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EQUILIBRIUM AND STABILITY ANALYSIS OF
TAKAGI-SUGENO FUZZY DELAYED COHEN-GROSSBERG

NEURAL NETWORKS

NEYIR OZCAN

Abstract. This paper carries out an investigation into the problem of the
global asymptotic stability of the class of Takagi-Sugeno (T-S) fuzzy delayed
Cohen-Grossberg neural networks involving discrete time delays and employing
the nondecreasing and slope-bounded activation functions. A new suffi cient
criterion for the uniqueness and global asymptotic stability of the equilibrium
point for this class of fuzzy neural networks is proposed. The uniqueness of
the equilibrium point is proved by using the contradiction method, and the
stability of the equilibrium point is established by utilizing a novel fuzzy type
Lyapunov functional. The obtained stability condition is independent of the
time delay parameters and, it can be easily verified by exploiting some com-
monly used norm properties of matrices. A constructive numerical example is
also given to demonstrate the applicability of the proposed stability condition.

1. Introduction

Stability and equilibrium properties of Cohen-Grossberg neural network model
proposed by Cohen and Grossberg in [1] have been extensively studied due to their
potential applications in a variety of fields such as pattern recognition, parallel
computation, associative memory design, signal and image processing and opti-
mization. Such types of applications require that the neural network employed for
solving these specific problems must possess a unique and globally asymptotically
stable equilibrium point. On the other hand, time delays unavoidable exist in the
mathematical model of neural networks due to many different reasons. For instance,
the finite switching speed of amplifiers in neural systems may cause time delays.
The existence of time delays may change the dynamics of the system and cause
undesired complex dynamical behaviors. Therefore, it is of crucial importance to
consider the effects of time delays when analyzing the stability of neural networks.
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In the recent years, a variety of suffi cient conditions for the global asymptotic sta-
bility of delayed Cohen-Grossberg neural networks have been proposed [2]-[16].

Fuzzy logic theory has been effectively adopted for modelling the various classes
of nonlinear systems to provide a more effi cient tool with stability analysis of these
systems. In particular, fuzzy systems in the form of the Takagiï-Sugeno (T-S) model
[17] have attracted rapidly growing attention in recent years. A T-S fuzzy system
is a class of nonlinear systems defined by a set of IF-THEN rules [36]. It has been
shown that the T-S model method can provide an effective way with representing
complex nonlinear systems by using simple local linear dynamical systems with
their linguistic description. Some classes of nonlinear dynamical systems can be
approximated by the overall fuzzy linear T-S models for the purpose of stability
analysis [18]-[19]. In [20], a suffi cient condition for the stability of the T-S fuzzy
systems has been proposed by constructing a suitable Lyapunov functional. The
methods and techniques used in [19] have been an inspiration for many researchers
to extend the T-S fuzzy models to describe different classes of delayed neural net-
works. Some original and useful results for global stability of various classes of T-S
fuzzy delayed neural networks can be found in [21]-[38].

This paper will study the equilibrium and stability properties of the class of T-S
fuzzy Cohen-Grossberg neural networks with discrete time delays. First, by using
the contradiction method, the condition ensuring the uniqueness of the equilibrium
point for this class of neural networks is established. Then, by constructing a
suitable fuzzy Lyapunov functional, it will be shown that the condition proposed for
the uniqueness of the equilibrium point also implies the global asymptotic stability
of the equilibrium point.

2. System Description and Preliminaries

Consider the following general Cohen-Grossberg neural network model with dis-
crete time delays:

ẋi(t) = di(xi(t))[−ci(xi(t)) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τ j)) + ui],

where n is the number of the neurons in the network, xi denotes the state of the ith
neuron, di(xi) represents an amplification function, and ci(xi) is a behaved func-
tion. The constants aij are the neuron interconnection parameters of the neurons
within the network, the constants bij are interconnection parameters of the neurons
with time delay parameters τ j . The fi(·) corresponds to the activation functions of
neurons. The constants ui are some external inputs. In system (1), τ j≥0 represent
the time delay parameters with τ = max(τ j) for j = 1, 2, ..., n. The neural system
(1) is accompanied by an initial condition of the form: xi(t) = φi(t) ∈ C([−τ , 0], R),
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where C([−τ , 0], R) denotes the set of all continuous functions from [−τ , 0] to R.

The usual assumptions on the functions di, ci and fi are defined to be as follows :

H1 : For the amplification functions di(x), (i = 1, 2, . . . , n), there exist positive
constants ψi and φi such that 0 < ψi≤ di(x) ≤ φi, ∀x ∈ R.

H2 : For the functions ci(x), (i = 1, 2, . . . , n), there exist constants γi > 0 such
that

ci(x)− ci(y)

x− y : =
|ci(x)− ci(y)|
|x− y| :≥γi > 0, :i = 1, 2, . . . , n, :::∀x, y ∈ R, x 6=y.

H3 : For the activation functions fi(x), (i = 1, 2, . . . , n), there exist some positive
constants ki such that

0≤fi(x)− fi(y)

x− y ≤ki, ::i = 1, 2, · · ·, n, :::∀x, y ∈ R, : x 6=y.

Now, let x∗ be an equilibrium point of Cohen-Grossberg neural network model (1).
The transformation z(t) = x(t) − x∗ will shift the equilibrium point x∗ of system
(1) to the origin. The transformed Cohen-Grossberg neural network model is now
represented by the following new sets of differential equations :

żi(t) = αi(zi(t))[−βi(zi(t)) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τ j))]

in which the following can be stated

αi(zi(t)) = di(zi(t) + x∗i ), i = 1, 2, . . . , n

βi(zi(t)) = ci(zi(t) + x∗i )− ci(x∗i ), i = 1, 2, . . . , n

gi(zi(t)) = fi(zi(t) + x∗i )− fi(x∗i ), i = 1, 2, . . . , n.

An equivalent mathematical model of (2) can be stated as follows :

ż(t) = α(z(t))[−β(z(t)) +Ag(z(t)) +Bg(z(t− τ))],

where z(t) = (z1(t), z2(t), . . . , zn(t))T ,
α(z(t)) = diag(α1(z1(t)), α2(z2(t)), . . . , αn(zn(t))), A = (aij)n×n, B = (bij)n×n,
β(z(t)) = (β1(z1(t)), β2(z2(t)), . . . , βn(zn(t)))T ,
g(z(t− τ)) = (g1(z1(t− τ1)), g2(z2(t− τ2)), . . . , gn(zn(t− τn)))T .

When introducing the T-S fuzzy model concept into (3), the model of fuzzy
Cohen-Grossberg neural network with discrete time delays is obtained as follows
[36]:
Plant Rule r :
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IF {θ1(t) is Mr1} and · · · and {θp(t) is Mrp}.

THEN

ż(t) = αr(z(t))[−βr(z(t)) +Arg(z(t)) +Brg(z(t− τ))],

where θl(t)(l = 1, 2, . . . , p) are the premise variables. Mrl(r ∈ {1, 2, . . . ,m}, l ∈
{1, 2, . . . , p} are the fuzzy sets and m is the number of IF-THEN rules.

By inferring from the fuzzy models, the final model of a fuzzy Cohen-Grossberg
neural network takes the following form [36] :

ż(t) =

m∑
r=1

hr(θ(t)){αr(z(t))[−βr(z(t)) +Arg(z(t)) +Brg(z(t− τ))]},

where θ(t) = [θ1(t), θ2(t), . . . , θp(t)]
T , ωr(θ(t)) =

∏p
l=1 Mrl(θl(t)) and hr(θ(t)) =

ωr(θ(t))∑m
r=1 ωr(θ(t))

denote the weight and averaged weight of each fuzzy rule, respec-
tively. The term Mrl(θl(t)) is the grade membership of θl(t) in Mrl. We assume
that ωr(θ(t)) ≥ 0, r ∈ {1, 2, . . . ,m}. Therefore, we have

∑m
r=1 hr(θ(t)) = 1 for all

t ≥ 0.

Note that Ar = (a
(r)
ij )n×n, Br = (b

(r)
ij )n×n,

αr(z(t)) = diag(αr1(z1(t)), αr2(z2(t)), . . . , αrn(zn(t))),
βr(z(t)) = (βr1(z1(t)), βr2(z2(t)), . . . , βrn(zn(t)))T , r = 1, 2, . . . ,m.

We also note that, in system (5), the assumptions H1, H2 and H3 can now be
respectively adopted as follows :

A1 : 0 < ψri≤ αri(zi(t)) ≤ φri, i = 1, 2, . . . , n, r = 1, 2, . . . ,m

A2 : zi(t)βri(zi(t))≥γriz2i (t)≥0, i = 1, 2, . . . , n, r = 1, 2, . . . ,m

A3 : |gi(zi(t))|≤ki|zi(t)|, zi(t)gi(zi(t))≥0, i = 1, 2, . . . , n.

3. Main Result

In this section, we will present two main theorems. The first theorem proves the
uniqueness of equilibrium point for system (5), which is stated as follows :

Theorem 1. Under the assumptions A1, A2 and A3, the origin z = 0 of the T-S
fuzzy Cohen-Grossberg neural network model defined by (5) is the unique equilibrium
point if there exist positive constants ξr, r = 1, 2, · · ·,m such that the following
condition holds :

Ω = 2ψγK−1 −
m∑
r=1

φr(|Ar|+ |ATr |)−
m∑
r=1

1

ξr
φ2r||Br||22I −

m∑
r=1

ξrI > 0,
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where ψ = min{ψr} with ψr = min{ψri}, γ = min{γr} with γr = min{γri},
φr = max{φri}, i = 1, 2, · · ·, n, r = 1, 2, · · ·,m, K = diag(k1, k2, · · ·, kn) and
|Ar| = (|a(r)ij |)n×n.

Proof. We will prove this theorem by using the contradiction method. Let z 6= 0
be an equilibrium point of system (5). Then, we have

ż(t) =

m∑
r=1

hr(θ(t)){αr(z)[−βr(z) +Arg(z) +Brg(z)]} = 0

which can be written as

−
m∑
r=1

hr(θ(t))αr(z)βr(z)+

m∑
r=1

hr(θ(t))αr(z)Arg(z)+

m∑
r=1

hr(θ(t))αr(z)Brg(z) = 0.

Let z 6= 0 and g(z) = 0. Then, one has
m∑
r=1

hr(θ(t))αr(z)βr(z) = 0

and from (8)
m∑
r=1

hr(θ(t))z
Tαr(z)βr(z) = 0.

Thus, we obtain
m∑
r=1

hr(θ(t))z
Tαr(z)βr(z) ≥ ψγzT z > 0,∀z 6= 0.

It is clear that if z 6= 0, then (7) cannot be satisfied. Therefore, at the equilibrium
point, when g(z) = 0, z 6= 0 cannot be a solution of (6).
Let z 6= 0 and g(z) 6= 0. Then, we can write

−2

m∑
r=1

hr(θ(t))g
T (z)αr(z)βr(z) + 2

m∑
r=1

hr(θ(t))g
T (z)αr(z)Arg(z)

+2

m∑
r=1

hr(θ(t))g
T (z)αr(z)Brg(z) = 0. (1)

We note that

− 2

m∑
r=1

hr(θ(t))g
T (z)αr(z)βr(z) = −2

m∑
r=1

hr(θ(t))

n∑
i=1

αri(zi)βri(zi)gi(zi)

≤ −2

m∑
r=1

hr(θ)

n∑
i=1

ψriγrizigi(zi)

≤ −2

m∑
r=1

hr(θ(t))

n∑
i=1

1

ki
ψriγrig

2
i (zi)
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≤ −2

m∑
r=1

hr(θ(t))g
T (z)ψγK−1g(z)

= −2ψγ|gT (z(t))|K−1|g(z(t))|, (2)

m∑
r=1

hr(θ(t)){2gT (z)αr(z)Arg(z)} ≤
m∑
r=1

2|gT (z)|αr(z)|Ar||g(z)|

≤
m∑
r=1

2|gT (z)|φr|Ar||g(z)|

=

m∑
r=1

φr|gT (z)|(|Ar|+ |ATr |)|g(z)|, (3)

m∑
r=1

hr(θ(t))2g
T (z)αr(z)Brg(z) ≤

m∑
r=1

hr(θ(t))2||αr(z)||2||Br||2||g(z)||2||g(z)||2

≤
m∑
r=1

2φr||Br||2||g(z)||2||g(z)||2

≤
m∑
r=1

1

ξr
φ2r||Br||22||g(z)||22 +

m∑
r=1

ξr||g(z)||22. (4)

Using (11)-(13) in (10) yields

−2ψγ|gT (z)|K−1|g(z)|+
m∑
r=1

φr|gT (z)|(|Ar|+ |ATr |)|g(z)|

+

m∑
r=1

1

ξr
φ2r||Br||22||g(z)||22 +

m∑
r=1

ξr||g(z)||22 ≥ 0

which is of the form
|gT (z)|(−Ω)|g(z)| ≥ 0

or equivalently
|gT (z)|Ω|g(z)| ≤ 0.

On the other hand, if Ω is a positive definite matrix, then, for all g(z(t)) 6= 0, we
have

|gT (z)|Ω|g(z)| > 0.

Obviously, when Ω > 0, (14) contradicts with (15), implying that under the condi-
tion of Theorem 1, the equilibrium equation of system (5) given by (6) cannot have
a solution where g(z) 6= 0. Thus, we can conclude that Theorem 1 guarantees that
the origin of system (5) is the unique equilibrium point. �
We will now present the following theorem that proves the stability of system

(5).
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Theorem 2. Under the assumptions A1, A2 and A3, the T-S fuzzy Cohen-Grossberg
neural network model defined by (5) is globally asymptotically stable if there exist
positive constants ξr, r = 1, 2, · · ·,m such that the following condition holds :

Ω = 2ψγK−1 −
m∑
r=1

φr(|Ar|+ |ATr |)−
m∑
r=1

1

ξr
φ2r||Br||22I −

m∑
r=1

ξrI > 0,

where ψ = min{ψr} with ψr = min{ψri}, γ = min{γr} with γr = min{γri},
φr = max{φri}, i = 1, 2, · · ·, n, r = 1, 2, · · ·,m, K = diag(k1, k2, · · ·, kn) and
|Ar| = (|a(r)ij |)n×n.

Proof. Consider the following positive definite Lyapunov functional :

V (z(t)) = zT (t)z(t) + 2ε
n∑
i=1

∫ zi(t)

0

gi(s)ds

+ε

m∑
r=1

ξr

n∑
j=1

∫ t

t−τj
g2j (zj(ζ))dζ + η

n∑
j=1

∫ t

t−τj
g2j (zj(ζ))dζ,

where ε and η are some positive constants to be determined later. We can calculate
the time derivative of V (z(t)) along the trajectories of neural system (5) as follows
:

V̇ (z(t)) = 2zT (t)ż(t) + 2ε

n∑
i=1

gi(zi(t))żi(t) = 2zT (t)ż(t) + 2εgT (z(t))ż(t)

+ε

m∑
r=1

ξr

n∑
j=1

g2j (zj(t))− ε
m∑
r=1

ξr

n∑
j=1

g2j (zj(t− τ j))

+η

n∑
j=1

g2j (zj(t))− η
n∑
j=1

g2j (zj(t− τ j))

= 2zT (t)

m∑
r=1

hr(θ(t)){αr(z(t))[−βr(z(t)) +Arg(z(t)) +Brg(z(t− τ))]}

+2εgT (z(t))

m∑
r=1

hr(θ(t)){αr(z(t))[−βr(z(t)) +Arg(z(t)) +Brg(z(t− τ))]}

+ε

m∑
r=1

ξr||g(z(t))||22 − ε
m∑
r=1

ξr||g(z(t− τ))||22

+η||g(z(t))||22 − η||g(z(t− τ))||22

=

m∑
r=1

hr(θ(t)){−2zT (t)αr(z(t))βr(z(t))}
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+

m∑
r=1

hr(θ(t)){2zT (t)αr(z(t))Arg(z(t))}

+

m∑
r=1

hr(θ(t)){2zT (t)αr(z(t))Brg(z(t− τ))}

+ε

m∑
r=1

hr(θ(t)){−2gT (z(t))αr(z(t))βr(z(t))}

+ε

m∑
r=1

hr(θ(t)){2gT (z(t))αr(z(t))Arg(z(t))}

+ε

m∑
r=1

hr(θ(t)){2gT (z(t))αr(z(t))Brg(z(t− τ))}

+ε

m∑
r=1

ξr||g(z(t))||22 − ε
m∑
r=1

ξr||g(z(t− τ))||22

+η||g(z(t))||22 − η||g(z(t− τ))||22. (5)

We first note the following inequalities :

m∑
r=1

hr(θ(t)){−2zT (t)αr(z(t))βr(z(t))} =

m∑
r=1

hr(θ(t)){−2

n∑
i=1

αri(zi(t))βri(zi(t))zi(t)}

≤
m∑
r=1

hr(θ(t)){−2

n∑
i=1

ψriγriz
2
i (t)}

≤
m∑
r=1

hr(θ(t)){−2ψrγr

n∑
i=1

z2i (t)}

≤ −2ψγ

m∑
r=1

hr(θ(t)){
n∑
i=1

z2i (t)}

= −2ψγ||z(t)||22
m∑
r=1

hr(θ(t))

= −2ψγ||z(t)||22, (6)

m∑
r=1

hr(θ(t)){2zT (t)αr(z(t))Arg(z(t))}

=

m∑
r=1

hr(θ(t)){−(
√
ψγz(t)− 1√

ψγ
αr(z(t))Arg(z(t)))T (

√
ψγz(t)
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− 1√
ψγ

αr(z(t))Arg(z(t)))}+

m∑
r=1

hr(θ(t)){ψγzT (t)z(t)

+
1

ψγ
gT (z(t))ATr α

2
r(z(t))Arg(z(t)))}

≤
m∑
r=1

hr(θ(t)){≤ ψγzT (t)z(t) +
1

ψγ
gT (z(t))ATr α

2
r(z(t))Arg(z(t)))}

≤
m∑
r=1

hr(θ(t))ψγz
T (t)z(t) +

m∑
r=1

hr(θ(t))
1

ψγ
||α2r(z(t))||2||Ar||22||g(z(t))||22

≤
m∑
r=1

hr(θ(t))ψγ||z(t)||22 +

m∑
r=1

hr(θ(t))
φ2

ψγ
||Ar||22||g(z(t))||22

≤ ψγ||z(t)||22 +
m∑
r=1

φ2

ψγ
||Ar||22||g(z(t))||22, (7)

m∑
r=1

hr(θ(t)){2zT (t)αr(z(t))Brg(z(t− τ))}

=

m∑
r=1

hr(θ(t)){−(
√
ψγz(t)− 1√

ψγ
αr(z(t))Brg(z(t− τ)))T

×(
√
ψγz(t)− 1√

ψγ
αr(z(t))Brg(z(t− τ)))}

+

m∑
r=1

hr(θ(t)){ψγzT (t)z(t) +
1

ψγ
gT (z(t− τ))BTr α

2
r(z(t))Brg(z(t− τ)))}

≤
m∑
r=1

hr(θ(t)){≤ ψγzT (t)z(t) +
1

ψγ
gT (z(t− τ))BTr α

2
r(z(t))Brg(z(t− τ)))}

≤
m∑
r=1

hr(θ(t))ψγz
T (t)z(t) +

m∑
r=1

hr(θ(t))
1

ψγ
||α2r(z(t))||2||Br||22||g(z(t− τ))||22

≤
m∑
r=1

hr(θ(t))ψγ||z(t)||22 +

m∑
r=1

hr(θ(t))
φ2

ψγ
||Br||22||g(z(t− τ))||22

≤ ψγ||z(t)||22 +

m∑
r=1

φ2

ψγ
||Br||22||g(z(t− τ))||22, (8)

ε

m∑
r=1

hr(θ(t)){−2gT (z(t))αr(z(t))βr(z(t))}



1420 NEYIR OZCAN

= ε

m∑
r=1

hr(θ(t)){−2

n∑
i=1

αri(zi(t))βri(zi(t))gi(zi(t))}

≤ ε

m∑
r=1

hr(θ(t)){−2

n∑
i=1

ψriγrizi(t)gi(zi(t))}

≤ ε

m∑
r=1

hr(θ(t)){−2

n∑
i=1

1

ki
ψriγrig

2
i (zi(t))}

≤ ε

m∑
r=1

hr(θ(t)){−2gT (z(t))ψγK−1g(z(t))}

≤ −2εψγ|gT (z(t))|K−1|g(z(t))|, (9)

ε

m∑
r=1

hr(θ(t)){2gT (z(t))αr(z(t))Arg(z(t))}

≤ ε

m∑
r=1

2|gT (z(t))|αr(z(t))|Ar||g(z(t))|

≤ ε

m∑
r=1

2|gT (z(t))|φr|Ar||g(z(t))|

= ε

m∑
r=1

φr|gT (z(t))|(|Ar|+ |ATr |)|g(z(t))|, (10)

ε

m∑
r=1

hr(θ(t)){−2gT (z(t))αr(z(t))Brg(z(t− τ))}

ε ≤
m∑
r=1

hr(θ(t)){2||αr(z(t))||2||Br||2||g(z(t))||2||g(z(t− τ))||2}

ε ≤
m∑
r=1

2φr||Br||2||g(z(t))||2||g(z(t− τ))||2

≤ ε

m∑
r=1

1

ξr
φ2r||Br||22||g(z(t))||22 + ε

m∑
r=1

ξr||g(z(t− τ))||22. (11)

Using (17)-(22) in (16) leads to

V̇ (z(t)) ≤ −2ψγ||z(t)||22 + ψγ||z(t)||22 +

m∑
r=1

φ2

ψγ
||Ar||22||g(z(t))||22

+ψγ||z(t)||22 +

m∑
r=1

φ2

ψγ
||Br||22||g(z(t− τ))||22
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−2εψγ|gT (z(t))|K−1|g(z(t))|

+ε

m∑
r=1

|gT (z(t))|(φr|Ar|+ |ATr |φr)|g(z(t))|

+ε

m∑
r=1

1

ξr
φ2r||Br||22||g(z(t))||22 + ε

m∑
r=1

ξr||g(z(t− τ))||22

+ε

m∑
r=1

ξr||g(z(t))||22 − ε
m∑
r=1

ξr||g(z(t− τ))||22

+η||g(z(t))||22 − η||g(z(t− τ))||22. (12)

Let ||A||2 = max{||Ar||2} and ||B||2 = max{||Br||2}, r = 1, 2, · · ·,m and η = mφ2

ψγ .
Then, (23) takes the form

V̇ (z(t)) ≤ mφ2

ψγ
||A||22||g(z(t))||22 +

mφ2

ψγ
||B||22||g(z(t))||22

−2εψγ|gT (z(t))|K−1|g(z(t))|+ ε

m∑
r=1

|φrgT (z(t))|(|Ar|+ |ATr |)|g(z(t))|

+ε

m∑
r=1

1

ξr
φ2r||Br||22||g(z(t))||22 + ε

m∑
r=1

ξr||g(z(t))||22

=
mφ2

ψγ
(||A||22 + ||B||22)||g(z(t))||22

−ε|gT (z(t))|(2ψγK−1 −
m∑
r=1

(φr(|Ar|+ |ATr |)

+
1

ξr
φ2r||Br||22I + ξrI))|g(z(t))|

=
mφ2

ψγ
(||A||22 + ||B||22)||g(z(t))||22 − ε|gT (z(t))|Ω|g(z(t))|

≤ mφ2

ψγ
(||A||22 + ||B||22)||g(z(t))||22 − ελm(Ω)||g(z(t))||22, (13)

where λm(Ω) > 0 is the minimum eigenvalue of the positive definite matrix Ω. The
choice

ε >
mφ2

ψγλm(Ω)
(||A||22 + ||B||22)

ensures that V̇ (z(t)) expressed by (24) is negative definite for all g(z(t)) 6= 0, or
equivalently V̇ (z(t)) < 0 for all z(t) 6= 0 as g(z(t)) 6= 0 implies that z(t) 6= 0. In
the case where z(t) = 0, (z(t) = 0 implies that g(z(t)) = 0), V̇ (z(t)) directly takes
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the form

V̇ (z(t)) = −ε
m∑
r=1

ξr

n∑
j=1

g2j (zj(t− τ j))− η
n∑
j=1

g2j (zj(t− τ j))

≤ −η
n∑
j=1

g2j (zj(t− τ j)) = −ηgT (z(t− τ))g(z(t− τ)). (14)

It follows from (25) that if g(z(t−τ)) 6= 0, then V̇ (z(t)) < 0. Note that V̇ (z(t)) = 0
if and only if z(t) = g(z(t)) = g(z(t − τ)) = 0. On the other hand, one can
easily check that V (z(t)) is radially unbounded. Therefore, from the standard
Lyapunov stability theorems, we can conclude that the condition given in Theorem
2 establishes the global asymptotic stability of the origin of neural system (5). �

Remark 3. In [21]-[38], the stability of fuzzy neural system (5) have been estab-
lished by using the LMI (linear matrix inequality approach) or the M-matrix based
approach. It should be pointed out here that stability conditions expressed in the LMI
forms need to be checked for negative definiteness of the high dimensional matrices
formed by network parameters of neural systems. On the other hand, the M-matrix-
based approach neglects the sign of entries of the interconnection matrices, which
may result in the possible conservativeness in the stability criteria. However, the
stability conditions proposed in Theorems 1 and 2 establish a simple and easily ver-
ifiable relationship between the network parameters of the system without using the
LMI-based or M-matrix-based approaches. Therefore, the result proposed in the cur-
rent paper can be considered as an alternative condition to the previously published
results.

Now, the following numerical example is given in order to demonstrate the ap-
plicability of the theoretical results obtained in Theorems 1 and 2.

Example 4. Let Takagi-Sugeno fuzzy delayed neural network (5) be defined by the
parameters ψ = 1, γ = 1, φ1 = φ2 = φ3 = φ4 = 1, k1 = k2 = k3 = k4 = 1 and by
the system matrices :

A1 =


a a a a
a a a a
−a −a −a −a
−a a a −a

 , : A2 =


−a −a −a −a
a −a −a a
a −a −a a
a a a a

 ,

A3 =


−a −a a a
−a −a a a
−a a a −a
−a −a −a a

 , : A4 =


a −a −a −a
−a a −a −a
a −a a −a
a a −a −a

 ,
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B1 =


b b b b
b b −b −b
b −b b −b
−b b b −b

 , : B2 =


−b −b −b −b
−b −b b b
−b b −b b
b −b −b b

 ,

B3 =


−b −b −b −b
b b −b −b
b −b b −b
−b b b −b

 , : B4 =


b b b b
−b −b b b
−b b −b b
b −b −b b

 ,
where a > 0 and b > 0 are some positive real constants. From the above matrices,
we obtain

|A1|+ |AT1 | = |A2|+ |AT2 | = |A3|+ |AT3 | = |A4|+ |AT4 | = 2


a a a a
a a a a
a a a a
a a a a


and

||B1||2 = ||B2||2 = ||B3||2 = ||B4||2 = 2b.

Let ξ1 = ξ2 = ξ3 = ξ4 = 2b. Then, Ω in Theorem 2 is obtained as follows :

Ω =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

−


8a 8a 8a 8a
8a 8a 8a 8a
8a 8a 8a 8a
8a 8a 8a 8a

−


8b 0 0 0
0 8b 0 0
0 0 8b 0
0 0 0 8b



= 2


1− 4a− 4b −4a −4a −4a
−4a 1− 4a− 4b −4a −4a
−4a −4a 1− 4a− 4b −4a
−4a −4a −4a 1− 4a− 4b

 ,
where Ω > 0 if 1− 16a− 4b > 0. Thus, for the network parameters of this example,
the stability condition for system (5) is derived to be 16a+ 4b < 1.

4. Conclusion

This paper has presented a suffi cient condition for the uniqueness and global as-
ymptotic stability of the equilibrium point for the class of Takagi-Sugeno (T-S) fuzzy
delayed Cohen-Grossberg neural networks with discrete time delays in the presence
of the nondecreasing and slope-bounded activation functions. The uniqueness of
the equilibrium point has been proved by using the contradiction method, and the
stability of the equilibrium point has been established by employing a new fuzzy
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type Lyapunov functional. A numerical example has been presented to support
the effectiveness of the proposed stability criterion. The advantage of the obtained
condition over the previously published literature results has also been addressed.
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