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Article Info 

 

Abstract 

In this study, forced vibration of a rotating disk is investigated. The disk is clamped at the inner 

and free at the outer circumferences. A time varying excitation force is applied to a spacefixed 

point on the disk surface perpendicularly. The presence of multiple excitation forces is also 

considered in the paper. These forces can be applied to any spacefixed point on the disk surface. 

The disk is modelled as a thin plate and the Galerkin method is used to analyze the forced 

vibration characteristics of the rotating disk. Power spectral density diagrams of the forced 

vibrations with both one and multiple excitation forces are plotted. 
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1. INTRODUCTION 

 

Investigations of rotating and non-rotating disks have long background in engineering sciences. It is 

obvious that studies about rotating disks are in paralel with industrial needs, like turbines, rotating cutting 

saws, gears, grinding wheels, etc. In recent years, with the development in informatics industry, it is 

observed that there is an increasing research trend on rotating disks, especially in data storage devices area. 

 

In the first studies, disks were modeled as thin plates by using linear elasticity theory [1,2]. Studies about 

vibrational characteristics of disks were based on determining natural frequencies and mode shapes [3-11]. 

On the other hand, in rotating case, it is very difficult to obtain an analytical solution. Kirkhope and Wilson 

[3] developed a numerical solution based on finite element approach for axisymmetric disks by executing 

vibration and stress analyses. In analytical studies, solutions for rotating case were obtained by using 

Rayleigh-Ritz, Galerkin and Lagrange methods [7-9].  

 

In the literature, it is observed there are two different methods for the investigations about forced vibration 

of rotating disks. In the first approach, it is assumed that excitation force, which exerts on the disk, moves 

when the disk does not [12,13]. In that approach, the solution is obtained when stresses, which are produced 

by rotation movement, are neglected. In the second approach, it is assumed that disk rotates and under the 

presence of rotation related stresses in the equation of motion, the solution is obtained [14,15]. Also, some 

studies investigate the dynamic response of rotating disks under prescribed forced displacement excitations 

[16,17]. 

 

In addition, not only vibrations but also stabilities of disks are affected by the rotation movement. The 

critical speed and stability analyses are also studied both analytically and numerically [18-21]. 

 

One of the most accurate examples of a rotating disk under perpendicular spacefixed force is a hard disk. 

Since it is thought that the axial modes are more dominant, a study which investigates the axial response 

was presented by Jiang et al. [22]. In addition, disk-read/write head interactions were also modelled both 
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analytically and numerically [23-24]. Also, thanks to numerical and experimental dynamic analyses of 

harddisk drives under operating conditions, the dynamic characteristics of these systems were determined 

efficiently [25]. In recent studies, tranverse nonlinear vibration analysis was carried out in the presence of 

rotating concentrated load by Zhang and Yang [26]. They used clamped-free boundary conditions and 

utilized the method of multiple scales to solve nonlinear equations. Younesian et al. [27] conducted a 

research about vibrational characteristics of circular plates by considering rotating loads at the outer edge. 

They used the Galerkin method and obtained closed-form solution. Norouzi and Younesian [28] 

investigated the forced vibration characteristics of a rotating disk in the presence of concentrated force. 

They used the Galerkin method to obtain the solution and examined the response by using both fixed and 

rotary frames. 

 

In this work, the solution is obtained assuming that the disk rotates and the disk flexibility is taken into 

consideration. The flexibility of shaft is neglected. When the disk rotates, the forced vibration of disk is 

examined in the existence of perpendicular spacefixed forces. It is thought that this examination can be a 

model for harddisk and read/write head interactions. For this purpose, the Galerkin method is used to obtain 

the solution. In that method, an approximate function which satisfies boundary conditions is chosen and it 

is substituted into the equation of motion. With the help of this solution, power spectral density diagrams 

are obtained. The effects of the harmonic forces, which are applied on the arbitrary points of the disk with 

a specific excitation frequencies, on the amplitudes of some modes are investigated. It is observed that these 

forces can decrease the amplitude values for some specific cases. Thus, it has shown that the undesired 

vibrational effects can be eliminated by using a well-designed force system. 

 

2. EQUATIONS AND FORMULATION 

 

In spacefixed coordinate system, the equation of motion of a rotating disk under perpendicular distributed 

force can be written as [17]; 

 

𝐷 (
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜓2)

2

𝑤 + 𝜌ℎ (
𝜕2𝑤

𝜕𝑡2 + 2Ω
𝜕2𝑤

𝜕𝜓𝜕𝑡
+ Ω2

𝜕2𝑤

𝜕𝜓2) −
ℎ

𝑟
[

𝜕

𝜕𝑟
(𝜎𝑟𝑟

𝜕𝑤

𝜕𝑟
) +

𝜎𝜓

𝑟

𝜕2𝑤

𝜕𝜓2] = 𝑝(𝑟, 𝜓, 𝑡) (1) 

 

Here, 𝑤 is the transverse displacement of disk, 𝐷 = 𝐸ℎ3/[12(1 − 𝜐2)] is the bending rigidity of the disk 

(𝜐: Poisson’s ratio of the disk material), 𝜎𝑟 and 𝜎𝜓 are the radial and tangential stresses which are caused 

by rotation, ℎ and Ω are the thickness of disk and the rotational speed of disk, (𝑟, 𝜓) represent the spacefixed 

coordinates. Also, 𝑝(𝑟, 𝜓, 𝑡) is variable distributed force which is applied on the disk surface 

perpendicullary. 

 

The transverse displacement function of the disk can be selected as below: 

 

𝑤(𝑟, 𝜓, 𝑡) = ∑ ∑ 𝜂𝑚𝑛(𝑡)𝑅𝑚𝑛(𝑟) 𝑠𝑖𝑛(𝑛𝜓 − 𝜔𝑚𝑛𝑡)

𝑀

𝑚=0

𝑁

𝑛=0

 (2) 

 

In this equation, sinusoidal term can be written explicitly: 

 

𝑤(𝑟, 𝜓, 𝑡) = ∑ ∑ [𝜂𝑚𝑛(𝑡) cos 𝜔𝑚𝑛𝑡 sin 𝑛𝜓 − 𝜂𝑚𝑛(𝑡) sin 𝜔𝑚𝑛𝑡 cos 𝑛𝜓]

𝑀

𝑚=0

𝑁

𝑛=0

𝑅𝑚𝑛(𝑟) (3) 

 

Here, in order to express this equation in a simpler form, the abbreviations below are used; 

 
𝑞𝑚𝑛

𝑠 (𝑡) = 𝜂𝑚𝑛(𝑡) cos 𝜔𝑚𝑛𝑡  ;                𝑞𝑚𝑛
𝑐 (𝑡) = −𝜂𝑚𝑛(𝑡) sin 𝜔𝑚𝑛𝑡 (4) 

 

So, Equation (3) can be written as; 
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𝑤(𝑟, 𝜓, 𝑡) = ∑ ∑ [𝑞𝑚𝑛
𝑠 (𝑡) sin 𝑛𝜓 + 𝑞𝑚𝑛

𝑐 (𝑡) cos 𝑛𝜓]

𝑀

𝑚=0

𝑁

𝑛=0

𝑅𝑚𝑛(𝑟) (5) 

 

This equation and its derivatives are substituted into the Equation (1). Thus, the equation of motion is 

obtained as; 

 

∑ ∑ {𝐷 (
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𝜕𝑟4 +
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𝑟

𝜕3𝑅𝑚𝑛(𝑟)
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𝑀

𝑚=0

𝑁
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−
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𝜎𝜓𝑅𝑚𝑛(𝑟)] . [𝑞𝑚𝑛

𝑠 (𝑡) sin 𝑛𝜓 + 𝑞𝑚𝑛
𝑐 (𝑡) cos 𝑛𝜓]

+ 𝜌ℎ([�̈�𝑚𝑛
𝑠 (𝑡) sin 𝑛𝜓 + �̈�𝑚𝑛

𝑐 (𝑡) cos 𝑛𝜓] + 2Ω𝑛[�̇�𝑚𝑛
𝑠 (𝑡) cos 𝑛𝜓 −�̇�𝑚𝑛

𝑐 (𝑡) sin 𝑛𝜓]

− Ω2𝑛2[𝑞𝑚𝑛
𝑠 (𝑡) sin 𝑛𝜓 +𝑞𝑚𝑛

𝑐 (𝑡) cos 𝑛𝜓])𝑅𝑚𝑛(𝑟)} = 𝑝(𝑟, 𝜓, 𝑡) 

(6) 

 

The term, 𝐹𝑚𝑛, is introduced as below: 

 

𝐹𝑚𝑛 = 𝐷 (
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(7) 

 

Substituting this abbreviation into Equation (6)gives: 

 

∑ ∑ {[𝐹𝑚𝑛𝑞𝑚𝑛
𝑠 (𝑡) + 𝜌ℎ(�̈�𝑚𝑛

𝑠 (𝑡) − 2Ω𝑛�̇�𝑚𝑛
𝑐 (𝑡) − Ω2𝑛2𝑞𝑚𝑛

𝑠 (𝑡))𝑅𝑚𝑛(𝑟)] sin 𝑛𝜓 + [𝐹𝑚𝑛𝑞𝑚𝑛
𝑐 (𝑡)

𝑀

𝑚=0

𝑁

𝑛=0

+ 𝜌ℎ(�̈�𝑚𝑛
𝑐 (𝑡) + 2Ω𝑛�̇�𝑚𝑛

𝑠 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑐 (𝑡))𝑅𝑚𝑛(𝑟)] cos 𝑛𝜓} = 𝑝(𝑟, 𝜓, 𝑡) 

(8) 

 

Dividing both sides with 𝜌ℎ gives the following equation; 

 

∑ ∑ {[�̈�𝑚𝑛
𝑠 (𝑡)(𝑅𝑚𝑛(𝑟) − 2Ω𝑛�̇�𝑚𝑛

𝑐 (𝑡)𝑅𝑚𝑛(𝑟) − Ω2𝑛2𝑞𝑚𝑛
𝑠 (𝑡)𝑅𝑚𝑛(𝑟) +

𝐹𝑚𝑛

𝜌ℎ
𝑞𝑚𝑛

𝑠 (𝑡)] sin 𝑛𝜓 + [�̈�𝑚𝑛
𝑐 (𝑡)𝑅𝑚𝑛(𝑟)

𝑀

𝑚=0
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𝑛=0

+ 2Ω𝑛�̇�𝑚𝑛
𝑠 (𝑡)𝑅𝑚𝑛(𝑟) − Ω2𝑛2𝑞𝑚𝑛

𝑐 (𝑡)𝑅𝑚𝑛(𝑟) +
𝐹𝑚𝑛

𝜌ℎ
𝑞𝑚𝑛

𝑐 (𝑡)] cos 𝑛𝜓} =
𝑝(𝑟, 𝜓, 𝑡)

𝜌ℎ
 

(9) 

 

To get the solution, Galerkin method is used. For this purpose, the weighted residual function is built and 

solved. 

 

∫ ∫ ∑ ∑ {[�̈�𝑚𝑛
𝑠 (𝑡)𝑅𝑚𝑛(𝑟) − 2Ω𝑛�̇�𝑚𝑛

𝑐 (𝑡)𝑅𝑚𝑛(𝑟) − Ω2𝑛2𝑞𝑚𝑛
𝑠 (𝑡)𝑅𝑚𝑛(𝑟) +

𝐹𝑚𝑛

𝜌ℎ
𝑞𝑚𝑛

𝑠 (𝑡)] sin 𝑛𝜓

𝑀

𝑚=0

𝑁

𝑛=0

2𝜋

0

𝑅0

𝑅𝑖

+ [�̈�𝑚𝑛
𝑐 (𝑡)𝑅𝑚𝑛(𝑟) + 2Ω𝑛�̇�𝑚𝑛

𝑠 (𝑡)𝑅𝑚𝑛(𝑟) − Ω2𝑛2𝑞𝑚𝑛
𝑐 (𝑡)𝑅𝑚𝑛(𝑟)

+
𝐹𝑚𝑛

𝜌ℎ
𝑞𝑚𝑛

𝑐 (𝑡)] cos 𝑛𝜓} . 𝑅𝑠𝑛(𝑟)[𝑞𝑠𝑛
𝑠 (𝑡) sin 𝑛𝜓 +𝑞𝑠𝑛

𝑐 (𝑡) cos 𝑛𝜓]𝑟𝑑𝜓𝑑𝑟

=
1

𝜌ℎ
∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)

2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟)[𝑞𝑠𝑛
𝑠 (𝑡) sin 𝑛𝜓 +𝑞𝑠𝑛

𝑐 (𝑡) cos 𝑛𝜓]𝑟𝑑𝜓𝑑𝑟 

(10) 
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If the order of the integration and summation is changed, the following is obtained after some arrangements; 

 

∑ ∑ {([(�̈�𝑚𝑛
𝑠 (𝑡) − 2Ω𝑛�̇�𝑚𝑛

𝑐 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑠 (𝑡)) ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

𝑀

𝑚=0

𝑁

𝑛=0

+ 𝑞𝑚𝑛
𝑠 (𝑡) ∫

𝐹𝑚𝑛

𝜌ℎ

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟] . ∫ sin 𝑛𝜓 cos 𝑛𝜓 𝑑𝜓
2𝜋

0

+ [(�̈�𝑚𝑛
𝑐 (𝑡) + 2Ω𝑛�̇�𝑚𝑛

𝑠 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑐 (𝑡)) ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

+ 𝑞𝑚𝑛
𝑐 (𝑡) ∫

𝐹𝑚𝑛

𝜌ℎ

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟] ∫ cos2 𝑛𝜓 𝑑𝜓
2𝜋

0

) 𝑞𝑠𝑛
𝑐 (𝑡)

+ ([(�̈�𝑚𝑛
𝑠 (𝑡) − 2Ω𝑛�̇�𝑚𝑛

𝑐 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑠 (𝑡)) ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

+ 𝑞𝑚𝑛
𝑠 (𝑡) ∫

𝐹𝑚𝑛

𝜌ℎ
𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

] ∫ sin2 𝑛𝜓 𝑑𝜓
2𝜋

0

+ [(�̈�𝑚𝑛
𝑐 (𝑡) + 2Ω𝑛�̇�𝑚𝑛

𝑠 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑐 (𝑡)) ∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

+ 𝑞𝑚𝑛
𝑐 (𝑡) ∫

𝐹𝑚𝑛

𝜌ℎ
𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟

𝑅𝑜

𝑅𝑖

] ∫ sin 𝑛𝜓 cos 𝑛𝜓 𝑑𝜓
2𝜋

0

) 𝑞𝑠𝑛
𝑠 (𝑡)}

=
1

𝜌ℎ
[∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)

2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟) 𝑟cos 𝑛𝜓𝑑𝜓𝑑𝑟𝑞𝑠𝑛
𝑐 (𝑡)

+ ∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)
2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟)𝑟 sin 𝑛𝜓𝑑𝜓𝑑𝑟𝑞𝑠𝑛
𝑠 (𝑡)] 

(11) 

 

If the following definitions are used; 

 

∫ 𝑅𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟 = Γ𝑠𝑚𝑛

𝑅𝑜

𝑅𝑖

  (12) 

 
1

𝜌ℎ
∫ 𝐹𝑚𝑛(𝑟)𝑅𝑠𝑛(𝑟)𝑟𝑑𝑟 = 𝜙𝑠𝑚𝑛

𝑅𝑜

𝑅𝑖

 (13) 

 

Equation (11) can be rewritten as follows; 

 

∑ ∑ {([(�̈�𝑚𝑛
𝑐 (𝑡) + 2Ω𝑛�̇�𝑚𝑛

𝑠 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑐 (𝑡))Γ𝑠𝑚𝑛 + 𝑞𝑚𝑛

𝑐 (𝑡)𝜙𝑠𝑚𝑛] ∫ cos2 𝑛𝜓 𝑑𝜓
2𝜋

0

) 𝑞𝑠𝑛
𝑐 (𝑡)

𝑀

𝑚=0

𝑁

𝑛=0

+ ([(�̈�𝑚𝑛
𝑠 (𝑡) − 2Ω𝑛�̇�𝑚𝑛

𝑐 (𝑡) − Ω2𝑛2𝑞𝑚𝑛
𝑠 (𝑡))Γ𝑠𝑚𝑛 + 𝑞𝑚𝑛

𝑠 (𝑡)𝜙𝑠𝑚𝑛] ∫ sin2 𝑛𝜓 𝑑𝜓
2𝜋

0

) 𝑞𝑠𝑛
𝑠 (𝑡)}

=
1

𝜌ℎ
[∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)

2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟) 𝑟cos 𝑛𝜓𝑑𝜓𝑑𝑟𝑞𝑠𝑛
𝑐 (𝑡)

+ ∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)
2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟)𝑟 sin 𝑛𝜓𝑑𝜓𝑑𝑟𝑞𝑠𝑛
𝑠 (𝑡)] 

(14) 

 

Here, it is clear that this equation has two different characteristics for n=0 and 𝑛 ≠ 0. In this study, the 

coefficients are arranged for 𝑛 ≠ 0. By arranging the coefficients of 𝑞𝑚𝑛
𝑐 (𝑡) and 𝑞𝑚𝑛

𝑠 (𝑡), the equations can 

be represented as second order linear differential equations. In matrix notation, for every n value, it can be 

rewritten as: 



277    Mertol-TUFEKCI, Omer Ekim-GENEL, Hilal-KOC, Olcay-OLDAC, Ekrem-TUFEKCI/ GU J Sci, 32(1): 273-284 (2019) 

 

[
Γ𝑠𝑚𝑛 0

0 Γ𝑠𝑚𝑛
] {

�̈⃗�𝑚𝑛
𝑠 (𝑡)

�̈⃗�𝑚𝑛
𝑐 (𝑡)

} + 2Ω𝑛 [
0 −Γ𝑠𝑚𝑛

Γ𝑠𝑚𝑛 0
] {

�̇⃗�𝑚𝑛
𝑠 (𝑡)

�̇⃗�𝑚𝑛
𝑐 (𝑡)

} + [
𝜙𝑠𝑚𝑛 − Ω2𝑛2Γ𝑠𝑚𝑛 0

0 𝜙𝑠𝑚𝑛 − Ω2𝑛2Γ𝑠𝑚𝑛
] {

�⃗�𝑚𝑛
𝑠 (𝑡)

�⃗�𝑚𝑛
𝑐 (𝑡)

}

=
1

𝜌ℎ
{

�⃗⃗�𝑠𝑛
𝑠

�⃗⃗�𝑠𝑛
𝑐

} 

(15) 

 

Here, Γ𝑠𝑚𝑛 is a symmetric matrix with (M+1)(M+1) dimensions. Also, 𝜙𝑠𝑚𝑛 is a matrix with 

(M+1)(M+1) dimensions. Equation (15) can be expressed in short form: 

 

𝐌𝑛�̈⃗�𝑛(𝑡) + 𝐆𝑛�̇⃗�𝑛(𝑡) + 𝐊𝑛�⃗�𝑛(𝑡) = �⃗⃗�𝑛(𝑡) (16) 

 

Here, 𝐌𝑛 , 𝐆𝑛 and 𝐊𝑛 are the matrices with 2(M+1)2(M+1) dimensions and �⃗�𝑛(𝑡), �̇⃗�𝑛(𝑡), �̈⃗�𝑛(𝑡) and 

�⃗⃗�𝑛(𝑡) are the vectors with 2(M+1)1 dimensions and are given as follows: 

 

𝐌𝑛 = [
Γ𝑠𝑚𝑛 0

0 Γ𝑠𝑚𝑛
] 𝐆𝑛 = 2Ω𝑛 [

0 −Γ𝑠𝑚𝑛

Γ𝑠𝑚𝑛 0
] 𝐊𝑛 = [

𝜙𝑠𝑚𝑛 − Ω2𝑛2Γ𝑠𝑚𝑛 0

0 𝜙𝑠𝑚𝑛 − Ω2𝑛2Γ𝑠𝑚𝑛
] (17) 

 

�⃗�𝑛(𝑡) = {
�⃗�𝑚𝑛

𝑠 (𝑡)

�⃗�𝑚𝑛
𝑐 (𝑡)

} �̇⃗�𝑛(𝑡) = {
�̇⃗�𝑚𝑛

𝑠 (𝑡)

�̇⃗�𝑚𝑛
𝑐 (𝑡)

} �̈⃗�𝑛(𝑡) = {
�̈⃗�𝑚𝑛

𝑠 (𝑡)

�̈⃗�𝑚𝑛
𝑐 (𝑡)

} �⃗⃗�𝑛(𝑡) = {
�⃗⃗�𝑠𝑛

𝑠

�⃗⃗�𝑠𝑛
𝑐

} (18) 

 

𝐌𝑛 is real, symmetric and positive-definite, 𝐆𝑛 is real and skew-symmetric and 𝐊𝑛 is also real and 

symmetric. 𝑞𝑚𝑛
𝑠 (𝑡) and 𝑞𝑚𝑛

𝑐 (𝑡) are vectors of generalized coordinates with (M+1) dimensions. �⃗⃗�𝑠𝑛
𝑠  and 

�⃗⃗�𝑠𝑛
𝑐  are vectors of external excitation force with (M+1) dimensions. External excitation force, which is 

applied on the disk surface perpendiculary, is a time-varying single force: 

 

𝑝(𝑟, 𝜓, 𝑡) =
𝐹

𝑟
𝛿(𝑟 − 𝑅1)𝛿(𝜓 − 𝜓1) sin(�̅�𝑡 − 𝜙1) (19) 

 

Here, 𝛿 is Dirac delta function, 𝑅1 and 𝜓1 are excitation coordinates, �̅� is the frequency of external 

excitation force, 𝜙1 is the phase angle of the external excitation force. Expressions in right-hand side of 

Equation (14) can be arranged as follows: 

 
1

𝜋𝜌ℎ
∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)

2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟) 𝑟cos 𝑛𝜓𝑑𝜓𝑑𝑟 =
1

𝜋𝜌ℎ
𝐹𝑅𝑠𝑛(𝑅1) cos 𝑛𝜓1 sin(�̅�𝑡 − 𝜙1) (20) 

 
1

𝜋𝜌ℎ
∫ ∫ 𝑝(𝑟, 𝜓, 𝑡)

2𝜋

0

𝑅𝑜

𝑅𝑖

𝑅𝑠𝑛(𝑟) 𝑟 sin 𝑛𝜓 𝑑𝜓𝑑𝑟 =
1

𝜋𝜌ℎ
𝐹𝑅𝑠𝑛(𝑅1) sin 𝑛𝜓1 sin(�̅�𝑡 − 𝜙1) (21) 

 

Equation (16) can be converted from second order differential equation to two first order differential 

equations by using the variables consisting of �⃗�𝑛 and its derivations below: 

 

�⃗� = {
�⃗�𝑛(𝑡)

�⃗��̇�(𝑡)
}       �⃗̇� = {

�⃗��̇�(𝑡)

�⃗�𝑛
̈ (𝑡)

} (22) 

 

Thus, differential equations are obtained in matrix notation as follows: 

 

[
𝐊𝑛 0
0 𝐌𝑛

] {
�⃗��̇�(𝑡)

�⃗�𝑛
̈ (𝑡)

} + [
0 −𝐊𝑛

𝐊𝑛 𝐆𝑛
] {

�⃗�𝑛(𝑡)

�⃗��̇�(𝑡)
} = {

0

�⃗⃗�𝑛
} (23) 

 

In short form, Equation (23) can be rewritten by using Equation (22) as indicated below: 
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𝐌∗�̇⃗� + 𝐆∗�⃗� = �⃗⃗�𝑛
∗  (24) 

 

Here, 𝐌∗and 𝐆∗ are the matrices with 4(M+1)*4(M+1) dimensions and �⃗⃗�𝑛
∗  is a vector with 4(M+1)*1 

dimension. The abbreviations can be represented as noted below: 

 

𝐌∗ = [
𝐊𝑛 0
0 𝐌𝑛

] 𝐆∗ = [
0 −𝐊𝑛

𝐊𝑛 𝐆𝑛
] �⃗⃗�𝑛

∗ = {
0

�⃗⃗�𝑛
} (25) 

 

Equation (24) can be written as: 

 

�̇⃗� = 𝐀�⃗� + 𝐁 (26) 

 

Here, A and B matrices are with 4(M+1)*4(M+1) dimensions and are given as follows: 

 

𝐀 = −(𝐌∗)−1𝐆∗ 𝐁 = (𝐌∗)−1�⃗⃗�𝑛

∗
 (27) 

 

By applying �⃗� = �̇⃗� transformation, Equation (26) can be rewitten as; 

 
�⃗� = 𝐂�⃗� + 𝐃 (28) 

 

Here, if �⃗� = �⃗�𝑛
̇  transformation is made by using Equation (22), C and D matrices are obtained. 

 

𝐂 = [𝟎  𝐈] 𝐃 = 𝟎 (29) 

 

Thus, the problem is expressed in state space form. 

 

3. RESULTS (POWER SPECTRAL DENSITY DIAGRAMS) 

 

Power spectral density (PSD) function shows the energy density as a function of frequency. In other words, 

the PSD diagram gives the energy density of the signal for each frequency. In this stage, the numerical 

results are obtained for some example problems. A rotating disk with dynamic forces applied perpendicular 

on it is investigated. The geometric and material properties of the disk are chosen as; the inner radius of the 

disk, 𝑅𝑖, is 0.024 m; the outer radius, 𝑅𝑜, is 0.08 m; the thickness of disk, h, is 1 mm; the density of the disk 

material, 𝜌, is 7850 kg/m3; the Young’s modulus, E, is 206 GPa and the Poisson’s ratio, 𝜐, is 0.3. The 

rotational speed of the disk, Ω, is 192.75 Hz. 

 

In the first example, a single excitation force is applied to the disk surface perpendicularly. The frequency 

of the excitation force is set to the first mode frequency of the rotating disk and the magnitude of the force 

is 1 N. Excitation point is 6.6 cm from the center. In Figure 1, PSD diagram for this example is presented. 

Here, the phase difference that is time delay of the force from the starting time is zero. As it can be seen 

from Figure 1, since the excitation frequency coincides with the first mode frequency, the amplitude value 

increased significantly at that frequency, as it is expected. 
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Figure 1. PSD diagram for a single excitation force which is set to first mode frequency 

 

As another example, the same case is investigated and at this time, the frequency of the excitation force is 

set to the third mode frequency of the disk with no phase angle. In Figure 2, the PSD diagram for this case 

is presented. It is clear that the amplitude at the third mode frequency of the disk is much more greater than 

those of other frequencies. 

 

 

Figure 2. PSD diagram for a single excitation force which is set to third mode frequency with zero phase 

difference 
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Figure 3. PSD diagram for a single excitation force which is set to third mode frequency and phase 

difference is  𝜋/2 

 

In another case, Figure 3 gives the PSD diagram of this disk that has 𝜋/2  phase difference. For various 

phase difference values, the amplitudes of other modes change comparatively. It can be used to eliminate 

large amplitudes of some vibrational modes by adjusting the positions, numbers, frequencies and phase 

differences of the excitation forces. 

 

In Figure 4, two forces, which have 1 N magnitudes, are applied to the disk at different locations. Phase 

differences of forces are 𝜋/6. Excitation points are 6.6 cm from the center. Excitation frequency is set to 

the first mode frequency of the disk. As it can be seen from the Figure 4, the amplitude value increases 

considerably at excitation frequency, while those of the other modes relatively decrease. If Figure 4 is 

compared with Figure 1, it can be seen that the general characteristics of the diagram change and amplitudes 

of some mode shapes decrease. Therefore, the authors think that undesired amplitudes of a rotating disk 

can be eliminated or the vibrational characteristics of a rotating disk can be tailored by adjusting the number, 

positions, frequencies and phase angles of the excitation forces. 
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Figure 4. PSD diagram for two different excitation forces which have 𝜋/6 phase difference 

 

Two excitation forces are applied to the rotating disk at different locations and their magnitudes are 1N. 

The angular positions of the forces are 𝜋/4 and 𝜋/2, and the radial positions are the same; 6.6 cm from the 

center. The phase angles are 𝜋/2 and 0. The PSD diagram for this case is given in Figure 5. 

 

 

Figure 5. PSD diagram for two excitation forces which have different excitation locations and different 

phase differences 
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The amplitude of the first mode becomes closer to those of the other modes. This means that the amplitudes 

of some mode can be reduced considerably, if the excitation force with a proper phase angle is applied to a 

proper position. 

 

4. CONSLUSIONS 

 

In this study, the forced vibration of the rotating disk is investigated. Excitation forces are applied 

perpendicular to the rotating disk. The effects of the number, frequencies, phase differences and locations 

of excitation forces on the modes are investigated. The power densities of the modes are obtained and the 

PSD diagrams are plotted. 

 

In the literature, mostly, finite element analysis is used to study the forced vibrations of a rotating disk. In 

this paper, differential equation is solved by using the Galerkin method. Furthermore, in the literature, as 

far as the authors know, it has not been found any paper studying more than one excitation force. 

It is thought that vibrations can be controlled effectively by setting the properties and the number of the 

excitation forces properly. In that kind of control application, a more detailed investigation may be required 

due to increasing importance of excitation frequencies, excitation locations and phase differences. 

 

It is observed that a force which is set to a specific frequency at any arbitrary excitation location can 

decrease energies of the amplitudes of some modes. Thus, it is thought that by using a well-designed force 

system, unwanted vibrations can be eliminated and the vibrational characteristisc of a rotating disk may be 

tailored. 
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