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Abstract
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distortion theorems are determined for a family of harmonic starlike functions of complex
order involving Saladgean-type ¢-differential operators.
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1. Introduction

Let A denote the class of functions h of the form
o0
h(z) =z+ Z anz" (1.1)
n=2

which are analytic in the open unit disk U = {z € C:|z| < 1}. Also let 8§ denote the
subclass of A consisting of functions that are univalent in U.

We now recall the notion of g-operators or g-difference operators that play vital roles in
the theory of hypergeometric series, quantum physics and operator theory. The application
of g-calculus was initiated by Jackson [7] who have used the fractional ¢-calculus operators
in investigations of certain classes of functions which are analytic in U. For more details on
g-calculus and its applications one can refer to [1,5,7,13] and the references cited therein.

For 0 < ¢ < 1 the Jackson’s ¢-derivative of a function h € 8 is given as follows [7]

h(z) — h(qz)
th(Z) — { (1 — q)z fOT z 7é 07 (12)
h'(0) for z=0,

D2h(z) = Dg(Dgh(2)).

S n
From (1.2), we have Dyh(z) = 1+ 3. [n],an2"" ! where [n], = 11:qq is sometimes called
n=2

the basic number n. If ¢ — 1~ then_[n]q = [n] - n. For h € A, m € Ny = {0,1,2,...}
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and z € U, Govindaraj and Sivasubramanian [5] considered the Salagean g¢-differential
operators

Dyh(z) = h(2),
D;h(z) = zDyh(z), ...,

DPh(z) = zDg(DJ'h(z)) =2+ [n]l'an" . (1.3)
n=2
We note that if ¢ — 17 then
D™h(z) =z + Z[n]manz” (m € Ng,z € U)
n=2

is the familiar Salagean derivative[15].
Let 3 denote the family of harmonic functions f = h+7 that are orientation preserving
and univalent in U with A as in (1.1) and g given by

g9(z) = Z bpz", |b1] < 1. (1.4)
n=1

We note that the family H of orientation preserving, normalized harmonic univalent func-
tions reduces to the well known class 8 of normalized univalent functions if the co-analytic
part of f is identically zero, i.e. g = 0. We let J{ be the subfamily of H consisting of
harmonic functions f = h + g for which h and g are given by

h(z)=2z— Z anz", g(z) = Z bnz", an >0 and b, > 0.
n=2 n=1

The seminal work of Clunie and Sheil-Small [4] on harmonic mappings prompted many
research articles on classes of complex-valued harmonic univalent functions. In particu-
lar, [2,6,8,9,11,12,14,16] have investigated properties of various subclasses of harmonic
univalent functions.

For harmonic functions f = h + ¢ € H where h and g are, respectively, given by (1.1)
and (1.4), let D*h(z) be defined by (1.3) and Dy'g(z) be defined by

Dg(z) = g(2),

D;g(z) = 2zDgg(2), ...,
Di'g(z) = qu(Dg”_lg(z)) =z+ Z[n]’q"bnz” . (1.5)
n=2

Recently, Jahangiri [10] considered a generalized Salagean g— differential operator 3(;* ()
defined by

R Dy f(2)
Dy f(z)
where, Di"h(z) and Dy'g(z) are, respectively, defined by (1.3) and (1.5) and

)2&;0§a<1,

Dy f(2) = Di*h(z) + (=1)"Dirg(z), m > —1.

The subfamily W;n(oz) C Hy*(a) consists of harmonic functions f,, = h + g, for which

h(z) =z — Z anz", gm(z) = (1" Z bpz", an >0 and b, > 0. (1.6)
n=2 n=1
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For non-zero complex number b with |b|<1, real number v and 0 < a < 1 we let
HS'(b,7, ) be the subclass of H consisting of harmonic functions f = h + g satisfying

1 iy DZInJrlf(Z) iy
§R<1+b<(1+e )W—e —1>>>a. (1.7)

We also let qsy(b,’y, a) = HS (b, v, ) N H.
We note that H8" (1,7, a) = HRy' (7, @) is generalized class of Goodman-Ronning-type
harmonic starlike functions (see [14], Inequality (2), p. 46) satisfying

_ DMHLf(2) ,
Rl(1+e")—L—-F -] >a
[+ ot
and H8;"(b,0,a) = HR"(b, ) is the harmonic version of generalized starlike functions of
complex order (see [3], Definition 1) satisfying

Dm+1f()
o122 (2000

It is the aim of this paper to obtain sufficient coefficient conditions, extreme points, growth
theorem, and distortion bounds for harmonic functions f = h +g in H8;" (b, v, a). More-
over, we show that those sufficient coefficient conditions for f € H8;'(b,7, ) are also

necessary for f € WS?(b,’y, Q).
2. Main results
The sufficient coefficient condition for 38" (b, v, @) is given in the following theorem.

Theorem 2.1. Let f = h+7g € H where b is a non-zero complex number with |b|<1, «y is
a real number and 0 < o <1 . If

< (llolnly — 24 (- abll, | llflnly 2~ (- a)lo]
53( TSI lan] + T a)l '”0<2

then f is harmonic univalent and orientation-preserving in U and f € 9‘(82”(!),7, Q).

(2.1)

n=1

Proof. First we establish that f is orientation preserving in U. In other words, we need
to show that |DJ**'h(z)| > |Di**'g(z)|. This is accomplished using the properties of
absolute values and the coefficient inequality (2.1).

00 0o
Dy () 2> 1 =[]y Han|r" ™ > 1 =Y ] an]
n=2 n=2

= 2fnly — 2+ (L= a)ll]
213 [ e

(2l 42— (L= ]
D e Tl

o
ZZ m—H’b ‘>Z m-&-l‘b |7’n 1>‘Dm+lg( )‘
n=1

v

To show f is univalent in U we use a method that was first used by Jahangiri [8]. We
will show that f(z1) # f(z2) when z; # z9. Consider z; and z3 in U so that z; # zo. Since
the unit disc U is simply connected and convex, we have z(t) = (1 —t)z; + tz2 in U for
0 <t < 1. Then we may write

1
Dg* f(z2) = DFHf(21) / 22 = 21) (D h(z(t)) + (22 — 21)(Dg" g (2(1)) dt.
0
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Dividing the above equation by zo — 27 and taking the real parts we obtain

22—z 22—z

m m ; (29 — 21)
- <Dq 1 f(z) — D; +1f(21)> _ /%[D(ranrlh(Z(t)) 4 Mm]dt (2.2)
0

1
> /PR (DG h(=(t) — [Dg ™ g(=(t) )dt.
0

On the other hand

o0

A CORICAFEOIERIASICOR s
> 1= S an] — Sl b
n=2 n=1
2y~ 2+ (1— )
>1— n ap,
> nzguq[ ol [l
< 2l +2— (1= )b
‘,;[”]q[ - J i
>0 by (2.1)

This together with inequality (2.2) implies the univalence of f.

Next we show that if the condition (2.1) holds then f € H8;"(b,7, ). In other words,
we need to show that the condition (1.7) is satisfied if (2.1) holds.

Using the fact that R(w(z)) > aif and only if |1 —a+w| > [1+a—w|for 0 <a <1
it suffices to show that

(2b— ab— € — 1)(Dh(z) + (—1)"Dyrg(2)) + (1 + €7 (DIHA(z) — (—1)" Dy g (2)
=[(1 + ab+ ) (D h(z) + (=1)"Dyrg(2))| — (1 + ™) (D h(z) — (=1)"Dg"g(2))| > 0.
Upon substituting for Di*h(z) and D*g(z) we obtain

|(20 — ab — (1 4+ €7))

z—i—Z g anz" +( Z lg'b z”]

(0.9}
+(1+e7) |z 4+ Z ]y anz" — (=1)™ > [n ]m“bnz"] |
n=1
oo
— | +ab+e7) |z + Z g anz" +( Z mbnz”]
n=2 n=1
o0
1+e) |2+ Z m“%z"— -)™Y [n m+1bnz”] |
n=1




420 Jay Jahangiri, G. Murugusundaramoorthy, K. Vijaya

> (2-a)lbllz| - Z\ —a)b+ (1+e7)([nly — 1)l[n]g'|an]|2]"
_Z|1+ew o+ 1) = (2 = a)b|[n] bl |2]"
—albllz| - ZI ¢ = D(1+e7) — abl[n]|an| |2]"
—Zy g+ D1+ €7) + ab|[n]) |ba| |2]"

- a1 )l (1 B i - [2[2[n]q2?12_+ a()l’b’— o) |b] |D

20— )bl gjl[n]gn [2[2[n]q21(tl2_—a()1’b’— a)[b]] \bn!]

> 0, by (2.1).

The functions

a)|b| (1—a)[ol — —n
—z+Z _2+( )\b\}x"ZjLZ[ +2—(1—a)|b|yz

o0 o0
where > |zp] + X |yn| = 1, shows that the coefficient bound given by (2.1) is sharp.
n=2 n=1

The next theorem shows that condition (2.1) is also necessary for f € ﬁSZl(b,fy, Q).

Theorem 2.2. Let f,, = h+7,, be given by (1.6) where b is a non-zero complex number
with |b|<1, ~ is a real number and 05 a < 1. Then f, is harmonic univalent and
orientation-preserving in U and f,, € U{SZL(b,% «) if and only if

(2.3)

= ([l 2l 2+ (- a)bl] | [rlRMnl, +2— (- a)lt]
2. < C—ap " (=)l b") =

n=1

Proof. Since ﬁS;n(b,%a) C H8G' (b, 7, ), the if part of the Theorem 2.2 follows from
Theorem 2.1 . To prove the only if part, we will show that if (2.3) does not hold then f,,
is not in ﬁS?(b,% Q).
arom
For fm € H8, (b,, @) we must have

5 (1 +% ((1 . 6W)D;mrlh(z) - (:1)ng”+1gm)(Z) e 1))) > a.
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Or equivalently
(1= a)bz = S[(1 )b+ ([nly D + )]l 2"
R o=
b (2= & nllaalsn + (12

n=2

M08

DAY

(=1)2 3 [([nlg + 1)(1 + €7) — (1 — a)b][n]m b2

1

18

b (2= & llanlen + (12 5 ool )
(1= @)lbl2 = 3% (1= @b+ ([nly — (1 + )5l |
= §R n:OO (e8]
o (1= 5 [ollanln + 2 5 [nlglbafziet)

n=2

n=1

o0

22 [([nlg + D1+ €) = (1 = a)blb[n][bn 2"

z

R - > 0.
b2 (1= 5 fulglantzn + 2 X fulglenfen )

n=

The above condition must hold for all values of 7, [z] =7 < 1land 0 < |b| < 1. For v =0
and |b| = b let z =1 < 1 be on the positive real axis. Then the above condition becomes

(L= b — 3 [y~ 2) + (1~ a)b]p| ]y an |

n=2
b (1= £ falglanlrt + 5 ool )
> [(2[n]g +2) — (1 — @)b]lb| (] [balr™!
- =l > 0. (2.4)

b (1= £ flglanlrt + 5 ool )

n=

Now we observe that the numerator in the above required inequality (2.4) is negative if
condition (2.3) does not hold. Thus, there exists a point zp = 79 in (0, 1) for which the
quotient in the above inequalities are negative. This contradicts the required condition
(1.7) for fp, € ﬁS;n(b, 7, «). Hence the proof is complete. O

The following theorem is a consequence of the above Theorem 2.2.

Theorem 2.3. Let f,, = h+3,, be given by (1.6).Then f,, € FSZL(%Q) if and only if
S ([n]:,n[zwq “1-0) [lpl2l, + 1+ ) bn) o

n
— l—« l—«a

The extreme points of closed convex hull of ﬁS;n(b, v, @), denoted by clcoﬁSZl(b, v, @),
are determined in the following theorem.

Theorem 2.4. Let f,, € clcoﬁS?(b,'y, a) if and only if

fm(z) = i (thn + Yngmn) (2.5)

n=1

where
(1 —a)[b|

2]y 2+ (1 )]

2" m=23,...;
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(1 = a)[b]

P, T2 e b

gmn (2) = 2+ (=)™

S (X4 Y) =1, X >0 and Y, > 0.

In particular, the extreme points of clcoﬁSZL(b,% a) are {h,} and {gm, }-

Proof. For functions of the form (2.5), we have

fu(z) = i_oj (X + Yagin,)
- i Anr i)z i [n];nmnf-‘fl"él —au
+H(=1)" gl t;_”?'l —
Therefore
i [n]?[2[n]zl—_2a45‘ 21 — a)|b] ([n]g”[Q[n]il—_Qa—i)— \zz\l _ aw) <
! Z - 1+—2a>rz()|1 — ([n]gn[z[m(ql;za—)l(}’l - a>|b|1> i

:ZXn+ZYn:1—X1§1.
= n=1

Thus, f, € clcoﬁS?(b,% «). Conversely, suppose that f,, € clcoﬁSZb(b,’y, a). Set
[n]g'[2[n]g — 2+ (1 — a)[b]

X, = g o lanl,n =2,3,...,
and
~ [n]g2[nlg +2 — (1 — o)[b]] _
Y, 4 = lbul,m=1,2,...,
where 3 (X, +Y,) = 1. Then
n=1
fm(z) = Z_Zanz + anzn
- Z —2+< RGP Do s ey sy R
= z-— Z [Xn(hn(z) — 2)] + Z Yo (Gm, (2) — 2)]

Now from Theorem 2 2, we can deduce that 0 < X, < 1, (n >2)and 0 <Y, <1, (n > 1).
Therefore X; =1 — Z X, — Z Y, > 0. Thus Z (Xnhn 4+ Yngm, ) = fm(2) as required in the

theorem. O

Finally, we determine the distortion theorem for the family WSZL(I), v, @).
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Theorem 2.5. Let f,, € ﬁS;n(b,'y,a) where |z| =r < 1. Then

. ) (1— )b B 4—(1—a)lb| 2
[fm(2)] < (1 +b1) +<[Q]?[2[Q]q_2+(1_a)ybu [2]m[2[2]g — 24+ (1 — )!b!]“’l’)

and

(- )y 4—(1— o)l :
(@) 2 (1 =by)r = ([2];n[2[21q ()] R, 24 (1 >\bu”“‘> "

Proof. We will prove the right hand inequality. The proof for the left hand inequality
will be similar and is omitted. Let f,(z) € TJ{SZ%(b,fy, a). Upon taking the absolute value
of f,, we obtain

(DI < (W [bal)r + D llanl + bal] [n]5)r"

< <1+|b1|>r+r2§<|an|+bnnn];”
= Uil [2};"[2[7511 =]

XZ ( 2+()|b D, | 2[2]q_(12_+05)1|l: )b |bn>
< (14 [bu))r + [2}?[2[2(}1 —gllbl(?f )

Z p (A0l 2= 0ol )
= (ibrs [2]3%2[2}21_202“<)|1 (- a ok )

(1 —a)lb| 4—(1—a)

217202, -2+ 1 -] 27202, 2+( SIEI Ibll) re.

< (1+|br+ (

The result is sharp for

- _ (1-a)|p| 4—(1—a)lb| >
f(z) = =+ bz + <[2];n[2[2]q —2+ (I —a)p]  PRFRR -2+ 1 —a)[] bl')

q

where |by] < 41(17% O
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