.555 2.413

2 32 48

408 th day 80 2.905 2.905 2.932 2.919 3.221 2.413

3 54 66

526 th day 120 2.164 2.163 2.222 2.194 2.630 2.413

4 66 94

608 th day 160 3.183 3.182 3.239 3.212 2.277 2.413

5 81 119

709 th day 200 3.736 3.736 3.781 3.759 2.037 2.413

According to the results given in Table 3, when O’Brien&Fleming’s GST boundaries are
used, there is enough evidence to reject the null hypothesis at the 4th analysis immedi-
ately after 160 deaths for the two treatment arms on the 608th day of study. At that
point there where 66 deaths on Treatment A and 94 deaths on Treatment B, with a haz-
ard ratio of λ = 0.70 at a power of 90%. However, when Pocock’s GST boundaries were
used the null hypothesis is rejected at the 2nd analysis immediately after 80 deaths for
the two treatment arms on the 408th day of study, at which point there were 32 deaths
on Treatment A and 48 deaths on Treatment B with a hazard ratio of λ = 0.67 at a
power of approximately 99%.

5. Conclusion

The log-rank test is commonly used for comparing survival distributions. In this study
a general expression, consisting of a single formula describing GSTs of non-parametric
statistics, is given. Hence, the distribution of the general representation is derived and
the suitability of making a GST of non-parametric statistics in the given general form in
the presence of ties and censored observations is discussed.

We found that if we use a fixed sample design for our simulated example we would
have to wait for 190 failures before deciding about the hypothesis, where the 190th failure
occurred on the 682th day of the study. But when we used a GST design we had to wait
for only 40 failures, and so we conducted the test after every 40 failures. Here we could
decide about the hypothesis at the 2nd stage - the 408th day of the study - (according to
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the Pocock’s critical value) or at the 4th stage - the 608th day of the study - (according to
the O’Brien&Fleming’s design). So the result of the GSTs is to enable the early stopping
of the trial with a minimum number of failures supported with this example.

Especially in clinical trials, GSTs ensure a minimum number of deaths before a deci-
sion can be taken. Because of these advantages it is appropriate for researchers to use
GSTs.
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