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Regular A-optimal spring balance weighing designs
with correlated errors
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Abstract
The problems linked with an A-optimal spring balance weighing design
with correlated errors are discussed. The topic is focus on the deter-
mining the lowest bound of the trace of inverse information matrix in
a special class of design matrices. The constructing method of the op-
timal design, based on the incidence matrices of balanced incomplete
block designs, is presented.

Keywords: A-optimal design, balanced incomplete block design, spring balance
weighing design.

2000 AMS Classification: AMS 62K05

Received : 19.12.2013 Accepted : 31.10.2014 Doi : 10.15672/HJMS.2014398093

1. Introduction
Consider the linear model

(1.1) y = Xw + e,

where
(a) y is an n× 1 random vector of the observations,
(b) X ∈ Φn×p(0, 1), where Φn×p(0, 1) denotes the class of n× p matrices X = (xij)

of known elements xij = 1 or 0 according as in the ith weighing operation the
jth object is placed on the pan or not. Any matrix X belonging to the class
Φn×p(0, 1) is called the design matrix of the spring balance weighing design.

(c) w is a p× 1 vector of unknown weights of objects,
(d) e is an n × 1 random vector of errors for that E(e) = 0n and Var(e) = σ2G,

where 0n denotes the n× 1 vector with zero elements everywhere, G is a known
positive definite matrix.
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For the estimation of w we use the normal equations X
′
G−1Xw = X

′
G−1y. Any

spring balance weighing design is singular or nonsingular, depending on whether X
′
G−1X

is singular or nonsingular, respectively. Since G is a known positive definite matrix
then X

′
G−1X is nonsingular if and only if X has a full column rank. However, if

X
′
G−1X is nonsingular, then the generalized least squares estimator of w is given by

ŵ =
(
X
′
G−1X

)−1

X
′
G−1y and Var(ŵ) = σ2

(
X
′
G−1X

)−1

.

There are several problems concerning to the optimality criteria of experimental de-
signs. The best general references here are books [14] and [11]. The study results of
determining the optimal weighing designs are shown in many papers, see for instance
[12]. The standard work on A-, D- and E-optimality is the paper [5]. The deliberation
related to A-optimal criterion for G = In is presented in many papers. In [8] the robust-
ness optimal designs are considered, whereas in [3] the problem of adding additionally
weighing operation is presented. For a recent account on the theory of weighing designs,
for G being any positive definite diagonal matrix, we refer the reader to [4].
The problems of determining of the regular D-optimal designs are included in several
papers: in [10] some infinite families of D-optimal matrices based on Hadamard matrices
are considered, however in [7] the deliberation on D-optimal designs under correlated
structure of errors is presented. The construction of optimal design for eight objects is
given in [9], while D-optimal weighing designs with autoregressive errors in [6]. Moreover,
weighing designs as 2n factorial designs were presented in [1] and [2].

2. The main result
In this paper, we emphasize a special interest of the existence conditions for A-

optimal criterion. For given matrix G, the problem is to determine such matrix X

that tr
(
X
′
G−1X

)−1

takes the minimal value over all possible matrices in Φn×p(0, 1).

2.1. Definition. For given variance matrix of errors σ2G, any X ∈ Φn×p(0, 1) is

A-optimal if tr
(
X
′
G−1X

)−1

is minimal. Moreover, if tr
(
X
′
G−1X

)−1

attains the
lower bound then X is called regular A-optimal.

It’s worth underlining that for given variance matrix of errors σ2G and in any class
Φn×p(0, 1) A-optimal spring balance weighing design exists always, whereas regular A-
optimal design may exist.

In order to determine the lower bound of tr
(
X
′
G−1X

)−1

the following theorems will
be required.

2.2. Theorem. Let M be any positive definite p × p matrix and Π be the set of all
p × p permutation matrices. The average of M over all elements of Π, i.e. M̄ =
1
p!

∑
P∈Π P

′
MP and

(2.1) M̄ =
ptr(M)− 1

′
pM1p

p(p− 1)
Ip +

1
′
pM1p − tr(M)

p(p− 1)
1p1

′
p.

Besides, tr(M) = tr(M̄) and 1
′
pM1p = 1

′
pM̄1p.
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Proof. Let us consider p! elements of the set of all p× p permutation matrices Π. When
we put all matrices into

∑
P∈Π P

′
MP an easy computation makes it obvious that

M̄ =
1

p!


(p− 1)! tr(M) (p− 2)! Q(M) ... (p− 2)! Q(M)
(p− 2)! Q(M) (p− 1)! tr(M) ... (p− 2)! Q(M)

... ... ... ...
(p− 2)! Q(M) (p− 2)! Q(M) ... (p− 1)! tr(M)

 ,
where Q(M) denotes the sum of all offdiagonal elements. Because 1

′
pM1p = tr(M) +

Q(M) we obtain 2.1. Moreover, the form the matrix M̄ indicates that it has two eigenval-

ues µ1 =
ptr(M)−1

′
pM1p

p(p−1)
with the multiplicity p−1 and µ2 =

1
′
pM1p

p
with the multiplicity

1.
�

2.3. Theorem. Let t1 be the eigenvalue with the multiplicity p− 1, t2 be the eigenvalue
with the multiplicity 1 of any positive definite p×p matrix M and let q1 be the eigenvalue
with the multiplicity p− 1 and q2 be the eigenvalue with the multiplicity 1 of the matrix
M̄. If (p− 1)t1 + t2 = (p− 1)q1 + q2, t1 ≤ t2, q1 ≤ q2, t1 ≤ q1 then tr(M−1) ≥ tr(M̄−1).
The equality is satisfied if and only if the eigenvalues of matrices M and M̄ are the same.

Proof. tr(M−1)− tr(M̄−1) = p−1
t1

+ 1
t2
− p−1

q1
− 1
q2

= (p−1)t2q1q2−(p−1)t1t2q2+t1q1q2−t1t2q1
t1t2q1q2

.
Because (p − 1)q1 = (p − 1)t1 + t2 − q2 then tr(M−1) − tr(M̄−1) = (t2−q2)(t2q2−t1q1)

t1t2q1q2
.

We observe t2
t1
≥ 1, q1

q2
≤ 1. Thus t2q2 − t1q1 ≥ 0. Finally tr(M−1) ≥ tr(M̄−1). It is

obvious the equality is satisfied if and only if the eigenvalues of the matrices M and M̄
are equal. �

To aim at a target determining the regular A-optimal design let us consider the class
of all design matrices of the spring balance weighing design Φn×p(0, 1). For positive
definite matrix G and any X ∈ Φn×p(0, 1) we take M = X

′
G−1X. Let m1, m2, ... mp,

m1 ≤ m2 ≤ ... ≤ mp be the eigenvalus of the matrix M−1. Then tr(M−1) = m1 +m2 +
... + mp ≥ pm1. The minimum of tr(M−1) is attained if m1 = m2 = ... = mp and m1

attains the minimal value. The equality is fulfilled if and only if M−1 is proportional to
identity matrix. Such form of the matrix M = X

′
G−1X is not interesting from the point

of view of experiment as in each measurement only one object is included. Therefore,
let m1 = m2 = ... = mp−1 ≤ mp and tr(M−1) = (p − 1)m1 + mp and its minimum is
attained if and only if m1 and mp are minimal. So, we consider the matrix M with two
different eigenvalues, only.

Here, we consider the subclass of the spring balance weighing designs in the following
form

Ωξ
n×p(0, 1) ={
X : X ∈ Φn×p(0, 1), X1p = ξ1n, X

′
1n = nξ

p
1p,

nξ
p
∈ N, ξ ≤ p

}
.

Moreover, from now on until the end of the paper we consider G to be of the form

(2.2) G = g
[
(1− ρ)In + ρ1n1

′
n

]
, g > 0,

−1

n− 1
< ρ < 1.

Condition on the values of g and ρ is equivalent to the matrix G being positive definite.
When the variance matrix of errors σ2G is given by the matrix of the form 2.2 then we
say that the errors are equally correlated and they have the same variances. Let note,
G−1 = 1

g(1−ρ)

[
In − ρ

1+ρ(n−1)
1n1

′
n

]
. Next let us consider
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M = X
′
G−1X =

1

g(1− ρ)

[
X
′
X− ρ

1 + ρ(n− 1)
X
′
1n1

′
nX

]
.

We will denote by s the the number of elements equal to 1 in any row of the design
matrix X ∈ Ωξ

n×p(0, 1). It is evident that tr(M) = ns
g(1−ρ)

[
1− nsρ

p(1+ρ(n−1))

]
and

1
′
pM1p = ns2

g(1+ρ(n−1))
. From the above considerations and Theorem 2.2, eigenvalues

of M̄ are µ1 = ns(p−s)
p(p−1)g(1−ρ) and µ2 = ns2

pg(1+ρ(n−1))
. Thus the matrix M̄−1 has also

two eigenvalues 1
µ1

with the multiplicity p − 1 and 1
µ2

with the multiplicity 1. Then
tr(M̄−1) = p−1

µ1
+ 1

µ2
. Furthermore, to determine A-optimal spring balance weighing

design, we need to find the smallest value of tr(M̄−1). The tr(M̄−1) attains the lowest
bound when p−1

µ1
and 1

µ2
are minimized. We have

(2.3) tr(M̄−1) =
pg

n
φ(s),

where φ(s) = (p−1)2(1−ρ)
s(p−s) + 1+ρ(n−1)

s2
, s = 1, 2, ..., p− 1.

2.4. Theorem. Let p be even. In any nonsingular spring balance weighing design
X ∈ Ωξ

n×p(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(
−1
n−1

, P1

)
then

(2.4) tr
(
M−1) ≥ 4g

np

(
1 + ρ(n− 1) + (p− 1)2(1− ρ)

)
,

the equality in 2.4 is satisfied if and only if X1p = p
2
1n,

(ii) if ρ ∈ (Pa, Pa+1) then

(2.5) tr
(
M−1) ≥ 4pg

n(p+ 2a)

(
1 + ρ(n− 1)

p+ 2a
+

(p− 1)2(1− ρ)

p− 2a

)
,

the equality in 2.5 is satisfied if and only if X1p = p+2a
2

1n,

(iii) if ρ = Pa then

(2.6) tr
(
M−1) ≥ n(p− 1)2 ((p+ 2a− 2)(2a− 1) + (p+ 2a− 1)(p− 2a+ 2))

(p+ 2a) (n(p+ 2a− 1)(p− 2a)(p− 2a+ 2) + L(a))

the equality in 2.6 is satisfied if and only if X1p = p+2a−2
2

1n or X1p = p+2a
2

1n,

where Pa = L(a)
n(p+2a−1)(p−2a)(p−2a+2)+L(a)

, L(a) = (p− 1)2(2a− 1)(p+ 2a− 2)(p+ 2a)−
(p+ 2a− 1)(p− 2a)(p− 2a+ 2), a = 1, 2, ..., p−2

2
.

Proof. Based on the delibarations given above, we will consider the matrix M with two
eigenvalues. Theorem 2.3 implies tr(M−1) ≥ tr(M̄−1). Thus we have to asses the
equality 2.3. For given n, p, ρ and g, 2.3 is the function of s. Furthermore, to deter-
mine A-optimal spring balance weighing design, we need to find s for which φ(s) takes
the smallest value. Because s = 1, 2, ..., p − 1, then we should investigate the sequence
φ(1), φ(2), ..., φ(p− 1). Therefore we study the difference

(2.7) φ(s)− φ(s+ 1) =
(2s+ 1)(1 + ρ(n− 1))

s2(s+ 1)2
+

(p− 2s− 1)(p− 1)2(1− ρ)

s(s+ 1)(p− s− 1)(p− s) .
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For s = 1, 2, ..., p−2
2

and any n, p, ρ, we have φ(s) ≥ φ(s + 1). Thus, we investigate the
sequence for s = p−2

2
+a, a = 1, 2, ..., p−2

2
.We denote Pa = L(a)

n(p+2a−1)(p−2a)(p−2a+2)+L(a)
,

L(a) = (p − 1)2(2a − 1)(p + 2a − 2)(p + 2a) − (p + 2a − 1)(p − 2a)(p − 2a + 2). Next,
let us consider the interval ρ ∈

(
−1
n−1

, P1

)
. If s < p

2
then φ(s) ≥ φ(s + 1), if s > p

2
,

then φ(s) ≤ φ(s + 1). The smallest value of 2.3 is attained if s = p
2
and then we obtain

(i). Thus, we study ρ ∈ (Pa, Pa+1). If s < p+2a
2
, then φ(s) ≥ φ(s + 1). The inequality

s > p+2a
2

implies φ(s) ≤ φ(s+ 1). The smallest value of 2.3 is attained for s = p+2a
2
, thus

(ii). If ρ = Pa, then φ(s) = φ(s+ 1) and for s = p+2a−2
2

or s = p+2a
2
, we receive (iii). �

2.5. Theorem. Let p be even. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, P1

)
if and only if X1p = p

2
1n,

(ii) for fixed ρ ∈ (Pa, Pa+1) if and only if X1p = p+2a
2

1n,

(iii) for fixed ρ = Pa if and only if X1p = p+2a−2
2

1n or X1p = p+2a
2

1n,

where a = 1, 2, ..., p−2
2

.

Proof. Any spring balance weighing design is regular A-optimal if and only if the equal-
ities in 2.4-2.6 hold, i.e. if and only if the design matrix X ∈ Ωξ

n×p(0, 1) is given as
above. �

2.6. Theorem. Let p be even. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, P1

)
if and only if

M = 1
g(1−ρ)

[
np

4(p−1)
Ip + n(p−2)

4(p−1)
1p1

′
p − ρn2

4(1+ρ(n−1))
1p1

′
p

]
(ii) for fixed ρ ∈ (Pa, Pa+1) if and only if

M = 1
g(1−ρ)

[
n(p+2a)(p−2a)

4p(p−1)
Ip + n(p+2a)(p−2a−2)

4p(p−1)
1p1

′
p + φa1p1

′
p

]
,

(iii) for fixed ρ = Pa if and only if
M = 1

g(1−ρ)

[
n(p+2a)(p−2a)

4p(p−1)
Ip + n(p+2a)(p−2a−2)

4p(p−1)
1p1

′
p + φa1p1

′
p

]
or

M = 1
g(1−ρ)

[
n(p+2a+2)(p−2a−2)

4p(p−1)
Ip + n(p+2a+2)(p−2a−4)

4p(p−1)
1p1

′
p + φa+11p1

′
p

]
where φa = n(p+2a)(4ap(1−ρ)−ρn(p(p−1)−2a(p+1)))

4p2(p−1)(1+ρ(n−1))
, a = 1, 2, ..., p−2

2
.

Proof. From Theorem 2.3, we obtain tr(M−1) = tr(M̄−1) if and only if the eigenvalues of
M and M̄ are equal. Hence for G in the form 2.2 and X ∈ Ωξ

n×p(0, 1) the best design for
which minimum of tr(M−1) is attained if the M̄ = M one. Thus to prove this Theorem

it is worthy to notice that from 2.1 we have M̄ =
ptr(M)−1

′
pM1p

p(p−1)
Ip +

1
′
pM1p−tr(M)

p(p−1)
1p1

′
p.

Moreover, taking s = p+2a
2

we obtain
ptr(M)−1

′
pM1p

p(p−1)
= n(p+2a)(p−2a)

4p(p−1)g(1−ρ) and
1
′
pM1p−tr(M)

p(p−1)
= 1

g(1−ρ)

(
n(p+2a)(p−2a−2)

4p(p−1)
+ n(p+2a)(4ap(1−ρ)−ρn(p(p−1)−2a(p+1)))

4p2(p−1)(1+ρ(n−1))

)
, thus

(ii). For a = 0 we obtain (i). The above consideration and the condition (iii) of Theorem
2.5 imply formulas given in (iii). �

2.7. Corollary. In the special case, g = 1 and ρ = 0, the Condition (i) of Theorem
2.6 is equivalent to equality given in [5]. If additionally, a = 0 then the condition (ii) of
Theorem 2.6 is the same as given in [5] one.
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2.8. Theorem. Let p be odd. In any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(
−1
n−1

, R1

)
then

(2.8) tr
(
M−1) ≥ 4pg

n(p+ 1)2
(
1 + ρ(n− 1) + (p2 − 1)(1− ρ)

)
,

the equality in 2.8 is satisfied if and only if X1p = p+1
2

1n,

(ii) if ρ ∈ (Ra, Ra+1) then

(2.9) tr
(
M−1) ≥ 4pg

n(p+ 2a+ 1)

(
1 + ρ(n− 1)

p+ 2a+ 1
+

(p− 1)2(1− ρ)

p− 2a− 1

)
,

the equality in 2.9 is satisfied if and only if X1p = p+2a+1
2

1n,

(iii) if ρ = Ra then

(2.10) tr
(
M−1) ≥ 4pg(p− 1)2 (2a(p+ 2a+ 1) + (p+ 2a)(p− 2a− 1))

(p+ 2a− 1) (n(p+ 2a)(p− 2a+ 1)(p− 2a− 1) +N(a))

the equality in 2.10 is satisfied if and only if X1p = p+2a−1
2

1n or X1p =
p+2a+1

2
1n,

where Ra = N(a)
n(p+2a)(p−2a+1)(p−2a−1)+N(a)

, N(a) = 2(p− 1)2a(p+ 2a− 1)(p+ 2a+ 1)−
(p+ 2a)(p− 2a+ 1)(p− 2a− 1), a = 1, 2, ..., p−3

2
.

Proof. The proof of Theorem is similar to that given in Theorem 2.4. Since, we will
give the most important steps, only. For s = 1, 2, ..., p+1

2
, φ(s) ≥ φ(s + 1), for any

n, p, ρ. Thus, we investigate the sequence for s = p
2

+ a, a = 1, 2, ..., p−3
2
. We denote

Ra = N(a)
n(p+2a)(p−2a+1)(p−2a−1)+N(a)

, N(a) = 2(p−1)2a(p+2a−1)(p+2a+1)−(p+2a)(p−

2a+ 1)(p− 2a− 1), a = 1, 2, ..., p−3
2
. Next, let us consider the interval ρ ∈

(
−1
n−1

, R1

)
.

If s < p+1
2

then φ(s) ≥ φ(s + 1), if s > p+1
2
, then φ(s) ≤ φ(s + 1). The smallest

value of 2.8 is attained if s = p+1
2
. When we put s = p+1

2
in 2.3 we obtain (i). Now,

we study ρ ∈ (Ra, Ra+1). If s < p+2a+1
2

, then φ(s) ≥ φ(s + 1). If s > p+2a+1
2

, then
φ(s) ≤ φ(s+1). The smallest value of 2.3 is attained for s = p+2a+1

2
, thus (ii). If ρ = Ra,

then φ(s) = φ(s+ 1) and for s = p+2a−1
2

or s = p+2a+1
2

, we receive (iii). �

2.9. Theorem. Let p be odd. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, R1

)
if and only if X1p = p+1

2
1n,

(ii) for ρ ∈ (Ra, Ra+1) if and only if X1p = p+2a+1
2

1n,

(iii) for fixed ρ = Ra if and only if X1p = p+2a−1
2

1n or X1p = p+2a+1
2

1n,

where a = 1, 2, ..., p−3
2

.

Proof. According to the investigation given above, a spring balance weighing design is
regular A-optimal if and only if the equalities in 2.8-2.10 are satisfied, i.e. if and only if
the design matrix X ∈ Ωξ

n×p(0, 1) is given as in Theorem 2.8. �

2.10. Theorem. Let p be odd. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal
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(i) for fixed ρ ∈
(
−1
n−1

, R1

)
if and only if

M = 1
g(1−ρ)

[
n(p+1)

4p
Ip + n(p+1)

4p
1p1

′
p − ρn2(p+1)2

4p2(1+ρ(n−1))
1p1

′
p

]
(ii) for ρ ∈ (Ra, Ra+1) if and only if

M = 1
g(1−ρ)

[
n(p+2a+1)(p−2a−1)

4p(p−1)
Ip + n(p+2a+1)(p−2a−1)

4p(p−1)
1p1

′
p − ψa1p1

′
p

]
,

(iii) for ρ = Ra if and only if
M = 1

g(1−ρ)

[
n(p+2a+1)(p−2a−1)

4p(p−1)
Ip + n(p+2a+1)(p−2a−1)

4p(p−1)
1p1

′
p − ψa1p1

′
p

]
or

M = 1
g(1−ρ)

[
n(p+2a+3)(p−2a−3)

4p(p−1)
Ip + n(p+2a+3)(p−2a−3)

4p(p−1)
1p1

′
p − ψa+11p1

′
p

]
,

where ψa = n(p+2a+1)(ρn(p2−1)−4ap(1−ρ)−2anρ(p+1))

4p2(p−1)(1+ρ(n−1))
, a = 1, 2, ..., p−3

2
.

Proof. The proof is similar to given in Theorem 2.6 one. It is sufficient to show that

taking s = p+2a+1
2

we obtain
ptr(M)−1

′
pM1p

p(p−1)
= n(p+2a+1)(p−2a−1)

4p(p−1)g(1−ρ) and
1
′
pM1p−tr(M)

p(p−1)
=

1
g(1−ρ)

(
n(p+2a+1)(p−2a−1)

4p(p−1)
− n(p+2a+1)(ρn(p2−1)−4ap(1−ρ)−2anρ(p+1)))

4p2(p−1)(1+ρ(n−1))

)
. Thus (ii). For a =

0 we obtain (i). Moreover, the above considerations and the condition (iii) of Theorem
2.9 imply the formulas presented in (iii). �

2.11. Corollary. In the special case, g = 1 and ρ = 0, the Condition (i) of Theorem
2.10 is equivalent to equality given in [5]. If additionally, a = 0 then (ii) of Theorem 2.10
is the same as given in [5] one.

3. Examples

Take into the consideration X = N
′
, where N is the incidence matrix of balanced

incomplete block design with the parameters v, b, r, k, λ, see [13]. To simplify the
notation it is customary to write v instead of p and b instead of n. It is obvious that
we are not able to give the construction of regular A-optimal spring balance weighing
design for any combination of p, n and ρ. With the results obtained until now we can
establish the following corollaries which indicate the series of the parameters of balanced
incomplete block designs. Based on that incidence matrices we form the design matrices
of regular A-optimal designs for an appropriate ρ.

3.1. Corollary. Let v be even. If exists the balanced incomplete block design with the
parameters v, b = v(v − 1), r = 0.5(v − 1)(v + 2a − 2), k = 0.5(v + 2a − 2), λ =
0.25(v + 2a− 2)(v + 2a− 4), a = 1, 2, ..., v−2

2
, given by the incidence matrix N then any

X ∈ Ωξ
v(v−1)×v(0, 1) in the form X = N

′
is regular A-optimal spring balance weighing

with the variance matrix of errors σ2G for ρ ∈
(
−1
n−1

, P1

]
or ρ ∈ [Pa, Pa+1) .

3.2. Corollary. Let v be even. If exists the balanced incomplete block design with the
parameters v = 2(t+ 1), b = 2(2t+ 1), r = 2t+ 1, k = t+ 1, λ = t, t = 1, 2, ..., given by
incidence matrix N, then any X ∈ Ωξ

2(2t+1)×2(t+1)(0, 1) in the form X = N
′
is regular

A-optimal spring balance weighing design with the variance matrix of errors σ2G for
ρ ∈

(
−1

4t+1
, 2t3+5t2+3t+1

6t3+13t2+6t+1

]
.

3.3. Corollary. Let v be even. Any X ∈ Ωξ
b×v(0, 1) in the form X = N

′
, where N

is the incidence matrix of balanced incomplete block design with the parameters v, b =(
v

0.5(v + 2a− 2)

)
, r =

(
v − 1

0.5(v + 2a− 4)

)
, k = v+2a−2

2
, λ =

(
v − 2

0.5(v + 2a− 6)

)
,

a = 1, 2, ..., v−2
2
, is regular A-optimal spring balance weighing design with the variance
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matrix of errors σ2G for ρ ∈
(
−1
n−1

, P1

]
or ρ ∈ [Pa, Pa+1), where

(
η
τ

)
denotes binomial

coefficient.

3.4. Corollary. Let v be odd. If exists the balanced incomplete block design with the
parameters v, b = 0.5v(v − 1), r = 0.25(v − 1)(v + 2a − 1), k = 0.5(v + 2a − 1), λ =
0.125(v+ 2a−1)(v+ 2a−3), a = 1, 2, ..., v−3

2
, given by the incidence matrix N, then any

X ∈ Ωξ
0.5v(v−1)×v(0, 1) in the form X = N

′
is regular A-optimal spring balance weighing

design with the variance matrix of errors σ2G for ρ ∈
(
−1
n−1

, R1

]
or ρ ∈ [Ra, Ra+1) .

3.5. Corollary. Let v be odd. If exists the balanced incomplete block design with the
parameters v = 2t+ 1, b = 2(2t+ 1), r = 2(t+ 1), k = t+ 1, λ = t+ 1, t = 2, 3, ..., given
by the incidence matrix N, then any X ∈ Ωξ

2(2t+1)×(2t+1)(0, 1) in the form X = N
′
is

regular A-optimal spring balance weighing design with the variance matrix of errors σ2G

for ρ ∈
(
−1

4t+1
, 8t3+22t2+15t+3

16t3+30t2+5t−3

]
.

3.6. Corollary. Let v be odd. Any X ∈ Ωξ
b×v(0, 1) in the form X = N

′
, where N

is the incidence matrix of balanced incomplete block design with the parameters v, b =(
v

0.5(v + 2a− 1)

)
, r =

(
v − 1

0.5(v + 2a− 3)

)
, k = v+2a−1

2
, λ =

(
v − 2

0.5(v + 2a− 5)

)
,

a = 1, 2, ..., v−1
2
, is regular A-optimal spring balance weighing design with the variance

matrix of errors σ2G for ρ ∈
(
−1
n−1

, R1

]
or ρ ∈ [Ra, Ra+1).

3.7. Corollary. Any X ∈ Ωξ
v×v(0, 1) in the form X = N

′
, where N is the incidence

matrix of balanced incomplete block design with the parameters v = b, r = k = v − 1,
λ = v − 2, v = 3, 4, ..., is regular A-optimal spring balance weighing design with the
variance matrix of errors σ2G for ρ ∈

[
v4−8v3+24v2−34v+19
(v−1)(v3−7v2+17v−13)

, 1
)
.

3.8. Example. Let X ∈ Ωξ
30×6(0, 1) and let for G, g > 0, ρ ∈ (−0.034, 1), ξ ≤ 6.

(i) If ρ ∈ (−0.034, 0.170) then X = N
′
1,

(ii) if ρ ∈ (0.170, 0.733) then X = N
′
2,

(iii) if ρ ∈ (0.733, 1) then X = N
′
3,

(iv) if ρ = 0.170 then X = N
′
h, h = 1, 2,

(v) if ρ = 0.733 then X = N
′
h, h = 2, 3,

is regular A-optimal spring balance weighing design, where Nh, h = 1, 2, 3, is the in-
cidence matrix of the balanced incomplete block design with parameters v = 6, b1 =
30, r1 = 15, k1 = 3, λ1 = 6, v = 6, b2 = 30, r2 = 20, k2 = 4, λ2 = 12,
v = 6, b3 = 30, r3 = 25, k3 = 5, λ3 = 20, respectively.
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