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Abstract

We consider the problem of estimating the finite population mean in
two phase sampling when some information on auxiliary attributes is
available. It is shown that the proposed estimator is more efficient than
the usual mean estimator, the S. Bahl and R.K. Tuteja (Ratio and prod-

uct type exponential estimators, Information and Optimization Sciences
12 (1), 159–163, 1991) estimator and a family of estimators considered
by H. S. Jhajj et al (A family of estimators of population mean using in-

formation on auxiliary attribute, Pakistan Journal of Statistics 22 (1),
43–50, 2006). Two numerical examples are considered to further eval-
uate the performances of various estimators considered here.

Keywords: Two-phase sampling, Attribute, Point bi-serial correlation, Phi correlation,
Efficiency.
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1. Introduction

There are many situations when auxiliary information is available in the form of
attributes. For example, sex is a good auxiliary attribute while dealing with height,
and the breed of a cow is a good auxiliary attribute while estimating milk production
(see Naik and Gupta [9]). Another example considered by Jhajj et al. [5] is where
crop variety is used as an auxiliary attribute in estimating the yield of wheat. In all of
these examples point bi-serial correlation between the study variable and the auxiliary
attribute exists. Naik and Gupta [9] introduce a ratio estimator when the study variable
and the auxiliary attribute are positively correlated. Jhajj et al. [5] discuss a family of
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estimators for the population mean in single and two-phase sampling when the study
variable and the auxiliary attribute are positively correlated. We extend the works of
Naik and Gupta [9] and Jhajj et al. [5] to the situation when two auxiliary attributes
are available. We assume that both auxiliary attributes have significant point bi-serial
correlation with the study variable and that there is significant phi-correlation between
the two auxiliary attributes. Two examples of this scenario are:

(a) The study variable (y) is the yield of some crop in a particular region, ψ1 is the
ownership (rich vs. poor) of the cultivated land and ψ2 is the irrigation status
(adequate vs. inadequate).

(b) The study variable (y) is the student’s grade point average, ψ1 is the number of
hours spent studying (low vs. high) and ψ2 is the use of library facilities (low
vs. high).

In the examples above we expect point bi-serial correlation between the study variable
and the two auxiliary attributes; and phi-correlation between the two auxiliary attributes.

Now consider a finite population which consists of N identifiable units Ui (1 ≤ i ≤
N). Assume there is a complete dichotomy in the population regarding the presence
and absence of the two attributes ψj , (j = 1, 2), which take values zero or one. Let
yi and ψji (j = 1, 2) be the observations on the study variable y and the auxiliary
attributes ψj , (j = 1, 2), respectively. Let ψji = 1 , if ith unit possesses the attribute ψj ,

(j = 1, 2) and ψji = 0 otherwise. Let Aj =
∑N
i=1 ψji and aj =

∑n
i=1 ψji denote the total

number of units in the population and the sample, respectively, that possess the attribute

ψj . Let the corresponding population and sample proportions be Pj =
∑N
i=1

ψji
N

=
Aj
N

and pj =
∑n
i=1

ψji
n

=
aj
n

, (j = 1, 2) respectively. Let s2y = 1
n−1

∑n
i=1(yi − ȳ)2 and

s2ψj = 1
n−1

∑n
i=1(ψji − pj)

2 be the sample variances corresponding to the population

variances S2
y = 1

N−1

∑N
i=1(yi− Ȳ )2 and S2

ψj
= 1

N−1

∑N
i=1(ψji−Pj)

2, respectively, where

ȳ = 1
n

∑n
i=1 yi and Ȳ = 1

N

∑N
i=1 yi.

Let syψj = 1
n−1

∑n
i=1(yi − ȳ)(ψji − pj) and ρ̂pbj =

syψj
sysψj

, (j = 1, 2) be the sam-

ple point bi-serial covariance and point bi-serial correlation between y and ψj cor-
responding to the population point bi-serial covariance and point bi-serial correlation

Syψj = 1
N−1

∑N
i=1(yi − Ȳ )(ψji − Pj) and ρpbj =

Syψj
SySψj

, respectively.

Let sψ1ψ2
= 1

n−1

∑n
i=1(ψ1i − p1)(ψ2i − p2) and ρ̂φ =

sψ1ψ2

sψ1
sψ2

be the sample phi-

covariance and phi correlation between ψ1 and ψ2 corresponding to the population phi-

covariance and phi correlation Sψ1ψ2
= 1

N−1

∑N
i=1(ψ1i−P1)(ψ2i−P2) and ρφ =

Sψ1ψ2

Sψ1
Sψ2

.

Let Cy =
Sy
Ȳ

and Cpj =
Sψj
Pj

(j = 1, 2) be the coefficients of variation of y and ψj ,

(j = 1, 2), respectively.

It is assumed that population proportion (P1 ) and population variance (S2
ψ1

) for the
first auxiliary attribute ψ1 are unknown, while the same is known for the second auxiliary
attribute ψ2. In such a situation, we can estimate (P1 ) and (S2

ψ1
) from the sample by

using a two-phase sampling procedure as per Jhajj et al. [6], Kiregyra [7] and Swain [15].
We use simple random sampling without replacement at both phases as described below:

(1) We draw a sample s∗ of fixed size n∗ from the population and observe (ψj , j =
1, 2) and estimate P1 as well as S2

ψ1
.

(2) Given s∗ , we draw a sample s (s ⊂ s∗) of fixed size n and observed y.

Let p∗j = 1
n∗

∑n∗

i=1 ψji, (j = 1, 2), s2ψj = 1
(n−1)

∑n
i=1(ψji− pj)

2, s∗2ψj = 1
(n∗

−1)

∑n∗

i=1(ψji−

p∗j )
2.
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We now introduce the following relative error terms. Let

∆0 =
ȳ − Ȳ

Ȳ
, ∆ψ1

=
p1 − P1

P1
, ∆∗

ψ1
=
p∗1 − P1

P1
,

∆ψ2
=
s2ψ1

− S2
ψ1

S2
ψ1

, ∆∗

ψ2
=
s∗2ψ1

− S2
ψ1

S2
ψ1

, ∆ψ3
=
p2 − P2

P2
,

∆∗

ψ3
=
p∗2 − P2

P2
, ∆ψ4

=
s2ψ2

− S2
ψ2

S2
ψ2

, ∆∗

ψ4
=
s∗2ψ2

− S2
ψ2

S2
ψ2

.

Expected values of these relative errors are calculated in the Appendix.

We also introduce two more notations:

µabc =
1

N − 1

N
∑

i=1

(yi − Ȳ )a(ψ1i − P1)
b(ψ2i − P2)

c and δabc =
µabc

µ
a/2
200 µ

b/2
020 µ

c/2
002

.

We now discuss some of the existing estimators of µ.

The usual estimator of µ is ȳ, and its variance is given by

(1.1) Var (ȳ) =

(

1

n
−

1

N

)

S
2
y .

The class of estimators using a single auxiliary attribute in two phase sampling when P1

is unknown is discussed by Jhajj et al. [5]. It is given by

(1.2) ȳJ = h(ȳ, υ∗),

where υ∗ = p1
p∗
1

and h(ȳ, υ∗) is a parametric function of ȳ and υ∗ such that h(Ȳ , 1) = Ȳ ,

∀ Ȳ , and certain regularity conditions hold (see Jhajj et al. [5]). The minimum MSE of
ȳJ to the first order of approximation, is given by

(1.3) MSE (ȳJ )min
∼=

(

1

n
−

1

N

)

S
2
y −

(

1

n
−

1

n∗

)

S
2
yρ

2
pb1 .

The above expression is equal to the variance of the linear regression estimator ȳlrd =

ȳ+b(p∗1−p1) in two phase sampling, where b =
ρ̂pb1 sy

sψ1

is the sample regression coefficient

of y on ψ1.

The Bahl and Tuteja [2] estimator using a single auxiliary attribute in two phase
sampling when P1 is unknown, is given by

(1.4) ȳBT = ȳ exp

(

p∗1 − p1

p∗1 + p1

)

.

The bias and MSE of ȳBT , to the first order of approximation are, respectively, given by

(1.5) Bias (ȳBT ) ∼= Ȳ

(

1

n
−

1

n∗

)[

1

2
ρpb1CyCp − C

2
p

]

and

(1.6) MSE (ȳBT ) ∼= Ȳ
2

[(

1

n
−

1

N

)

C
2
y +

(

1

n
−

1

n∗

){

1

4
C

2
p − ρpb1CyCp

}]

.
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2. Proposed two-phase sampling estimator

Following Bahl and Tuteja [2] and Shabbir et al. [12], we propose the following expo-
nential difference-cum-ratio type estimator when two auxiliary attributes are available.
Also, as mentioned earlier, it is assumed that the population proportion (P1) and vari-
ance (S2

ψ1
) for the first auxiliary attribute ψ1 are unknown, while the same are known

for the second auxiliary attribute ψ2. The proposed estimator is as follows.

(2.1)

ȳP = ȳ + w1 (p∗1 − p1) exp

(

p∗1 − p1

p∗1 + p1

)

+ w2

(

s
∗2
ψ1

− s
2
ψ1

)

exp

(

s∗2ψ1
− s2ψ1

s∗2ψ1
+ s2ψ1

)

+w3 (P2 − p
∗

2) exp

(

P2 − p∗2
P2 + p∗2

)

+w4

(

S
2
ψ2

− s
∗2
ψ2

)

exp

(

S2
ψ2

− s∗2ψ2

S2
ψ2

+ s∗2ψ2

)

,

where wi, (i = 1, 2, 3, 4) are suitably chosen constants whose values are to be determined.

In the proposed estimator, we try to utilize the information available through the
population variances also. There are various studies where this has been done. For
details, see, Ahmad et al. [1], Dubey and Sharma [3], Jhajj et al. [6] and Singh et

al. [14]. Moreover, in medical and biological studies, it is quite often the case that
populations are highly skewed. In such cases, use of information on the variance of the
auxiliary attributes can be quite helpful.

Expressing (2.1) in terms of the ∆ ’s, we have

(2.2)

ȳP = Ȳ (1 + ∆0) +w1

{

P1(1 + ∆∗

ψ1
) − P1(1 + ∆ψ1

)
}

× exp

{

P1(1 + ∆∗

ψ1
) − P1(1 + ∆ψ1

)

P1(1 + ∆∗

ψ1
) + P1(1 + ∆ψ1

)

}

+ w2

{

S
2
ψ1

(1 + ∆∗

ψ2
) − S

2
ψ1

(1 + ∆ψ2
)
}

× exp

{

S2
ψ1

(1 + ∆∗

ψ2
) − S2

ψ1
(1 + ∆ψ2

)

S2
ψ1

(1 + ∆∗

ψ2
) + S2

ψ1
(1 + ∆ψ2

)

}

+ w3

{

P2 − P2(1 + ∆∗

ψ3
)
}

exp

{

P2 − P2(1 + ∆∗

ψ3
)

P2 + P2(1 + ∆∗

ψ3
)

}

+ w4

{

S
2
ψ2

− S
2
ψ2

(1 + ∆∗

ψ4
)
}

exp

{

S2
ψ2

− S2
ψ2

(1 + ∆∗

ψ4
)

S2
ψ2

+ S2
ψ2

(1 + ∆∗

ψ4
)

}

.

Simplifying (2.2) and retaining terms up to order two in the ∆ ’s, we have

(2.3)

ȳP − Ȳ = Ȳ∆0 + w1P1

{

(∆∗

ψ1
− ∆ψ1

) +
1

2
(∆∗

ψ1
− ∆ψ1

)2
}

+ w2S
2
ψ1

{

(∆∗

ψ2
− ∆ψ2

) +
1

2
(∆∗

ψ2
− ∆ψ2

)2
}

− w3P2

{

∆∗

ψ3
−

1

2
∆∗2
ψ3

}

− w4S
2
ψ2

{

∆∗

ψ4
−

1

2
∆∗2
ψ4

}

.

Using (2.3), the bias and MSE of ȳP to the first order of approximation are, respectively,
given by

(2.4)

Bias (ȳP ) ∼=
1

2

[(

1

n
−

1

n∗

)

(

w1P1C
2
p1 + w2S

2
ψ1

(δ040 − 1)
)

+

(

1

n∗

−
1

N

)

(

w3P2C
2
p2 + w4S

2
ψ2

(δ004 − 1)
)

]



Estimation of the finite Population Mean 125

and

(2.5)

MSE (ȳP ) ∼=

(

1

n
−

1

N

)

{

S
2
y +w

2
1S

2
ψ1

+ w
2
2S

4
ψ1

(δ040 − 1) − 2w1ρpb1SySψ1

− 2w2SyS
2
ψ1
δ120 + 2w1w2S

3
ψ1
δ030

}

−

(

1

n∗

−
1

N

)

{

w
2
1S

2
ψ1

+w
2
2S

4
ψ1

(δ040 − 1) − w
2
3S

2
ψ2

−w
2
4S

4
ψ2

(δ004 − 1) − 2w1ρpb1SySψ1
− 2w2SyS

2
ψ1
δ120

+ 2w3ρpb2SySψ2
+ 2w4S

2
ψ2
Cyδ102

+ 2w1w2S
3
ψ1
δ030 − 2w3w4S

3
ψ2
δ003

}

.

From (2.5), we get the optimum values of wi, (i = 1, 2, 3, 4), given by

w1 =
Sy {(δ040 − 1)ρpb1 − δ030δ120}

Sψ1
{(δ040 − 1) − δ2030}

, w2 =
Sy {δ120 − ρpb1δ030}

S2
ψ1

{(δ040 − 1) − δ2030}
,

w3 =
Sy {(δ004 − 1)ρpb2 − δ003δ102}

Sψ2
{(δ004 − 1) − δ2003}

, w4 =
Sy {(δ102 − ρpb2δ003}

S2
ψ2

{(δ004 − 1) − δ2003}
.

Substituting the optimum values of wi, (i = 1, 2, 3, 4) in (2.5), we get the minimum MSE
of ȳP in the form:

(2.6)

MSE (ȳP )min
∼= S

2
y

[(

1

n
−

1

N

)

−

(

1

n
−

1

n∗

){

ρ
2
pb1 +

(δ120 − δ030ρpb1)2

{(δ040 − 1) − δ2030}

}

−

(

1

n∗

−
1

N

){

ρ
2
pb2 +

(δ102 − δ003ρpb2)2

{(δ004 − 1) − δ2003}

}]

.

The expression in (2.6) provides only the ideal minimum MSE of ȳP , since the optimum
values of wi, (i = 1, 2, 3, 4) involve unknown parameters. These values can be replaced
by their consistent estimates as discussed by many authors (see Koyuncu and Kadilar
[8], Perri and Diana [10] and Pradhan [11]).

3. Comparison of estimators

We now compare the proposed estimator with the other estimators considered here.
The following conditions can be verified easily.

Condition (i): MSE (ȳP )min < Var (ȳ) if

S
2
y

[(

1

n
−

1

n∗

){

ρ
2
pb1 +

(δ120 − δ030ρpb1)
2

{(δ040 − 1) − δ2030}

}

+

(

1

n∗

−
1

N

){

ρ
2
pb2 +

(δ102 − δ003ρpb2)
2

{(δ004 − 1) − δ2003}

}]

> 0.

Condition (ii): MSE (ȳP )min < MSE (ȳBT ) if

Ȳ
2

[

(

1

n
−

1

n∗

)

{

(

1

2
CP − ρpb1Cy

)2

+ C
2
y

(δ120 − δ030ρpb1)
2

{(δ040 − 1) − δ2030}

}

+

(

1

n∗

−
1

N

){

ρ
2
pb2 +

(δ102 − δ003ρpb2)
2

{(δ004 − 1) − δ2003}

}]

> 0.



126 J. Shabbir, S. Gupta

Condition (iii): MSE (ȳP )min < MSE (ȳJ)min if

S
2
y

[(

1

n
−

1

n∗

){

(δ120 − δ030ρpb1)
2

{(δ040 − 1) − δ2030}

}

+

(

1

n∗

−
1

N

){

ρ
2
pb2 +

(δ102 − δ003ρpb2)
2

{(δ004 − 1) − δ2003}

}]

> 0.

The above three conditions will always hold true because (δ040 − δ2030 − 1) ≥ 0 and
(δ004 − δ2003 − 1) ≥ 0 (see Jhajj et al. [6]).

We use the following numerical examples to further evaluate the performances of
various estimators.

Data 1: (Source: Singh and Chaudhary [13], p. 177)

The population consists of 34 wheat farms in 34 villages in certain region of India.
The variables are defined as:

y = area under wheat crop (in acres) during 1974,

p1 = proportion of farms under wheat crop which have more than 500 acres land
during 1971, and

p2 = proportion of farms under wheat crop which have more than 100 acres of land
during 1973.

For this data, we have

N = 34, Ȳ = 199.4, P1 = 0.6765, P2 = 0.7353, S
2
y = 22564.6,

S
2
ψ1

= 0.225490, S
2
ψ2

= 0.200535, ρpb1 = 0.599, ρpb2 = 0.559,

ρφ = 0.725, δ040 = 1.52302, δ004 = 2.07490, δ030 = −0.74326,

δ003 = −1.05086, δ120 = −0.44516, δ102 = −0.58747.

Data 2: (Source: Government of Pakistan [4])

The population consists of rice cultivation areas in 73 districts of Pakistan. The
variables are defined as:

y = rice production (in 000’ tonnes, with one tonne=0.984 ton) during 2003,

p1 = proportion of farms where rice production is more than 20 tonnes during the
year 2002, and

p2 = proportion of farms with rice cultivation area more than 20 hectares during the
year 2003.

For this data, we have

N = 73, Ȳ = 61.3, P1 = 0.4247, P2 = 0.3425, S
2
y = 12371.4,

S
2
ψ1

= 0.242770, S
2
ψ2

= 0.228311, ρpb1 = 0.621, ρpb2 = 0.673,

ρφ = 0.889, δ040 = 1.16022, δ004 = 1.42109, δ030 = 0.41703,

δ003 = 0.65939, δ120 = 0.25907, δ102 = 0.44374.

The results for the data sets above are given in Tables 1 and 2.
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Table 1. The percentage relative efficiency of estimators with respect to ȳ

for Data 1

Sample size Estimator

n∗ n ȳ ȳBT ȳJ ȳP

10 3 100.00 135.476 138.020 153.384

7 100.00 114.791 115.680 149.249

15 3 100.00 142.709 145.947 154.589

7 100.00 129.714 131.748 152.344

12 100.00 111.785 112.474 148.544

20 3 100.00 146.622 150.262 155.198

7 100.00 131.731 141.580 153.940

12 100.00 126.719 128.502 151.772

17 100.00 111.399 112.062 148.451

Table 2. The percentage relative efficiency of estimators with respect to ȳ

for Data 2

Sample size Estimator

n∗ n ȳ ȳBT ȳJ ȳP

10 3 100.00 127.428 139.182 167.731

7 100.00 110.845 114.674 175.624

15 3 100.00 132.625 147.435 165.780

7 100.00 121.056 129.448 170.426

12 100.00 107.593 110.169 177.564

20 3 100.00 135.386 151.939 164.821

7 100.00 126.901 138.361 167.941

12 100.00 116.434 122.639 172.628

17 100.00 106.118 108.156 178.499

30 3 100.00 138.264 156.728 163.873

7 100.00 133.339 148.592 165.527

12 100.00 126.858 138.294 167.958

20 100.00 119.984 127.851 170.917

25 100.00 108.077 110.834 177.265

From Tables 1 and 2, one can see that the efficiency of the proposed estimator is greater
than the usual mean estimator, the Bahl and Tuetja [2] estimator and the Jhajj et al.
[5] estimator for both data sets. This was expected based on the efficiency comparisons
(Conditions (i-iii)) which always hold true. Also note that the relative efficiencies with
respect to the usual mean estimator of all estimators increase as the sample size n∗

increases, and also the efficiency of the proposed estimator increases as n increases.
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4. Appendix

E(∆0) = E(∆ψi) = E(∆∗

ψi) = 0, (i = 1, 2, 3, 4).

E(∆2
0) =

(

1

n
−

1

N

)

C
2
y , E(∆2

ψ1
) =

(

1

n
−

1

N

)

C
2
p1 ,

E(∆2
ψ2

) =

(

1

n
−

1

N

)

(δ040 − 1), E(∆2
ψ3

) =

(

1

n
−

1

N

)

C
2
p2 ,

E(∆2
ψ4

) =

(

1

n
−

1

N

)

(δ004 − 1), E(∆0∆ψ1
) =

(

1

n
−

1

N

)

ρpb1CyCp1 ,

E(∆0∆ψ2
) =

(

1

n
−

1

N

)

Cyδ120, E(∆0∆ψ3
) =

(

1

n
−

1

N

)

ρpb2CyCp2 ,

E(∆0∆ψ4
) =

(

1

n
−

1

N

)

Cyδ102, E(∆ψ1
∆ψ2

) =

(

1

n
−

1

N

)

Cp1δ030,

E(∆ψ3
∆ψ4

) =

(

1

n
−

1

N

)

Cp2δ003, E(∆∗2
ψ1

) = E(∆∗

ψ1
∆ψ1

) =

(

1

n∗

−
1

N

)

C
2
p1 ,

E(∆∗2
ψ2

) = E(∆∗

ψ2
∆ψ2

) =

(

1

n∗

−
1

N

)

(δ040 − 1), E(∆∗2
ψ3

) =

(

1

n∗

−
1

N

)

C
2
p2 ,

E(∆∗2
ψ4

) =

(

1

n∗

−
1

N

)

δ004, E(∆0∆
∗

ψ1
) =

(

1

n∗

−
1

N

)

ρpb1CyCp1 ,

E(∆0∆
∗

ψ2
) =

(

1

n∗

−
1

N

)

Cyδ120, E(∆0∆
∗

ψ3
) =

(

1

n∗

−
1

N

)

ρpb2CyCp2 ,

E(∆0∆
∗

ψ4
) =

(

1

n∗

−
1

N

)

Cyδ102,

E(∆∗

ψ1
∆∗

ψ2
) = E(∆ψ1

∆∗

ψ2
) = E(∆∗

ψ1
∆ψ2

) =

(

1

n∗

−
1

N

)

Cp1δ030,

E(∆∗

ψ1
∆ψ3

) = E(∆ψ1∆
∗

ψ3) = E(∆∗

ψ1
∆∗

ψ3) =

(

1

n∗

−
1

N

)

ρφCp1Cp2 ,

E(∆∗

ψ1
∆∗

ψ4
) = E(∆ψ1

∆∗

ψ4
) = E(∆∗

ψ1
∆ψ4

) =

(

1

n∗

−
1

N

)

δ012Cp1 ,

E(∆∗

ψ2
∆∗

ψ3
) = E(∆ψ2

∆∗

ψ3
) = E(∆∗

ψ2
∆ψ3

) =

(

1

n∗

−
1

N

)

δ021Cp2 ,

E(∆∗

ψ2
∆∗

ψ4
) = E(∆ψ2

∆∗

ψ4
) = E(∆∗

ψ2
∆ψ4

) =

(

1

n∗

−
1

N

)

(δ022 − 1),

E(∆ψ3
∆∗

ψ4
) = E(∆∗

ψ3
∆ψ4

) = E(∆∗

ψ3
∆∗

ψ4
) =

(

1

n∗

−
1

N

)

Cp2δ003.
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