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Abstract

In this study, the numerical solutions of nonlinear coupled system viscous Burgers equation with appropriate initial and boundary conditions
are going to be obtained by Strang splitting method and also Ext4 and Ext6 methods obtained by extrapolation technique. To apply splitting
methods, coupled system viscous Burgers equation split up into two subequation, one is linear and the other is nonlinear equation. Cubic
B-spline functions and derivatives are used for the dependent variables u(x,t) and v(x,t) in each sub-equation obtained. Numerical schemas
were obtained by applying each sub-equation of the collocation finite element method and the stability analyzes were investigated by the
von-Neumann method. The effectiveness of the method was tested on three commonly used test problems in the literature. It was observed
that the calculated numerical results were in agreement with the exact solution and compared with the previous studies.
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1. Introduction

This work is concerned with the numerical solutions of the coupled viscous Burgers equation derived by Episov [1], a simple model
of sedimentation or evolution in liquid suspension or colloids under the influence of gravity, of two types of particle-sized volume
concentrations. Episov said that if the weights of the particles are heavier than the fluid that envelops them, the motion of the particles will
result in sedimentation, but creaming if they are lighter. The coupled system of viscous Burgers equation is given

ut −uxx +ηuux +α(uv)x = 0, x ∈ [a,b] , t ∈ [0,T ] , (1.1)

vt − vxx +ηvvx +β (uv)x = 0, x ∈ [a,b] , t ∈ [0,T ] , (1.2)

with the following initial

u(x,0) = φ1(x), v(x,0) = φ2(x),

and boundary conditions

u(a, t) = f1(t), u(b, t) = f2(t)

v(a, t) = g1(t), v(b, t) = g2(t)

Here η is a real constant, φ1(x), φ2(x), f1(t), f2(t), g1(t) g2(t) are given functions, α and β are Brownian diffusivity, system parameters
such as Stokes velocity or Peclet number originating from particle gravity [2].
In recent years, active research efforts focused on nonlinear dynamical systems that emerge in various fields, such as fluid mechanics, plasma
physics, biology, hydrodynamics, solid-state physics and optical fibers. These nonlinear phenomena are often referred to as nonlinear wave
equations [3]. Thus, the analytical or numerical solution of these nonlinear wave equations is becoming very important in the approach
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theory of fluids. The solutions of the coupled Burgers equation were found by different researchers in various ways. Jain and Kadalbajoo
[4] combined technique based on linear approximation and invariant embedding is proposed for solving coupled Burgers’ equations over
irregular regions. Dehghan et al. [5] have solved coupled Burgers equation using a combination of Adomian decomposition method (modified
Adomian decomposition method) and Pade approximation. Mittal and Arora [6] proposed a numerical method for the numerical solution of
a coupled system of viscous Burgers’ equation with appropriate initial and boundary conditions, by using the cubic B-spline collocation
scheme on the uniform mesh points. Mittal and Tripathi [7] have used modified cubic B-spline functions to obtain approximate solutions of
coupled Burgers’ equations by collocation method. İslam et al. [8] have obtained the numerical solution of the transient nonlinear coupled
Burgers’ equations by a Local Radial Basis Functions Collocation Method (LRBFCM) for large values of Reynolds number. Rashid et al.
[9] have considered Chebyshev–Legendre Pseudo-Spectral (CLPS) method for solving coupled viscous Burgers (VB) equations. Rashid and
İsmail [10] have used The Fourier pseudo-spectral method for numerical solutions of one-dimensional coupled system of viscous Burgers
equations. Khater et al. [11] have obtained solutions of Burgers’-type equations using a spectral collocation method based on differentiated
Chebyshev polynomials. Kutluay and Uçar [12] have used Galerkin quadratic B-spline finite element method to numerical solution of
coupled Burgers’ equation. Uçar [13] have solved coupled Burgers equations via quintic B-spline collocation finite element method in
his Ph.D. thesis. Srivastava et al. [14] have implemented an implicit logarithmic finite difference method (I-LFDM) for the numerical
solution of one dimensional coupled nonlinear Burgers equation. Li et al. [15] have applied a new lattice Boltzmann model for coupled
Burgers’ equations is proposed through selecting proper distribution functions. Lai and Ma [16] have proposed lattice Boltzmann model
for the coupled nonlinear system of viscous Burgers’ equation using the double evolutionary equations. Mokhtari et al. [17] have applied
the generalized differential quadrature method (GDQM) to obtain numerical solution coupled Burgers’ equations. Mittal and Jiwari [18]
have solved the coupled viscous Burgers’ equations by using the differential quadrature method. The exact solution of the equation has
been obtained by Kaya [19] using Adomian Decomposition method and Soliman [20] presented modified extended tanh-function method
to obtain its exact solution. Abazari and Borhanifar [21] obtained the numerical/analytical solutions of the Burgers and coupled Burgers
equations by Differential Transformation Method (DTM). Başhan [22] has considered a numerical treatment of the coupled viscous Burgers’
equation in the presence of very large Reynolds number Uçar et al. [23] have investigated numerical solutions and stability analysis of
modified Burgers equation via modified cubic B-spline differential quadrature method. Başhan et al. [24] have applied B-spline differential
quadrature method for the modified Burgers’ equation. Karakoç et al. [25] have applied two different methods for numerical solution of the
modified Burgers’ equation and so on.
The main purpose of this work is to obtain numerical solutions of the nonlinear coupled system viscous Burger’s equation using the operator
splitting methods together with the cubic B-spline collocation finite element method. Numerical solutions of several nonlinear partial
differantial equations of different kind have been obtained by using operator splitting methods with various numerical methods. For example,
they examined the effect of operator splitting methods on the solution of the Bahar and Gurarslan [26] advection-diffusion equations. Holden
et al. [27] have provided a new analytical approach to operator splitting for equations of the type ut = Au+uux. Holden et al. [28] have
applied the method of operator splitting on the generalized Korteweg–de Vries (KdV) equation. Wang [29] have used the split-step finite
difference method to solve various nonlinear Schrödinger equations including coupled ones and so on.

2. Splitting methods

Operator splitting is a successful approach in numerical investigation of splitting complex and high-dimensional equations. The basic idea of
the operator splitting methods is divide and conquer: split the complex problem into a sequence of simpler subproblems and solve these
subproblems [30]. The situation including two linear operators is going to be considered. Now let us consider the following Cauchy problem

du(t)
dt

=Cu(t), t ∈ [0,T ] , u(0) = u0 (2.1)

and assume that it is split as C = A+B. Eq. (2.1) can be seen as a semi-discretization of a linear PDE with a homogeneous periodic boundary
condition. Here, an initial function u0 ∈ X is assumed to be a finite linear operator in X Banach space, with C = A+B, A,B : X → X . There
is also a norm associated with the X-space, and if A and B are matrices, then this norm is the Euclid norm [31]. The formal solution of
Eq.(2.1) is in the form of u(tn+1) = etCu(tn). Then, ∆t = tn+1− tn is being the simplest splitting method, one can get

u(tn+1)' e∆tBe∆tAu(tn) (2.2)

If the operators A and B are commute, then the method is exact. (2.2) is the simplest splitting technique and refers to the solution of two
sub-problems as follows

du(t)
dt

= Au∗(t), u∗(0) = u0 on [0,∆t] ,

du(t)
dt

= Bu∗∗(t), u∗∗(0) = u∗(∆t) on [0,∆t]

Thus, the solutions at the desired time step are calculated by u∗∗(∆t). This technique is called the A−B splitting scheme. One can easily
obtain the B−A splitting scheme by replacing the locations of operators A and B [32].

2.1. Symmetric Strang splitting

For better accuracy, Strang [33] first handles the following scheme

u(∆t) =
1
2
[uAB(∆t)+uBA(∆t)] (2.3)
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Where uAB and uBA are solutions calculated by AB and BA splitting schemes, respectively. Since each operator needs to be calculated
twice in this scheme, the calculation cost is high. In place of Eq. (2.3), the symmetric schme u(tn+1) '

(
e

∆t
2 Ae

∆t
2 B
)(

e
∆t
2 Be

∆t
2 A
)

u(tn) =

e
∆t
2 Ae∆tBe

∆t
2 Au(tn) is proposed due to its low computational cost [34]. This scheme can be explicitly stated as follows

du∗(t)
dt

= Au∗(t), u∗(0) = u0 on [0,∆t/2] , (2.4)

du∗∗(t)
dt

= Bu∗∗(t), u∗∗(0) = u∗(∆t/2) on [0,∆t] ,

du∗∗∗(t)
dt

= Au∗∗∗(t), u∗∗∗(0) = u∗∗(∆t) on [0,∆t/2]

Finally, the numerical schemes are solved with the term u∗∗∗(∆t/2). As it is seen in the Eq. (2.4), the term u∗(0) is calculated from the
original initial condition of the problem, the other two initial conditions are taken from the previous calculated ones. If the scheme in Eq.
(2.4) is called ”A−B−A”, one can obtain the scheme ”B−A−B” in a similar way. Now, in order to increase and improve the convergence,
the extrapolation techniques 4
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24 ϕ∆t given in [35] are going to be used. If these
techniques are applied to Strang splitting technique, the fourth and sixth order methods as follows are obtained, respectively

Ext4 =
4
3

(
S ∆t

2

)2
− 1

3
S∆t

=
4
3

ϕ
[A]
∆t
4
◦ϕ

[B]
∆t
2
◦ϕ

[A]
∆t
2
◦ϕ

[B]
∆t
2
◦ϕ

[A]
∆t
4
− 1

3
ϕ
[A]
∆t
2
◦ϕ

[B]
∆t ◦ϕ

[A]
∆t
2

and

Ext6 =
81
40

(
S ∆t

3

)3
− 16

15

(
S ∆t

2

)2
+

1
24

S∆t

=
81
40

ϕ
[A]
∆t
6
◦ϕ

[B]
∆t
3
◦ϕ

[A]
∆t
3
◦ϕ

[B]
∆t
3
◦ϕ

[A]
∆t
3
◦ϕ

[B]
∆t
3

ϕ
[A]
∆t
6

− 16
15

ϕ
[A]
∆t
4
◦ϕ

[B]
∆t
2
◦ϕ

[A]
∆t
2
◦ϕ

[B]
∆t
2
◦ϕ

[A]
∆t
4
+

1
24

ϕ
[A]
∆t
2
◦ϕ

[B]
∆t ◦ϕ

[A]
∆t
2
.

3. Cubic B-spline functions and its derivatives

Let us assume the solution domain [a,b] is closed interval, and a smooth finite uniform fragment xm, m = 0,1, ...,N of this region is
a = x0 < x1 < ... < xN = b. Cubic B-spline functions can be stated as follows, with Φm(x), m =−1(1)N +1, if the distance between two
consecutive node points is expressed as h = xm+1− xm on the basis of xm node points on [a,b] as shown by the [36]

Φm(x) =
1
h3


(x− xm−2)

3, x ∈ [xm−2,xm−1]
h3 +3h2(x− xm−1)+3h(x− xm−1)

2−3(x− xm−1)
3, x ∈ [xm−1,xm]

h3 +3h2(xm+1− x)+3h(xm+1− x)2−3(xm+1− x)3, x ∈ [xm,xm+1]
(xm+2− x)3, x ∈ [xm+1,xm+2]

0, otherwise

(3.1)

An approximation to the exact solution u(x, t) and v(x, t) can be expressed as follows in terms of cubic B-spline functions (3.1) and time
dependent parameters δm(t) and γm(t)

U(x, t)'
N+1

∑
m=−1

δm(t)Φm(x), V (x, t)'
N+1

∑
m=−1

γm(t)Φm(x) (3.2)

Using the Eqs.(3.1) and (3.2), the nodal values of functions u(x, t) and v(x, t) and their first and second order derivatives are found as follows

Um =U(xm) = δm−1 +4δm +δm+1

Vm =V (xm) = γm−1 +4γm + γm+1

U
′
m =U ′(xm) =

3
h
(δm+1−δm−1)

V
′
m =V ′(xm) =

3
h
(γm+1− γm−1) (3.3)

U ′′m =U ′′(xm) =
6
h2 (δm−1−2δm +δm+1)

V ′′m =V ′′(xm) =
6
h2 (γm−1−2γm + γm+1)

Here ′ and ′′ denote the first order and second order derivatives with respect to space variable x, respectively.
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4. Application of the method

In the present study, the coupled viscous Burgers equation is split as follows

ut = uxx (4.1)

ut =−ηuux−α(uv)x (4.2)

vt = vxx (4.3)

vt =−ηvvx−β (uv)x (4.4)

In order to apply the method to the Eqs. (4.1), (4.2), (4.3) and (4.4) if forward finite difference for time derivative and Crank-Nicolson finite
difference approximation for space derivative are used, the following equalities are obtained[

un+1−un

∆t

]
−
[

un+1
xx +un

xx
2

]
= 0, (4.5)

[
un+1−un

∆t

]
+η

[
(uux)

n+1 +(uux)
n

2

]
+α

[
(vux)

n+1 +(vux)
n

2

]
+α

[
(uvx)

n+1 +(uvx)
n

2

]
=0 (4.6)

and[
vn+1− vn

∆t

]
−
[

vn+1
xx + vn

xx
2

]
= 0, (4.7)

[
vn+1− vn

∆t

]
+η

[
(vvx)

n+1 +(vvx)
n

2

]
+β

[
(vux)

n+1 +(vux)
n

2

]
+β

[
(uvx)

n+1 +(uvx)
n

2

]
=0. (4.8)

In Eq. (4.6) in place of nonlinear term, the following approximation proposed by Rubin and Graves is used [37]

(uux)
n+1 = un+1un

x +unun+1
x − (uux)

n ,

(vux)
n+1 = vn+1un

x + vnun+1
x − (vux)

n ,

(uvx)
n+1 = un+1vn

x +unvn+1
x − (uvx)

n .

In the approximations given in Eq. (3.3) are written in their places in Eqs. (4.5)-(4.8) the following difference equations in terms of
parameters δm(t) and γm(t) are obtained

a1δ
n+1
m−1 +a2δ

n+1
m +a1δ

n+1
m+1 = a3δ

n
m−1 +a4δ

n
m +a3δ

n
m+1, (4.9)

a5δ
n+1
m−1 +a6δ

n+1
m +a7δ

n+1
m+1 +a8γ

n+1
m−1 +a9γ

n+1
m +a10γ

n+1
m+1 = δ

n
m−1 +δ

n
m +δ

n
m+1, (4.10)

and

a1γ
n+1
m−1 +a2γ

n+1
m +a1γ

n+1
m+1 = a3γ

n
m−1 +a4γ

n
m +a3γ

n
m+1, (4.11)

b1γ
n+1
m−1 +b2γ

n+1
m +b3γ

n+1
m+1 +b4δ

n+1
m−1 +b5δ

n+1
m +b6δ

n+1
m+1 = γ

n
m−1 + γ

n
m + γ

n
m+1, (4.12)

where

a1 = 1− 3∆t
h2 , a2 = 4+

6∆t
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2
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x
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3∆tun
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2
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3∆tun

2h
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Here, the terms on the left side contains (n+1)th the time step, and the terms on the right side contain the nth time step, with m = 0(1)N. The
systems in Eqs. (4.9) and (4.10) consist of (2N +2) linear equations and (2N +6) unknowns namely (δ−1,δ0,δ1,...,δN), (γ−1,γ0,γ1,...,γN)
For this system to be solvable, the parameters δ−1,γ−1,δN+1,γN+1 should be eliminated using the boundary conditions. By applying the
boundary conditions, a system which can be obtained in (2N + 2)× (2N + 2) dimensional. By doing similar operations equations are
obtained for Eqs. in (4.11) and (4.12).
In order to solve these systems, first of all, the initial vectors δ 0 and γ0 are needed and these vectors are obtained from the initial conditions
u(x,0) = φ1(x) and v(x,0) = φ2(x) as follows

u(xm,0) = φ1(xm) =U(xm,0), v(xm,0) = φ2(xm) =V (xm,0), m = 0(1)N

um = δ
0
m−1 +4δ

0
m +δ

0
m+1, vm = γ

0
m−1 +4γ

0
m + γ

0
m+1

u0 = δ
0
−1 +4δ

0
0 +δ

0
1 , v0 = γ

0
−1 +4γ

0
0 + γ

0
1

u1 = δ
0
0 +4δ

0
1 +δ

0
2 , v1 = γ

0
0 +4γ

0
1 + γ

0
2

...
...

uN = δ
0
N−1 +4δ

0
N +δ

0
N+1, vN = γ

0
N−1 +4γ

0
N + γ

0
N+1

For these systems to be solvable the parameters δ 0
−1,γ0

−1 and δ 0
N+1,γ0

N+1 are eliminated using the boundary conditions U
′′
(a,0) =U

′′
(b,0) =

V
′′
(a,0) =V

′′
(b,0) = 0.Thus a band matrix of type (N +1)× (N +1) which can be easily solved by Thomas algorith is obtained as follows


6 0 0
1 4 1

. . .
1 4 1
0 0 6




δ 0

0
δ 0

1
...

δ 0
N−1
δ 0

N

=


u0
u1
...

uN−1
uN

 ,


6 0 0
1 4 1

. . .
1 4 1
0 0 6




γ0

0
γ0

1
...

γ0
N−1
γ0

N

=


v0
v1
...

vN−1
vN

 .

5. von-Neumann stability analysis

Here, while applying Strang splitting scheme, the systems (4.9) and (4.11) are solved by ∆t/2 , and at time steps ∆t for the systems (4.10)
and (4.12) the stability analysis of the systems is considered together. If the equations δ n

m = Aξ neiβmh and γn
m = Bξ neiβmh are written in

their places in Eqs. (4.9) and (4.11) with i =
√
−1, A and B are harmonic amplitutes, β is mod number, h is element size, the following

equations are obtained

ρA

(
ξ n+1/2

ξ n

)
1,2

=
P−Q
P+Q

P = 2cosβh+4, Q =
6∆t
h2 (1− cosβh)

From here, the condition
∣∣∣∣ρA

(
ξ n+1/2

ξ n

)
1,2

∣∣∣∣ ≤ 1 is satisfied since Q = 6∆t
h2 (1− cosβh) ≥ 0 is valid. Similarly, since Eqs. (4.2) and (4.4)

are solved together, their stability analyses are considered after discretizing them using standard finite difference method. For this, if
in places of u and v in nonlinear terms uux, vvx and (uv)x = uvx + vux in Eqs. (4.2) and (4.4) the constants z1 and z2 are taken, for
σ1 = max{(ηz1 +αz2),(ηz2 +β z1)}, σ2 = max{αz1,β z2}, λ = 3∆tσ1/2h and µ = 3∆tσ2/2h, the following equations are obtained

(1−λ )δ n+1
m−1+4δ

n+1
m +(1+λ )δ n+1

m+1+(−µ)γn+1
m−1+µγ

n+1
m+1=(1+λ )δ n

m−1 +4δ
n
m +(1−λ )δ n

m+1

+µγ
n
m−1 +(−µ)γn

m+1 (5.1)

(1−λ )γn+1
m−1+4γ

n+1
m +(1+λ )γn+1

m+1+(−µ)δ n+1
m−1+µδ

n+1
m+1=(1+λ )γn

m−1+4γ
n
m+(1−λ )γn

m+1

+µδ
n
m−1 +(−µ)δ n

m+1. (5.2)

Now, if in systems (5.1) and (5.2) the terms δ n
m = Aξ neiβmh and γn

m = Bξ neiβmh are written in their places and Euler formula is used

x1 =
λ1−λ2i
λ1 +λ2i

and x2 =
λ1−λ3i
λ1 +λ3i

is obtained where

λ1 = 2cosβh+4, λ2 = (2λ +2µ)sinβh, λ3 = (2λ −2µ)sinβh

Since the conditions |x1| ≤ 1 and |x2| ≤ 1 are satisfied, it is obvious that
∣∣∣∣ρB

(
ξ n+1

ξ n

)
1,2

∣∣∣∣≤ 1. Thus the Strang splitting scheme obtained for

coupled viscous Burgers’ eqution is unconditionally stable, since the condition

|ρ (ξ )| ≤

∣∣∣∣∣∣ρA

(
ξ n+1/2

ξ n

)
1,2

∣∣∣∣∣∣
∣∣∣∣∣ρB

(
ξ n+1

ξ n

)
1,2

∣∣∣∣∣
∣∣∣∣∣∣ρA

(
ξ n+1/2

ξ n

)
1,2

∣∣∣∣∣∣≤ 1

is always valid.
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6. Numerical Examples and Results

The equations in Eqs. (4.1) and (4.3) are first solved by the ∆t/2 time step while the A−B−A Strang splitting scheme is applied to the split
coupled Burgers equation. The solution vectors obtained here are used as starting vectors in Eqs. (4.2) and (4.4) and are solved at time step
∆t. Finally, to obtain the desired solutions, the solution vectors obtained from the time-stepped solutions are taken as initial conditions for
the equations (4.1) and (4.3) and it was solved at time step ∆t/2. In order to observe the effectiveness of the proposed method, three test
problems were addressed and tested with the error norms L2 and L∞ given below.

L2 =

√√√√ N

∑
i=0

∣∣Uexact
i −Uapprox

i

∣∣2/
√√√√ N

∑
i=0

∣∣Uexact
i

∣∣2
L∞ = max

i

∣∣Uexact
i −Uapprox

i

∣∣ .
Problem 1
In this problem, the nonlinear coupled viscous Burgers equation system given in (1.1) and (1.2) is considered for α = β = 1, η = −2
following initial conditions

u(x,0) = v(x,0) = sinx, −π ≤ x≤ π

and boundary conditions

u(−π, t) = u(π, t) = 0, 0≤ t ≤ T

v(−π, t) = v(π, t) = 0, 0≤ t ≤ T.

The exact solution of this problem is given as u(x, t) = v(x, t) = e−t sinx by Kaya [19].
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Figure 6.1: The graphs of the calculated numerical values of U(x, t) for Problem 1 at times t = 0.1, 0.5 and 1.

Table 1: A comparison of the error norms L2 and L∞ of u(x, t) for Problem 1 for values of ∆t = 0.001 and N = 200,400 at various times with those in Ref.
[6], Ref. [13] and Ref. [12]

t S∆t Ext4 Ext6
N = 200 L2 L∞ L2 L∞ L2 L∞

0.1 8.226E−6 7.443E−6 8.195E−6 7.415E−6 8.189E−6 7.409E−6
0.5 4.113E−5 2.495E−5 4.110E−5 2.493E−5 4.111E−5 2.494E−5
1 8.227E−5 3.026E−5 8.223E−5 3.025E−5 8.227E−5 3.026E−5
N = 400
0.1 2.057E−6 1.861E−6 2.026E−6 1.833E−6 2.020E−6 1.828E−6
0.5 1.029E−5 6.242E−6 1.026E−5 6.221E−6 1.027E−5 6.229E−6
1 2.058E−5 7.572E−6 2.054E−5 7.557E−6 2.058E−5 7.572E−6
N = 200 [6] [13] [12]

0.1 8.21E−06 7.45E−06 1.47E−06 4.06E−06 0.17E−06 0.52E−06
0.5 2.49E−05 4.10E−05 2.46E−06 2.78E−06 0.27E−06 0.36E−06
1 3.00E−05 8.21E−05 3.45E−06 1.70E−06 0.36E−06 0.22E−06
N = 400
0.1 2.05E−06 1.86E−06 0.69E−06 1.99E−06 0.07E−06 0.14E−06
0.5 1.02E−05 6.22E−06 1.17E−06 1.35E−06 0.16E−06 0.14E−06
1 2.04E−05 7.56E−06 1.66E−06 0.82E−06 0.15E−06 0.10E−06
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Table 3: A comparison of the error norms L2 and L∞ of u(x, t) for Problem 2 for values of ∆t = 0.01, N = 100 and various α and β at times t = 0.1 and 0.5
with those in Ref.[6, 13, 12, 11, 10, 17]

S∆t Ext4 Ext6
t α β L2 L∞ L2 L∞ L2 L∞

0.5 0.1 0.3 6.737E−4 4.187E−5 6.729E−4 4.186E−5 6.724E−4 4.185E−5
0.3 0.03 7.411E−4 4.591E−5 7.387E−4 4.591E−5 7.375E−4 4.591E−5

1 0.1 0.3 1.325E−3 8.280E−5 1.324E−3 8.277E−5 1.323E−3 8.275E−5
0.3 0.03 1.463E−3 9.182E−5 1.457E−3 9.182E−5 1.456E−3 9.182E−5

[6] [13] [12]
0.5 0.1 0.3 6.736E−4 4.167E−5 6.732E−4 4.187E−5 6.783E−4 4.208E−5

0.3 0.03 7.326E−4 4.590E−5 7.430E−4 4.591E−5 7.609E−4 4.703E−5
1 0.1 0.3 1.325E−3 8.258E−5 1.323E−3 8.277E−5 1.334E−3 8.320E−5

0.3 0.03 1.452E−3 9.182E−5 1.464E−3 9.183E−5 1.500E−3 9.409E−5
[11] [10] [17]

0.5 0.1 0.3 1.44E−3 4.38E−5 3.2453E−5 9.6185E−4 2.02E−3 1.00E−4
0.3 0.03 6.68E−4 4.58E−5 2.7326E−5 4.3102E−4 5.07E−3 2.52E−4

1 0.1 0.3 1.27E−3 8.66E−5 2.4054E−5 1.1529E−3 4.03E−3 2.01E−4
0.3 0.03 1.30E−3 9.16E−5 2.8316E−5 1.2684E−3 1.00E−2 5.04E−4

Table 2: A comparison of the error norms L2 and L∞ of u(x, t) for Problem 1 for ∆t = 0.001 various values of N at times t = 0.1,0.5 with those in Ref. [6]
and Ref. [7].

N S∆t Ext4 Ext6
t = 0.1 L2 L∞ L2 L∞ L2 L∞

32 3.2164E−4 2.9103E−4 3.2161E−4 2.9100E−4 3.2160E−4 2.9100E−4
64 8.0342E−5 7.2697E−5 8.0311E−5 7.2669E−5 8.0305E−5 7.2663E−5
128 2.0082E−5 1.8171E−5 2.0051E−5 1.8143E−5 2.0045E−5 1.8137E−5
256 0.5021E−5 0.4543E−5 0.4990E−5 0.4515E−5 0.4984E−5 0.4509E−5
512 1.2556E−6 1.1361E−6 0.1225E−6 1.1082E−6 0.1219E−6 0.1103E−6

t = 0.5
32 16.0715E−4 9.7479E−4 16.0712E−4 9.7477E−4 16.0713E−4 9.7478E−4
64 4.0165E−4 2.4362E−4 4.0162E−4 2.4359E−4 4.0163E−4 2.4360E−4

128 10.0412E−5 6.0903E−5 10.0377E−5 6.0882E−5 10.0392E−5 6.0891E−5
256 2.5110E−5 1.5230E−5 2.5075E−5 1.5209E−5 2.5090E−5 1.5218E−5
512 0.6285E−5 0.3812E−5 0.6250E−5 0.3791E−5 0.6265E−5 0.3800E−5

[6] [7]
t = 0.1 t = 0.5 t = 0.1 t = 0.5

L2 L∞ L2 L∞ L∞ L∞

32 − 2.9104E−04 − 9.7478E−04 3.0973141E−04 1.0373845E−04
64 − 7.2704E−05 − 2.4361E−04 7.4999576E−05 2.5132688E−04
128 − 1.8178E−05 − 6.0896E−05 1.8456076E−05 6.1854865E−05
256 − 4.5497E−05 − 1.5223E−05 − −
512 − 1.1430E−06 − 3.8052E−05 − −

In Problem 1, numerical results and graphs are given for u(x, t) function since u(x, t) and v(x, t) have the same initial, boundary conditions
and exact solution. Numerical solution and complete solution graph at time t = 0.1,0.5 and 1 for u(x, t) are given in Fig. 6.1. As you can see
from Fig. 6.1 , the numerical solution and the exact solution are very close to each other. L2 and L∞ error norms calculated with Strang, Ext4
and Ext6 methods at time t = 0.1,0.5 and 1 for N = 200 and 400 values were given in Table 1 and the references [6, 13, 12]. As it is seen in
Table 1 , the newly obtained error norms L2 and L∞ are in agreement with those in Ref. [6] and are larger than those calculated in [13, 12].
In the Table 2, error norms L2 and L∞ calculated at t = 0.1 and 0.5 times for ∆t = 0.001 are given. When looked at this table, it is clear that
the calculated error norms are better than those calculated in the Refs. [6, 7].
Problem 2
As a second problem, the solutions of the nonlinear coupled viscous Burgers equation system given in Eqs. (1.1) and (1.2) were investigated
for η = 2 for different α and β values at time t = 0.5 and 1
Soliman [20] has been given the exact solution to this problem

u(x, t) = a0 (1− tanh(A(x−2At))

v(x, t) = a0

((
2β −1
2α−1

)
− tanh(A(x−2At))

)
where

a0 = 0.05 and A =
1
2

a0

(
4αβ −1
2α−1

)
The initial and boundary conditions of the problem are taken from the exact solution for u(x, t) and v(x, t). The solution region for this

problem was taken as the range [−10,10] and all the results were calculated with N = 100, ∆t = 0.01.
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Table 4: A comparison of the error norms L2 and L∞ of v(x, t) for Problem 2 for values of ∆t = 0.01, N = 100 at times t = 0.1 and 0.5 for different values of
α ve β with those in Refs.[6, 13, 12, 11, 10, 17]

β S∆t Ext4 Ext6
t α β L2 L∞ L2 L∞ L2 L∞

0.5 0.1 0.3 5.014E−4 0.218E−4 5.000E−4 0.218E−4 4.993E−4 0.217E−4
0.3 0.03 1.319E−3 1.809E−4 1.318E−3 1.809E−4 1.318E−3 1.809E−4

1 0.1 0.3 0.979E−3 4.205E−5 0.976E−3 4.197E−5 0.975E−3 4.193E−5
0.3 0.03 2.603E−3 3.618E−4 2.601E−3 3.618E−4 2.600E−3 3.618E−4

[6] [13] [12]
0.5 0.1 0.3 9.057E−4 1.480E−4 5.015E−4 0.218E−4 5.101E−4 0.221E−4

0.3 0.03 1.591E−3 5.729E−4 1.319E−3 1.809E−4 1.327E−3 1.818E−4
1 0.1 0.3 1.251E−3 4.770E−5 0.977E−3 4.205E−5 0.995E−3 4.255E−5

0.3 0.03 2.250E−3 3.617E−4 2.600E−3 3.618E−4 2.617E−3 3.636E−4
[11] [10] [17]

0.5 0.1 0.3 5.42E−4 4.99E−5 2.746E−5 3.332E−4 1.56E−3 3.80E−5
0.3 0.03 1.20E−3 1.81E−4 2.454E−4 1.148E−3 1.59E−3 1.85E−4

1 0.1 0.3 1.29E−3 9.92E−5 3.745E−5 1.162E−3 3.10E−3 7.58E−5
0.3 0.03 2.35E−3 3.62E−4 4.525E−4 1.638E−3 3.15E−2 3.67E−4

The error norms of L2 and L∞ calculated at times t = 0.1 and 0.5 for this problem are given by Table 3 and Table 4 for u(x, t) and v(x, t),
respectively. It is seen that the results obtained with Strang, Ext4 and Ext6 are better than those obtained from [13, 12, 17] studies and are in
agreement with [6] in Table 3. In addition, although our L∞ norm is worse than in the [11, 10] studies, our L2 norm is better
Problem 3
As a final problem, the nonlinear coupled viscous Burgers equation system in Eqs. (1.1) and (1.2)has been studied on [−20,20] for η = 2
and α = β = 5/2 parameters .The exact solution of the problem given with the initial condition

u(x,0) = K
(

1− tanh(
3Kx

2
)

)
, x ∈ [−20,20]

v(x,0) = K
(

1− tanh(
3Kx

2
)

)
, x ∈ [−20,20]

has been given byAbazari [21] as follows

u(x, t) = K
(

1− tanh(
3K
2
(x−3Kt))

)
, x ∈ [−20,20]

v(x, t) = K
(

1− tanh(
3K
2
(x−3Kt))

)
, x ∈ [−20,20]

The boundary conditions of the problem are taken from the exact solution. Here, various anti-kink wave solutions are obtained for different
K values since the initial condition depends on the K parameter [16]. The results obtained with S∆t , Ext4 and Ext6 methods for this problem
are given in Table 5. The L2 and L∞ error norms for K = 0.1 and 0.5 were compared with those of [15, 16] in Table6. As it is seen from
Table 6,the results obtained by the methods S∆t , Ext4 and Ext6 are much better in general. The results calculated for K = 1 were compared
with the [15] study and Table 7. Also, the graphs of the solutions calculated for K = 0.1,0.5,1 and 5 at different times are given in Fig. 6.2.
As it is seen in Fig. 6.2, as the K value increases, the solution curves are also staggered and the numerical solution appears to be in agreement
with the exact solution.

Table 5: The error norms L2 and L∞ of u(x, t) for Problem 3 using S∆t ,Ext4 and Ext6 for values of ∆t = 0.001 and K = 0.1,0.5,1 at various times.

S∆t Ext4 Ext6
K N t L2 L∞ L2 L∞ L2 L∞

1 1.0283E−6 0.6902E−6 1.1765E−6 0.7641E−6 0.9540E−6 0.4694E−6
2 1.7781E−6 0.7829E−6 1.8199E−6 0.7648E−6 1.5650E−6 0.5264E−6

0.1 320 3 2.3353E−6 0.7425E−6 2.3347E−6 0.7140E−6 2.1065E−6 0.6131E−6
4 2.7935E−6 0.7536E−6 2.7634E−6 0.7557E−6 2.5753E−6 0.7556E−6
5 3.1816E−6 0.8758E−6 3.1268E−6 0.8780E−6 2.9831E−6 0.8777E−6

1 1.5432E−4 5.4661E−4 1.5430E−4 5.4664E−4 1.5431E−4 5.4661E−4
2 1.6042E−4 5.7424E−4 1.6041E−4 5.7403E−4 1.6041E−4 5.7416E−4

0.5 200 3 1.5517E−4 5.7845E−4 1.5516E−4 5.7857E−4 1.5517E−4 5.7844E−4
4 1.4936E−4 5.6625E−4 1.4935E−4 5.6600E−4 1.4936E−4 5.6624E−4
5 1.4442E−4 5.6815E−4 1.4428E−4 5.6832E−4 1.4428E−4 5.6810E−4

1 0.1736E−3 1.7595E−3 0.1736E−3 1.7615E−3 0.1736E−3 1.7611E−3
2 0.1611E−3 1.7281E−3 0.1610E−3 1.7306E−3 0.1610E−3 1.7298E−3

1 320 3 0.1522E−3 1.7247E−3 0.1521E−3 1.7273E−3 0.1521E−3 1.7261E−3
4 0.1448E−3 1.7243E−3 0.1447E−3 1.7271E−3 0.1447E−3 1.7255E−3
5 0.1384E−3 1.7243E−3 0.1383E−3 1.7273E−3 0.1383E−3 1.7252E−3
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Table 6: A comparison of the error norms L2 and L∞ for Problem 3 for values of ∆t = 0.001 and K = 0.1,0.5 with those in Ref. [16] and [15].

S∆t Ext4 Ext6
K N t L2 L∞ L2 L∞ L2 L∞

1 1.0283E−6 0.6902E−6 1.1765E−6 0.7641E−6 0.9540E−6 0.4694E−6
2 1.7781E−6 0.7829E−6 1.8199E−6 0.7648E−6 1.5650E−6 0.5264E−6

0.1 320 3 2.3353E−6 0.7425E−6 2.3347E−6 0.7140E−6 2.1065E−6 0.6131E−6
4 2.7935E−6 0.7536E−6 2.7634E−6 0.7557E−6 2.5753E−6 0.7556E−6
5 3.1816E−6 0.8758E−6 3.1268E−6 0.8780E−6 2.9831E−6 0.8777E−6

1 1.5432E−4 5.4661E−4 1.5430E−4 5.4664E−4 1.5431E−4 5.4661E−4
2 1.6042E−4 5.7424E−4 1.6041E−4 5.7403E−4 1.6041E−4 5.7416E−4

0.5 200 3 1.5517E−4 5.7845E−4 1.5516E−4 5.7857E−4 1.5517E−4 5.7844E−4
4 1.4936E−4 5.6625E−4 1.4935E−4 5.6600E−4 1.4936E−4 5.6624E−4
5 1.4442E−4 5.6815E−4 1.4428E−4 5.6832E−4 1.4428E−4 5.6810E−4

[16] [15]
1 1.4829E−6 5.7788E−7 2.7344E−5 −
2 2.7955E−6 1.0754E−6 6.4798E−5 −

0.1 320 3 3.9298E−6 1.4861E−6 1.0832E−4 −
4 4.9434E−6 1.8800E−6 1.5709E−4 −
5 5.8615E−6 2.2034E−6 2.1113E−4 −

1 1.6362E−4 6.7505E−4 6.6534E−5 −
2 1.9746E−4 8.1705E−4 6.3686E−5 −

0.5 320 3 2.0557E−4 8.6375E−4 6.0667E−5 −
4 2.0543E−4 8.8160E−4 5.8210E−5 −
5 2.0231E−4 8.9060E−4 5.6210E−5 −

Table 7: A comparison of the error norms L2 and L∞ of u(x, t) for Problem 3 for values of K = 1,∆t = 0.001 and N = 320 with those in Ref. [15].

S∆t Ext4 Ext6 Li at al.[15]
t L2 L∞ L2 L∞ L2 L∞ L2 L∞

1 0.1736E−3 1.7595E−3 0.1736E−3 1.7615E−3 0.1736E−3 1.7611E−3 1.7416E−4 −
2 0.1611E−3 1.7281E−3 0.1610E−3 1.7306E−3 0.1610E−3 1.7298E−3 1.6157E−4 −
3 0.1522E−3 1.7247E−3 0.1521E−3 1.7273E−3 0.1521E−3 1.7261E−3 1.5268E−4 −
4 0.1448E−3 1.7243E−3 0.1447E−3 1.7271E−3 0.1447E−3 1.7255E−3 1.4525E−4 −
5 0.1384E−3 1.7243E−3 0.1383E−3 1.7273E−3 0.1383E−3 1.7252E−3 1.3883E−4 −
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Figure 6.2: The behaviour of the solution for Problem 3 for values of K = 0.1,0.5,1 and 5 at different times.
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7. Conclusion

In this study, the four viscous Burgers equation was split into four sub-equilibria. Each sub-equation finite element cubic B-spline collocation
method was applied and numerical schemes were obtained. Strang splitting and Ext4 and Ext6 methods were used to solve these numerical
schemes. In general, Ext4 is better than Strang splitting method and Ext6 is better than Ext4 method. In addition, the calculated results are
consistent with the literature. Thus, it is seen that the used methods are suitable and effective numerical systems for nonlinear equations and
equation systems.
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