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Abstract

In this manuscript, we have applied the sine-Gordon expansion method and the Bernoulli sub-equation method to seek the traveling wave
solutions of the (2+1)-dimensional time-fractional partial Zoomeron equation. The exact solutions of the Zoomeron equation that are
obtained by the sine-Gordon method are plotted in 3D figures, as well as the effects of the fractional derivative α are illustrated in 2D figures,
while the exact solutions of the Zoomeron equation that are obtained by the Bernoulli sub-equation method are plotted in 3D figures and
contour plot. Bright solutions, kink soliton, singular soliton solution, and complex solutions to the studied equation are constructed. Also,
different values of the fractional parameter α are tested to study the effect of the parameter. We conclude that these methods are sufficient for
seeking the exact solutions.
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1. Introduction

In recent years, the partial differential equations (PDEs), as well as the fractional partial differential equations (FPDEs), have been the focus
of many studies according to describe several physical phenomena and its applications in various fields of mathematics, physics, biology, and
engineering [1]. Finding exact solutions of PDEs and FPDEs attracted the attention of many researchers. Several techniques in the research
paper have been used to succeed in this aim.
Different methods have been presented to study PDE, for example the Kudryashov method [2], the modified auxiliary expansion method [3],
the modified Laplace decomposition method [4], the

(
m+ G′

G

)
−expansion method [5, 6, 7], the Bernstein approximation method [8], the

modified exponential function method [9], the Kansa’s collocation method [10, 11], the mesh-free method [12], the Yang-Laplace transform
[13], the multiple Exp-function method [14], the

( 1
G′
)
-expansion method [15, 16], the newly modified expansion function method [17], a

simple Hirota’s method [18], and radial basis functions collocation method [19].
Researchers have been utilized various method to seek the solution of Zoomeron partial differential equation, such as the enhanced

(
G′
G

)
-

expansion method [20], the modified Kudryashov method [21], the exponential rational function method [22], the sub-equation together
with generalized Kudryashov methods [23], the Ansatz method [24], the novel exponential rational function technique [25], the Lie point
symmetries [26], the bifurcation method of a dynamical system, a numerical simulation method [27], the extended tanh, the exponential
function, the sechp-tanhp function methods [28], the modified simple equation method, the Exp-function method [29], the first integral
method [30].
The general comparison theorems for conformable fractional differential equations have been introduced and tested in Ref. [31]. In Ref.
[32], retarded conformable fractional integral inequalities utilizing non-integer order derivatives and integrals have been proposed and tested.
In Refs. [33, 34], some definitions and properties of conformable derivative have been presented.
In this article, we seek new exact solutions of fractional Zoomeron that are obtained by using the sine-Gordon expansion method and
Bernoulli sub-equation. The 3D, 2D, and contour plot are presented in this paper. In the two-dimensional figure, the effect of the fractional
derivative α is also illustrated.

2. The Conformable Fractional Derivative

The conformable derivative has the following definitions, properties and theorems:
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Definition 2.1. Suppose that f (t) be a conformable fractional derivative of order α and defines as f : (0,∞)→ R then

Dα
t f (t) = lim

ε→0

f(t+εt1−α)− f (t)
ε

, ∀ t > 0, 0 < α ≤ 1.

Definition 2.2. Suppose that f (t) be a function defined on (a, t] and α ∈ R, then, the α-fractional integral of the function f (t) can be
stated as

t Iα
a f (t) =

α∫
a

f (x)
x1−α dx, where a≥ 0 and t ≥ a,

Providing that the Riemann improper integral exists.

Theorem 2.3. Suppose that f (t) and g(t) be α-conformable differentiable at a point t > 0, such that α ∈ (0, 1] , then

1. Dα
t (a f (t)+bg(t)) = aDα

t f (t)+bDα
t g(t) , for all a, b ∈ R.

2. Dα
t (tµ ) = µtµ−α , for all µ ∈ R.

3. Dα
t ( f (t)g(t)) = g(t)Dα

t ( f (t))+ f (t)Dα
t (g(t)) .

4. Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t ( f (t))− f (t)Dα

t (g(t))
g(t)2 .

In addition, if the function f (t) is a differentiable function, then

Dα
t ( f (t)) = t1−α d f (t)

dt .

The chain rule for conformable fractional derivatives is set out in the following theorem [35].

Theorem 2.4. Suppose that f (0,∞)→ R be both a α-conformable differentiable function and classic differentiable function. Assume that
g(t) be a classic differentiable function defined in the range of f (t), then

Dα
t ( f og)(t) = t1−α g(t)α−1gt (t)Dα

t ( f (t))t=g(t).

3. General Forms of the SGEM

Consider the sine-Gordon equation [36, 37, 38]

φxx−φtt =−δ
2 sin(φ) , (3.1)

where φ = φ (x, t) and δ is a non-zero real number. Using the wave transform

φ = φ (x, t) = u(ξ ) , ξ = x−υt,

on eq. (3.1) and amplify the result, we get

u
′ ′
=

δ 2

1−υ2 sin(u) , (3.2)

where u = u(ξ ), ξ and υ are the amplitude and speed of the travelling wave. Taking integration of eq. (3.2) and simplifying it, one can get:((u
2

)′)2
=

δ 2

1−υ2 sin2
(u

2

)
+C, (3.3)

where C is the constant of integration. Letting that u
2 = w(ξ ), δ 2

1−υ2 = β 2, and putting them into eq. (3.3), the result is:

w′ (ξ ) =
√

β 2 sin2 (w(ξ ))+C. (3.4)

Taking C = 0 and β = 1, Eq. (3.4) becomes:

w′ (ξ ) = sin(w(ξ )) . (3.5)

Using the separation method, Eq. (3.5) possess the solutions as follow:

sin(w) = sin(w(ξ )) =
2peξ

p2e2ξ +1

∣∣∣∣∣
p=1

= sech(ξ ) , (3.6)

cos(w) = cos(w(ξ )) =
p2eξ −1
p2e2ξ +1

∣∣∣∣∣
p=1

= tanh(ξ ) , (3.7)

where P is the integral constant. These two significant solutions, achieve the definition of the sine-Gordon expansion method, to get the
solution of the NPDE of the form:

P(φ ,φx,φt ,φtt ,φxx,φxt , ...) = 0. (3.8)
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Now, we consider

u(ξ ) =
n

∑
i=1

tanhi−1 (ξ ) [Bi sech(w)±Ai tanh(w)]+A0, (3.9)

Eq. (3.9) can be rewritten due to Eqs. (3.6) and (3.7) as follows:

u(w) =
n

∑
i=1

cosi−1 (w) [Bi sin(w)+Ai cos(w)]+A0, (3.10)

the value of n is obtained by balancing between the highest power of nonlinear term and the highest derivative appear in the transformed NODE.
Using eq. (3.10) and its derivatives along with the transformed NODE, we get a polynomial equation in the power of trigonometric functions
“w′ssink (w) cos j (w), (s = 0,1 and k, j = 0,1,2, ...)′′. After creating a few substitutions for trigonometric identities in the polynomial
equation, as a result, we get a set of algebraic equations by equating each summation of the coefficients of the trigonometric functions of the
same power to zero. Simplifying the set of algebraic equations and evaluates the rate of the parameters A j, B j and υ . Using the obtained
value of A j, B j and υ into eq. (3.9), we get the new form of wave solutions to eq. (3.8).

4. Structures of Bernoulli Sub-Equation Function Method

The mainly modified steps of this technique can be taken as follows [39, 40, 41, 42]
Let we have a nonlinear partial differential equation:

P(ux,ut ,uxt ,uxx, ...) = 0, (4.1)

and defining the traveling wave transformation

u(x, t) = q(η),η = x+ γt, (4.2)

where γ 6= 0. Appliying Eq. (4.2) on Eq. (4.1) as a result, we get a nonlinear ordinary differential equation :

N(q,q
′
,q
′′
, ...) = 0. (4.3)

Using a trial equation of solution as follows:

q(η) =
n

∑
i=0

aiF i = a0 +a1F +a2F2 + ...+anFn, (4.4)

and

F
′
= bF +dFM ,b 6= 0,d 6= 0,M ∈ R−{0,1,2}. (4.5)

here F (η) is Bernoulli differential polynomial. Inserting Eq. (4.4) into Eq.(4.3), as well as using Eq. (4.5) produces:

Ω(F(η)) = bkF(η)s + · · ·+b1F(η)+b0 = 0,

via the balance principle,the connection of n and M will be evaluate.
By taking all the coefficients of Ω(F(η)) to be zero, we get an algebraic equations system:

bi = 0, i = 0, · · · ,k, (4.6)

solving Eq. (4.6), we will find the values of a0,a1, ...,an.
Step 4. Solving Bernoulli Eq. (4.4), two cases are observed depending on the values of b and d:

F(η) =

[
−d
b

+
E

eb(M−1)η

] 1
1−M

,b 6= d, (4.7)

F(η) =

 (E−1)+(E +1) tanh
(

b(1−M)η
2

)
1− tanh

(
b(1−M)η

2

)


1
1−M

,b = d,E ∈ R. (4.8)

Where E is the non-zero constant of integration, with the help of Mathematical packages, we gain the solutions to Eq. (4.3), using a complete
polynomial discrimination system.
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5. Fractional Zoomeron Equation

Boomerons are described as accelerated solitons for special integrable systems of coupled wave equations. The nonlinear Zoomeron equation
is one of special cases of Boomeron equation that is also a scalar nonlinear evolution equation. the phenomenon of a soliton which is a part
of wave with constant shape and speed. The (2+1)-dimensional nonlinear Zoomeron equation at time fractional, can be written as:

Dtt
2α
(uxy

u

)
−
(uxy

u

)
xx
+2Dt

α
(

u2
)

x
= 0, 0 < α ≤ 1. (5.1)

Using the wave transformation

u(x,y, t) =U (ξ ) , ξ = ξ = κx+νy−ω
tα

α
,

we get the nonlinear ordinary differential equation:

κνω
2
(

U ′′

U

)′′
−κ

3
ν

(
U ′′

U

)′′
−2κω

(
U2
)′′

= 0.

Now integrating the above equation two times with respect to ξ , we get

κν

(
ω

2−κ
2
)

U ′′−2κωU3 + εU = 0, (5.2)

where ε is the constant of integration. To find the solutions of Eq. (5.1), we implement our two mentioned methods to Eq. (5.2).

6. Results and Discussion

The soliton solutions of fractional nonlinear partial Zoomeron equation by using two methods, the sine-Gordon expansion method, and
Bernoulli sub-equation are studied. The 3D figures and 2D figures with a different value of a fractional parameter that are drawn. The gained
solutions via the sine-Gordon expansion method are shown as below:

Set 1 when A0 = 0,A1 =
i
√

εν1/4
√

2κ1/4(2ε+κ3ν)1/4 ,B1 =
√

εν1/4
√

2κ1/4(2ε+κ3ν)1/4 ,ω =−
√

2ε+κ3ν√
κ
√

ν
, we get

u1 (x, t) =

√
εν1/4

(
sech

(
xκ + yν− tα ω

α

)
+ i tanh

(
xκ + yν− tα ω

α

))
√

2κ1/4
(
2ε +κ3ν

)1/4
. (6.1)
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Figure 6.1: 3D and 2D figures of equation (6.1) drawn when ε = 1, κ = 0.9, ν = 0.1, α = 0.5, t = 1/2 and for 2D, we choose y = 2 with different values of
α .

Set 2. When A0 = 0,A1 =
√

ε√
2
√

κ
√

ω
,B1 =

i
√

ε√
2
√

κ
√

ω
,ν =− 2ε

κ3−κω2 , we have

u2 (x,y) =

√
ε

(
i sech

(
xκ + yν− tα ω

α

)
+ tanh

(
xκ + yν− tα ω

α

))
√

2
√

κ
√

ω
. (6.2)
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Figure 6.2: 3D and 2D graph of equation (6.2) drawn when ε = 1, κ = 0.9, ω = 0.1, α = 0.5, t = 1/2 and for 2D, we choose y = 2 with different values of α .

Set 3. When A0 = 0,A1 =
√

ε√
2
√

κ
√

ω
,B1 =

i
√

ε√
2
√

κ
√

ω
,ν =− 2ε

κ3−κω2 , we get

u3 (x,y) =

√
ε

(
i sech

(
xκ + yν− tα ω

α

)
+ tanh

(
xκ + yν− tα ω

α

))
√

2
√

κ
√

ω
. (6.3)
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Figure 6.3: 3D and 2D graph of Eq. (6.3) drawn when ε = 2,ω = 2,κ = 0.4,α = 0.1, t = 1/2 and for 2D, we choose y = 2 with different values of α .

Set 4. WhenA1 =

√√√√√12νω2− 2461/3ν3ω4(
−9εν2+

√
81ε2ν4−48ν6ω6

)2/3 −
62/3

(
−9εν2+

√
81ε2ν4−48ν6ω6

)2/3

ν

6
√

ω
, A0 = B1 = 0,κ =

261/3
ν2ω2+(−9εν2+

√
81ε2ν4−48ν6ω6)

2/3

62/3ν(−9εν2+
√

81ε2ν4−48ν6ω6)
1/3 , we

have

u4 (x,y) = A1 tanh
(

xκ + yν− tα ω

α

)
. (6.4)
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Figure 6.4: 3D and 2D graph of Eq. (6.4) drawn whenε =−4,ω = 1,ν =−1,α = 0.6, t = 1/2 and for 2D, we choose y = 2 with a different value of α .

Set 5. When A0 = 0,A1 = 0,B1 =
√

ν
√

(κ−ω)(κ+ω)√
ω

,ε = κν (κ−ω)(κ +ω), we get

u5 (x,y) =

√
ν
√

(κ−ω)(κ +ω)Sech
[
xκ + yν− tα ω

α

]
√

ω
. (6.5)
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Figure 6.5: 3D and 2D graph of Eq. (6.5) drawn when ω = 0.2,κ = 0.3,ν = 0.4,α = 0.5, t = 1/2 and for 2D, we choosey = 2 with different values of α .

Set 6. When A0 = 0,A1 =−
√

ν(−κ2+ω2)

2
√

ω
,B1 =

i
√

ν
√
−κ2+ω2

2
√

ω
,ε = 1

2 κν
(
−κ2 +ω2), we get

u6 (x,y) =
i
(√

ν
√
−κ2 +ω2 sech

(
xκ + yν− tα ω

α

)
+ i
√

ν
(
−κ2 +ω2

)
tanh

(
xκ + yν− tα ω

α

))
2
√

ω
. (6.6)
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Figure 6.6: 3D and 2D graph of Eq. (6.6) drawn when ω = 3,κ = 2,ν = 1,α = 0.5, t = 1/2 and for 2D, we choose y = 2 with different values of α .
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The 3D figures and contour plot for some cases obtained by Bernoulli sub-equation are showed as:

Set 7. When a0 =
√

ε
√

ν
√

ω
√

2
√

ω2

−κ2+ω2

√
κν(−κ2+ω2)

,a1 = 0,a2 =− 2d
√

ν
√

ω√
ω2

−κ2+ω2

, b =−
√

ε√
2
√

κν(−κ2+ω2)
,

u7 (x,y) =−
2d
√

ν
√

ω(
− d

b + ce−2b(xκ+yν− tα ω

α
)
)√

ω2

−κ2+ω2

+

√
ε
√

ν
√

ω

√
2
√

ω2

−κ2+ω2

√
κν
(
−κ2 +ω2

) . (6.7)
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Figure 6.7: 3D graph and contour plot of Eq. (6.7) drawn when ε = 0.2,κ = 0.5,ν = 1,α = 0.9, t = 1/2,c = 0.2,ω = 0.9,a2 = 1,d = 1,b =−2.

Set 8. When a0 =
√

ε
√

ν(−κ2+ω2)√
2
√

ω
√

κν(−κ2+ω2)
,a1 = 0,b =

√
ε√

2
√

κν(−κ2+ω2)
,d = a2

√
ω

2
√

ν(−κ2+ω2)
, we set up

u8 (x,y) =
a2

− d
b + ce−2b(xκ+yν− tα ω

α
)
+

√
ε

√
ν
(
−κ2 +ω2

)
√

2
√

ω

√
κν
(
−κ2 +ω2

) . (6.8)
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Figure 6.8: 3D graph and contour plot of Eq. (6.8) drawn when ε = 0.2,κ = 0.5,ν = 2,α = 0.5, t = 1/2,c = 0.2,ω = 2,a2 = 1,d = 1,b =−1.

Set 9. When a0 =−
b
√

d2ν(−κ2+ω2)

d
√

ω
,a1 = 0,a2 =−

2
√

d2ν(−κ2+ω2)√
ω

,ε = 2b2κν
(
−κ2 +ω2), we have

u9 (x,y) =−
b
√

d2ν
(
−κ2 +ω2

)
d
√

ω
−

2
√

d2ν
(
−κ2 +ω2

)(
− d

b + ce−2b(xκ+yν− tα ω

α
)
)√

ω

. (6.9)
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Figure 6.9: 3D graph and contour plot of Eq. (6.9) drawn when ε = 2,κ = 0.5,ν =−1,α = 0.5, t = 1/2,c = 0.2,ω = 0.2,a2 =−1,d = 1,b = 2.

7. Conclusion

In this paper, some novel soliton solutions of nonlinear time-fractional Zoomeron equation are studied. The sine-Gordon and Bernoulli
sub-equation methods with using the Mathematica program are utilized to get some new solution of the partial Zoomeron equation. Bright,
kink-type, singular, and complex solutions to the studied equations are presented. As a result, the figures in three dimensions, two dimensions
but with different values of the fractional parameter α , as well as the contour plot for some cases are introduced. We are confident that the
solutions will be useful for scientists to work in this area. All the solutions obtained in this paper are verified by putting them back to original
PDE and all of them satisfy the PDE.
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