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Abstract: In this paper, we implemented a tan(@) -Expansion Method for some traveling wave solutions

of (3+1)-dimensional Jimbo-Miwa equation. We find some traveling wave solutions such as trigonometric
function, hyperbolic function, exponential function solutions. Then, we show the two and three

dimensional surface for some traveling wave solutions obtained in this study by the Mathematica.
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1. Introduction

Nonlinear partial differential equations (NPDEs) have an important place in applied
mathematics and physics [1,2]. Many analytical methods have been found in literature
[3,4,5,6,7,8,9,10,11]. Besides these methods, there are many methods which reach to solution
by using an auxiliary equation. Using these methods, partial differential equations are
transformed into ordinary differential equations. These nonlinear partial differential equations
are solved with the help of ordinary differential equations. These methods are given in

[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26].
We used the tan(g) expansion method for finding the some traveling wave solutions of

(3+1)-dimensional Jimbo-Miwa equation. This method is presented by Manafian and

Lakestani [25].
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2. Analysis of Method

Let's introduce the method briefly. Consider a general partial differential equation of four
variables,

(p(v, V¢, Vy, Vg, VUx, Vxx, ) =0. (D)
Using the wave variable (x,y,z,t) = v(2)  z = (x + ay + fz — kt), the equation (1) turns
into an ordinary differential equation,

o' =@, v v, ..)=0. )
here k,a, f are constants. With this conversion, we obtain a nonlinear ordinary differential
equation for v(z). We can express the solution of equation (2) as below,

F(z)
2

v(x,y,z,t) =v(z) = L% A; [p + tan( )]l + X%, B; [p + tan (@)]_i,Ai #0,B; #0

3)

here m is a positive integer and is found as the result of balancing the highest order linear
term and the highest order nonlinear term found in the equation, the coefficients A; (0 < i <
m), B;(1 <i < m),are constant. If we write these solutions in equation (2), we obtain a

system of algebraic equations for tan (F(ZZ)

i i
) ,cot (@) after, if the coefficients of

i i
tan (@) ,cot (g) are equal to zero, we can find the k,«, 8,p,A¢, A1, B1, ) A, B,
constants, where F = F(z) satisfies the first order nonlinear ODE:
F'(z) = asin(F(z)) + bcos(F(z)) +c @)

and a, b and c are constants. The expressed the solutions by Manafian and Lakestani [25].

3. Application of Method

3.1. The (3+1)-dimensional Jimbo-Miwa Equation

We consider the (3+1)-dimensional Jimbo-Miwa equation,

Uyxxy T 3Uylyy + 3UslUyy + 2Uye — Uy, =0 ®)]

Let us consider the traveling wave solutions u(x,y,z,t) = u(z), u(z) =x+ay + fz — kt

then equation (5) becomes

au(‘l—) + 6a,u’u” _ Z(Zku" _ S,Bu” — O, (6)
When balancing u® with u'u"’ then gives m=1. The solution is as follows.
-1
u(z) = Ao + A4 [p + tan (g)] + B, [p + tan (@)] ,A;#0, B;# 0 (7)
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(7) is substituted in equation (6), a system of algebraic equations for k, a, 5,4y, A1, B1 are
obtained. The obtained systems of algebraic equations are as follows

a3A;a + 12aA?ba — 11aA,b*a — a®B,a + 11ab?B,a — 12abB?a — 6aA?ca +
18aA;bca — 12aA,B;ca + 18abB;ca — 6aB?ca — 7aA,c?*a + 7aB;c?’a — 2aA ka +
2aB ka + 30a%A2pa — 35a?Abpa — 3042b%*pa + 254, b3pa + 12a?A,B;pa —
29a’bB;pa — 12A,b?B pa + 7b3B,pa + 6a’B?pa — 6b*B?pa + 35a?A;pca +
304%2bcpa — 554, b%cpa — 15B a%cpa + 36A,B1bcpa + 3b?Bicpa + 6bB?pca +
354,bc?pa — 7bByc?pa — 5A,c3pa — 3B, c3pa + 104, bkpa — 2B, bkpa — 10Ackpa —
6B ckpa — 10a3A;p?a — 120aA2bp?a + 110aA,b?*p?a + 11a®B,p*a —

48abA,Bip*a — 25ab?B p?*a + 60aA%cp?a — 180abcA,;p*a + 36acA,B;p*a +
18abcBip?a + 70aA c?p?a + 7aB c?p?a + 20aA kp?a + 2aBkp?a — 60a?A3p3a +
70a%A.bp3a + 60A2b%*p3a — 504,b3p3a — 12a%A,Bip3a + - (8)

If the system is solved, the coefficients are found as:

Case 1:

a=-bp+cp,b=bc=cA; =0,B =b+c+bp?—cp?Bia+0,k=

b2a—c?a+b?p?a—2bcp?a+c?p?a-3
4 L L ﬁ,bp—cpiO. )

2a

Case 2:
a=-bp+cpb=bc=cA; =b—c,Bi=b+c+bp?—cp?Aa+0,k=

b2a—c?a+b?p?a—2bcp?a+c?p?a-3L+3bB a—3B ca
2a

,bp—cp #0,b+c+bp? —cp? #0.  (10)

with the help of the Mathematica program. After these operations, The solutions of equation

(5) for case 1 and case 2 are as follows:

For Case 1:
Solution 1: a> +b?> —c?<0andb—-c# 0,

2 2, _ 2.
u; = V—aZ — b2 + c2Cot E\/—a2 — b2+ ¢? (x+ ay + Bz — HatarbPacla 3ﬁ))] (11)

2a

Solution 2: a®> +b* —c? >0andb —c # 0,

2 2020
u; = Va? + b? — c2Coth [\/az +b? —c? (x +ay+pz— tlaarbia—cta 3ﬂ))] (12)

2a
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Solution 3: a®> +b*>—c?>>0,b#0,c=0,

2 2
Us =\/az+b2C0th[\/aZ+b2 (x+ay+ﬁz—w)] (13)

2a

Solution 4: a> +b*> —c?>0,c #0,b =0,

2, 2.
uy = V—a? + c?Cot E\/—az+c2 (x+ay+ﬂz—t(a%aa3m)] (14)
Solution 5: a = c =waandb = —wa,

12 2 3ﬁt)
aw|-za?w?t+x+ay+pz+o
a(—1+e W< 24 yrhet2a )w

Us = 35,;) (15)

12,2
1+eaw< Sacw t+x+ay+pz+ >a

Solution 6: ¢ = a,

b2

16)
b2t 3{%) (
b<——+x+ay+ﬁz+—
—1+(a+b)e z 2

b2t 3Bt
b<—T+x+ay+ﬁz+ﬁ)

a
(b-a) a-b
—1+(a-b)e
Solution 7: a = c,

b2

(17)
b<—¥+x+ay+ﬂz+32—g)

c 1+(b+c)e

(b—c) =5

b2t 3Bt
—T+x+ay+Bz+W>

o
—1+(b—c)e

Solution 8: ¢ = —a,

_1p2 3Bt
b(a+b—eb< Sb2t+xtay+pz+ m))

Ug = — 3&) (18)

1
b(——b2t+x+a +Bz+5—
a+b+e \ 2 LT

Solution 9: b = —c,
a(_1+Cea<—%a2t+x+ay+ﬁz+32—%))
Ug = 7] 19)

1
a(——a2t+x+a +Bz+
1+ce \ 2 T

For Case 2:
Solution 1: a> +b?> —c? < 0andb—c# 0,

U =2 —az—b2+c2Cot[ —az—b2+c2<(—2a2—2b2+2c2+z—ﬁ)t+x+ay+[)’z)]
a

(20)
Solution 2: a®> +b* —c? >0andb —c # 0,

u, = 2vVa? + b% — c2Coth [\/a2 +b2—c? ((—Za2 —2b% + 2¢% + %) t+x+ay+ ﬁz)]
@
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Solution 3: a®> +b*>—c?>>0,b#0,c=0,

Uz =
Va? + b%Coth EVaZ + b? ((—Za2 —2b?% + %) t+x+ay+ Bz)] +
Tanh E\/a2 + b? ((—Za2 —2b?% + %) t+x+ay+ Bz)]
(22)
Solution 4: a* +b? —c¢? > 0,c # 0,b = 0,
Uy =
1 3B
Vc2z — a2Cot [E\/cz — a2 ((—Za2 +2c% + Z) t+x+ay+ Bz)] -
Tan EVCZ —a? ((—Za2 +2c? + %) t+x+ay+ Bz)] (23)
Solution 5: a = c =waandb = —wa,
Zaw(l+e2aw<_2a2tw2+x+ay+ﬁz+32_l;t)>
Us = (24)

30T
2aw<—2a2tw2+x+a + z+—)
-1+e LT

Solution 6: ¢ = a,

3Bt
2b (e4b3t+(a_b)zeb<2x+zay+2ﬁz+ - ))

Ue = 3,Bt) (25)

b<2x+2a +2pz+——
—e*b3ty(g—b)2e y2Bz=y

Solution 7: a = c,

Uu; = b? + b C)< < . 1+(b+c)eb<—2b2t+x+ay+ﬁz+3>2_/:;t))
7 (1,—C)<Cfb+ 1+(b+c)eb<—2b22c+x+ocy+ﬁz+323—€£t) ) c-b —1+(b—c)eb<_2b2t+x+“3’+ﬁ2+3z—gf)
_1+(b—c)eb<_2b t+x+ay+ﬁz+ﬁ)
(26)
Solution 8: ¢ = —a,
Zb(az+2ab+b2+62b<—2b2t+x+ay+ﬁz+32_l;f)>
Us =~ a2+2ab+b2_62b<—2b2t+x+ay+ﬁz+32_l;‘) 27)
Solution 9: b = —c,
2a(1+cze2a<—2a2t+x+ay+ﬁz+32_l;‘)>
Ug = _1+C2€2a<—2a2t+x+ay+pz+32_€f) (28)

4. Figures

4.1. The Graphs of Some of the Solutions of Equation
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The graphs of some of the solutions of Equation (5) are as follows:

I I
FIGURE 1. The 3D surfaces of Equation (11) for the values a=1, b=2, ¢=3, y=1, z=0, a = 5 and

B = —5 within the interval —10 < x < 10,—5 <t < 5. The 2D surfaces of Equation (11) for the
values a=1, b=2, ¢=3, y=1,z=0, a = 5, § = =5 and t=1 within the interval —10 < x < 10.

FIGURE 2. The 3D surfaces of Equation (13) for the values a=1, b=2, y=1,2=0, « = 5 and f = =5

within the interval —10 < x < 10,—5 < t < 5. The 2D surfaces of Equation (13) for the values a=1,
b=2, y=1, z=0,a = 5, § = —5 and t=1 within the interval =10 < x < 10.

I I
210 45

/ 205

// 10+
FIGURE 3.The 3D surfaces of Equation (15) for the values a=1, y=1, z=0,& = 5, f = =5 and w=1

within the interval —10 < x < 10,—5 <t < 5. The 2D surfaces of Equation (15) for the values a=1,
y=1,z=0,a = 5, f§ = =5, w=1 and t=1 within the interval —10 < x < 10.

59



60 J. Smith et al.

5. Conclusion

We used the tan(?) expansion method for find some traveling wave solutions of (3+1)-

dimensional Jimbo-Miwa equation. This method has been successfully applied to solve some
nonlinear wave equations and can be used to many other nonlinear equations or coupled ones.
Moreover, this method is also computerizable, which lets us to perform confused and
oppressive algebraic calculation on a computer by the aid of symbolic programs such as

Mathematica, Maple, Matlab, and so on.
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