Konuralp Journal of Mathematics, 7 (1) (2019) 222-227

[0 O] .
Konuralp Journal of Mathematics :
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath Kot |x\1:|u| RNAL O
A e-ISSN: 2147-625X

Area of a Triangle in Terms of the m-Generalized Taxicab
Distance
Harun Baris Colakoglu

Akdeniz University, Vocational School of Technical Sciences, Department of Computer Technologies, 07070, Antalya, Tiirkiye.

Corresponding author E-mail: hbcolakoglu@akdeniz.edu.tr

Abstract

In this paper, we give three area formulas for a triangle in the m-generalized taxicab plane in terms of the m-generalized taxicab distance.
The two of them are m-generalized taxicab versions of the standard area formula for a triangle, and the other one is an m-generalized taxicab
version of the well-known Heron’s formula.
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1. Introduction

Taxicab geometry was introduced by Menger [11], and developed by Krause [10], using the taxicab metric which is the special case of the
well-known [,,-metric (also known as Minkowski distance) for p = 1. In this geometry, circles are squares with each diagonal is parallel to a
coordinate axis. Afterwards, in [15] Lawrance J. Wallen defined the (slightly) generalized taxicab metric, in which circles are rhombuses
with each diagonal is also parallel to a coordinate axis. Finally, m-generalized taxicab metric is defined in [3], for any rhombus (so, any
square) to be a circle instead of rhombuses having each diagonal parallel to a coordinate axis. In the last case, for any real number m and
positive real numbers u and v, the m-generalized taxicab distance between points P; = (x1,y1) and P> = (xp,y2) in R? is defined by

dr ) (P, Py) = (u|(x1 = x2) +m(yy = y2)| +v[m(xy —x2) = (1 —y2)]) /(1 +m?) /2. (1.1

In addition, as a special case of dTg (m) foru=v=1,

dr(my(P1P2) = ([(x1 = x2) +m(yy —y2) |+ m(x; —x2) — (y1 —y2)]) /(1 +m?)/? (1.2)
is called the m-taxicab distance between points P; and P>, while the well-known Euclidean distance between P; and P is

d (P, Py) = [(x1 —x2)7 + (1 —y2)*]"/%. (1.3)

The m-generalized taxicab unit circle is a rhombus with diagonals having slopes of m and —1/m, and with vertices A| = (ﬁ, %),

Ay = (32, 4). A= (71, =) and A4 :‘(ﬁ, :—kl) whefre k= (1+m*)'/2;if u=v, tk}en m—generalized taxicab gnit circle is.a. square with
vertices A1,A;,A3 and A4. The m-generalized taxicab distance between two points is invariant under all translations. In addition, if u # v,
then the m-generalized taxicab distance between two points is invariant under rotations of 7 radian around a point and reflections in lines
parallel to the lines with slope m and _Wl; if u = v, then rotations of 7/2, 7 and 37 /2 radians around a point, and reflections in lines parallel

to the lines with slope m, ’71 }ffn“ or ’1"_;711 (see [3], [4] and [6]).

Since the distance function is different from that of Euclidean geometry, it is interesting to study the m-generalized taxicab analogues of
topics that include the distance concept in Euclidean geometry. In this paper, we give area formulas for a triangle in the m-generalized
taxicab plane in terms of the m-generalized taxicab distance. One can see from Figure 1 that there are triangles whose m-generalized taxicab
lengths of corresponding sides are the same, while areas of these triangles are different, in the m-generalized taxicab plane. So, how can one
compute the area of a triangle in the m-generalized taxicab plane? In this study, we present three formulas to compute the area of a triangle
in the m-generalized taxicab plane. Henceforth, we use u’ = u/(14m?)'/2 and v/ = v/(1 +m?)/2 to shorten phrases.
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Figure 1. Let A and B be two distinct points on a line parallel to mx —y = 0. Let 47 and %, be m-generalized taxicab circles with center A
and B, radius b and b+ c, respectively. As point C € ¢} N%, changes, the area of triangle ABC also changes, while dr. () (B,C), dr, () (A,C)
and dr, () (A, B) are invariant.

2. The m-generalized taxicab version of standard area formula

It is well-known that the standard area formula for triangle ABC is </ = ah/2, where a = dg(B,C) and h = dg(A,BC) or h = dg(A,H)
where H is the orthogonal projection of the point A on the line BC. Here, we give two m-generalized taxicab versions of this formula in
terms of the m-generalized taxicab distance, depending on choice of /1 = dr, () (A, H)) or W= dr,(m) (A, BC). The following equation given
in [3], which relates the Euclidean distance to the m-generalized taxicab distance between two points in the Cartesian coordinate plane, plays
an important role in the first m-generalized taxicab version of the area formula.

Proposition 2.1. For any two points A and B in R? that do not lie on a vertical line, if n is the slope of the line through A and B, then
dp(A,B) = (n)dy, () (A, B) @.1)
where (n) = (1+n2)"/2 /(i |1 +mn|+V' |m—n|). If A and B lie on a vertical line, then

de(A,B) = [1/(u' [m| +V')]dr, (m) (A, B). (2.2)

Notice that 1(m) = % and if m # 0, then u(—1/m) = % Therefore, if /4 is the line through A with slope m, and Ip is the line through B and
perpendicular to the line /4, then

dr,(m)(A,B) = udg (A, lg) +vdg (B, l4).
In addition, for any non-zero real number n, if u = v then p(n) = u(—1/n).

The following theorem gives the first m-generalized taxicab version of the standard area formula of a triangle.

Theorem 2.1. Let ABC be a triangle with area <7 in the m-generalized taxicab plane, let H be orthogonal projection of the point A on the
line BC, let n be the slope of the line BC, and let a = dr, ) (B,C) and h = dr, (m) (AH).

(i) If BC is parallel to a coordinate axis, then

o =ah/2(u |m|+v') (W +V |m]). (2.3)
(if) If BC is not parallel to any coordinate axis, then

of = [u(mu(~1/n)ah/2. @4

Proof. Leta=dg(B,C) andh=dg(A,H). Then, &/ = ah/2.
(i) If BC is parallel to x-axis, then AH is parallel to y-axis and

a=[1/( +V|m|)]aand h = [1/( |m|+V)]h.
If BC is parallel to y-axis, then AH is parallel to x-axis and
a=[1/(|m|+V)]aandh = [1/(t/ +V'|m|)]h.
Hence, we get
o =ah/2(u |m|+V) (' +V |m|).

(ii) Let BC not be parallel to any coordinate axis, and let n be the slope of the line BC. Then, the slope of the line AH is (—1/n). Therefore
a=(n)a and h = p(—1/n)h, hence

o = [u(n)u(=1/n)]ah/2.

O
In the m-generalized taxicab plane, m-generalized taxicab distance from a point P to a line / is naturally defined by
dr,(m)(P1) = rggll{dmm) (P.O)}- 2.5)

In the following proposition, we give a formula for dTe(m> (P,1), similar to the Euclidean geometry.
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Proposition 2.2. Given a point P = (xo,yo) and a line | : ax+ by + ¢ = 0 in the m-generalized taxicab plane. The m-generalized taxicab
distance from the point P to the line | can be calculated by the following formula:

i (P1) = (1) /2 axg + by + | /max { 12l lentl L 26)

Proof. 1t is clear that if P is on line /, then equation holds. Let P not be on line /. To find the minimum m-generalized taxicab distance
from the point P which is off the line /, let us define rangent line to an m-generalized taxicab circle with center P and radius r, as a
line whose m-generalized taxicab distance from P is equal to r, being natural analogue to the Euclidean geometry. Then, we expand
an m-generalized taxicab circle with center P until the line / becomes a tangent to the m-generalized taxicab circle (see Figure 2). It is
clear to see that a line can only be a tangent to an m-generalized taxicab circle at one vertex or two vertices (that is, at one edge). Since

corresponding vertices of expanding m-generalized taxicab circle are on line through P and parallel to line mx —y =0 or x+my =0, if [ is
bmxg—byo—c —amxg +ayo—cm) or Py = bxo+bmyo+cm —axg —amyo—c)

at+bm a+bm b—am ’ b—am
is a tangent point, which are intersection points of the line / and mx —y = 0 or x + my = 0, respectively (see Figure 2). Therefore,
dr (my(P,1) = min{dr, () (P,P1),d7, () (P.P2) }.

a tangent to the m-generalized taxicab circle with center P, then P| = (

az+by+c=0

Figure 2

. 1+m?)'/2|axo+byo+ 1+m?) /2| axg+byo+
Since dr, () (P, P1) = W and dy, ) (P, Py) = W one gets

dTg(m)(Pvl) _ (1+m2)l/2 \axo+by0+c|/max{ \ol+hm|7 lam— h\}
O

The following equation, which relates the Euclidean distance to the m-generalized taxicab distance from a point to a line in the Cartesian
coordinate plane, plays an important role in the second m-generalized taxicab version of the area formula.

Proposition 2.3. Given a point P and a line | which is not vertical in the Cartesian plane, if n is the slope of the line I, then

dg(P,1) = t(n)dz, () (P1) @7

where T(n) = max{@7 M} /[(14+n2)(1+m?)] 12 If 1 is vertical, then dg (P,1) = [max{ 1 |’CL| } /(1 +m2)1/2] dr (m) (P,1).

v

Proof. Let P = (xg,y0) be a point, and [ : ax+ by + ¢ = 0 be a line with slope of n, in the Cartesian plane. If / is not a vertical line, then
b# 0and n = —7. Then, one gets

dp(P,1) = laxo + byo + | / 1b] (14 n2)1/2 and d ) (P.1) = (14 m)1/2 axo + byo + c| / [bf max { 1121, il

v

u

Therefore, di (P,1) = T(n)d, () (P,1) where T(n) = max { Im=n] M }/ [(1+n2)(1+m?)] '/2 1f is a vertical line, then b = 0 and a # 0.
Therefore, one gets that
dg(P,1) = |axo +c¢|/|a| and dTg(m)(P,l) = (14+m?) 1/2 \a)co—o—c|/|a|max{Lll7 |T| }

Hence one has

dg(P1) = [max{ L |m| } /a +m2)1/2] () (P,1).

O

Notice that t(m) = %, and if m # 0, then 7( —%) = ;1[ The following theorem gives another m-generalized taxicab version of the standard
area formula of a triangle:
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Theorem 2.2. Let ABC be a triangle with area <7 in the m-generalized taxicab plane, n be the slope of the line BC, and let a = dTg (m) (B,C)
and h' = dr, () (A, BC). Then

max{ \m;n| ’ |mn+1]| } al!
of =

v

= . 2.8
2(ulmn+1]4+v|m—n|) @9
If BC is vertical, then
rnax{%, @}ah’
A= 2.9)

2(ulm|+v)

Proof. Leta=dg(B,C) and h=dg(A,BC). Then, o« = ah/2. Let BC not be vertical, and n be the slope of the line BC. By Proposition 2.1
and Proposition 2.3, a = (n)a and h = 7(n)#’, hence one has

&f:{uo@r@naW/z:nmx{kgﬂ,ﬂziﬂ}aW/mumm+4¢+vpn7nu

If BC is vertical, then a = [1/(u' |m| +V')]a and h = [max{ L |m| } /(14 m?)'/2]i. Hence, one has

u’v

M:max{ u}ah’/2(14|m|+v).

1
u’ v

The following corollary follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.1. Let ABC be a triangle with area </ in the m-generalized taxicab plane, and let a = dr, (m) (B,C), h= dr, (m) (A,H), and
W= dr (my(A,BC). If BC is parallel to mx—y =0 or x+my =0, then h = W and o = ah/2uv.

Proof. 1f BC is parallel to mx —y = 0 or x+my = 0, then n = m and n = —1/m, respectively, and Equation (2.4) and Equation (2.8) gives
o = ah/2uv = ah' [2uv,so h=1'. O

3. The m-generalized taxicab version of Heron’s formula

It is well-known that if ABC is a triangle with the area </ in the Euclidean plane, and a = dg(B,C), b = dg(A,C), ¢ = dg(A,B), and
p=(a+b+c)/2, then

o =[p(p—a)(p—b)(p—c)]'/?,

which is known as Heron’s formula. In this section, we give an m-generalized taxicab version of this formula in terms of m-generalized
taxicab distance, similar to the one given in [14]. We need following modified definitions given in [14] to give an m-generalized taxicab
version of Heron’s formula:

Definition 3.1. Let ABC be any triangle in the m-generalized taxicab plane. Clearly, there exists a pair of lines passing through every vertex
of the triangle, each of which is parallel to lines mx —y = 0 or x+my = 0. A line [ is called m-base line of ABC if and only if

(1) I passes through a vertex,

(2) L is parallel to lines mx—y =0 or x+my =0,

(3) L intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two m-base lines. Such a vertex of the triangle is called an m-basic vertex.
An m-base segment is a line segment on an m-base line, which is bounded by an m-basic vertex and its opposite side.

Now, we give the m-generalized taxicab version of Heron’s formula:

Theorem 3.2. Let ABC be a triangle, and a = dr,(,,)(B,C), b = dr,(;s)(A,C), ¢ = d,(n)(A,B), p = (a+b+c)/2 and let & denote the
m-generalized taxicab length of a m-base segment of the triangle. Then the area <7 of the triangle is

, if there exists only one m-base line
passing through the m-basic vertex
, if there exist two m-base lines

passing through the m-basic vertex

1
2uv

a(p—(a+a'))

3.1
1
2uv

a(p—(a+a' +a"))

where o = d D.H), o' =d basic vertex,H'),

Dis intersectiTg;m[)jgir;t 0])"the m-banv(eml)iie and the oppos)ite side,

H is point of orthogonal projection of one of the remaining two vertices on the m-base line which is an endpoint of the m-base segment or
not on the m-base segment,

H' is point of orthogonal projection of the third vertex on the same m-base line which is an endpoint of the m-base segment or not on the
m-base segment.
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Proof. Let ABC be a triangle with m-basic vertex C, without loss of generality. Let H” be the point of orthogonal projection of one of the
remaining two vertices which is on the m-base segment. Two cases are:

(i) Let ABC has only one m-base line passing through C. Figure 3 and Figure 4 represent all such triangles. Let h = dr,(,,) (A, H),
W = dg ) (B,H"), ca = dr,(m)(A, D), and cg = dr, (s (B, D). Since ¢4 + & = b and cg +a = o+ 24, one gets ' = p — b. We also have
h=b—(a+a). Therefore, h-+h = p— (a+a'). Besides, &/ =5.-a(h+1') by Corollary 2.1. Hence, o =5~ a(p— (a+a')).

— 2uy

Figure 3 Figure 4

(i) Let ABC has two m-base lines passing through C. Figure 5 represents all such triangles. Choose an m-base line to determine the point D.
Let h = dp, () (B,H) and i = dp, () (A,H'). Sincea=h+oa+a', b= +a", anda+b=conegets h+h' =a+b—(a+a'+a")=

p—(a+a'+a"). Besides, &/ =5.-a(h+h') by Corollary 2.1. Hence, o =5 a(p— (o + o +a")).

A

Figure 5

The following two corollaries give the m-generalized taxicab versions of Heron’s formula for some special cases:

Corollary 3.1. If one side of a triangle ABC, say BC, is parallel to one of lines mx —y = 0 or x + my = 0 and none of the angles B and C is
an obtuse angle, then for the area <7/ of ABC,

o = La(pfa). 3.2)

Proof. Let ABC be a triangle with BC is parallel to one of lines mx —y = 0 or x+ my = 0 and none of the angles B and C is an obtuse
angle. Then, there is only one m-base line passing through B or C, so B and C are m-basic vertices and BC is the m-base segment. Then,
a =a, o’ =0, hence we have & = ﬁa(pfa)‘ O

Corollary 3.2. If one side of a triangle ABC, say BC, is parallel to one of lines mx —y = 0 or x+my = 0 and one of the angles B and C is
not an acute angle, then for the area </ of ABC,

1
o = —a(p— o 33
P —(ata’) (33)
where " = dTg (m) (basic vertex,H") and H' is the point of orthogonal projection of A on the same m-base line which is an endpoint of the
m-base segment or not on the m -base segment.

Proof. Let ABC be a triangle with BC is parallel to one of lines mx —y = 0 or x4 my = 0 and one of the angles B and C, let us say C, is not an
acute angle. Then, there are two m-base lines passing through C, so C is m-basic vertex and BC is an m-base segment. Then, @ = a, o' =0,
hence we have &/ = 5—a(p— (a+a")). O

Note that since the generalized taxicab and so the taxicab distances are special cases of the m-generalized taxicab distance, conclusions given
here are also true for the generalized taxicab and so the taxicab geometry.
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