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Abstract

In this paper, we study the almost Bézout property in different commutative ring exten-
sions, namely, in bi-amalgamated algebras and pairs of rings. In Section 2, we deal with
almost Bézout domains issued from bi-amalgamations. Our results capitalize well known
results on amalgamations and pullbacks as well as generate new original class of rings
satisfying this property. Section 3 investigates pairs of rings where all intermediate rings
are almost Bézout domains. As an application of our results, we characterize pairs of rings
(R,T), where R arises from a (7', M, D) construction to be an almost Bézout domain.
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1. Introduction

Throughout, all rings considered are commutative with unity and all modules are unital.
In [2], Anderson and Zaffrullah enlarged the class of Bézout domains in the following way:
they called a domain R an almost Bézout domain (AB—domain for short) if given any two
elements =,y € R, there is a positive integer n such that the ideal (z™,y™) is principal.
Among other things, they proved that an integral domain R is an AB—domain if and only
if the integral closure R’ of R is a Priifer domain with torsion class group and R C R is a
root extension. Further, they proved that the theory of AB—domains is closed to the clas-
sical one of Bézout domains. In [4], the authors noticed that each AB—domain is nearly
Bézout and a counter-example, using the classical pullback K + X L[ X] was given to dis-
prove the converse. Moreover, They used the same example to illustrate that a Noetherian
almost Bézout domain is not necessarily an almost principal ideal-domain (API-domain),
although each Noetherian Bézout domain is a principal ideal-domain(PID). In [3], D.D.
Anderson and M. Zaffrullah showed that a finite intersection of almost valuation domains
with the same quotient field is an almost Bézout domain. This generalizes the result that
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a finite intersection of valuation domains with the same quotient field is a Bézout Domain
and they gave a new characterization of Cohen-Kaplansky domains. In [18], Mimouni
studied the transfer of the notion of AB-domain to pullbacks. Later, in [17], the authors
extended the notion of AB—domain defined in [2], to class of rings with zero-divisors. In
particular, they defined almost Bézout rings (AB-rings for short) and they investigated
when this condition is satisfied by an amalgamated algebra and by an idealization (also
called Nagata’s ring). In this paper, we examine when a bi-amalgamation is an AB—ring.
Our results capitalize previous well known results on amalgamations in [17] and on An-
derson and Zafrullah’s paper in [2] as well as generate new original class of rings satisfying
this property. Among other things, we investigate pairs of integral domains where all in-
termediate rings are AB—domains. As a consequence of our results, we provide necessary
and sufficient conditions for a pair (R,T) where R arises from a (T, M, D) construction,
to be an AB—domain pair.

Section 2 is devoted to the study of AB—ring property in bi-amalgamated algebras.
For this purpose, we recall the definition of bi-amalgamation of rings: Let f : A — B
and g : A — C be two ring homomorphisms and let J and J’ be two ideals of B and C,
respectively, such that I, := f~1(J) = g~%(J'). The bi-amalgamation (or bi-amalgamated
algebra) of A with (B, C) along (J,J') with respect to (f,g) is the subring of B x C' given
by

Aval9 (1.0') = {(f(a) + j.gla) + ) |a € A, (j,§') € T x J'}.

This construction was introduced in [15] as a natural generalization of duplications [9,
12,13] and amalgamations [10,11]. In [15], the authors provide original examples of bi-
amalgamations and, in particular, show that Boisen-Sheldon’s CPI-extensions [7] can be
viewed as bi-amalgamations (Notice that [10, Example 2.7] shows that CPI-extensions
can be viewed as quotient rings of amalgamated algebras). They also show how every
bi-amalgamation can arise as a natural pullback (or even as a conductor square) and then
characterize pullbacks that can arise as bi-amalgamations. Then, the last two sections
of [15] deal, respectively, with the transfer of some basic ring theoretic properties to bi-
amalgamations and the study of their prime ideal structures. All their results recover
known results on duplications and amalgamations. Recently in [16], the authors estab-
lished necessary and sufficient conditions for a bi-amalgamation to inherit the arithmetical
property, with applications on the weak global dimension and transfer of the semiheredi-
tary property.

Section 3 is devoted to the study of pairs of AB—domains. When each intermediate ring
T between R and S (that is for each T' € [R, S]) satisfies a ring theoretic property P, then
(R, S) is said to be a P—pair. The notion of P-pairs was studied for different properties
P (for instance P := Noetherian, Priifer, almost valuation, treed see [5,14,19,20]). To
complete this circle of ideas, we deal with the property P := almost Bézout. Throughout,
for a ring R, Spec(R) (resp., Max(R)) will denote the set of all prime (resp., maximal)
ideals of R. For an integral domain R, we denote by ¢f(R) (resp., R') the quotient field
of R (resp., the integral closure of R in ¢f(R)). For a ring extension R C S, we denote
by [R,S] (resp., |R,S]) the set of all rings 7" such that R C T C S (resp., R C T C 95).
We shall call a ring T in [R, S] an S-overring of R. Such a ring is said to be a proper
S-overring of R if T # S. When S = ¢f(R), then each ring T' € [R, qf(R)] is called an
overring of R. We denote by Jac(R), the Jacobson radical of R. Recall that an extension
of integral domains R C S is said to be a root extension if for each x € S, there exists a
positive integer n such that 2™ € R.



Some commutative ring extensions defined by almost Bézout condition 373

2. Transfer of AB—ring property to bi-amalgamated algebras

Let A, B and C be three rings, f : A — B and g : A — C be two ring homomorphisms
and let J and J’ be two ideals of B and C, respectively, such that f~1(J) = g~1(J') = I.
All along this section, A /9 (J,J') will denote the bi-amalgamation of A with (B, C)
along (J,J') with respect to (f,g).

Our first result investigates the transfer of AB—ring property to bi-amalgamation A paf9
(J,J') in case J and J' are proper ideals (J # B and J' # C).

Theorem 2.1. Assume that B and C are integral domains and J (resp., J') is a proper
ideal of B (resp., C'). Then the following statements are equivalent:

(1) Al (J,J') is an AB—ring.

(2) f(A)+J and g(A) + J are AB—rings and J =0 or J' = 0.

Proof. (1) = (2) Assume that A /9 (J,J') is an AB—ring. Using the fact that the
AB-—ring property is stable under factor ring and in view of the isomorphisms:

Asal9 (1)
Toxg A

and

Aval9 (1)

J x0
given by [15, Proposition 4.1(2)]. It follows that f(A)+ J and g(A) + J' are AB—rings.
Next, we claim that J = 0 or J' = 0; otherwise, for nonzero elements x € J and 2’ € J',
we would have ((0,2")", (z,0)") = ((0,2™), (z",0)) is a principal ideal of A /9 (.J, .J') for
some integer n > 1. Therefore, there exists (f(d) + j, g(d) + j') € Av</9 (J,J') such that

(2™, 0)A !9 (J,J) + (0, 2™) A !9 (J,J') = (f(d) + j, g(d) + j)A</9 (J,.J').

And so there exist (f(a) + k, g(a) —|— Y, (f(b) +1,9(6) + 1), (f(a) + s,9(a) + §') and

~ g(A) +J

(f(B) +t,9(B) + 1) elements of Aw</9 (J,.J') such that
(0,2™) = (f(a) + &, g(a )+k’)(f(d) +J,9(d) + )
{ (z",0) = (f(b) +1,9(b) + I')(f(d) + J, g( )+3")
(f(d) +J,9(d)+j") = (a"0)(f(a)+s,9(a) + ") +(0,2™)(f(B) +t,9(8) + ).
This implies that

= (fl@)+k)(f(d)+) (4)

= (gla) +K)(g9(d) +7) (i)

0 = (9(b) +1)(g(d) +4")  (iid)

"= (fO)+D(f(d)+5) (i)

fld)+5 = 2" (f(a) + 5) (v)

gld) +j" = a"(g(8) + 1) (vi)

From equation (iv), we claim that f(d) 4+ j # 0. Deny. It follows that 2" = 0, making
x = 0, which is absurd. Since f(d) 4+ j # 0 and B is an integral domain, then by equation
(i), necessarily, f(a) +k = 0. Consequently, a € f~1(J) = ¢g~'(J'). By substituting
equation (i7) in (vi), it follows that

(9(d) +4") = (9(d) + j")(g(a) + K')(g(B) + ') (vii).

Since 2™ # 0, it follows from equation (i7) that g(d) + j* # 0. Hence, by equation (vii),
(g(a) + k') (g(B) +t') = 1, which is a contradiction, since g(a) + k' € J' (as a € g~1(J"))
and J' is a proper ideal of C. Thus J = 0 or J' = 0. The converse is straight via the
isomorphisms given in [15, Proposition 4.1(2)]. O
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It is worth to mention that very recently, a similar result of Theorem 2.1 was indepen-
dently obtained by Alqamoun and El Ouarrachi in [1, Theorem 4.1].

Recall that the amalgamation of A with B along J with respect to f is given by
Avi! J:={(a,f(a) +j) |ac A jeJ}.

Clearly, every amalgamation can be viewed as a special bi-amalgamation, since A b/ J =

At (F71(), ).

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Under the above notation, assume that A and B are integral domains.
Then A <! J is an AB—ring if and only if both A and f(A)+.J are AB—rings and J = 0
or f71(J) =0.

The following result is a particular case of Corollary 2.2 and is [2, Theorem 4.9].

Corollary 2.3. Let D be an integral domain with quotient field K. Then D + X K[X] is
an AB—domain if and only if D is an AB—domain.

Proof. Observe that A = D, B = K[X]|, f : D — K[X] is the natural injection and
J = XK[X] # 0. Clearly f(A)NJ = DN XK[X] = 0 and so f~1(J) = 0 and by
[10, Proposition 5.1 (3)], A</ J = D i</ XK[X] ~ f(A) + J = D + XK[X]. Hence by
Corollary 2.2, the conclusion is trivial. O

Remark 2.4. We recall here the following result proved by Mahdou and al. : “Let A and
B be a pair of integral domains and f : A — B be a ring homomorphism. If J is a nonzero
proper ideal of B. Then A >/ J is an AB-ring if and only if f is injective, f(A) + J is
an AB—ring and f(A)NJ = (0)." [17, Theorem 3.6]. Corollary 2.2 recovers the above
result. Indeed, in the case J is a nonzero proper ideal of B, we show that the following
statements are equivalent :
(1) “A and f(A) + J are AB-rings and f~1(J) =0".
(2) “f is injective, f(A) + J is an AB-ring and f(A4)NJ = (0)".
Indeed,
(1) = (2) Notice that ker(f) C f~1(J) = 0. So f is injective, therefore the conclusion
is trivial.
(2) = (1) Since f(A)+J is an AB—ring and f(A) ~ f(Aiw, then f(A) is an AB—ring
(as a factor ring of an AB—ring) and since f is injective, then A(~ f(A)) is also an AB-
ring. Using the fact that f(A) NJ = (0), then f~1(J) = f~1({0}) = ker(f) =0, as f is
injective.
Let I be a proper ideal of A. The (amalgamated) duplication of A along I is a special
amalgamation given by

Aval:=Avd® [ = {(a,a+1i)|ac Ajicl}.

The next corollary is an immediate consequence of Corollary 2.2 on the transfer of AB—ring
property to duplications.

Corollary 2.5. Let A be an integral domain and I be a proper ideal of A. Then A I is
an AB-ring if and only if so is A and I = 0.

We recall an important characterization of a local Gaussian ring A. Namely, for any
two elements a and b in the ring A, we have (a,b)? = (a?) or (b?); moreover if ab = 0 and
(a,b)? = (a?), then b? = 0 (see, [6, Theorem 2.2]).

The following proposition is a partial result about when a bi-amalgamation is an
AB-—ring, in case B and C are not integral domains.
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Proposition 2.6. Assume (A, m) is local Gaussian, JxJ' C Jac(BxC), J> =0, J? =0,
and for alla € m, f(a)J = f(a)?J, g(a)J' = g(a)>J'. Then A/ (J,J') is an AB—ring.

Proof. Assume (A,m) is local Gaussian, J? = 0, J'? = 0 and, for all a € m, f(a)J =
f(a)%J, g(a)J' = g(a)?J'. From [15, Proposition 5.3 (b)], (A ><9 (J, J'),m</9 (J,J")) is
local since A islocal and Jx J' C Jac(BxC). Let (f(a)+1,g(a)+1') and (f(b)+7, g(b)+;")
be elements of A /9 (J, J'). Two cases are then possible:

Case 1: a or b ¢ m. Then a or b is invertible in A. Assume without loss of generality that
a is invertible, then

(F(@) + 4, 9(a) + 7)(F(a™) — f(a=")2%, g(a™) — g(a™")2%) = (1,1). So ((a) +i,g(a) +7)
is invertible in A /9 (J,J'). Therefore, ((f(a) +4,g(a) + '), (f(b) + 7,9(b) + j'))? =
((f(a) +1i,9(a) +i)2%) = Ax</9 (J,J'). Thus, it follows that there exists an integer n = 2
such that (f(a)+ ¢, g(a) + )" and (f(b) + j, g(b) + j')™ are comparable, as desired.

Case 2: a and b € m. Using the fact that A is local Gaussian, then (a,b)? = (a?) or (b?).
We may assume that (a,b)? = (a?). So we have, b = a’r and ab = a?y for some z and
v € A andso J(0)? = f(0)2f(a), g(0)° = g(a)g(x) and S(@)(B) = f(0)I(y). gla)gd) =
g(a)?g(y). By assumption, 2f(b)j € f(b)*J and 2f(a)if(z) € f(a)?J. Therefore, there
exist ji,i1 € J such that 2f(b)j = f(a)’f(x) ]1, 2f(a)if(z) = f(a)?%1, and similarly,
there exist j1,7) € J' such that Qg(b)j’ g(a)?g(z)j}, 2g(a)i’g(z) = g(a)?i|. In view
of the fact that J2 = 0 and J? = 0, one can easily check that (f(b) + 7,9(b) + j')? =
(f(a)+i,g(a) +i)2(f(z) + f(x)j1 — il,g(x) + g(x)j; —4}). Hence, there exists an integer
n = 2 such that (f(a)+1i,g(a) +¢)" and (f(b) + j,9(b) + j')"™ are comparable, as desired.
Thus, in all cases, ((f(a) + i, g(a) + )%, (F(B) + 4,9(8) + 7)) = (/@) + i, 9(a) + )?)
which is principal, making A /9 (J,.J') an AB—ring. O

Proposition 2.6 recovers the special case of amalgamated algebra, as recorded in the
next corollary.

Corollary 2.7. Let (A,m) be a local Gaussian ring, f : A — B be an injective ring
homomorphism and J be an ideal of B such that J C Jac(B). If f(a)J = f(a)*J
af~Y(J)=a?f~1(J) for alla € m and J* =0, then A</ J is an AB—ring.

Proof. It is easy to show that (f~1(J))? C f~1(J?). Since f is injective atnd'J2 =0, it fol-
lows that (f~1(J))? = 0. Therefore, by using Proposition 2.6, A 0/ J = A patda:f (f71(J),.J)
is an AB—ring. O

As an application of Proposition 2.6, we give an explicit example showing the failure of
Theorem 2.1, beyond the context B and C' are integral domains. Recall that for a ring
A and an A—module E, the trivial ring extension of A by E (also called idealization of
E over A) is the ring R := A « E whose underlying group is A x E with multiplication
given by (a,e)(d’,e') = (ad’,ae’ + ed).

Example 2.8. Let (A, m) := (Z/92,3Z/9Z) be alocal Gaussian Bézout ring with m? = 0,
K := A/m, E be a K—vector space and B := A & F be the trivial ring extension of A
by E. Consider f : A < B be the natural injection (defined by f(a) = (a,0)). Let
C := A and g = ida be the identity of A. Let J = m « E be the maximal ideal of B.
Let J' = m be the maximal ideal of C. Clearly, f~'(J) = ¢ }(J") = m, J? = J? = 0,
f(a)J = f(a)®>J =0, and g(a)J’ = g(a)?J’ =0, for all a € m. Then:

(1) Asaf9 (J,J') is an AB—ring.
(2) f(A)+ J and g(A) + J are AB—rings.
(3) J#0and J' #0.

Proof. (1) Since Jac(B x C) = (m o« E) x (m), then by Proposition 2.6, A ></9 (.J,.J")
is an AB—ring.
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(2) f(A)+J =Ax0+m x E=A x E which is an AB—ring by [17, Theorem 3.1 (2)]
and g(A) + J' = A+ m = A which is an AB—ring.
(3) Trivial. O

Theorem 2.1 enriches the current literature with new original class of AB—rings that
are not Bézout rings. Recall that if A is a Bézout ring and [ is an ideal of A, then A/I is
a Bézout ring.

Example 2.9. Let F' be a field of characteristic p > 0 (for instance F' = Z,) and let
F C L be a purely inseparable field extension. Consider A = F' + X L[X]. Observe that
the integral closure A’ of A in its quotient field L(X) is L[X]. One can easily check that for
each q(x) in L[X] there exists n > 0 such that (¢(z))?" € A. Therefore, A C A’ is a root
extension. Since A’ = L[X] is a principal ideal domain, then A" is a Bézout domain and so
is Priifer. From [2, Corollary 4.8 (1)], it follows that A is an AB-domain. Since A is not
integrally closed, then A is not a Bézout domain. Let f : A — L(X)[Y] be an injective
ring homomorphism and let J := Y L(X)[Y] be a maximal ideal of L(X)[Y]. Consider the
injective ring homomorphism g : A — A x A, given by g(a) = (a,0) and J' := 0 be an
ideal of A x A. Clearly, f~1(J) =0 = Iy = g~'(J'). Then:

(1) A9 (J,J') is AB—ring.

(2) Aw<l9 (J,J') is not a Bézout ring.

Proof. (1) By Theorem 2.1, A /9 (J,J') is AB—ring since f(A) +J = A+ YL(X)[Y]
which is AB—ring by Corollary 2.3 and g(A) +J' = A x 0 ~ A which is AB—domain and
J' =0.

fs /
(2) Since A is not a Bézout domain, and so by [15, Proposition 4.1 (3)], A ~ I% ~ A'X'%S{’J)
is not a Bézout ring. Hence, A 0/ (.J,.J') is not a Bézout ring (as its quotient is not a
Bézout ring). O

3. Almost Bézout domain pairs
In this section, we characterize almost Bézout domain pairs.

Definition 3.1. Let R C S be an extension of integral domains. We say that (R, S) is
an almost Bézout domain pair (for short AB—domain pair) if each ring 7' € [R, S] is an
AB—domain.

It is worth to mention that the proof of the statement (1) of the following theorem is
straightforward from [2, Lemma 4.5]. We are very grateful to Anderson and Zafrullah for
their result.

Theorem 3.2. Let R C S be an extension of integral domains. Then the following
statements hold:

(1) If S is an overring of R, then (R,S) is an AB—domain pair if and only if R is an
AB—domain.

(2) If (R, S) is an AB—domain pair, then R is an AB—domain and S is algebraic over
R. The converse holds if R is integrally closed in S.

Proof. (1) If (R, S) is an AB—domain pair, then R is an AB—domain. Conversely, let
T € [R,S]. Then T is an overring of R since S is an overring of R. By [2, Lemma 4.5], it
follows that 7" is an AB—domain.

(2) Assume that (R, S) is an AB—domain pair. Then it is clear that R is an AB—domain.
We claim that R C S is an algebraic extension. Deny. there exists ¢ € S such that ¢ is
transcendental over R.

Claim 1. R is a field
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Indeed, let 0 # a € R. Using the fact that R C R[t] C S, then R[t] is an AB-domain.
Therefore, there exists a positive integer I > 1 such that the ideal (o!,!) is principal gen-
erated by some u(t) € R[t]. In particular, u(t) divides of. Consequently, u(t) = u for some
constant u € R. Observe that ' is a multiple of u. Then there exists ' € R such that
t! = wu't! and so uu’ = 1. Hence, u is a unit of R. On the other hand, (of, ) = (u) = R[t].
In particular, there exist p(t), q(t) € R[t] such that 1 = a'p(t) + t'q(t). By identification,
we get ¢(t) = 0 and there exists f € R such that p(t) = 8 and so it follows o!3 = 1.
Hence, « is a unit of R. Thus, R is a field, denoted by k.

Claim 2. If t is a transcendental element over k, then there exists a domain 7T that is
not an AB-domain with & CTC klt]

Consider the ring T = k + t3k[t]. Clearly, k C T C k[t]. Consider the elements 1 + ¢
and t* in T. We claim that T is not an AB-domain. Deny. Then there exist an integer
n > 1 and w(t) € T such that the ideal ((1 + #3)",#4") = w(t)T. Since w(t) divides t*",
then there exist an element w € k and a positive integer j < 4n such that w(t) = wt’.
Next, the fact that w(t) divides (1 + t3)", then one can easily check that j must be
equal to 0. And so w(t) = w for some nonzero w € k. Observe that w is a unit of 7'
Consequently, ((1+ *)?,¢¥") = T. In particular, there exist p(t), ¢(t) in T such that
3 = p(t)(1 + t3)" + q(t)t**. This implies that ¢(t) = 0 and p(t) = ct’, for some positive
integer ¢ < 3 and ¢ € k, which is absurd, since n > 1. Hence, T is not an AB-domain,
a contradiction since each proper S-overring of R = k is an AB-domain. It follows that
R C S is an algebraic extension. Conversely, assume that R is an AB—domain and S is
algebraic over R and R is integrally closed in S. We claim that S C ¢f(R). Indeed, let
u € S. Then u is algebraic over R. Therefore, there is a in R such that v = au is integral
over RR. Hence, v is an element of R, as R is integrally closed in S. Consequently, u = 7 is
an element of ¢ f(R). Hence, S C ¢f(R), making S an overring of R. Finally, by statement
(1) above, it follows that (R, S) is an AB—domain pair, as desired. O

Combining Theorem 3.2 and Corollary 2.3 of Section 2, we give a new characterization
of almost Bézout property in pairs of rings.

Corollary 3.3. Let D be an integral domain with quotient field K. Then the following
statements are equivalent:

(1) D is an AB—domain.

(2) S:=D+ XK[X] is an AB—domain.
(3) (D, K) is an AB—domain pair.

(4) (S,K(X)) is an AB—domain pair.

Proof. (1) <= (3) and (2) <= (4) By statement (1) of Theorem 3.2, we have the
desired results.

(1) < (2) By Corollary 2.3, we have the desired result. O
Recall that R := (T, M, D) is a pullback of canonical homomorphisms
R——D
T—T/M

where T' is an integral domain, M is a maximal ideal of T, ¢ : T" — T'/M is the nat-
ural projection, D is a domain contained in K = T/M and R = ¢~!(D). Note that
R := (T, M, D) if and only if R is contained in 7" and shares the maximal ideal M with T’
(see [8] for more details).
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As an application of Theorem 3.2, we give necessary and sufficient conditions for (R, T")
to be an AB—domain pair when R arises from a (T, M, D) construction, where M is a
maximal ideal of T

Corollary 3.4. Let R := (T, M, D). Then the following statements are equivalent:
(i) (R,T) is an AB—domain pair.
(ii) R is an AB—domain.

Proof. By [2, Lemma 4.5], T' is an AB—domain as an overring of R and so by using
statement (1) of Theorem 3.2, the conclusion is trivial. O

Corollary 3.5. Assume that (T, M) is a local domain, k := qf(D) and K :=T/M and
R := (T,M,D). Then the following statements are equivalent:
(i) (R,T) is an AB—domain pair.
(ii) R is an AB—domain.
(iii) T and D are AB—domains, and the extension k C K is a root extension.

Proof. (i) <= (ii) From Corollary 3.4.
(1) <= (i77) From [18, Theorem 2.9], the conclusion is trivial. O

As a consequence of our results, we give a necessary and sufficient condition for the
polynomial ring and the power series ring to be an AB-domain.

Corollary 3.6. Let R be an integral domain. The following statements are equivalent:
(i) R is a field.
[X] is an AB-domain.
R[[X]] is an AB-domain.
(R[X],R(X)) is an AB-domain pair.
(R[[X]], R((X))) is an AB-domain pair.

) <= (i) and (i7i) <= (v) From statement (1) of Theorem 3.2.

( i) and (#31) = (i) Using similar argument as in the proof of claim 1, statement
(2) of Theorem 3.2 by replacing R[t] by R[X] (resp., R[[X]]), it follows that R is a field.
(1) = (i) Assume that R is a field. Then R[X] is a Bézout domain and so is an
AB—domain.

(1) = (i4i) If Ris afield, then R[[X]] is a valuation domain and so is an AB—domain. O

—~~ .
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