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Abstract
As the main new result, we show that one can construct a time-dependent positive definite matrix R(t, t0) such that
the solution x(t) of the initial value problem ẋ(t) = Ax(t)+h(t,x(t)), x(t0) = x0, under certain conditions satisfies
the equation ‖x(t)‖R(t,t0) = ‖xA(t)‖R where xA(t) is the solution of the above IVP when h≡ 0 and R is a constant
positive definite matrix constructed from the eigenvectors and principal vectors of A and A∗ and where ‖ · ‖R(t,t0)
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1. Introduction
In this paper, the solution of the nonlinear initial value problem (for short: IVP) with linear principal part ẋ(t) = Ax(t)+
h(t,x(t)), x(t0) = x0 is investigated in a special time-dependent weighted norm ‖ · ‖R(t,t0) with positive definite matrix R(t, t0).
It will be shown that under certain conditions, R(t, t0) can be constructed such that ‖x(t)‖R(t,t0) = ‖xA(t)‖R where xA(t) is the
solution of the initial value problem ẋA(t) = AxA(t), xA(t0) = x0 and R is a constant positive definite matrix constructed from
the eigenvectors and principal vectors of A and A∗. In other words, the solution x(t) in the time-dependent weighted norm
‖ · ‖R(t,t0) is equal to the solution xA(t) of the pertinent linear IVP in the weighted norm ‖ · ‖R. As a consequence, since xA(t)
shows vibration suppression and monotonicity behavior under certain conditions, the same holds for ‖x(t)‖R(t,t0). This is the
main new result.

The paper is structured as follows. In Section 2, the weighted norm ‖ · ‖R and, in Section 3, the biorthogonality of
eigenvectors and principal vectors of the matrices A and A∗ are recapitulated. Section 4 contains two fundamental matrices,
namely one for the nonlinear IVP and one for the associated linear IVP. In Section 5, the matrix R(t, t0) is constructed, and the
equation ‖x(t)‖R(t,t0) = ‖xA(t)‖R is derived. Section 6 contains an expression for ‖x(t)‖R(t,t0) in the norm ‖ · ‖2, and Section 7
two-sided bounds on ‖x(t)‖ in any vector norm ‖ · ‖. In Section 8, Applications to free nonlinear dynamical systems with linear
principal part are given including numerical examples. Section 9 is the conclusion section.

https://dx.doi.org/10.33434/cams.460724
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2. The weighted norm ‖ · ‖R revisited

In this section, we revisit the results of [1] concerning the weighted norm ‖ · ‖R, where R is a special positive definite matrix
constructed from the eigenvectors and principal vectors of the adjoint A∗ of a given system matrix A.

2.1 The case of a diagonalizable matrix A
We first turn to diagonalizable matrices A.

Theorem 2.1. Let A ∈Cn×n be diagonalizable. Let α j = λ j(A) be the eigenvalues and u j be the associated left eigenvectors of
A for j = 1, · · · ,n; further, let A∗ ∈ Cn×n be the adjoint matrix of A so that u∗j are the right eigenvectors of A∗ corresponding to
the eigenvalues α j of A∗ for j = 1, · · · ,n, i.e.,

u jA = α j u j, j = 1, · · · ,n

and

A∗u∗j = α j u∗j , j = 1, · · · ,n .

Let

ρ j = α j +α j = 2Reα j = 2Reα j, j = 1, · · · ,n

and

R j = u∗ju j, j = 1, · · · ,n . (2.1)

Then,

A∗R j +R jA = ρ jR j, j = 1, · · · ,n .

In other words: The matrix eigenvalue problem

A∗V +VA = µV

has the n solution pairs

(µ,V ) = (ρ j,R j)

with real ρ j and positive semi-definite matrix R j ∈ Cn×n for j = 1, · · · ,n. Further,

R :=
n

∑
j=1

R j (2.2)

is positive definite.

Proof. See [1, Theorems 4 - 6].

Remark 2.2. Since R in (2.2) is positive definite, by

‖u‖R := (Ru,u)
1
2 , u ∈ Cn,

a weighted norm ‖ · ‖R is defined.

2.2 The case of a general square matrix A
In this subsection, we consider general square matrices A.

Theorem 2.3. Let A∈Cn×n have a canonical Jordan form consisting of r Jordan blocks. Let α j = λ j(A) be the eigenvalues and
u( j)

1 , · · · ,u( j)
m j be a chain of associated left principal vectors for j = 1, · · · ,r. Further, let A∗ ∈Cn×n be the adjoint matrix of A so

that u( j)
1
∗
, · · · ,u( j)

m j

∗
is a chain of right principal vectors of A∗ corresponding to the eigenvalues α j = λ j(A∗) for j = 1, · · · ,r, i.e.

u( j)
k A = α ju

( j)
k +u( j)

k−1
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with u( j)
0 = 0, k = 1, · · · ,m j, j = 1, · · · ,r and

A∗u( j)
k

∗
= α ju

( j)
k

∗
+u( j)

k−1

∗

with u( j)
0
∗
= 0, k = 1, · · · ,m j, j = 1, · · · ,r.

Let

ρ j = α j +α j = 2Reα j = 2Reα j, j = 1, · · · ,r

and

R(k,k)
j := u( j)

k

∗
u( j)

k , k = 1, · · · ,m j, j = 1, · · · ,r . (2.3)

Then,

A∗R(1,1)
j +AR(1,1)

j = ρ j R(1,1)
j , j = 1, · · · ,r .

In other words: The matrix eigenvalue problem

A∗V +VA = µV

has r solution pairs

(µ,V ) = (ρ j,R
(1,1)
j )

with real ρ j. Moreover, the matrices R(k,k)
j are positive semi-definite for k = 1, · · · ,m j, j = 1, · · · ,r. Further,

R j :=
m j

∑
k=1

R(k,k)
j , j = 1, · · · ,r and R :=

r

∑
j=1

m j

∑
k=1

R(k,k)
j (2.4)

is positive definite.

Proof. See [1, Theorems 7 - 8].

Remark 2.4. With (2.4), also a weighted norm ‖ · ‖R can be defined.

3. Biorthogonality system of principal vectors of A and A∗ revisited
First, we investigate the case of a diagonalizable matrix A and then the case of a general square matrix. Even though the result
for a diagonalizable matrix will be included in that for the case of a general square matrix, it seems nevertheless be worthwhile
to study this case separately. This is also a review section.

3.1 Diagonalizable matrix A
In this subsection, we summarize a known result on the biorthogonality of the eigenvectors of matrices A and A∗. It can be
shown that− for diagonalizable matrices A− the eigenvectors of A and A∗ are biorthogonal (so that there is nothing to construct
in this case).

For the sequel, we formulate the following conditions :

(C1) A ∈ Cn×n.

(C2) A is diagonalizable, and λi, i = 1, · · · ,n are the eigenvalues of A as well as pi, i = 1, · · · ,n the associated eigenvectors.

(C3) u∗i , i = 1, · · · ,n are the eigenvectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,n of A∗.

(C4) λi 6= λ j, i 6= j, i, j = 1, · · · ,n.

Then, we have the following theorem.



Analysis of the Dynamical System ẋ(t) = Ax(t)+h(t,x(t)), x(t0) = x0 in a Special Time-Dependent Norm — 30/47

Theorem 3.1. (Biorthogonality relations of eigenvectors)
Let the conditions (C1) - (C4) be fulfilled. Then, after appropriate normalization of the eigenvectors pi, i = 1, · · · ,n and

u∗i , i = 1, · · · ,n, one has the biorthogonality relations

(pi,u∗j) = δi j, i, j = 1, · · · ,n, (3.1)

where (·, ·) is the usual scalar product on Cn×Cn.

Proof. See [2, Theorem 1].

Remark 3.2. The condition (C4) is not essential so that it can be omitted. For this, see [3, Theorem 3]. But, we keep it because
it is fulfilled in our Numerical Example 1 in Section 8.

3.2 General square matrix A
In this subsection (more precisely, in Theorem 3.3), we exploit the fact that a principal vector of stage k of matrix A resp. A∗

remains a principal vector of stage k if one adds a linear combination of principal vectors of stages 1 to k−1 of A resp. A∗, as
the case may be. Hereby, we can construct a biorthogonal set of principal vectors of A resp. A∗ (provided that they are not
already biorthogonal, in which case there is nothing to construct).

Like in Subsection 3.1, we formulate the following conditions :

(C1′) A ∈ Cn×n.

(C2′) λi, i = 1, · · · ,r are the eigenvalues of A corresponding to the Jordan blocks Ji(λi) ∈ Cmi×mi , i = 1, · · · ,r with the chains
of principal vectors p(i)1 , · · · , p(i)mi , i = 1, · · · ,r.

(C3′) u(i)1
∗
, · · · ,u(i)mi

∗
, i = 1, · · · ,r are the principal vectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,r of the Jordan

blocks Ji(λi) ∈ Cmi×mi , i = 1, · · · ,r.

(C4′) λi 6= λ j, i 6= j, i, j = 1, · · · ,r.

Then, we have

Theorem 3.3. (Biorthogonality relations for principal vectors)
Let the conditions (C1′)−(C4′) be fulfilled. Then, the systems {p(l)1 , · · · , p(l)m1 ; · · · ; p(r)1 , · · · , p(r)mr } and {u(1)1

∗
, · · · ,u(1)m1

∗
; · · · ;u(r)1

∗
, · · · ,u(r)mr

∗
}

can be constructed such that the following biorthogonality relations hold:

(p(i)k ,u(i)l

∗
) =

{
1, l = mi− k+1
0, l 6= mi− k+1

k = 1, · · · ,mi, i = 1, · · · ,r and

(p(i)k ,u( j)
l

∗
) = 0, i 6= j,

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.
So, with

v(i)l

∗
:= u(i)mi−l+1

∗
, (3.2)

l = 1, · · · ,mi, i = 1, · · · ,r one has the biorthogonality relations

(p(i)k ,v(i)l

∗
) = δkl , (3.3)

k, l = 1, · · · ,mi, i = 1, · · · ,r, and

(p(i)k ,v( j)
l

∗
) = 0, i 6= j, (3.4)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

Proof. See [2, Theorem 2].

Remark 3.4. The properties (3.3) and (3.4) can also be written as

(p(i)k ,v( j)
l

∗
) = δi jδkl , (3.5)

k = 1, · · · ,mi, i = 1, · · · ,r; l = 1, · · · ,m j, j = 1, · · · ,r.
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4. Representations of the solution x(t) of the IVP ẋ(t) = Ax(t)+h(t,x(t)), t ≥ t0, x(t0) = x0
and of xA(t) when h≡ 0 by fundamental matrices

In the following, we discuss the existence, uniqueness, and boundedness of the solution of the initial value problem ẋ(t) =
Ax(t)+h(t,x(t)), t ≥ t0, x(t0) = x0 as well as pertinent representations of x(t) and xA(t) by use of fundamental matrices.

Let t0 ∈ R+
0 , let F be the field of real or complex numbers and Fn be the set of n-tuples with elements in F. Further, let ‖ · ‖

be a norm on Fn, let γ > 0 and Fn
γ = {u ∈ Fn |‖u‖ ≤ γ}. Finally, let A ∈ Fn×n and h(t,u) ∈ Fn, t ≥ t0, u ∈ Fn

γ , and continuous.
We investigate the initial value problem

ẋ(t) = Ax(t)+h(t,x(t)), t ≥ t0, x(t0) = x0. (4.1)

Let λ j(A), j = 1, · · · ,n be the eigenvalues of matrix A. The spectral abscissa ν [A] is defined as the maximum of the real parts
of the eigenvalues, i.e.,

ν [A] = max
j=1,··· ,n

Reλ j(A).

We suppose that ν [A]< 0. Further, if the eigenvalues of matrix A play a role, we implicitly assume that F= C. For νx0 [A] and
the index ι(λ (A)) of an eigenvalue λ (A), we refer the reader, e.g., to [4].

Let ΦA(t, t0) be the fundamental matrix (or evolution) pertinent to the problem ẋA(t) = AxA(t) with the property ΦA(t0, t0) =
E, where E ∈ Fn×n is the identity matrix. Then, the initial value problem is equivalent to the integral equation

x(t) = ΦA(t, t0)x0 +
∫ t

t0
ΦA(t,s)h(s,x(s))ds, t ≥ t0. (4.2)

This is a common implicit representation of x(t) using ΦA(t, t0) = exp(A(t− t0). But, we shall employ a different explicit one,
below.

For the sequel, we state the following conditions:

(C0) The function h(·, ·) is continuous on Dγ := {(t,u) | t ≥ t0, u ∈ Fn
γ}= {(t,u) | t ≥ t0, u ∈ Fn, ‖u‖ ≤ γ}.

(C1) The function h(·, ·) satisfies the (uniform) Lipschitz condition

‖h(t,u)−h(t,u′)‖ ≤ Lh ‖u−u′‖, t ≥ t0, u,u′ ∈ Fn
γ

with a positive constant Lh.

(C2) For every u ∈ Fn
γ ,

lim
u→0

‖h(t,u)‖
‖u‖

= 0 uniformly with respect to t≥ t0.

Herewith, we have the following theorem:

Theorem 4.1. (Existence, uniqueness, and boundedness of the solution)
Let the conditions (C0),(C1), and (C2) be fulfilled. Further, let the spectral abscissa ν [A]< 0, and x0 6= 0, ‖x0‖ as well as

Lh be sufficiently small.
Then, integral equation (4.2) and thus initial value problem (4.1) has a unique bounded solution for all t ≥ t0.

Proof. See [5, Theorem 1].

Remark 4.2. Sufficient for (C2) is the following condition:

(C′2) There exists a constant ch > 0 such that

‖h(t,u)‖ ≤ ch ‖u‖κ , ; t ≥ t0, u ∈ Fn,‖u‖ ≤ γ,

with κ > 1.

We need this stronger condition for the derivation of a lower bound on the solution x(t) of (4.1).

Now, let ΦA,h(t, t0) be the fundamental matrix with ΦA,h(t0, t0) = E pertinent to the IVP (4.1). Then, the representation of
x(t) using ΦA,h(t, t0) is given by

x(t) = ΦA,h(t, t0)x0. (4.3)

The representation (4.3) for the solution x(t) of the IVP (4.1) plays a major role in the subsequent sections.
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5. Representation of the solution vector x(t) of ẋ(t) = Ax(t)+h(t,x(t)), x(t0) = x0 in the
weighted time-dependent norm ‖ · ‖R(t,t0

Let the conditions (C0), (C1), and (C′2) from Section 4 be fulfilled. We remind that the solution of

ẋA(t) = AxA(t), t ≥ t0, xA(t0) = x0 (5.1)

can be written as

xA(t) = ΦA(t, t0)x0 = eA(t−t0) x0. (5.2)

This is the representation of xA(t) by the fundamental matrix that plays a role, in the sequel. From (4.3), it follows

x(t) = ΦA,h(t, t0)e−A(t−t0) eA(t−t0) x0 = Ψ(t, t0)eA(t−t0) x0 (5.3)

with

Ψ(t, t0) := ΦA,h(t, t0)e−A(t−t0). (5.4)

Thus,

x(t) = Ψ(t, t0)xA(t). (5.5)

5.1 The case of a diagonalizable matrix A
Let the conditions (C1)− (C4) be fulfilled. Then, according to [2, Theorem 5], one has the representation

xA(t) =
n

∑
k=1

(x0,u∗k) pk eλk(t−t0), t ≥ t0, (5.6)

with

A pk = λk pk, k = 1, · · · ,n

where pk,k = 1, · · · ,n and u∗k , k = 1, · · · ,n are biorthogonal, that is, where (3.1) is satisfied. Inserting (5.6) into (5.5) gives

x(t) =
n

∑
k=1

(x0,u∗k)Ψ(t, t0) pk eλk(t−t0) =
n

∑
k=1

(x0,u∗k) pk(t, t0)eλk(t−t0), t ≥ t0

with

pk(t, t0) := Ψ(t, t0) pk. (5.7)

Define

P(t, t0) := [p1(t, t0), · · · , pn(t, t0))]. (5.8)

Then,

P−1(t, t0)P(t, t0) = E, (5.9)

where E is the identity matrix. Set

P−1(t, t0) =: U(t, t0) =:


u1(t, t0)
u2t, t0)
· · ·

unt, t0)

 (5.10)

where u j(t, t0), j = 1, · · · ,n are row vectors of length n.
From (5.8), (5.9), and (5.10), we have

u j(t, t0) pk(t, t0) = δ jk
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or

(pk(t, t0),u∗j(t, t0)) = δ jk.

With (5.7), this leads to

(Ψ(t, t0) pk,u∗j(t, t0)) = δ jk

or

(pk,Ψ
∗(t, t0)u∗j(t, t0)) = δ jk.

On the other hand, also

(pk,u∗j) = δ jk.

Subtracting both relations implies

(pk,u∗j −Ψ
∗(t, t0)u∗j(t, t0)) = 0, j,k = 1, · · · ,n

and thus

u∗j −Ψ
∗(t, t0)u∗j(t, t0) = 0, j = 1, · · · ,n

or

u∗j(t, t0) = [Ψ∗(t, t0)]−1 u∗j = [Ψ−1(t, t0)]∗ u∗j , j = 1, · · · ,n.

This leads to

u j(t, t0) = u j Ψ
−1(t, t0), j = 1, · · · ,n.

Now, define

R j(t, t0) = u∗j(t, t0)u j(t, t0), j = 1, · · · ,n (5.11)

and

R(t, t0) =
n

∑
j=1

R j(t, t0). (5.12)

It is left to the reader to show that R j(t, t0), j = 1, · · · ,n are positive semi-definite and that R(t, t0) is positive definite.
With (5.11) and (5.12), we obtain

‖x(t)‖2
R(t,t0)

= (R(t, t0)x(t),x(t)) =
n

∑
j=1

(R j(t, t0)x(t),x(t))

=
n

∑
j=1

([Ψ−1(t, t0)]∗ u∗j [u j Ψ
−1(t, t0)]x(t),x(t))

=
n

∑
j=1

(u∗j u j [Ψ
−1(t, t0)x(t)], [Ψ−1(t, t0)x(t)])

=
n

∑
j=1

(R j xA(t),xA(t)) = (RxA(t),xA(t))

= ‖xA(t)‖2
R

so that we have

Theorem 5.1. Let the conditions (C0), (C1), and (C′2) be fulfilled. Further, let the spectral abscissa ν [A]< 0 and x0 6= 0, ‖x0‖
as well as Lh be sufficiently small. Moreover, let the conditions (C1) - C4) be satisfied.
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Then, with (2.2) and (5.12),

‖x(t)‖2
R(t,t0)

= ‖xA(t)‖2
R

where, according to [1, (47)],

‖xA(t)‖2
R =

n

∑
i=1
‖x0‖2

Ri
e2λi(A)(t−t0), t ≥ t0.

In other words: The solution x(t) to the nonlinear problem (4.1) in the time-dependent weighted norm ‖ · ‖R(t,t0) is equal to the
solution xA(t) of the pertinent linear problem (5.1) in the norm ‖ · ‖R.

Remark 5.2. We mention that the vectors pi, i = 1, · · · ,n and u∗i , i = 1, · · · ,n themselves need not be normed. For the
representation (5.6), we only have to demand that relation (3.1) be satisfied.

5.2 The case of a general square matrix A
Let the conditions (C1′)− (C4′) from Section 3 be fulfilled. The relations (5.1)-(5.5) remain valid. But, here, instead of (5.6),
according to [2, Theorem 6], we have

xA(t) =
r

∑
i=1

mi

∑
k=1

(x0,u
(i)
mi−k+1

∗
)x(i)k (t), t ≥ t0 (5.13)

with

x(i)k (t) = [p(i)1
(t− t0)k−1

(k−1)!
+ · · ·+ p(i)k−1(t− t0)+ p(i)k ]eλi(t−t0), t ≥ t0, (5.14)

k = 1, · · · ,mi, i = 1, · · · ,r where p(i)k , k = 1, · · · ,mi, i = 1, · · · ,r and v( j)
l

∗
:= u( j)

m j−l+1

∗
, l = 1, · · · ,m j, j = 1, · · · ,r from (3.2)

satisfy (3.5).
In the semi-norm ‖ · ‖

R(k,k)
i

, xA(t) has, according to [1, 4.2,(56), (57)], the form

‖x(t)‖2
R(k,k)

i
= |p(i)x0,k−1(t− t0)|2 e2λi(A)(t−t0) , t ≥ t0

with p(i)x0,k−1(t− t0) in (5.21) below. Next, we proceed as in Section 5.1. From (5.5) and (5.13), (5.14) we conclude that

x(t) = Ψ(t, t0)xA(t) =
r

∑
i=1

mi

∑
k=1

(x0,u
(i)
mi−k+1

∗
)×

[Ψ(t, t0) p(i)1
(t−t0)k−1

(k−1)! + · · ·+Ψ(t, t0) p(i)k−1(t− t0)+Ψ(t, t0) p(i)k ]eλi(t−t0)

so that

x(t) =
r

∑
i=1

mi

∑
k=1

(x0,u
(i)
mi−k+1

∗
)×

[p(i)1 (t, t0)
(t−t0)k−1

(k−1)! + · · ·+ p(i)k−1(t, t0)(t− t0)+ p(i)k (t, t0)]eλi(t−t0)

with

p(i)j (t, t0) = Ψ(t, t0) p(i)j , j = 1, · · · ,mi, i = 1, · · · ,r. (5.15)

Next, define

P(t, t0) := [p(1)1 (t, t0), · · · , p(1)m1 (t, t0); · · · ; p(r)1 (t, t0), · · · , p(r)mr (t, t0)]. (5.16)

Then,

P−1(t, t0)P(t, t0) = E. (5.17)
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Set

P−1(t, t0) =: V (t, t0) =:



v(1)1 (t, t0)
...

v(1)m1 (t, t0)
...

v(r)1 (t, t0)
...

v(r)mr (t, t0)


where v( j)

k (t, t0) are row vectors of length n. From (5.15), (5.16), and (5.17), we have

v(i)k (t, t0) p( j)
s (t, t0) = δi j δks,

k = 1, · · · ,mi, 0 = 1, · · · ,r; s = 1, · · · ,m j, j = 1, · · · ,r or

(p( j)
s (t, t0),v

(i)
k

∗
(t, t0)) = δi j δks.

With (5.15), this leads to

(Ψ(t, t0) p( j)
s ,v(i)k

∗
(t, t0)) = δi j δks

or

(p( j)
s ,Ψ∗(t, t0)v(i)k

∗
(t, t0)) = δi j δks.

On the other hand, also

(p( j)
s ,v(i)k

∗
) = δi j δks.

Subtracting both relations implies

(p( j)
s ,v(i)k

∗
−Ψ

∗(t, t0)v(i)k

∗
(t, t0)) = 0, j,k = 1, · · · ,n

and thus

v(i)k

∗
−Ψ

∗(t, t0)v(i)k

∗
(t, t0) = 0, k = 1, · · · ,mi, i = 1, · · · ,r

or

v(i)k

∗
(t, t0) = [Ψ∗(t, t0))]−1 v(i)k

∗
= [Ψ−1(t, t0)]∗ v(i)k

∗
,

k = 1, · · · ,mi, i = 1, · · · ,r. This leads to

v(i)k (t, t0) = v(i)k Ψ
−1(t, t0)

k = 1, · · · ,mi, i = 1, · · · ,r. Similarly to (3.2), define

v(i)l

∗
(t, t0) := u(i)mi−l+1

∗
(t, t0),

as well as

R(k,k)
j (t, t0) = u∗j(t, t0)u(i)k (t, t0) (5.18)

k = 1, · · · ,mi, i = 1, · · · ,r,

R j(t, t0) =
mi

∑
k=1

R(k,k)
j (t, t0), j = 1, · · · ,n (5.19)
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and

R(t, t0) =
r

∑
j=1

R j(t, t0). (5.20)

Again, it is left to the reader to show that R(k,k)
j (t, t0), R j(t, t0) are positive semi-definite and that R(t, t0) is positive definite.

Herewith,

‖x(t)‖2
R(t,t0)

= (R(t, t0)x(t),x(t)) =
r

∑
j=1

mi

∑
k=1

(R(k,k)
j (t, t0)x(t),x(t))

=
r

∑
j=1

mi

∑
k=1

([Ψ−1(t, t0)]∗ u(i)l

∗
[u(i)l Ψ

−1(t, t0)]x(t),x(t))

=
r

∑
j=1

mi

∑
k=1

(u(i)l

∗
u(i)l [Ψ−1(t, t0)x(t)], [Ψ−1(t, t0)x(t)])

=
r

∑
j=1

mi

∑
k=1

(R(k,k)
j xA(t),xA(t))

=
r

∑
j=1

(R j(t, t0)xA(t),xA(t))

= (RxA(t),xA(t))

= ‖xA(t)‖2
R

so that we have

Theorem 5.3. Let the conditions (C0), (C1), and (C′2) be fulfilled. Further, let the spectral abscissa ν [A]< 0 and x0 6= 0, ‖x0‖
as well as Lh be sufficiently small. Moreover, let the conditions (C1′)− (C4′) be satisfied.

Then, with (2.4) and (5.20),

‖x(t)‖2
R(t,t0)

= ‖xA(t)‖2
R

where, according to [1, (57), (56)],

‖xA(t)‖2
R =

r

∑
j=1

mi

∑
k=1
|p(i)x0,k−1(t− t0)|2 e2λi(A)(t−t0), t ≥ t0,

with

p(i)x0,k−1(t− t0) := (x0,u
(i)
1
∗ (t− t0)k−1

(k−1)!
+ · · ·+u(i)k−1

∗
(t− t0)+u(i)k

∗
) . (5.21)

In other words: The solution x(t) to the nonlinear problem (4.1) in the time-dependent weighted norm ‖ · ‖R(t,t0) is equal to
the solution xA(t) of the pertinent linear problem (5.1) in the norm ‖ · ‖R.

Remark 5.4. We mention that the vectors p(i)k , k = 1, · · · ,mi, i = 1, · · · ,r and v(i)k

∗
, i = 1, · · · ,r themselves need not be normed.

For the representation (5.13), (5.14), we only have to demand that relation (3.5) be satisfied.

6. An expression for ‖x(t)‖R(t,t0) in the norm ‖ · ‖2

According to Section 5, under the respective conditions, one has

‖x(t)‖2
R(t,t0)

= ‖xA(t)‖2
R.

As a consequence of this, one obtains a series of corollaries. The first one follows from [6, Section 3].
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6.1 The case of a diagonalizable matrix A
We first turn to diagonalizable matrices A.

Corollary 6.1. Let the conditions (C0), (C1), and (C′2) as well as conditions (C1) - C4) be satisfied. Let R j be given by (2.1)
and R by (2.2) as well as R j(t, t0) by (5.11) and R(t, t0) by (5.12). Further, let

ψ j(t) := (x0,u∗j)eReλ j(A)(t−t0), t ≥ t0, (6.1)

j = 1, · · · ,n, as well as

ψ(t) := [ψ1(t),ψ2(t), · · · ,ψn(t)]T . (6.2)

Then,

|(x0,u∗j)|= ‖x0‖R j ,

j = 1, · · · ,n, and

‖x(t)‖R(t,t0) = ‖xA(t)‖R = ‖ψ(t)‖2, t ≥ t0.

Proof. See proof of [6, Lemma 3].

6.2 The case of a general square matrix A
In this subsection, we consider the general square matrices A.

Corollary 6.2. Let the conditions (C0), (C1), and (C′2) as well as conditions (C1′)− (C4′) be fulfilled. Let R(k,k)
j , R j, and R be

given by (2.3) and (2.4), respectively, as well as R(k,k)
j (t, t0), R j(t, t0), and R(t, t0) by (5.18), (5.19), and (5.20), as the case may

be. Moreover, let p( j)
x0,k−1(t− t0) be given by (5.21), and let

ψ
( j)
k (t) := p( j)

x0,k−1(t− t0)eReλ j(A)(t−t0), (6.3)

k = 1, · · · ,m j, j = 1, · · · ,r, as well as

ψ
( j)(t) := [ψ

( j)
1 (t), · · · ,ψ( j)

m j (t)]
T , (6.4)

i = 1, · · · ,r and

ψ(t) :=


ψ(1)(t)
ψ(2)(t)

...
ψ(r)(t)

 . (6.5)

Then,

|(x0,u
( j)
k

∗
)|= ‖x0‖R(k,k)

j
,

k = 1, · · · ,m j, j = 1, · · · ,r, and

‖x(t)‖R(t,t0) = ‖xA(t)‖R = ‖ψ(t)‖2, t ≥ t0.

Proof. See [6, Lemma 4].
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7. Two-sided bounds on x(t) in any norm ‖ · ‖ based on ψ(t)

In [6, Sections 4.1 and 4.2], under certain conditions, we have established the two-sided bounds

X0 ‖ψ(t)‖ ≤ ‖xA(t)‖ ≤ X1 ‖ψ(t)‖, t ≥ t0, (7.1)

with ψ(t) from (6.1), (6.2) for the case of diagonalizable matrices A and with ψ(t) from (6.3)-(6.5) for general square matrices
A.

The same two-sided bounds will be derived for x(t) instead of xA(t). As a preparation for this, we prove the following
lemma.

Lemma 7.1. (Two-sided bound on ‖x(t)‖ by ‖xA(t)‖)
Let the conditions (C0), (C1), and (C′2) be satisfied; further, let νx0 [A] = ν [A] and let the spectral abscissa ν [A] of matrix A

be negative and for every eigenvalue λ (A) with Reλ (A) = ν [A] let the index ι(λ (A)) be ι(λ (A)) = 1, let x0 6= 0, and ‖x0‖ as
well as ch and Lh be sufficiently small.

Then, there exist positive constants X0 and X1 such that

X0 ‖xA(t)‖ ≤ ‖x(t)‖ ≤ X1 ‖xA(t)‖, t ≥ t0. (7.2)

Proof. From [5, Corollary 4], we obtain

XA,h,0 eν [A] (t−t0) ≤ ‖x(t)‖ ≤ XA,h,1 eν [A] (t−t0), t ≥ t0 (7.3)

with x(t) = ΦA,h(t, t0)x0 and positive constants XA,h,0 and XA,h,1. For the special case h≡ 0, this leads to

XA,0 eν [A] (t−t0) ≤ ‖xA(t)‖ ≤ XA,1 eν [A] (t−t0), t ≥ t0

with xA(t) = ΦA(t, t0)x0 and positive constants XA,0 and XA,1 or

1
XA,1
‖xA(t)‖ ≤ eν [A] (t−t0) ≤ 1

XA,0
‖xA(t)‖, t ≥ t0. (7.4)

From (7.3) and (7.4), we conclude that ((7.2) is valid with

X0 =
XA,h,0

XA,1

and

X1 =
XA,h,1

XA,0
.

7.1 The case of a diagonalizable matrix A
In order to obtain the two-sided bounds in (7.1) with x(t) instead of xA(t), we first turn to diagonalizable matrices A. Here, we
have

Corollary 7.2. Let the conditions (C0), (C1), and (C′2) as well as conditions (C1) - (C4) be satisfied and let ‖ · ‖ be any vector
norm. Let ψ(t) be defined by (6.1) and (6.2). Let x(t) be the solution of the initial value problem (4.1). Then, there exist positive
constants X0 and X1 such that

X0‖ψ(t)‖ ≤ ‖x(t)‖ ≤ X1‖ψ(t)‖, t ≥ t0 . (7.5)

Proof. The proof of (7.5) follows from Lemma 7.1 and relation (7.1) which, in turn, is stated in [6, Section 4.1, Theorem
5].

Remark 7.3. The two-sided bound (7.5) turns out to be much better than (7.3).
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. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

Figure 8.1. Multi-mass vibration model.

7.2 The case of a general square matrix A
In this subsection, we consider the general square matrices A.

Corollary 7.4. Let the conditions (C0), (C1), and (C′2) as well as conditions (C1′)− (C4′) be fulfilled, and let ‖ ·‖ be any vector
norm. Let p(i)x0,k−1(t− t0) be given by (5.21) and ψ(t) by (6.3)-(6.5). Let x(t) be the solution of the initial value problem (4.1).
Then, there exist positive constants X0 and X1 such that

X0‖ψ(t)‖ ≤ ‖x(t)‖ ≤ X1‖ψ(t)‖, t ≥ t0 . (7.6)

Proof. The proof of (7.6) follows from Lemma 7.1 and relation (7.1) which, in turn, is stated in [6, Section 4.2, Theorem
6].

Remark 7.5. The two-sided bound (7.6) turns out to be much better than (7.3).

8. Applications to free nonlinear dynamical systems with linear principal part

In this section, we consider applications to free nonlinear dynamical systems with linear principal part represented by a
mechanical multi-mass vibratory system. Both the case of a diagonalizable and the case of a non-diagonalizable system matrix
A is considered. For both cases, numerical examples illustrate the obtained results.

8.1 The multi-mass vibration model with nonlinear stiffness functions
We consider the multi-mass vibration model in Figure 8.1.

Here, ki means the nonlinear stiffness function

ki(v) = k(0)i (v+η v3), v ∈ R

with positive constants k(0)i , i = 1, · · · ,n+1 and with some parameter η ≥ 0. For η = 0, we obtain a linear model, and otherwise
a nonlinear model.

The equation of motion in vector form is given by

M ÿ+Bẏ+q(y) = 0, y(0) = y0, ẏ(0) = ẏ0

with

q(y) = K(0) y+η q(3)(y)

and

q(3)(y) =


k(0)1 (y1− y0)

3− k(0)2 (y2− y1)
3

k(0)2 (y2− y1)
3− k(0)3 (y3− y2)

3

...
k(0)n−1(yn−1− yn−2)

3− k(0)n (yn− yn−1)
3

k(0)n (yn− yn−1)
3− k(0)n+1(yn+1− yn)

3

 ,
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where y0 = yn+1 = 0; the matrices M, B and K(0) are given by

M =


m1

m2
m3

. . .
mn

 ,

B =



b1 +b2 −b2
−b2 b2 +b3 −b3

−b3 b3 +b4 −b4
. . . . . . . . .

−bn−1 bn−1 +bn −bn
−bn bn +bn+1


,

K(0) =



k(0)1 + k(0)2 −k(0)2

−k(0)2 k(0)2 + k(0)3 −k(0)3

−k(0)3 k(0)3 + k(0)4 −k(0)4
. . . . . . . . .

−k(0)n−1 k(0)n−1 + k(0)n −k(0)n

−k(0)n kn + k(0)n+1


with the mass, damping, and stiffness matrices M, B, and K(0), as the case may be, and the displacement vector y. In state-space
description, this problem takes the form

ẋ(t) = Ax(t)+h(t,x(t)), t ≥ 0, x(0) = x0

with x = [yT ,zT ]T , z = ẏ, and where the system matrix A is given by

A =

[
0 E

−M−1K(0) −M−1B

]
and h by

h(t,u) = η

 0

−M−1 q(3)(v)

=: h0(u)

with t ≥ 0, u = [vT ,wT ]T , v,w ∈ Fn. We mention that x,u ∈ Fm and A ∈ Fm×m with m = 2n. From [5], it follows that

‖h(t,u)‖= ‖h0(u)‖ ≤ ch ‖u‖3, t ≥ 0, u ∈ Fm,

where ch = η c̃h with a constant c̃h independent of η as well as

‖h(t,u)−h(t,u′)‖ ≤ Lh ‖u−u′‖, t ≥ 0, u,u′ ∈ Fm
γ ,

where Lh = η L̃h, with a constant L̃h independent of η .

8.2 Numerical examples
Numerical Example 1: Matrix A diagonalizable

(i) Data:
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The values m j, j = 1, · · · ,n and b j, k(0)j , j = 1, · · · ,n+1 are also specified as in earlier papers, namely as

m j = 1, j = 1, · · · ,n
k(0)j = 1, j = 1, · · · ,n+1

and

b j =

{
1/2, j even
1/4, j odd.

Then,

M = E,

B =



3
4 − 1

2
− 1

2
3
4 − 1

4
− 1

4
3
4 − 1

2
. . . . . . . . .
− 1

4
3
4 − 1

2
− 1

2
3
4


(if n is even), and

K(0) =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2


.

We add the details in order to make the paper more readable on its own. Further, we choose n = 5 in this paper so that the
state-space vector has dimension m = 2n = 10. For the initial time, we take

t0 = 0

and

η ∈ {0,0.5,1.0}.

Finally, the initial conditions for y(t) and ẏ(t) are chosen as

y0 = [−1,1,−1,1,−1]T

as well as

ẏ0 = [−1,−1,−1,−1,−1]T .

(ii) Computation of important quantities:
Using the Matlab routine eig.m, one obtains

λ1(A∗) = −0.699760638780536+1.795981478159753i,
λ2(A∗) = −0.699760638780536−1.795981478159753i,
λ3(A∗) = −0.562668374040742+1.616358701643860i,
λ4(A∗) = −0.562668374040742−1.616358701643860i,
λ5(A∗) = −0.375000000000000+1.363589014329465i,
λ6(A∗) = −0.375000000000000−1.363589014329465i,
λ7(A∗) = −0.050239361219464+0.516371450711010i,
λ8(A∗) = −0.050239361219464−0.516371450711010i,
λ9(A∗) = −0.187331625959257+0.994521686465592i,

λ10(A∗) = −0.187331625959257−0.994521686465592i.
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Therefore, λ j(A∗), j = 1, · · · ,m = 2n = 10 and also λ j(A) = λ j(A∗), j = 1, · · · ,m = 2n = 10 are distinct. Thus, matrix A is
diagonalizable. Further, we obtain

U∗ := [u∗1, · · · ,u∗10]

where

[u∗1 , · · · ,u
∗
5 ] =



0.2680+0.0309i 0.2680−0.0309i −0.4533 −0.4533 0.3314−0.2662i
−0.4491−0.0157i −0.4491+0.0157i 0.4039−0.0764i 0.4039+0.0764i 0.0539+0.0558i

0.5119 0.5119 0.0563+0.1119i 0.0563−0.1119i −0.4393+0.1546i
−0.4370+0.0153i −0.4370−0.0153i −0.4321+0.0205i −0.4321−0.0205i −0.0354−0.0773i

0.2439−0.0309i 0.2439+0.0309i 0.3970−0.1119i 0.3970+0.1119i 0.5101
0.0798−0.1237i 0.0798+0.1237i −0.1000+0.2519i −0.1000−0.2519i −0.1194−0.2759i
−0.0836+0.2122i −0.0836−0.2122i 0.0550−0.2290i 0.0550+0.2290i −0.0000+0.0000i

0.0955−0.2474i 0.0955+0.2474i 0.1063−0.0140i 0.1063+0.0140i 0.0230+0.3285i
−0.0836+0.2122i −0.0836−0.2122i −0.0550+0.2290i −0.0550−0.2290i −0.0000−0.0000i

0.0158−0.1237i 0.0158+0.1237i −0.0063−0.2379i −0.0063+0.2379i 0.0957−0.3478i


,

and

[u∗6 , · · · ,u
∗
10 ] =



0.3314+0.2662i 0.0497−0.1441i 0.0497+0.1441i 0.3779 0.3779
0.0539−0.0558i −0.0531−0.2199i −0.0531+0.2199i 0.3400−0.0254i 0.3400+0.0254i
−0.4393−0.1546i −0.0259−0.2635i −0.0259+0.2635i −0.0700−0.1592i −0.0700+0.1592i
−0.0354+0.0773i 0.0095−0.2322i 0.0095+0.2322i −0.3050+0.1050i −0.3050−0.1050i

0.5101 −0.0755−0.1194i −0.0755+0.1194i −0.3079+0.1592i −0.3079−0.1592i
−0.1194+0.2759i −0.2568−0.0165i −0.2568+0.0165i 0.0314−0.3582i 0.0314+0.3582i
−0.0000−0.0000i −0.4417−0.0001i −0.4417+0.0001i −0.0079−0.3406i −0.0079+0.3406i

0.0230−0.3285i −0.5104 −0.5104 −0.0857+0.0199i −0.0857−0.0199i
−0.0000+0.0000i −0.4417−0.0001i −0.4417+0.0001i 0.0079+0.3406i 0.0079−0.3406i

0.0957+0.3478i −0.2536+0.0165i −0.2536−0.0165i 0.0543+0.3383i 0.0543−0.3383i


;

here the output results are given with only four decimal places for space reasons. The weighted matrix R is computed as

R =



1.2501 −0.2868 −0.1297 0.0135 −0.0988 0.1966 −0.1314 −0.3356 −0.0196 0.2662
−0.2868 1.0887 −0.3824 −0.0842 0.0179 −0.1567 0.2066 0.0440 0.0239 0.0319
−0.1297 −0.3824 1.1899 −0.3531 −0.1196 0.2780 0.0018 0.2200 −0.1271 −0.3402

0.0135 −0.0842 −0.3531 1.0873 −0.3227 −0.0173 −0.0525 −0.1892 0.1947 0.0505
−0.0988 0.0179 −0.1196 −0.3227 1.2619 −0.3017 0.0042 0.3092 0.0215 0.2699

0.1966 −0.1567 0.2780 −0.0173 −0.3017 0.7620 0.2782 0.1039 0.0439 −0.0256
−0.1314 0.2066 0.0018 −0.0525 0.0042 0.2782 0.8373 0.3358 0.1512 0.0458
−0.3356 0.0440 0.2200 −0.1892 0.3092 0.1039 0.3358 0.9171 0.3240 0.1085
−0.0196 0.0239 −0.1271 0.1947 0.0215 0.0439 0.1512 0.3240 0.8373 0.2919

0.2662 0.0319 −0.3402 0.0505 0.2699 −0.0256 0.0458 0.1085 0.2919 0.7685


,

We mention that the items in (i) and (ii) are already given in [6]. We have added them for the sake of completeness.
(iii) Graph of y = ‖x(t)‖R(t,t0) for η ∈ {0,0.5,1.0}:
In Figure 8.2, the curve y = ‖x(t)‖R(t,t0) for η ∈ {0,0.5,1.0} is plotted.
The result in all three cases η ∈ {0,0.5,1.0} is numerically identical with that in [6, Fig.4], i.e. for y = ‖xA(t)‖R. But, the

method of computing Figure 8.2 is different from that used for [6, Fig.4]; for this, see Section 8.3 below. The result of Figure
8.2 underpins the theoretical findings in Corollary 6.1.

The curve y = ‖x(t)‖R(t,t0) for η ∈ {0,0.5,1.0} behaves essentially like y = e−t and clearly shows vibration suppression.
Thus the curve in Figure 8.2 may serve as a measure of the damping property of the system.

The vibration behavior is due to the fact that the eigenvalues are pairwise conjugate complex. Since Reλ j(A∗) = Reλ j(A)<
0, j = 1, · · · ,10, the system is asymptotically stable so that ‖x(t)‖R(t,t0)→ 0 (t→ ∞).

(iv) Two-sided bounds on y = ‖x(t)‖2 for η = 0:
Now, we apply Corollary 7.2, first for η = 0 in order to check corresponding results from [6].
In Figure 8.3, the optimal upper and lower bounds y = X1,2 ‖ψ(t)‖2 and y = X0,2 ‖ψ(t)‖2 on y = ‖x(t)‖2 for η = 0 are

shown where the optimal constants X1,2 and X0,2 are determined by the differential calculus of norms. Let ts,u,2 and ts,l,2 be the
pertinent places of contact. For the initial guesses ts,u,20 = 15.0 and ts,l,20 = 12.0, the following results are obtained:

ts,u,2
.
= 15.204749,

X1,2
.
= 1.560408,

and

ts,l,2
.
= 12.162025,

X0,2
.
= 0.803475.

These results are numerically identical with those in [6]. However, the computational methods are different, see Section 8.3.
(v) Two-sided bounds on y = ‖x(t)‖2 for η = 0.5:
Now, we apply Corollary 7.2, for η = 0.5. In Figure 8.4, the pertinent optimal upper and lower bounds y = X1,2 ‖ψ(t)‖2

and y = X0,2 ‖ψ(t)‖2 on y = ‖x(t)‖2 are shown where the optimal constants X1,2 and X0,2 are determined by the differential
calculus of norms. Let ts,u,2 and ts,l,2 be the pertinent places of contact. For the initial guesses ts,u,20 = 19.0 and ts,l,20 = 16.0,
the following results are obtained:

ts,u,2
.
= 19.697311,

X1,2
.
= 1.444709,
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Figure 8.2. y = ‖x(t)‖R(t,t0) for η ∈ {0,0.5,1.0} for diagonalizable system matrix A.

and

ts,l,2
.
= 16.737657,

X0,2
.
= 0.759622.

These results are new. Computational details are given in Section 8.3.
Numerical Example 2: Matrix A non-diagonalizable
(i) Construction of a non-diagonalizable matrix A:
In the case n = 2 in Figure 8.1, we have

M =

[
m1 0
0 m2

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
,

and

K(0) =

[
k(0)1 + k(0)2 −k(0)2

−k(0)2 k(0)2 + k(0)3

]
,

so that the pertinent characteristic equation reads

|λ 2M+λB+K(0)| =

∣∣∣∣∣ λ 2m1 +λ (b1 +b2)+(k(0)1 + k(0)2 ) λ (−b2)− k(0)2

λ (−b2)− k(0)2 λ 2m2 +λ (b2 +b3)+(k(0)2 + k(0)3 )

∣∣∣∣∣= 0.

For the construction of a case with non-diagonalizable matrix A, we choose

b2 = 0, m2 = m1 = 1, b3 = b1, k(0)3 = k(0)1 .

Then,

λ
2m1 +λb1 +(k(0)1 + k(0)2 ) = sk(0)2 with s ∈ {+1,−1}.

Hence, with m1 = 1,

λ =−b1

2
±
√
(

b1

2
)2− k(0)1 − k(0)2 + sk(0)2 .



Analysis of the Dynamical System ẋ(t) = Ax(t)+h(t,x(t)), x(t0) = x0 in a Special Time-Dependent Norm — 44/47

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

y

y=||x(t) ||
2

y=X
1,2

 || ψ(t) ||
2

y=X
0,2

 || ψ(t) ||
2

Figure 8.3. y = ‖x(t)‖2 for diagonalizable system matrix A and η = 0 as well as optimal upper and lower bounds.
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Figure 8.4. y = ‖x(t)‖2 for diagonalizable system matrix A and η = 0.5 as well as optimal upper and lower bounds.
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Now, in order to get one real solution, we set

k(0)1 := (
b1

2
)2.

This implies

λ =


−b1

2
, s =+1,

−b1

2
± i
√

2k(0)2 , s =−1.

(ii) Data:
As numerical values for the quantities not yet specified, we choose b1 = 1/4, k(0)2 = 23 = 8. On the whole, this delivers the

following data:

m1 = m2 = 1; b1 = 1/4, b2 = 0, b3 = 1/4; k(0)1 = 1/64 = 1/24, k(0)2 = 8, k(0)3 = 1/64 = 1/24,

which leads to

M =

[
m1 0
0 m2

]
=

[
1 0
0 1

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
=

[
0.25 0

0 0.25

]
,

and

K(0) =

[
k(0)1 + k(0)2 −k(0)2

−k(0)2 k(0)2 + k(0)3

]
=

[
1/64+8 −8
−8 8+1/64

]
=

[
8.015625 −8
−8 8.015625

]
.

Further, we choose

t0 = 0

as well as

y0 = [−1,1]T

and

ẏ0 = [−1,−1]T .

(iii) Computation of important quantities:
Using the Matlab routine jordan, one obtains

λ1(A∗) = −0.1250+4.0000i,
λ2(A∗) = −0.1250−4.0000i,
λ3(A∗) = −0.1250,
λ4(A∗) = λ3(A∗).

Here, m1 = m2 = 1, and m3 = 2. Thus, matrix A∗ and therefore also A is not diagonalizable, and the computation of

U∗ := [u∗1,u
∗
2,u

(3)
1
∗
,u(3)2

∗
]

gives

U∗ =


0.25+0.0078125i 0.25−0.0078125i 0.0625 0.5
−0.25−0.0078125i −0.25+0.0078125i 0.0625 0.5

0.0625i 0.0625i 0.5 0
0.0625i 0.0625i 0.5 0

 .
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Figure 8.5. y = ‖x(t)‖R(t,t0) for non-diagonalizable system matrix A and η ∈ {0,0.5,1.0}.

The weighted matrix R is computed as

R =


0.379028320312500 0.128784179687500 0.032226562500000 0.030273437500000
0.128784179687500 0.379028320312500 0.030273437500000 0.032226562500000
0.032226562500000 0.030273437500000 0.257812500000000 0.242187500000000
0.030273437500000 0.032226562500000 0.242187500000000 0.257812500000000

 .

We mention that the items (i) - (iii) are already given in [6]. We have added them for the sake of completeness.
(iv) Graph of y = ‖x(t)‖R(t,t0) for η ∈ {0,0.5,1.0}:
In the norm ‖ · ‖R(t,t0), we obtain Figure 8.5.
The result in all three cases is numerically identical with that in [6, Fig.9], i.e., for y = ‖xA(t)‖R. But, again, the method of

computing Figure 8.5 is different from that used for [6, Fig.8]; for this, see the computational aspects discussed in Section 8.3.

Remark 8.1. The computation of the optimal two-sided bounds y = X1,2 ‖ψ(t)‖2 and y = X0,2 ‖ψ(t)‖2 on y = ‖x(t)‖2 for
η = 0.5 corresponding to Figure 8.4 is left to the reader.

8.3 Computational aspects
In this subsection, we say something about the used computer equipment, used Matlab programs, and the computation time.

(i) As to the computer equipment, the following hardware was available: an Intel Core2 Duo Processor at 3166 GHz, a
500 GB mass storage facility, and two 2048 MB high-speed memories. As software package for the computations, we used
MATLAB, Version 7.11.

(ii) Whereas in [6], the computations were based on the representation xA(t) = eA(t−t0)x0 of the solution of the initial value
problem ẋA(t)=AxA(t), t ≥ t0, xA(t0)= x0, here for the solution of the nonlinear IVP ẋ(t)=Ax(t)+h(t,x(t)), t ≥ t0, x(t0)= x0,
the Matlab program ODE45 is applied. In the case of η = 0, we obtain the same numerical result as in the linear case. The
computation time is larger, however.

(iii) The computation time t of an operation was determined by the command sequence t1=clock; operation; t=etime(clock,t1).
It is put out in seconds, rounded to four decimal places. For the computation of the eigenvalues of matrix A, we used the
command [XA,DA]=eig(A); the pertinent computation time for Example 1 is less than 0.0001 s. For the computation of
the 251 values t,y(t) with y(t) = ‖x(t)‖R(t,t0), t = 0(0.1)25 for, say, Figure 8.5, it took t(table f orFigure8.5) = 7.8930s. The
computation times for the other figure are of a similar order.

9. Conclusion

In this paper, it is shown that one can construct a time-dependent positive definite matrix R(t, t0) such that the solution x(t)
of the nonlinear initial value problem with linear principal part ẋ(t) = Ax(t)+ h(t,x(t)), t ≥ t0, x(t0) = x0 in the weighted
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norm ‖ · ‖R(t,t0) is equal to the solution xA(t) of ẋA(t) = AxA(t), t ≥ t0, xA(t0) = x0 in the weighted norm ‖ · ‖R where R is a
constant positive definite matrix. As a consequence, if ‖xA(t)‖R shows vibration suppression or monotonicity behavior, so does
‖x(t)‖R(t,t0). Further, since ‖xA(t)‖R can be used to assess the damping behavior of the underlying dynamical problem, by the
equation ‖x(t)‖R(t,t0) = ‖xA(t)‖R also the damping behavior of the nonlinear IVP can be assessed. The results are applied to
dynamical systems, and examples underpin the theoretical findings.

One might object that incase of matrix A is not diagonalizable, the Jordan canonical form has to be calculated. But, the
determination of the Jordan canonical form can be done by the jordan routine of MATLAB. Further, engineers usually reduce
an originally large matrix A by a process called condensation. For these reduced matrices, it is usually no numerical problem to
determine the canonical Jordan form, and it is then not costly to compute ‖x(t)‖R(t,t0). In addition, in engineering practice,
often models with small matrices A are applied. For these models, the new method is likewise of major interest. Moreover, the
matrices used in practice are in most cases diagonalizable. In these cases, no numerical problem at all exists.
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