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Abstract

In a finite population setting, Ozdemir and Gokpinar (A Generalized

formula for inclusion probabilities in ranked set sampling, Hacettepe
J. Math. Stat 36 (1), 89–99, 2007) obtained a generalized formula for
inclusion probabilities in Ranked Set Sampling for all set sizes when the
cycle size is 1. This paper extends the generalized formula for inclusion
probabilities to all set and cycle sizes. We also support this formula
with a numerical example.
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1. Introduction

Ranked Set Sampling(RSS) is a common sampling technique that has been used re-
cently in various areas such as the environment, ecology and agriculture [6]. In these
areas, measurement of the units according to the variables of interest can be quite diffi-
cult in some cases, in terms of cost, time and other factors. In such conditions, by using
the RSS, the sample selection process is done with less cost and time, than the Simple
Random Sampling(SRS) technique.

The sample mean of a ranked set sample is an unbiased estimator for the population
mean, and the variance of this estimator is smaller than the variance of the sample mean
obtained from a simple random sample of the same sample size (Takahasi and Wakimoto
[15]), Dell and Clutter [3]). RSS can also be used for the estimation of the parameters
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of various distributions. The efficiency of these estimators depends on the main feature
of the underlying distribution. In order to increase the efficiency, some modified RSS
designs were suggested by Samawi et al. [12], Muttlak [7], Hossain [5], and Al-Saleh and
Al-Omari [1] for different distribution types. These researches were developed for infinite
populations.

Finite population theory in RSS was introduced by Takahasi and Futatsuya [13, 14].
Patil et al. [11] generalized the results of Takahasi and Futatsuya [13, 14] to a larger set
size. A practical use of the RSS relative to the SRS for the estimation of the population
mean and variance in a finite population setting was demonstrated by Ozturk et al.
[10]. In these studies, they used the same selection procedure as proposed for an infinite
population setting to obtain the ranked set samples. However, this procedure may cause
some problems in a finite population setting. Deshpande et al. [4] described three
different sample selection procedures called Level 0, Level 1 and Level 2 sampling, where
the higher levels correspond to a greater insistence on sampling without replacement.

In finite population settings, because of the equal inclusion probability, there is no
control on which element enters the sample in SRS. On the other hand, in RSS the
inclusion probabilities of the population elements are different from each other, and it is
difficult to determine the inclusion probabilities for all sample size cases.

Al-Saleh and Samawi [2] gave an adjusted selection procedure to obtain the inclusion
probabilities in RSS based on the assumption of a finite population only when the set
size was 2 and 3, and the cycle size 1. Ozdemir and Gokpinar [8] obtained the inclusion
probabilities in RSS for all set sizes when the cycle size is 1. In RSS the set size is usually
kept small to make the ranking error minimal. To obtain the desired sample size, the
cycle size can be increased. So, taking the cycle size to be greater than 1 is more realistic
in practice. Ozdemir and Gokpınar [9] adapted this procedure to Median RSS (MRSS),
and made a generalization to all set and cycle sizes. In this paper, we have developed
a new formula to calculate the inclusion probabilities of the population elements in RSS
for all set and cycle sizes.

This paper is organized as follows. The required definitions and formulas for the in-
clusion probabilities for RSS in a finite population setting are given in Section 2. In
section 3, a numerical example is given to illustrate the formulas of calculating the in-
clusion probabilities.

2. Computation of inclusion probabilities

Let u1 < u2 < · · · < uN be the distinct ordered population elements and let n = mr
elements be chosen from this population by RSS, where m is the set size and r is the
number of cycles. In this paper, the selection procedure for RSS described below is
equivalent to the adjusted selection procedure of Al-Saleh and Samawi [2] and the “Level
1 sampling” selection procedure given by Deshpande et al. [4]. This selection procedure
consists of the following steps, which are repeated for j = 1, 2, . . . , m to obtain a ranked
set sample of size m;

1. A SRS of size m is selected without replacement from the population.
2. The sampled elements are ranked with respect to the variable of interest and

the jth order statistic selected for measurement.
3. The remaining m − 1 elements are returned to the population.

The entire cycle is repeated r times to produce a ranked set sample of size n = mr.

The following notation is used when calculating the inclusion probabilities based on
the RSS selection procedure for any set size m, cycle size r and population size N ;

Ac,j: The event of choosing uk in the jth selection and cth cycle,
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yc,j : The element selected in the jth selection and cth cycle,

lc,j =

{

0 yc,j > uk

1 yc,j < uk,

B
lc,j

c,j = B0
j : The event of {yc,j > uk} in the jth selection and cth cycle,

B
lc,j

c,j = B1
c,j : The event of {yc,j < uk} in the jth selection and cth cycle.

The number of elements smaller than uk that can be chosen previous to the jth

selection and cth cycle is given by
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and the number of elements greater than uk that can be chosen previous to the jth

selection and cth cycle is given by
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The inclusion probability πN(k) of the kth element uk, for k = 1, 2, . . . , N , are defined
by

(2.1) πN (k) =

r
∑

c=1

π
(c)
N (k) =

r
∑

c=1

m
∑

j=1

π
(c,j)
N (k),

where π
(c)
N (k) is the inclusion probability of uk in the cth cycle (c = 1, 2, . . . , r) and

π
(c,j)
N (k) is the inclusion probability of uk in the jth selection (j = 1, 2, . . . , m) and cth

cycle.

Using the notation above, π
(c,j)
N (k) is defined as follows,
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π
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,

where the summation is over all the 2(c−1)m+j−1 possible permutations of (lc,j , . . . ,
lc,1, . . . , l1,m, . . . , l1,1) (Ozdemir and Gokpınar, [8]).

In the population concerned, a + b = (c − 1)m + j − 1 elements are chosen before

the jth selection and cth cycle, according to the selection procedure for RSS given in
Section 1. So, in the jth selection and cth cycle, the total number of remaining elements
in the population is N − [(c − 1)m + j] + 1 = N − (a + b). In the remaining population,
k − 1 − a elements are smaller than uk, N − k − b elements are greater than uk, and
there is only one uk in the jth selection and cth cycle. The value lc,j = 0 indicates that
the chosen element yc,j in the jth selection and cth cycle is greater than uk. One of the
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possible cases that give lc,j = 0 is to choose m elements from N −k− b elements, another
possible case is to choose m− 1 elements from N − k− b elements and to choose uk, and
so on. The other cases can be obtained in a similar way. So the probability of choosing
an element greater than uk in the jth selection and cth cycle under the condition that uk

is not chosen in the previous selections is given by,

(2.3) P
(

B0
c,j | B

lc,j−1

c,j−1 ∩ B
lc,j−2

c,j−2 ∩ · · · ∩ B
lc,1

c,1 ∩ · · · ∩ B
l1,1

1,1

)

=

j−1
∑

i=0

(

k−a

i

)(

N−k−b

m−i

)

(

N−(a+b)
m

)
.

When lc,j = 1, the probability of choosing an element smaller than uk in the jth selection
and cth cycle, under the condition that uk is not included at the previous selections, is
computed as

(2.4) P
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.

Finally, for choosing uk in the jth selection and cth cycle, j − 1 elements must be chosen
from elements that are smaller than uk, and m−j elements must be chosen from elements
greater than uk. So the probability of choosing uk in the jth selection and cth cycle is
given by

(2.5) P
(
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Using these formulas, the inclusion probabilities for all the elements in the population
can be easily derived.

3. A numerical example

In this section, we give a numerical example to illustrate the formulas for calculating
the inclusion probabilities. In this example, we take the population, set and cycle sizes
N = 10, m = 3 and r = 2 respectively. So the sample size is n = mr = 6. Using
Equations (2.1)-(2.5), we illustrate the calculation of the inclusion probability of the 5th

element u5 in the population, in detail.

Using Equation (2.1), the inclusion probability of u5 can be written as

(3.1)

π10(5) =

2
∑

c=1

π
(c)
10 (5)

= π
(1)
10 (5) + π

(2)
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In Equation (3.1), we should calculate π
(c,j)
10 (5) for c = 1, 2; j = 1, 2, 3. Using Equa-

tion (2.2), π
(1,1)
10 (5) can be calculated as follows,

π
(1,1)
10 (5) = P (A1,1) =

(

4
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)(

5
2

)

(

10
3

) = 0.083.

π
(1,2)
10 (5) can be calculated based on previous selections as follows:

(3.2) π
(1,2)
10 (5) = P (A1,2/B0

1,1)P (B0
1,1) + P (A1,2/B1

1,1)P (B1
1,1).
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In Equation (3.2), P (B0
1,1) and P (B1

1,1) can be found from Equations (2.3) and (2.4), as
below:

P (B0
1,1) =

(

5
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)(

5
3

)
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3

) = 0.083,(3.3)
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and P (A1,2/B0
1,1), P (A1,2/B1

1,1), can be calculated from Equation (2.5):
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1,1) =

(

4
1

)(

4
1

)

(

9
3

) = 0.190,(3.5)
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9
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When we substitute the values from Equations (3.3), (3.4), (3.5) and (3.6) in Equa-

tion (3.2), π
(1,2)
10 (5) is obtained as 0.165.

In the same manner π
(1,3)
10 (5) can be calculated as follows,

(3.7)
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In Equation (3.7), the required probabilities can easily be found using equations (2.3),
(2.4), (2.5), as follows.
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When we substitute the values from Equations (3.8)-(3.14) in Equation (3.7), π
(1,3)
10 (5)

is obtained as 0.035.

In the same manner, π
(2,1)
10 (5), π

(2,2)
10 (5) and π

(2,3)
10 (5) can be found using Equations

(2.2)–(2.5) as 0.076, 0.178 and 0.027, respectively. So, the inclusion probabilities of u5

are obtained from Equation (3.1) as π10(5) = 0.565.
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For the other elements of the population, the inclusion probabilities are given in
Table 1.

Table 1 The inclusion probabilities of the kth element uk for k = 1, 2, . . . , 10,
when the set size is m = 3 and cycle size r = 2

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 Total

π
(1,1)
10 (k) 0.300 0.234 0.175 0.125 0.083 0.050 0.025 0.008 0.000 0.000 1

π
(1,2)
10 (k) 0.000 0.039 0.086 0.131 0.165 0.180 0.174 0.142 0.083 0.000 1

π
(1,3)
10 (k) 0.000 0.000 0.004 0.016 0.035 0.063 0.102 0.159 0.246 0.375 1

π
(1)
10 (k) 0.300 0.273 0.265 0.272 0.284 0.293 0.301 0.309 0.329 0.375 3

π
(2,1)
10 (k) 0.300 0.251 0.185 0.124 0.076 0.042 0.018 0.004 0.000 0.000 1

π
(2,2)
10 (k) 0.000 0.024 0.069 0.131 0.178 0.198 0.190 0.145 0.065 0.000 1

π
(2,3)
10 (k) 0.000 0.000 0.001 0.008 0.027 0.053 0.092 0.159 0.285 0.375 1

π
(2)
10 (k) 0.300 0.275 0.255 0.263 0.281 0.294 0.300 0.308 0.350 0.375 3

π10(k) 0.600 0.548 0.520 0.534 0.565 0.587 0.600 0.617 0.679 0.750 6

From Table 1, we point out that in the first selection of both the first and second cycles,
u9 and u10 have zero inclusion probabilities, since there is no chance of these elements
being selected in the first order in a set of size 3. Similarly, u1 and u10 have zero inclusion
probabilities in the second selection, and u1 and u2 have zero inclusion probabilities in
the third selection for both first and second cycles. However, extreme values in the
population have greater inclusion probabilities than the others in the first and second
cycles. So in general, the inclusion probabilities of extreme values are larger than the
others.

4. Conclusion

In this paper we have derived a new formula for calculating inclusion probabilities
of the population elements in an RSS design. Using these inclusion probabilities it is
possible to determine the probability distribution of any statistics with a ranked set
sample.
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