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Abstract 

This study is aimed to obtain an appropriate logistic regression model based on the bootstrap 

methods. For this purpose, two bootstrap methods called bootstrap I and bootstrap II are given to 

obtain the estimations of parameters and standard errors. Traditional logistic regression is 

compared with the bootstrap I and bootstrap II methods in terms of the parameter estimations and 

standard errors. It has been found that the standard errors of the parameter estimations for the 

bootstrap I model are smaller than others. Also, the average widths of confidence interval based 

on bootstrap I model are narrower than the logistic regression and bootstrap II. It is seen that, the 

simulation study based on different sample sizes supports these results. It can be said that the 

bootstrap I model based on resampling of errors term is the best in estimating coronary artery 

disease. 
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1. INTRODUCTION 

 

The logistic regression (LR) analyzes the effect of the independent variable on the dependent variable by 

comparing the probability of occurrence of one of the two categories of dependent variable with the 

probability of occurrence of the other category. The purpose of LR analysis is to determine the model that 

explains the relationship between the least independent and dependent variable. 

 
The researchers in the field of medicine also want to examine the effect of the factors on the dependent 

variable and their effects together. Another issue that is most important for the researchers is to examine 

the relationship between the factors and the disease in terms of risk. LR analysis is often used in such studies 

[1]. 

 

Binary Logistic Regression Analysis is based on probability ratios. The probability ratio compares the 

likelihood that an event will occur and the probability that it will not occur. The value of this regression 

analysis is obtained by taking the natural logarithm of the probability ratio. When model parameters are 

estimated, the maximum likelihood and Wald statistics are widely used [1-2]. 

 

Regression methods are commonly used to examine relationships between a dependent variable and one or 

more independent variables. The best known methods include simple and multiple linear regression, i.e., 

least squares methods, where the dependent variable is numerical. However, the dependent variable is often 

categorical for many studies, where least squares methods are unsuitable to obtain parameter estimates. In 

such cases, LR can be employed, and there are several LR models depending on the number of categories 

of dependent variables and whether the categories are nominal or ordinal [1]. LR analysis compares the 
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effects of independent variables on the dependent variable to likelihood of implementation of either of two 

categories [2]. 

 

Berkson [3] first proposed logistic models to analyse biological experiments. Lim et al. [4] were derived an 

additive model from transformation of the logistic model. Vupa and Çelikoğlu [5] proposed an LR model 

for lung cancer patients, and Coşkun et al. [6] applied LR in dentistry. LR has also been used in various 

previous studies to predict coronary artery disease (CAD) [7-9], and Atabey [10] applied LR for hospital 

patients with hypertension. Yan et al. [11] were studied the prediction of CAD in patients undergoing 

operations for rheumatic aortic valve disease. However, no previous study has estimated CAD using LR 

based on bootstrap sampling that applied both the error terms and independent variables. 

 

CAD is a complex multifactorial disease characterized by various genes, environmental factors and 

interactions, and is the most common cardiac disease [12-14]. CAD is responsible for approximately one-

third of all deaths in individuals 35 years and older [15]. The Turkish Adult Risk Factor Study Survey 2012 

analyzed overall mortality and coronary mortality of the specific age group identified in follow-up 

screening of heart disease and risk factors [16]. When all causal mortalities for 45–74 aged patients in 

Turkey were considered, mortality was 16.8 per thousand for males, and 9.9 per thousand for females. 

Median mortality in the 45–74 age group in thirty European countries was 13.2 per thousand for males, and 

7.3 per thousand for females. It is known that such rates are 30% in Turkey [16-18]. Therefore, this study 

employed LR based on bootstrap method to determine factors affecting CAD. 

 

Bootstrap sampling method enables to estimate the standard error of a statistic for statistical inferences. In 

some cases, regression analysis assumptions may not be known, and bootstrap methods can be employed. 

In this study, it is aimed to obtain an appropriate model based on the LR analysis for the estimation of CAD. 

In addition to, the parameter estimates obtained in this model are compared with the parameter estimates 

based on the bootstrap method. 

 

2. STATISTICAL ANALYSIS 

 

This section explains how the LR and bootstrap methods were applied for this analysis. 

 

2.1. Logistic Regression Analysis 

 

LR is not concerned with estimating the dependent or response variable value. Rather, LR estimates the 

likelihood that the dependent variable is 1 (when the risk is determined as 1), which is between 0 and 1. 

When there are more independent variables in the model, the multiple LR method is used. Suppose the 

number of independent variables is k, and the vector of independent variables is 
1 2( , ,..., )kX X X X= . 

Then the multiple LR model can be expressed as [1]: 
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where Y is the vector of binary response variable with Bernoulli distribution and , (0,1,2,..., )i i k = are 

regression coefficients. 

 

Equation (2) can be expressed as the odds of the dependent variable, 
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where (1 ) −  is described as odds ratio. We define the logit transformation is as 

( )
logit ( ) ln

1 ( )

x
x

x






 
=  

− 
,                                                       (4) 

 
and taking the natural logarithm of Equation (3) provides a linear model, 
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where logit transformation is a linear function of  β parameters. This is one of the assumption of the LR. 

Other assumptions of LR analysis are as follows [19]: 
 

i. The response variable must be at least two levels. 

ii. If the situation interested for response variable is occurred, it must be coded as “1”. 

iii. There should be no missing or excessive independent variables in the model. 

iv. Each observation must be independent of each other. 

v. There should not be a multicollinearity problem between the independent variables. 

vi. To obtain strongest maximum likelihood estimators, the sample size should be at least 10 times 

the number of independent variables. 

 

Multiple LR employs forward and backward elimination steps to determine the best fit model with the least 

number of variables. Forward selection starts with a model that includes only a constant, with no 

independent variables available. Then individual independent variables are progressively added, and the 

greatest change in log likelihood determined, to identify the best variable to include. The single parameter 

model is then similarly treated, and variable addition continues until the contributions of any remaining 

variables are insignificant. In contrast, backward elimination commences with all variables included, and 

individual variables are removed, to identify the variable that caused the least increase in deviation, which 

is then removed from the model. This process continues until the variable that caused a significant change 

in deviation is obtained when removed from the model [1-2]. 

 

2.2. Bootstrap Method 

 

The bootstrap sample method estimates the standard error of a statistic and obtains confidence intervals and 

distributions. The method assumes that the observed data is representative of the population under 

examination [20]. 
 

Most statistical problems are concerned with the distribution of a statistic of a random sample drawn from 

the population. If the distribution is known, it is possible to apply general theories to generate the sample 

distribution. When there is no significant information about other features of the distribution or the 

estimator, the bootstrap method is used. 

  

In the bootstrap method, the original sample is substituted by a bootstrap sample and resampled. The sample 

is treated like a real population, and this sampling is repeated many times to create an experimental 

distribution for the estimator [21]. Population parameters are estimated by minimizing the estimated 

standard error from the sample data [22]. 

 

In the bootstrap method, sample of size n  are selected from the data set ( )1 2, ,..., nx x x x= for the standard 

error of estimator ̂ , and B bootstrap samples are created, 
* * *

1 2, ,..., Bx x x . The asterisks in the bootstrap 

sample is created by substituting it in the observed real values in the sampling method. The bootstrap 
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estimate, 
*̂ , is obtained for  , and 

* * *

1 2, ,..., Bx x x  is repeated B times in obtaining a bootstrap sample and 

bootstrap estimate 
*̂ . Estimates 

*1 *2 *Bˆ ˆ ˆ, ,...,   are obtained after the B replications, and 

 

( )
2

2 *b *
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                                                                                                                       (6) 

 

where 
*̂ is the average of 

*̂ , 
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and the square root of the 
2

ˆ,boot
s


is defined as the standard error of the estimator for the bootstrap samples 

[23]. 

 

 

2.3. Logistic Regression Analysis Based on the Bootstrap Method 

 

Assume a random sample of size n as ( )1 2, ,..., nx x x . Let ( , )i i ix c y=  for each 
ix  observation, where 

iy  

is the dependent variable and 
ic  is the 1 k  vector formed by the independent variables, i.e., 

1 2, ,...,i i i ikc c c c= . If the values of independent variable are known, then the expected value of the 

dependent variable is obtained as: 

 

( / ), 1,2,...,i i iE y c i n = =
                                                                   (8) 

 

where 
iy  is the dependent variable and 

i  is a linear function of 
ic  independent variables. Also, 

i  is as 

follows: 

 

1

p

i i ij j

j

c c  
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= = .                                                                                                                                   (9)                                                                    

 

The purpose of the analysis is to estimate unknown parameters ( )1 2, ,..., k   =  using the observation 

data ( )1 2, ,..., nx x x . Linear model is as follows: 

 

, 1,2,...,i i iy c i n = + = .                                                                                                                      (10) 

 

When the expected value of the error terms 
i  is zero and they have an unknown F distribution, it is 

expressed as [24]: 

 

( ) ( )1 2, ,..., , 0nF E    → = =                                                                                                           (11) 

 

From Equation (10) and Equation (11), we have, 
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( ) ( ) ( ) ( )/ / / /i i i i i i i i i
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This expression is the linearity assumption in Equation (10). Parameter estimates in Equation (10) is 

obtained with least squares method and they are as follows:  

 

( )
1ˆ T TC C C y
−

= .                                                                                                                                    (12) 

 

The bootstrap method can be used in two different ways for regression analysis. These methods are 

described as follows. 

 

The probability model of the linear regression is P → x where ( , )P F= , F is the distribution of the error 

terms, and   is the regression coefficients [24]. Since    is unknown, estimates ̂  obtained using least 

squares method are used and experimental distributions of error terms obtained. To obtain a bootstrap 

estimator of  , the algorithm is used as follows: 

 

- Random sample from population is selected. 

- The regression model based on this sample is obtained. 

- ˆˆ , 1, 2,...,i i iy c i n = − =  are calculated.   

- 
î  values are given 1 / n probability to obtain bootstrap error sub-sample B, each in size n. Thus, 

emprical distribution function of error terms ( )( )F̂ x  is as:  

( )  2ˆ
îF x x n =   

- Average of bootstrap error values is 
*

1

ˆ ˆ
B

i bi

b

B 
=

= . 

- Estimates of dependent variables are ˆ ˆˆ
i i iy c  = + . If 

*

î  is substituted in this equation, the bootstrap 

value  
*

iY  are as follows: 

* *ˆ ˆ
i iY C = +  

- Bootstrap estimator 
*̂  is as: 

 

( )
1
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−

=
                                                                                                                                 (13) 

 

where C is matrix of independent variables. As a result, it is used bootstrap approach based on resampling 

of error terms. We call this method as bootstrap I. 

 

On the other hand, the bootstrap method can be applied to the data set ( , )i i ix c y= . In this case, bootstrap 

data set is as follows: 

 

 *

1 1 2 2( , ), ( , ),..., ( , )i i i i in inx c y c y c y=
                                                                                                      (14) 

 

where 𝑐𝑖 are independent variables,  y is dependent variable. The regression coefficients for each bootstrap 

sample can be estimated as: 
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1
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The expected value of the bootstrap estimators is approximately equal to the least squares estimator of   

[25]. 

 

Similarly, we call this method as bootstrap II. While the bootstrap I method works by resampling the error 

terms, bootstrap II method works by resampling of the observation values ( , )i ic y  where dependent variable 

iy  and vector formed by the independent variables 
ic .   

 

3. MATERIAL AND METHODS 

 

Appropriate models were obtained using backward elimination, with least squares for parameter estimates, 

and experimental distributions of the error terms were determined from the ̂  estimates. The data were 

officially obtained from General Union of Bitlis Public Hospitals for 170 persons, including 85 healthy and 

85 CAD patients, from the Cardiology Department of Bitlis State Hospital between 2012 and 2017. For this 

study, necessary permissions were obtained from the ethics committee of the Bitlis Eren University. LR 

was applied to the data to provide a statistical model the patient’s CAD risk, using statistical softwares R 

and SPSS . Independent variables in the model was determined by SPSS package program and the bootstrap 

method was implemented with the R package program. Independent variables used to estimate CAD 

included age, hemoglobin, white blood cell (WBC), uric acid, high density lipoprotein (HDL), low density 

lipoprotein (LDL), triglyceride, total bilirubin, and direct bilirubin. The variables that make significant 

contribution to the model were determined by backward elimination for the CAD dependent variable. 

Parameter estimates were obtained by applying the bootstrap technique for B=500, 1000, 1500 and 2000 

replications on the same dataset. Finally, estimated parameter values obtained from LR were compared to 

the estimated parameters values , obtained from the bootstrap method. 

 

On the other hand; a simulation study is conducted and is compared with the results based on CAD. The 

dependent variable consists of  two categories and  independent variables have  normal distribution with 

mean 0 and variance 1. These are obtained by deriving 1000 replications data when all of the independent 

variables are continuous and sample size n=20, 50, 100, 500.  

 

Using all the observations of the population will cause a time waste and increase the cost. The bootstrap 

method eliminates these problems and offers great advantages. This study investigated if CAD risk obtained 

from the bootstrap method achieved more efficiency parameter estimates compared to those obtained from 

LR, compared to standard errors. In this study, 1iY =  means the patient has CAD, and 0iY =  means 

complete absence of CAD. 

 

4. RESULTS 

 

Table 1. Some descriptive statistics for the independent variables  
Variables Mean ±Standard Deviation Min Max 

Age 55.74±8.33 38 78 

Hemoglobin(mg/dl) 13.73±2.02 9 25.50 

WBC (mg/dl) 7363.35±1506.69 4600 14000 

Uric acid (mg/dl) 5.01±1.32 2.60 9 

HDL (mg/dl) 37.23±8.08 19 58 

LDL (mg/dl) 127.47±25.06 61 202 

Triglyceride (mg/dl) 138.64±47.52 41 274 

Total bilirubin (mg/dl) 0.76±0.27 0.10 1.30 

Direct bilirubin (mg/dl) 0.17±0.09 0.01 0.50 

 

Table 1 shows some descriptive statistics  of independent variables used in CAD estimation. The age range 

of the 170 patients used in the current study varied between 38–78, with average age = 55. Average 

hemoglobin = 13.73 ± 2.02, WBC = 7363.35 ± 1506.69; uric acid = 5.01 ± 1.32; HDL = 37.23 ± 8.08; LDL 
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= 127.47 ± 25.06; triglyceride = 138.64 ± 47.52; total bilirubin = 0.76 ± 0.27; and direct bilirubin = 0.17 ± 

0.09. 

 

The regression procedures for categorical dependent variables do not have multicollinearity diagnostics. 

However, we can use the linear regression procedure for this purpose. Multicollinearity is particularly 

problematic for logistic regression models. It usually occurs when one or more independent variables are 

related to each other. 
 

Table 2. Correlations between independent variables 
 Age Hemoglobin WBC Uric acid HDL LDL Triglyceride Total 

bilirubin 

Direct 

bilirubin 

Age 
1 0.009 0.118 0.054 0.061 0.242** 0.185* 0.051 0.057 

 0.912 0.126 0.484 0.429 0.001 0.016 0.512 0.462 

Hemoglobin 
0.009 1 0.091 0.194* -0.025 0.040 0.162* 0.183* 0.089 

0.912  0.240 0.011 0.747 0.601 0.035 0.017 0.246 

WBC 
0.118 0.091 1 0.059 -0.006 0.209** 0.418** 0.074 0.254** 

0.126 0.240  0.447 0.937 0.006 0.000 0.340 0.001 

Uric acid 
0.054 0.194* 0.059 1 0.191* 0.060 0.299** 0.084 0.067 

0.484 0.011 0.447  0.012 0.439 0.000 0.276 0.384 

HDL 
0.061 -0.025 -0.006 0.191* 1 0.060 0.052 0.182* 0.104 

0.429 0.747 0.937 0.012  0.436 0.503 0.017 0.176 

LDL 
0.242** 0.040 0.209** 0.060 0.060 1 0.400** 0.162* -0.009 

0.001 0.601 0.006 0.439 0.436  0.000 0.035 0.909 

Triglyceride 
0.185* 0.162* 0.418** 0.299** 0.052 0.400** 1 0.389** 0.223** 

0.016 0.035 0.000 0.000 0.503 0.000  0.000 0.003 

Total bilirubin 
0.051 0.183* 0.074 0.084 0.182* 0.162* 0.389** 1 0.534** 

0.512 0.017 0.340 .276 .017 .035 .000  .000 

Direct bilirubin 
0.057 0.089 0.254** 0.067 0.104 -0.009 0.223** 0.534** 1 

0.462 0.246 0.001 0.384 0.176 0.909 0.003 0.000  
**: Correlation is significant at the 0.01 level, * : correlation is significant at the 0.05 level 
 

High correlation between the independent variables is an undesirable. It is a potential multicollinearity 

condition. Correlations between independent variables are obtained in Table 2. When the correlation matrix 

for the independent variables is examined, it is seen that there are no highly correlated variables. 

 

Another way to diagnose the multipcollinearity presence is to run logistic regression as a linear regression 

by putting one of the independent variables in the model as dependent variable. In Table 3, the tolerance 

value, variance inflation factor (VIF), condition index and eigenvalue is checked for multipcollinearity 

diagnostics. 

 

Table 3. Values of tolerance, variance inflation factor (VIF), condition index and eigenvalue 

Dependent  

variable 

Independent 

variable 

Criteria of multipcollinearity 

Tolerance VIF Condition index Eigenvalue 

Age 

Hemoglobin 0.920 1.087 6.581 0.197 

WBC  0.741 1.349 10.116 0.183 

Uric acid  0.836 1.196 11.430 0.165 

HDL  0.919 1.088 12.452 0.155 

LDL  0.813 1.230 15.584 0.135 

Triglyceride  0.562 1.779 17.861 0.127 

Total bilirubin  0.569 1.756 20.661 0.120 

Direct bilirubin  0.644 1.552 34.921 0.107 

Hemoglobin 

Age 0.926 1.080 33.526 0.108 

WBC  0.744 1.344 6.554 0.198 

Uric acid  0.864 1.157 10.104 0.183 

HDL  0.925 1.082 11.436 0.165 

LDL  0.784 1.275 12.213 0.157 

Triglyceride  0.559 1.790 16.272 0.132 

Total bilirubin  0.582 1.719 18.082 0.126 

Direct bilirubin  0.644 1.554 20.511 0.120 
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Table 3 continued 

WBC 

Age 0.926 1.080 21.279 0.119 

Hemoglobin 0.923 1.083 37.035 0.106 

Uric acid  0.843 1.186 6.515 0.201 

HDL  0.917 1.091 10.003 0.185 

LDL  0.789 1.267 11.782 0.161 

Triglyceride  0.653 1.531 12.987 0.151 

Total bilirubin  0.604 1.657 15.521 0.135 

Direct bilirubin  0.699 1.430 18.986 0.124 

Uric acid 

Age 0.925 1.081 19.200 0.123 

Hemoglobin 0.951 1.052 21.283 0.119 

WBC 0.747 1.338 38.279 0.106 

HDL  0.959 1.043 6.602 0.196 

LDL  0.787 1.270 10.029 0.185 

Triglyceride  0.614 1.629 11.462 0.165 

Total bilirubin  0.575 1.739 15.272 0.137 

Direct bilirubin  0.644 1.553 17.508 0.128 

HDL 

Age 0.927 1.078 17.604 0.128 

Hemoglobin 0.927 1.078 20.213 0.121 

WBC  0.741 1.350 21.283 0.119 

Uric acid  0.874 1.144 37.088 0.106 

LDL  0.786 1.273 6.548 0.199 

Triglyceride  0.563 1.777 10.346 0.180 

Total bilirubin  0.584 1.713 11.759 0.162 

Direct bilirubin  0.643 1.556 12.267 0.157 

LDL 

Age 0.959 1.042 12.675 0.153 

Hemoglobin 0.920 1.087 15.525 0.135 

WBC  0.746 1.341 19.209 0.123 

Uric acid  0.840 1.191 21.232 0.119 

HDL  0.919 1.088 37.693 0.106 

Triglyceride  0.612 1.635 6.615 0.195 

Total bilirubin  0.572 1.747 10.027 0.185 

Direct bilirubin  0.659 1.518 11.432 0.165 

Triglyceride 

Age 0.931 1.074 12.211 0.157 

Hemoglobin 0.920 1.087 14.450 0.141 

WBC  0.867 1.154 17.663 0.127 

Uric acid  0.920 1.087 18.045 0.126 

HDL  0.924 1.082 21.432 0.119 

LDL 0.859 1.164 37.471 0.106 

Total bilirubin  0.644 1.554 6.508 0.202 

Direct bilirubin  0.645 1.550 11.274 0.167 

Total bilirubin  

Age 0.928 1.078 10.176 0.183 

Hemoglobin 0.942 1.062 12.241 0.157 

WBC  0.787 1.270 15.112 0.137 

Uric acid  0.846 1.182 17.226 0.129 

HDL  0.942 1.061 19.378 0.123 

LDL 0.790 1.266 21.046 0.119 

Triglyceride 0.632 1.581 38.470 0.106 

Direct bilirubin 0.891 1.122 6.805 0.185 

Direct bilirubin 

Age 0.928 1.078 9.274 0.101 

Hemoglobin 0.921 1.086 10.707 0.175 

WBC  0.806 1.241 12.302 0.157 

Uric acid  0.837 1.194 15.572 0.136 

HDL  0.917 1.091 16.813 0.131 

LDL 0.803 1.245 20.229 0.121 

Triglyceride 0.560 1.785 21.312 0.119 

Total bilirubin 0.787 1.270 38.716 0.106 
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The VIF values above 5 or 10 are indicative of a strong multicollinearity. The fact that the condition index 

value is below 100 indicates that there is no serious multicollinearity problem in the data  [26]. If there is 

no multicollinearity, the correlation coefficient between the independent variables will be low and tolerance 

value approaches to 1. When the results in Table 3 are examined, it is seen that there is no multicollinearity 

problem in the data set. 

 

Table 4. Determination of independent variables related to coronary artery disease using backward 

elimination 

Step Variables Coefficients S.E. Wald df p-values Odds ratio 
95% Confidence Interval 

Lower Upper 

 7 

Age 0.154 0.040 15.245 1 <0.001 1.167 1.080 1.261 

LDL 0.070 0.017 17.934 1 <0.001 1.073 1.039 1.108 

Triglyceride 0.054 0.010 26.825 1 <0.001 1.055 1.034 1.077 

Constant -25.202 4.143 37.004 1 <0.001 0.000   
*: S.E.:standard error, df: degree of freedoom. 

 

For the multiple LR model, the significance level, α, was used to select the variables to be included in the 

model, in contrast to linear regression. Selection of the p-value has been demonstrated by Bendel and Afifi 

[27] for linear regression and Mickey and Greenland [28] for LR. This study chose α = 0.25, and backward 

elimination based on the likelihood ratio test statistic was used to establish the best model. 

 

Table 4 shows the independent variables included in the model. All variables are included in the model in 

step 1. By using of the backward elimination method, HDL in step 2 and uric acid in step 3 are eliminated 

from model. This process continues until step 7, where no variables are identified as insignificant, i.e., 

removed from the model. The remaining variables: age, LDL, and triglyceride, are identified as the 

significant predictors for the model. 

 
Table 5. Hosmer-Lemeshow and model coefficient tests 

 Chi-square df* p-value 

Hosmer-Lemeshow test 5.721 8 0.678 

Model coefficient test 156.554 9 <0.001 
*: degree of freedom 

 

When Table 5 is examined, it is determined that the Chi-square values are statistically significant (p-

value<0.05). The significant Chi-square statistic implies rejection of the null hypothesis: there is no 

difference between the initial model (including just the constant term) and the final model (including the 

identified independent variables). Thus, the LR coefficients except for the constant are different from zero, 

i.e., all model coefficients are significant and there is a significant relationship between the dependent 

variable and these independent variables. In addition to; Table 5 shows that the theoretical model represents 

the data well (p-values> 0.05). This test evaluates compatibility of model as a whole. 

 
Table 6. Classification table 
  Predicted 

Step Observed Healthy Disease Percentage Correct 

7 
Coronary Artery Disease 

Healthy (0) 77 8 90.6 

Disease (1) 7 78 91.8 

Overall Percentage   91.2 

 

Table 6 shows that 90.6% of healthy persons and 91.8% of CAD patients were correctly estimated in Step 

7. In general, 91.2% were correctly estimated, which is very acceptable. 

 

Table 7. Model summary 

Step -2 Log Likelihood Cox & Snell R Square Nagelkerke R Square 

7 83.900 0.590 0.787 
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Table 7 shows that the independent variables explain 59.0% and 78.7% of total variation in the dependent 

variable according to Cox-Snell and Nagelkerke, respectively, in Step 7, and the CAD contributions for 

independent variables in subsequent steps. 

 

Table 8.  Prediction equation variables 

Variable Coefficient 
Standard 

Error 
Wald df p-value 

Odds 

ratio 

95% Confidence 

Interval 
Lower Upper 

Age 0.154 0.040 15.245 1 <0.001 1.167 1.080 1.261 

LDL 0.070 0.017 17.934 1 <0.001 1.073 1.039 1.108 

Triglyceride 0.054 0.010 26.825 1 <0.001 1.055 1.034 1.077 

Constant -25.200 4.143 37.004 1 <0.001 0.000   

 

In Table 8, according to odds ratios; CAD incidence increases 1.167, 1.073, and 1.055 times as age, LDL 

and triglyceride increases, respectively. Thus age, LDL and triglycerides are the important independent 

variables determining CAD, and the LR model was obtained as: 

 
( 25.200 0.154 0.070 0.054 ) 1( 1) (1 )age LDL triglycerideP CAD e− − + + + −= = +  .                                                                      (13) 

 

Table 9. Parameter estimations and standard errors based on LR and bootstrap methods for different 

replication numbers 
Original Logistic Regression Bootstrap I Bootstrap II 

Variable Estimation Standard Error Estimation Standard Error Estimation Standard Error 

 B=500* 

Age 0.154 0.040 0.152 0.031 1.347 0.130 

LDL 0.070 0.017 0.070 0.009 0.310 0.025 

Triglyceride 0.054 0.010 0.049 0.009 0.039 0.020 

Constant -25.200 4.143 -24.868 3.880 -27.656 4.578 

 B=1000* 

Age 0.154 0.040 0.152 0.031 1.312 0.125 

LDL 0.070 0.017 0.069 0.009 0.309 0.021 

Triglyceride 0.054 0.010 0.049 0.009 0.031 0.019 

Constant -25.200 4.143 -24.937 3.964 -27.678 4.569 

 B=1500* 

Age 0.154 0.040 0.152 0.031 1.310 0.120 

LDL 0.070 0.017 0.070 0.009 0.310 0.020 

Triglyceride 0.054 0.010 0.050 0.009 0.030 0.020 

Constant -25.200 4.143 -24.930 3.960 -27.661 4.560 

 B=2000* 

Age 0.154 0.040 0.152 0.031 1.310 0.120 

LDL 0.070 0.017 0.070 0.009 0.310 0.020 

Triglyceride 0.054 0.010 0.050 0.009 0.030 0.020 

Constant -25.200 4.143 -24.930 3.960 -27.661 4.560 
*: B is bootstrap replication number 

 

Table 9 shows the parameter estimations and standard errors for the B= 500, 1000, 1500 and 2000 

replications bootstrap sampling and backward elimination method. In Table 9, it is seen that the parameter 

estimations of the bootstrap I are nearly close to that of the LR method, whereas those from the bootstrap 

II method are larger. In addition to, the standard errors for the bootstrap I are lower than those of the LR 

method, althought the standard errors for the bootstrap II are larger than those of others. As expected, when 

the number of bootstrap replications increased, it is obtained that the standard error values of the bootstrap 

methods decreased. The LR model based on the bootstrap I samples with B=2000 replications is as follows: 

 
( 24.930 0.152 0.070 0.050 ) 1( 1) (1 )age LDL triglycerideP CAD e− − + + + −= = + .                                                                    (14) 
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It is seen that the coefficients of this model are quite similar to the coefficients of the original LR model. 

As a result; the standard error values of estimations decreased and more efficiency parameter estimations 

are obtained.  

 

Table 10. Confidence intervals of parameters and odds ratios for the LR and bootstrap methods 
 LR Bootstrap I Bootstrap II 

Parameter OR (95% CI) OR (95% CI) OR (95% CI) 

βage 1.167 (1.080-1.261) 1.367 (1.083-1.210) 1.379 (1.362-1.525) 

βLDL 1.073 (1.039-1.108) 1.098 (1.046-1.100) 1.284 (1.221-1.290) 

βTriglyceride 1.055 (1.034-1.077) 2.169 (2.386-2.425) 2.287 (2.258-2.300) 
OR: odds ratio, CI: confidence interval 

 

In Table 10, LR and bootstrap methods were compared in terms of confidence intervals for parameters and 

odds ratios. The odds ratios obtained by both bootstrap methods are quite similar to the LR method. But, it 

is easily seen that the widths of the confidence interval obtained by the bootstrap I method are narrower 

then others. 

 

Table 11. Parameter estimations and standard errors for data generated normal distribution N(0,1)  

n Variable 
Logistic Regression Bootstrap I Bootstrap II 

Estimation  Standard Error Estimation Standard Error Estimation Standard Error 

20 

X1 0.040 0.150 0.049 0.114 0.098 0.265 

X2 0.089 0.155 0.092 0.127 0.125 0.196 

X3 0.053 0.159 0.040 0.114 0.127 0.241 

Constant 0.003 0.154 0.001 0.101 0.095 0.189 

50 

X1 0.056 0.125 0.044 0.111 0.365 0.142 

X2 1.092 0.149 1.009 0.138 1.896 0.186 

X3 1.065 0.160 1.096 0.143 1.678 0.186 

Constant 0.001 0.142 0.001 0.109 0.075 0.175 

100 

X1 0.156 0.090 0.156 0.089 1.954 0.152 

X2 1.198 0.083 1.197 0.080 1.969 0.154 

X3 0.167 0.040 0.167 0.030 1.786 0.102 

Constant 0.010 0.024 0.010 0.024 0.147 0.147 

500 

X1 0.193 0.025 0.195 0.022 1.896 0.025 

X2 1.945 1.009 1.947 0.989 1.996 0.999 

X3 1.563 0.965 1.565 0.897 1.945 0.899 

Constant 0.047 0.027 0.047 0.019 0.563 0.020 

 
In Table 11, a simulation study with 1000 replications is conducted with two categories dependent variable 

and independet variables generated standard normal distribution as in the study of Stute et. al. [29] and 

Karadağ [30]. On the other hand; as the LR model obtained by the backward elemination method has three 

independent variables, this independent variables (X1, X2, X3) are generated in the simulation study. 

According to Table 11, parameter estimates and standard errors based on both bootstrap methods are quite 

similar with LR method for all sample size. When sample sizes is n=20, 50, 100, standard errors of 

parameter estimations based on botstrap I are smaller than those of bootstrap II. However, the standard 

error values based on both methods are very close to each other for n=500. The simulation study support 

the results obtained with CAD data. 
 

5. CONCLUSIONS 

 

In LR, independent variables can be continuous or categorical, and there are no restrictive assumptions on 

independent variable distributions, e.g. normally distributed. These are major advantages for non-normally 

distributed datasets, and LR is becoming extensively employed in many medical studies. Therefore, this 

study developed an LR model for the presence of CAD in hospital patients. 

 

LR identifies the best fit for the dependent variable using the least number of candidate independent 

variables. The effects are calculated as probabilities and in this case the final outcome is an overall CAD 
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risk or probability. This study determined that the significant CAD predicters were age, LDL and 

triglycerides. Thus, with fewer variables, time was earned, facilitating transaction. After this step, samples 

were obtained by the bootstrap method which is one of the resampling methods and it was tried to be shown 

which of the more efficiency parameter estimates were obtained by comparing with the model obtained by 

the LR analysis. 

 

The study shows that the prevalence of CAD increases by 1.167, 1.073, and 1.055 times as age LDL and 

triglyceride increased, and the final prediction relationship was significant (p-value < 0.05).  

 

For the bootstrap method in this study, new data sets of the same size (n=170) were generated on the data 

obtained from 170 persons by applying bootstrap resampling method. In the data sets, the number of the 

bootstrap replications was taken as B = 500, 1000, 1500 and 2000, and LR models were obtained with the 

parameter estimations. 

 

Bootstrap methods measure the power to represent the population of the data set. When the results of the 

LR analysis and the bootstrap method are examined, it is seen that the parameter estimations of the bootstrap 

I are nearly close to that of the LR method, but the estimations for the bootstrap II are larger than those of 

the LR and bootstrap I. As a result of the evaluation of standard errors, it can be said that the standard errors 

for the bootstrap I are lower than those of the LR and bootstrap II, and the standard errors of the bootstrap 

II are the larger. On the other hand, bootstrap methods may not always produce effective results, the success 

of the method depends on the data structure and that the experimental distribution reflects the population 

distribution well. 

 

When both bootstrap methods are examined odds ratios and confidence interval, it is seen that the odds 

ratios obtained by bootstrap methods are quite similar to the LR method. The widths of the confidence 

interval obtained by the bootstrap I method are narrower then others. 

 

According to the results of the study, it is determined that the parameter estimates obtained from the dataset 

(n=170) in which bootstrap I method is applied are more effective than the parameter estimates of the 

original LR model. It is seen that the simulation study support the results based on CAD data. 
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