
Hacettepe Journal of Mathematics and Statistics
Volume 39 (1) (2010), 97 – 107

AN ALTERNATIVE AGREEMENT

STATISTICS WITH LINEAR WEIGHT

BETWEEN ORDINAL CATEGORICAL

MEASUREMENTS

Mustafa Semiz∗† and Bengü Ocak‡
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Abstract

Accurate and precise measurement is an important issue in any study
and in any scientific area. Weighted kappa, proposed by J. Cohen
(Weighted kappa: Nominal scale agreement with provision for scaled

disagreement or partial credit, Psychological Bulletin 70, 213–220,
1968) is the most common and widely preferred coefficient for measur-
ing agreement between two ordinally measured categorical variables.
This article presents an alternative agreement coefficient between or-
dinal categorical measurements. The proposed coefficient takes values
between 0 and 1. Therefore, the interpretation and the calculation of
the proposed coefficient are also very simple. An SPSS Syntax program
for the proposed coefficient and the weighted kappa is presented.
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1. Introduction

Agreement coefficients are needed to instrument or assay validation, method com-
parisons, statistical process control, goodness of fit, individual bioequivalance or the
acceptability of a new or generic process, methodology, and formulation in many ar-
eas. Agreement between two different methods, graders or raters of ordered categorical
measures is an important subject in any field of science.

The most common agreement measures for categorical nominal and ordinal outcomes
are Cohen’s kappa and the weighted kappa [5, 9]. If the outcome variable is ordered
categorical, the weighted kappa is one of the most commonly used measure of agreement
[6].

Assume that two raters assign each of n measures to one of I different categories. Let
πij (= nij/n) denote the (i, j)th cell joint probability of two ratings with πi+ =

∑I

j=1
πij

and π+j =
∑I

i=1
πij . Let nij denote the frequency with which the first and second rater

assigned targets to categories i and j, respectively. The weighted kappa is written as
follows:

κw =

I∑
i=1

J∑
j=1

wijπij −
I∑

i=1

J∑
j=1

wijπi+π+j

1 −
I∑

i=1

J∑
j=1

wijπi+π+j

,

where wij are the disagreement weights. Naturally, wij = 0 is selected for cells for which
raters agree, and wij > 0 if i 6= j, that is, raters show disagreement. The weighting
scheme based on table scores can be either a quadratic weight, wij = 1−(i−j)2/(I−1)2,
or a linear weight wij = 1− | i − j | /(I − 1) [9], [4].

The following are standards for strength of agreement for the kappa coefficient [12]:

≤ 0 : poor, 0.01 - 0.20 : slight, 0.21 - 0.40 : fair, 0.41 - 0.60 : moderate,

0.61 - 0.80 : substantial, 0.81 - 1.00 : almost perfect.

Though kappa also has limitations, it is very important because it is the most widely
used measure of interjudge reliability across the scientific literature. Kappa explicitly
recognizes the likelihood of chance agreement between judges, and removes it from con-
sideration [16]. Also, Brennan and Prediger [3] provide useful technical reviews of the
problems and the limitations of kappa.

As an example, the following data shows high agreement, the weighted kappa can
calculate negative and near zero values as seen in Table 1.

Table 1. 10 units rated twice

Second rating

X1 = 1 X2 = 2 X3 = 3

First Y1 = 1 1 0 1

rating Y2 = 2 0 7 0

Y3 = 3 1 0 0

In this case, the weighted kappa is 0.20 with linear weighting. However, the proportion
of exact agreement (

∑
3

i=1
πii) is 0.80. Therefore, it is not easy to make an inference on

these kinds of result.

In addition, the value of kappa is affected by factors such as the weighting applied
and the number of categories in the measurement scale. The larger the number of scale
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categories, the greater the potential for disagreement [15]. Dunn (1989) suggested that
interpretation of kappa is assisted by also reporting the maximum value it could attain
for the set of data concerned.

2. The similarity measure (sl) for ordinal categorical agreement

Let us assume that a point of observation with pairs of samples (yj , xj), j = 1, 2, . . . , n,
is coming from two ratings from level I of ordinally scaled categories (X1 = Y1 < X2 =
Y2 < · · · < XI = YI). As seen in Table 1., n data points are located in a I × I
contingency table. For measuring the agreement with a similarity coefficient, the total
disagreement of n points with linear distances (

∑n

j=1
|yj−xj |), and the possible maximum

linear disagreement (|YI − Y1| = |XI − X1|) are taken into consideration. Therefore, the
similarity measure with linear weight is as proposed below:

sl = 1 −
do

dt

= 1 −

n∑
j=1

|yj − xj |

n|YI − Y1|

= 1 −

n∑
j=1

|yj − xj |

n|XI − X1|
,

where do is the total observed disagreements with n points of measurement, and dt is
the total possible maximum disagreement with n points. The similarity measure for
agreement in Table 1 is

sl = 1 −
do

dt

= 1 −

n∑
j=1

|yj − xj |

n|YI − Y1|

= 1 −
1 × |1 − 1| + 1 × |1 − 3| + 7|2 − 2| + 1 × |3 − 1|

10|3 − 1|
= 0.80.

The uniform distribution of linear disagreements between measurements in a I×I contin-
gency table depends upon the number of levels in the categorical variables, and the values
of those levels. For our example, Table 2 shows the distributions of linear disagreements.

Table 2. The uniform distribution of linear disagreements (i, ı′ = 1, 2, 3)

Second rating

| Yi − Xı′ | X1 = 1 X2 = 2 X3 = 3

First Y1 = 1 0 1 2

rating Y2 = 2 1 0 1

Y3 = 3 2 1 0

In this case, sl can also be shown in matrix form:

sl = 1 −
d′f

n[max(d′
k)]

,
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where d′ is the 1 × k vector of k distinct linear disagreement values, f is the k × 1
vector of observed frequencies of the k distinct linear disagreement values, max(d′) is the
maximum value in the vector d′, and as usual we identify the 1 × 1 matrix d′f with its
single entry.

Therefore, for our example, three linear disagreements (dk = 0, 1, 2 for k = 1, 2, 3)
are present, the expected frequencies under the uniform distributions are Fk = 3, 4, 2
for k = 1, 2, 3 in Table 2, and the observed frequencies of these disagreement values are
fk = 8, 0, 2 for k = 1, 2, 3, respectively. In matrix form, sl is as follows:

sl = 1 −
d′f

n [max(d′
k)]

= 1 −

(
0 1 2

)



8
0
2





10 × 2

= 1 −
4

20
= 0.800

where
∑k

l=1
fl = n.

The distribution of the frequencies of k distinct linear disagreements F ′ = [F1 · · · Fk]

in an I × I table have multinomial distribution for
∑k

l=1
Fl = I × I = N . If N points

are measured then the distribution of the frequencies of k distinct linear disagreements
is a multinomial distribution as follows:

f(F1 = f1, . . . , Fk = fk) =
N !

f1! × · · · × fk!
πf1

1 × · · · × πfk

k ,

k∑

l=1

πl = 1 and

k∑

l=1

fl = N,

where πl is the expected ratio of the frequency of the lth linear disagreement (l = 1, . . . , k).
Therefore, for Table 2, the random vector F ′ = [F1 · · · Fk] has the mean vector and
covariance matrix

µ =





Nπ1

Nπ2

...
Nπk




and Σ =





Nπ1(1 − π1) −Nπ1π2 · · · −Nπ1πk

−Nπ2π1 Nπ2(1 − π2) · · · −Nπ2πk

...
...

. . .
...

−Nπkπ1 −Nπkπ2 · · · Nπk(1 − πk)




,

respectively. If n points are measured, then the observed distribution of the frequencies
of k distinct linear disagreements is a multinomial distribution as follows:

µ̂ =





np1

np2

...
npk



 and Σ̂ =





np1(1 − p1) −np1p2 · · · −np1pk

−np2p1 np2(1 − p2) · · · −np2pk

...
...

. . .
...

−npkp1 −npkp2 · · · npk(1 − pk)



 .

Hence, the expected value and the variance of sl are respectively

(2.1) E [sl] = 1 −
d′µ

n [max(d′
k)]

= 1 −

k∑
l=1

dlπl

[max(d′
k)]

= Sl

and

(2.2) V [sl] =
d′Σd

n2 [max (d′
k)]2

.
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As seen in (2.1), sl is an unbiased estimator of Sl. In addition, sl is also a consistent
statistics. By equation (2.2),

V [sl] =
d′Σd

n2
[
max (d′

k)
]2

=

n

[
k∑

j=1

d2
jπj(1 − πj) −

k∑
j=1

k∑
i=1
i6=j

djdiπjπi

]

n2
[
max (d′

k)
]2

=




k∑

j=1

d2
jπj(1 − πj) −

k∑
j=1

k∑
i=1
i6=j

djdiπjπi





n [max (d′
k)]2

n→∞
−−−−−→ 0.

For the example in Table 1, the expected value of sl is

E [sl] = 1 −
d′µ

n [max (d′
k)]

= 1 −

(
0 1 2

) (
10

(
3

9

)
10

(
4

9

)
10

(
2

9

))′

10 [2]

= 1 −
40/9 + 40/9

20
= 0.556

and the variance of sl is

V [sl] =
d′Σd

n2 [max (d′
k)]2

=

(
0 1 2

)



10

(
3

9

) (
6

9

)
−10

(
3

9

) (
4

9

)
−10

(
3

9

) (
2

9

)

−10
(

4

9

) (
3

9

)
10

(
4

9

) (
5

9

)
−10

(
4

9

) (
2

9

)

−10
(

2

9

) (
3

9

)
−10

(
2

9

) (
4

9

)
10

(
2

9

) (
7

9

)








0
1
2





102 × 22

= 0.0135.

Consequently, the standard error of sl is 0.116.

Similarly, the sl statistics and its estimated variance may be calculated as follows:

sl = 1 −
d′µ̂

n [max (d′
k)]

= 1 −

(
0 1 2

) (
10

(
8

10

)
10

(
0

10

)
10

(
2

10

))′

10 × 2

= 1 −
4

20
= 0.80,

and the estimate of the variance of sl is

V̂ [sl] =
d′Σ̂d

n2 [max (d′
k)]2

=

(
0 1 2

)



10

(
8

10

) (
2

10

)
−10

(
8

10

) (
0

10

)
−10

(
8

10

) (
2

10

)

−10
(

0

10

) (
8

10

)
10

(
0

10

) (
10

10

)
−10

(
0

10

) (
2

10

)

−10
(

2

10

) (
8

10

)
−10

(
2

10

) (
0

10

)
10

(
2

10

) (
8

10

)








0
1
2





102 × 22

= 0.016.
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Also, the estimate of the standard error of sl is 0.126.

3. A simulation study

In order to show the properties and the distribution of the similarity measurement,
and to make comparisons between the similarity measurements and the weighted kappa
coefficients, a Monte Carlo simulation was performed for 3 different cases, which are
uniform, twice weighted main diagonal and twice weighted reverse diagonal distributions
in 3 × 3 and 4 × 4 cross tables. The tables were randomly generated with sample sizes
of 10, 30 and 50 for each one of the 3 distributions. Finally, the number of repetitions
performed for each of the settings are given in Table 3 and Table 4.

Table 3. Monte Carlo simulation with 10000 replications in a 3 × 3 cross
table

Expected value Estimation MSE

Distribution n Proportion of Weighted sl Weighted sl Weighted sl

in table exact agreement kappa kappa kappa

Case I 10 0.333 0.000 0.556 0.002 0.556 0.055 0.013

πij = 1

9
30 0.333 0.000 0.556 -0.001 0.555 0.020 0.005

50 0.333 0.000 0.556 0.001 0.556 0.012 0.003

Case II 10 0.500 0.250 0.667 0.227 0.665 0.116 0.026

πii = 2

12
30 0.500 0.250 0.667 0.244 0.666 0.081 0.017

otherwise πij = 1

12
50 0.500 0.250 0.667 0.247 0.667 0.074 0.015

Case III 10 0.333 -0.125 0.500 -0.105 0.501 0.068 0.020

π13, π22, π31 = 2

12
30 0.333 -0.125 0.500 -0.119 0.500 0.035 0.009

otherwise πij = 1

12
50 0.333 -0.125 0.500 -0.121 0.500 0.027 0.000

Table 4. Monte Carlo simulation with 10000 replications in a 4 × 4 cross
table

Expected value Estimation MSE

Distribution n Proportion of Weighted sl Weighted sl Weighted sl

in table exact agreement kappa kappa kappa

Case I 10 0.250 0.000 0.583 -0.004 0.582 0.047 0.011

πij = 1

16
30 0.250 0.000 0.583 0.001 0.583 0.017 0.004

50 0.250 0.000 0.583 -0.001 0.583 0.010 0.002

Case II 10 0.400 0.200 0.667 0.183 0.666 0.089 0.018

πii = 2

20
30 0.400 0.200 0.667 0.193 0.666 0.058 0.011

otherwise πij = 1

20
50 0.400 0.200 0.667 0.197 0.667 0.051 0.009

Case III 10 0.200 -0.120 0.533 -0.106 0.533 0.054 0.014

π14, π23, π32, π41 = 2

20
30 0.200 -0.120 0.533 -0.115 0.533 0.029 0.006

otherwise πij = 1

20
50 0.200 -0.120 0.533 -0.117 0.533 0.023 0.005

In both tables it can be seen that sl is both an unbiased and a consistent estimator of Sl.
The estimate value of sl converges to the expected value as the sample size increases in
each case. For sample size 50, the estimated values are almost the same as the expected
values of the similarity measurement. In addition, the MSE value of sl decreases rapidly
as the sample size increases in each case. However, for a good estimation weighted kappa
needs much larger sample sizes, and its MSE values are much greater than the MSE
values of sl. Also, sl is more consistent than the weighted kappa statistics. As seen in
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Figure 1 and Figure 2, the histograms of the values of sl almost fit the normal curve.
The distributions of sl are normally distributed according to the Kolmogorov-Smirnov
test.

Figure 1. Case II in a 3 × 3 cross table with sample size 30

Figure 2. Case III in a 4 × 4 cross table with sample size 50
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4. Example

This example evaluates the efficiency of a new E/F-speed film, Insight, for the deter-
mination of approximal carious lesion depths, compared with Ultraspeed. Radiographs
of 80 extracted human molars and premolars were taken with both films under stan-
dardized conditions. The presence and absence of caries and the depth of the lesions
were determined by three observers using a predetermined scale. The actual status of
each surface was determined histologically. Differences between the observers’ agreement
levels were not significant [10].

Table 5. Histology agreement on approximal carious lesions
using Insight films

Actual Status Scores (Histology)

Insight Film Scores 0 1 2 3 4 5 Total

0 54 15 4 9 1 0 83

1 5 9 0 7 5 0 26

2 1 6 1 4 4 0 16

3 3 0 0 12 12 0 27

4 0 0 1 4 21 3 29

5 0 0 0 0 20 30 50

Total 63 30 6 36 63 33 231

Table 6. Histology agreement on approximal carious lesions
using Ultraspeed films

Actual Status Scores (Histology)

Ultraspeed Film Scores 0 1 2 3 4 5 Total

0 54 15 3 2 0 0 74

1 8 11 0 9 0 0 28

2 1 4 1 7 3 0 16

3 0 0 1 11 16 1 29

4 0 0 1 7 26 6 40

5 0 0 0 0 18 26 44

Total 63 30 6 36 63 33 231

Table 7. Relationship and agreement statistics for film and histology scores

Insight film scores Ultraspeed film scores

and Histology and Histology

Gamma 0.883 0.922

Exact agreement proportion 0.549 0.558

Weighted kappa (linear) 0.690 0.751

Similarity measurement (sl) 0.863 0.893

Expected value of sl 0.611 0.611

Standard deviation of sl 0.018 0.018

95% confidence interval for Sl (0.827, 0.899) (0.857, 0.929)
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In Table 7, the Gamma values show the linear relationship between the two ordinal
categorical variables [1]. It is not an agreement coefficient.

The other statistics are related with agreements. In the two data sets, the difference
between the proportions of exact agreement is approximately 1%. The difference be-
tween the similarity measurements is 3%. On the other hand, the difference between the
weighted kappa values is 6%. The similarity measurements show the greatest harmony
with the proportion of exact agreement. The 95% confidence interval for Sl is determined
by the equation sl ± 1.96Std.Dev.(sl).

The agreement levels of Insight and Ultraspeed for true depth diagnosis are at an
almost perfect level [12].

5. Discussion

The proposed agreement coefficient, called the linear similarity measurement (Sl) is
easily calculated. Its expected value and variance provided. It is shown that the estimate
of the linear similarity measurement is an unbiased and consistent estimator. Since it
is defined between zero and one, it provides for an easier interpretation than weighted
kappa. It is also sensitive to the levels of the ordinal categorical variables and the number
of levels of the ordinal categorical variables.

In future, the test statistics can be developed for the testing of two or more linear
similarity measurements, might also be extended to multivariate cases.

Appendix

SPSS matrix language for the weighted kappa and the similarity coefficient.

Step 1: Enter the levels of ordinal categories in first row in SPSS Data Editor,
Step 2: Enter the contingency table following rows in SPSS Data Editor,
Step 3: RUN > ALL the program in SPSS Syntax Editor.

matrix.

get table /missing=omit.

compute I=ncol(table).

compute piart=make(I,1,0).

compute partj=piart.

compute sd=make(I,I,0).

compute lw=sd.

compute x=make(I∗I,1,0).
compute fx=x.

compute ss=x.

compute pij=x.

compute hsay=0.

compute aggratio=0.

compute a=0.

compute b=0.

loop j=1 to I.

loop k=1 to I.

compute sd(j,k)=abs(table(1,j)-table(1,k)).

end loop.

end loop. /*print sd.: shows the linear disagreements in each cell */
compute data=table(1:I+1,1:I). /*print data.: shows the observation table */

compute n=msum(data).

compute indis=0.
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compute pij=data/n. /*print pij.: shows the (ij) th cell probabilities */

compute piart=rsum(data)/n.

compute partj=csum(data)/n.

loop j=1 to I.

loop k=1 to I.

compute lw(j,k)=1-(abs(j-k))/(I-1).

compute a=a+lw(j,k)∗pij(j,k).
compute b=b+lw(j,k)∗piart(j)∗partj(k).

end loop.

compute aggratio=aggratio+pij(j,j).

end loop. /*print aggratio: shows the agreeement ratio */

print aggratio.

compute lwkappa=(a-b)/(1-b).

print lwkappa. /*print lwkappa.: shows the linear weighted kappa */

loop k=1 to table(1,I)**2.

compute kk=k-1.

compute say=0.

loop j=1 to I.

loop l=1 to I.

do if (sd(j,l)=kk).

compute say=say+1.

end if.

end loop.

end loop.

do if (say > 0).

compute indis=indis+1.

compute fx(indis)=say.

compute ss(indis)=kk.

end if.

end loop.

compute p=make(indis,1,0).

compute s=make(1,indis,0).

compute varx=make(indis,indis,0).

loop j=1 to indis.

compute p(j)=fx(j)/msum(fx).

compute s(j)=ss(j).

end loop.

compute meansx=s*n*p.

loop j=1 to indis.

loop k=1 to indis.

do if (j=k).

compute varx(j,k)=n∗p(j)∗(1-p(j)).
else.

compute varx(j,k)=-n∗p(j)∗p(k).
end if.

end loop.

end loop.

compute varsx=s∗varx∗t(s).
compute m=n∗mmax(s).
compute Sl=1-(msum(sd&∗data))/m).
print Sl /forma=f5.3. /*print Sl:shows the linear similarity coefficient */
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compute meanSl=1-meansx/m.

compute varSl=varsx/m**2.

compute sdevSl=varSl**0.5.

print meanSl /format=f5.3. /*print meanSl: shows the expected value of Sl */
print varSl /format=f6.7. /*print varSl: shows the variance of Sl */
print sdevSl /format=f6.7. /*print sdevSl: shows the standard deviation of Sl */
end matrix.
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