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Abstract
Let R be a ring and M be an R-module. In this paper we investigate modules M such
that every (simple) cosingular R-module is M -projective. We prove that every simple
cosingular module is M -projective if and only if for N ≤ T ≤ M , whenever T/N is simple
cosingular, then N is a direct summand of T . We show that every simple cosingular right
R-module is projective if and only if R is a right GV -ring. It is also shown that for a right
perfect ring R, every cosingular right R-module is projective if and only if R is a right
GV -ring. In addition, we prove that if every δ-cosingular right R-module is semisimple,
then Z(M) is a direct summand of M for every right R-module M if and only if Zδ(M)
is a direct summand of M for every right R-module M .
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1. Introduction
All rings considered in this paper will be associative with an identity element and all

modules will be unitary right modules unless otherwise stated. Let R be a ring and
M an R-module. An R-module N is generated by M (or M -generated) if there exists
an epimorphism f : M (A) → N for some index set A. An R-module N is said to be
subgenerated by M if N is isomorphic to a submodule of an M -generated module. We
denote by σ[M ] the full subcategory of the right R-modules whose objects are all right
R-modules subgenerated by M (see [15]). A submodule L of M is essential in M denoted
by L ≤e M , if for every nonzero submodule K of M , L ∩ K ̸= 0. As a dual concept,
a submodule N of a module M is called small in M (denoted by N ≪ M), if for every
proper submodule L of M , N + L ̸= M . As a generalization of small submodules, a
submodule K of M is δ-small in M , in case M = K + L with M/L singular implies that
M = L. A module M is called hollow if every proper submodule of M is small in M .
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A module N is said to be (δ-)M -small if there exists a module L ∈ σ[M ] such that
(N ≪δ L) N ≪ L. It is well-known that N is (δ-)M -small if and only if (N ≪δ N̂)
N ≪ N̂ , where N̂ is injective envelope of N in σ[M ] (for the δ-case see [10]). Note
that “(δ-)R-small" means “(δ-)small". Let N and L be submodules of M . N is called a
supplement of L in M if it is minimal with respect to the property M = N+L, equivalently,
M = N + L and N ∩ L ≪ N . M is called supplemented (resp., weakly supplemented) if
for each submodule A of M , there exists a submodule B of M such that M = A + B and
A∩B ≪ B (resp., A∩B ≪ M). Any module M is called amply supplemented if for any two
submodules A and B with M = A + B, A contains a supplement of B in M . Recall that
M is called H-supplemented provided for every submodule N of M , there exists a direct
summand D of M such that N+D

N ≪ M
N and N+D

D ≪ M
D . Also M is called ⊕-supplemented

in case for every N ≤ M , there exists a direct summand K of M such that M = N + K
and N ∩ K ≪ K. Let us call an R-module N small projective if Hom(N, −) is exact with
respect to the exact sequences 0 → K → L → M → 0 in Mod-R with K small in L and for
each R-module M (see [15, 19.10(8) and 23.9 Exercises]). Also N is small M -projective if
Hom(N, −) is exact with respect to the exact sequences 0 → K → M → L → 0 in Mod-R
with K small in M .

The singular submodule Z(M) of a module M is the set of m ∈ M such that, mI = 0
for some essential right ideal I of R. Let M and N be two R-modules. In [13], Talebi and
Vanaja defined ZM (N) as a dual of singular submodule as follows: ZM (N) =

∩
{Kerf |

f : N → U, U ∈ S} where S denotes the class of all M -small modules. They called N an
M -cosingular (non-M -cosingular) module if ZM (N) = 0 (ZM (N) = N). Clearly every
M -small module is M -cosingular. We should note that "cosingular and noncosingular"
means "R-cosingular and non-R-cosingular". In [10], the author defined a new submodule
of a module N as: ZδM

(N) =
∩

{Kerg | g : N → D, D ∈ δ − S}. Here δ-S shows the
class of all δ-M small modules. Following [10], N is called δ-M -cosingular (non-δ-M -
cosingular) provided that ZδM

(N) = 0 (ZδM
(N) = N). It is not hard to check that

ZδM
(N) ⊆ ZM (N). So, every M -cosingular R-module is δ-M -cosingular and every non-

δ-M -cosingular R-module is non-M -cosingular. It is obvious that last statements hold for
(non)cosingular and (non-)δ-cosingular modules.

Rad(M), Soc(M) and E(M) denote the radical, the socle and the injective envelope
of a module M , respectively, and J(R) denotes the Jacobson radical of a ring R. Let M
be a module. The notations N ≤ M and N ≤⊕ M will denote a submodule and a direct
summand of M , respectively.

Keskin and Tribak in [6], introduced and studied modules M such that every M -
cosingular module is projective in σ[M ]. They called such modules COSP . They investi-
gated some general properties of COSP -modules. They also characterized COSP -modules
when every injective module in σ[M ] is amply supplemented. Finally they obtained that
a COSP -module is Artinian if and only if every submodule has finite hollow dimension.

In a recent work [5], the authors defined and studied rings for which the cosingular
submodule of every module is a direct summand. They called this property as (P ). It is
shown that a commutative perfect ring R has (P ) if and only if R is semisimple.

Inspiring by [5] and [6], in this paper we study modules M such that every (simple)
cosingular R-module is M -projective. We investigate rings for which every (simple) cosin-
gular R-module is projective. We realize that these concepts are closely related to known
rings, namely, Generalized V -rings (GV -rings for short).

In Section 2, we investigate modules M such that every (simple) cosingular R-module is
M -projective. We investigate some of their properties. It is shown that the class of these
modules is closed under submodules, factor modules and finite direct sums. It is proved
that any locally injective module M such that every cosingular module is M -projective
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is noncosingular (Theorem 2.7). We also give an equivalent condition for a module M
having the property that every simple cosingular module is M -projective (Theorem 2.9).

Sections 3 is devoted to study rings for which every (simple) cosingular module is
projective. We show that for a ring R, every simple cosingular R-module is projective if
and only if every simple δ-cosingular R-module is projective if and only if R is a GV -ring
(Theorem 3.1). It is proved that for a ring R with all δ-cosingular R-modules semisimple,
the following are equivalent:

(1) Every δ-cosingular R-module is projective;
(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective;
(5) For every R-module M , Zδ(M) is a direct summand of M ;
(6) R has (P ). (Theorem 3.19).

We also consider some assumptions for an Artinian serial ring with J(R)2 = 0 having
the property that every cosingular R-module is projective.

2. Modules M such that every cosingular module is M-projective
In this section we investigate modules M such that every (simple) cosingular module is

M -projective. It is clear that any simple module has the stated property. Hence by the
next proposition, every finitely generated semisimple module has the property, too.

Proposition 2.1. The following hold.
(1) Let M be a module and N ≤ M such that every cosingular R-module is M -

projective. Then every cosingular R-module is N -projective and M/N -projective.
(2) Let M =

⊕n
i=1 Mi be a module. Then every cosingular R-module is M -projective

if and only if every cosingular R-module is Mi-projective for each i ∈ {1, . . . , n}.

Proof. (1) is clear from [8, Proposition 4.31] and (2) holds by [8, Proposition 4.33]. �

Proposition 2.2. Let M be a module such that every cosingular module is M -projective.
Then the following hold.

(1) Every small submodule of M is semisimple.
(2) Rad(M) ⊆ Soc(M).
(3) Rad(M) ≪ M .

Proof. (1) Let N ≪ M and L be an arbitrary submodule of N . To prove that N is
semisimple, we observe that L is a direct summand of N . Since N/L ≪ M/L, it is
cosingular. Now, by assumption, N/L is M -projective and so N -projective by Proposition
2.1(1). It follows that L is a direct summand of N .
(2) It is known that Rad(M) is the sum of all small submodules of M . By (1), each small
submodule is semisimple. So Rad(M) is a semisimple submodule of M , which must be
contained in Soc(M).
(3) Suppose that Rad(M) is not small in M . So, there exists a proper submodule L
of M such that Rad(M) + L = M . Now by (2), we have Soc(M) + L = M . Since
M/L ∼= Soc(M)/(Soc(M) ∩ L) is semisimple, M/L has at least one maximal submodule
N/L. Therefore, N is a maximal submodule of M containing L. It follows that, M =
Rad(M) + L ⊆ N , a contradiction. �

Corollary 2.3. If every cosingular module is R-projective, then J(R) is nilpotent with
nilpotency index 2.

Proof. It is known that Soc(RR)J(R) = 0. By Proposition 2.2, J(R) ⊆ Soc(RR). This
implies that J(R)2 = 0. �
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The following example introduces some modules M such that not every cosingular
module is M -projective.
Example 2.4. By Proposition 2.2(3), every radical module M can not have the property
that every cosingular module is M -projective. In particular, Q, Q/Z and Zp∞ as Z-modules
do not have the stated property.

The following is one of the useful results to characterize cosingular modules which are
M -projective for a module M .
Lemma 2.5. Let M be a module such that every cosingular module is M -projective. Then
Z(M) is a direct summand of M . In this case Z(M) is the largest noncosingular submodule
of M .
Proof. Since M/Z(M) is a cosingular module, it is M -projective. This implies that
M has a decomposition M = Z(M) ⊕ L for some submodule L of M . Note that L is
cosingular. �
Proposition 2.6. Let M be a module such that every cosingular module is M -projective.
If M is amply supplemented and cosingular, then the following hold.

(1) Every homomorphic image of M is cosingular.
(2) M is semisimple.

Proof. (1) Let M be amply supplemented cosingular and N ≤ M . Consider the nat-
ural epimorphism π : M −→ M/N . By [13, Theorem 3.5], π(Z2(M)) = Z

2(M/N). By
Proposition 2.1(1), every cosingular module is M/N -projective. Now, by Lemma 2.5,
Z

2(M/N) = Z(M/N) and Z
2(M) = Z(M) = 0. So, Z(M/N) = 0. It follows that M/N

is cosingular.
(2) Let N be a submodule of M . Then M/N is cosingular by (1). Also, the hypothesis
implies that M/N is M -projective. Hence N is a direct summand of M . Therefore M is
semisimple. �

Recall from [4] that, a module M is locally injective if, for every submodule N of M ,
which is not essential in M , there exists a nonzero injective submodule K of M with
N ∩ K = 0. Every direct summand of a locally injective module is locally injective.
Note that for a module M with every nonzero homomorphic image of M non-small, all
homomorphisms from M to a small module is zero. In this case Z(M) = M .
Theorem 2.7. Let M be a module such that every cosingular module is M -projective. If
M is locally injective, then M is noncosingular.
Proof. It is enough to show that every nonzero homomorphic image of M is non-small.
Let X < M and M

X be a small module. By assumption M
X is M -projective. So X is a

direct summand of M . Let M = X ⊕X ′ where X ′ ≤ M . It follows that X is non-essential.
Since M is locally injective, there exists a nonzero injective direct summand Q of M such
that Q ∩ X = 0. Let M = Q ⊕ Q′ for some Q′ ≤ M . Since M

X = Q+X
X + Q′+X

X and
Q+X

X
∼= Q

Q∩X
∼= Q

0
∼= Q, we get that Q+X

X is a direct summand of M/X. On the other
hand, Q+X

X is small as a submodule of the small module M/X. Therefore Q + X = X,
so Q ⊆ X. It implies that Q = 0. This is a contradiction. Thus for every X < M , the
module M/X can not be small. It follows that M is noncosingular. �

In the sequel we give some conditions under which the converse statement of Proposition
2.7 holds.
Theorem 2.8. Let M be a noncosingular weakly supplemented R-module such that Rad(M)
is semisimple. If the class of cosingular R-modules is closed under taking homomorphic
images (e.g. R is right perfect with (P ) (see [5, Lemma 3.1])), then every cosingular
R-module is M -projective.



Rings for which every cosingular module is projective 977

Proof. Let L be a cosingular R-module. We show that L is small M -projective. Let N be
a small submodule of M . Let f : L −→ M/N be an R-homomorphism and π : M −→ M/N
be the natural epimorphism. Consider the following diagram

L

f
��

M
π // M

N
// 0.

Suppose Imf = K/N for some K ≤ M . Since L is cosingular, by assumption K/N is
cosingular. We show that K/N ≪ M/N . Let K/N + T/N = M/N . Since K/N

K/N∩T/N
∼=

M/N
T/N

∼= M
T , M is noncosingular and K/N is cosingular, we have T = M . So K/N ≪ M/N .

Since N ≪ M , we conclude that K ≪ M . By assumption K is semisimple. Hence
K = N ⊕ N ′ and so there exists a natural isomorphism h : K/N −→ N ′. Consider the
sequence L

f→ K/N
h→ N ′ j→ M . Then πojohof = f .

L

f
��

johof

��~~
~~
~~
~~

M
π // M

N
// 0.

So the diagram commutes. It follows that L is small M -projective. Since M is weakly
supplemented, L is M -projective by [2, 17.14]. The proof is completed. �

The following theorem gives an equivalent condition for a module M such that every
simple cosingular module is M -projective.

Theorem 2.9. Let M be a module. Then every simple cosingular module is M -projective
if and only if for every simple cosingular submodule T/N of M/N , N is a direct summand
of T .

Proof. (=⇒) Clear.
(⇐=) Let K be a simple cosingular module. We show that K is M -projective. Let N be
a submodule of M . Let g : K −→ M/N be an R-homomorphism and π : M −→ M/N be
the natural epimorphism. Consider the following diagram.

K

g
��

M
π // M

N
// 0.

Suppose Img = T/N for some T ≤ M . Since K is simple cosingular, by assumption
N ≤⊕ T . Set T = N ⊕ L for some L ≤ T . Consider the sequence K

g→ T/N
h→ L

j→ M ,
where h is the isomorphism between T/N and L induced by the decomposition of T . Let
h = johog. It is easy to see that πoh = g. Now, we have the following diagram.

K

g
��

h

��~~
~~
~~
~~

M
π // M

N
// 0.

So the diagram commutes. It follows that K is M -projective. �

Corollary 2.10. Let M be a module. If for every submodule T of M , Soc(T )+Z(T ) = T ,
then every simple cosingular module is M -projective.
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Proof. Let N ≤ T ≤ M with T/N simple cosingular. It follows that Z(T ) ⊆ N . So, by
assumption, Soc(T ) + N = T . Now, T

N
∼= Soc(T )

Soc(N) . Hence, Soc(N) ⊕ L = Soc(T ) for some
simple submodule L of T . It follows that L + N = T . Consider the submodule L ∩ N of
L. Since L is simple, L ∩ N = 0 or L ∩ N = L. If N ∩ L = L, then L ⊆ N . It follows that
N = T , a contradiction. So L⊕N = T . Therefore, by Theorem 2.9, the result follows. �

Corollary 2.11. Let R be a ring with every homomorphic image of R cosingular. Then
the following are equivalent.

(1) Every simple module is projective;
(2) Every simple module is R-projective;
(3) R is semisimple.

Proof. (1) =⇒ (2) and (3) =⇒ (1) are obvious.
(2) =⇒ (3) Let I be a maximal right ideal of R. Then R/I is simple. By hypothesis, R/I
is cosingular. Note that if N is a simple module, then it is also cosingular. By Theorem
2.9, I is a direct summand of R. Thus R is semisimple. �

3. Rings for which every (simple) cosingular module is projective
Recall from [7] that a ring R is a right V -ring provided every simple R-module is

injective, equivalently R is a right V -ring if and only if for every R-module M , Rad(M) = 0
(see [7, Theorem 2.1]). Since the only cosingular module over a right V -ring is zero, every
cosingular module over a right V -ring is projective. Also R is a right GV -ring if every
simple R-module is either projective or injective. It is known that R is a right GV -ring
if and only if every simple singular R-module is injective. For more information about
V -rings and GV -rings we refer the readers to [7] and [11].

In this section we study rings R for which every (simple) cosingular R-module is projec-
tive. We prove that R is a right GV -ring if and only if every simple cosingular R-module
is projective. We also show that over a right perfect ring R, every cosingular R-module is
projective if and only if R is right GV if and only if every simple δ-cosingular R-module
is projective.

We start this section by investigating rings over which every simple cosingular module
is projective.

Theorem 3.1. Let R be a ring. Then the following statements are equivalent.
(1) Every simple δ-cosingular R-module is projective;
(2) Every simple cosingular R-module is projective;
(3) R is a right GV -ring.

Proof. (1) =⇒ (2) It is obvious since every cosingular R-module is δ-cosingular.
(2) =⇒ (3) Let M be a simple singular R-module. Then M is either small or injective. If M
is small, then M is projective by assumption (2). This yields that M = 0, a contradiction.
So M must be injective. It follows that R is right GV .
(3) =⇒ (1) Let M be a simple δ-cosingular R-module. Then M is either singular or
projective. If M is singular, then by assumption (3) and [10, Theorem 4.1], M is non-δ-
cosingular. Hence M = 0. Now, M must be projective. �

Corollary 3.2. If R is a semisimple ring, then it is right GV . The converse holds if every
simple module is δ-cosingular.

Proof. The first assertion is obvious. Let R be a right GV -ring. Assume that every
simple module is δ-cosingular. Let I be a maximal right ideal of R. Then R/I is simple,
and so it is δ-cosingular. By Theorem 3.1, R/I is projective. Hence I is a direct summand
of R. Thus R is semisimple. �
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The following result is an immediate consequence of [9, Corollaries 1.10 and 2.9], [10,
Theorem 4.1] and Theorem 3.1.

Corollary 3.3. The following statements are equivalent for a ring R.
(1) R is a right GV -ring;
(2) Every (δ-)small R-module is projective;
(3) Every singular R-module is non(-δ-)cosingular;
(4) Every simple (δ-)cosingular R-module is projective.

We next show that if every cosingular R-module is projective, then for a cosingular
module M , being lifting, discrete, H-supplemented, ⊕-supplemented, amply supplemented
and supplemented are all equivalent.

Proposition 3.4. Let R be a ring such that every cosingular R-module is projective. Then
the following statements are equivalent.

(1) Every cosingular R-module is discrete;
(2) Every cosingular R-module is lifting;
(3) Every cosingular R-module is H-supplemented;
(4) Every cosingular R-module is ⊕-supplemented;
(5) Every cosingular R-module is amply supplemented;
(6) Every cosingular R-module is supplemented.

Proof. The result follows from the fact that for a projective module M , M is lifting if
and only if M is H-supplemented if and only if M is ⊕-supplemented if and only if M is
amply supplemented if and only if M is supplemented (see [8, Proposition 4.39]). �

In [13, Theorem 3.5 and Corollary 3.9], it is shown that if every M -cosingular module
in σ[M ] is projective in σ[M ] and every injective module in σ[M ] is amply supplemented,
then the class of M -cosingular modules is closed under homomorphic images.

Proposition 3.5. Let R be a right GV -ring such that every cosingular R-module is am-
ply supplemented. Then the class of cosingular R-modules is closed under homomorphic
images. In particular over a right perfect right GV -ring, every homomorphic image of a
cosingular module is cosingular.

Proof. Let 0 ̸= M be a cosingular R-module, 0 ̸= x ∈ M and K be a maximal sub-
module of xR. Then xR/K is simple. If xR/K is singular, then it is noncosingular by
Corollary 3.3(3). Consider the natural epimorphism π : xR → xR/K. By assumption,
xR is amply supplemented. Then, by [13, Theorem 3.5], 0 = π(Z2(xR)) = Z

2(xR/K) =
Z(xR/K) = xR/K, a contradiction. Hence the simple module xR/K must be projective.
Thus K ≤⊕ xR, and so xR is semisimple. Therefore M is semisimple. It follows that
every homomorphic image of M is isomorphic to a submodule of M . This completes the
proof. �

Let R be a ring. It is known by Proposition 3.8 that every cosingular R-module is
projective if and only if every cosingular R-module is projective relative to every injective
R-module. If a ring R has a radical module, then R can not have the property that every
cosingular module is projective. Since Q is radical as a Z-module, Z can not have the
property (since Z is not a field (see Proposition 3.8)). It is known by Theorem 3.1 that if
every cosingular R-module is projective, then R is a right GV -ring.

Proposition 3.6. Let f : R −→ S be a ring epimorphism. If every cosingular R-module
is projective, then every cosingular S-module is projective.

Proof. Let M be a cosingular S-module. Since ZR(M) ⊆ ZS(M), then M is a cosingular
R-module. So by assumption M is a projective R-module. It is not hard to check that M
is a projective S-module, as required. �
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The following is an analogue of [5, Proposition 2.8], for the rings for which every cosin-
gular module is projective.

Proposition 3.7. Let R = R1 ⊕ R2 be a ring decomposition. Then every cosingular R-
module is projective if and only if every cosingular Ri-module Mi is projective for i = 1, 2.

Proof. The necessity follows from Proposition 3.6. For the sufficiency, let R1 and R2
have the stated property and M be a cosingular R-module. By [5, Lemma 2.7(1)],
M = MR1 ⊕ MR2, where MRi can be regarded as an Ri-module for i = 1, 2. We
also have by [5, Lemma 2.7(3b)], ZRi(MRi) = ZR(MRi) for i = 1, 2. It follows that
MR1 is a cosingular R1-module and MR2 is a cosingular R2-module. By assumption,
MRi is a projective Ri-module for i = 1, 2. Note that MRi is also an R-module with the
multiplication mi(r1 + r2) = miri, where rj ∈ Rj (j = 1, 2) and mi ∈ MRi (i = 1, 2).
Now, we prove that MRi is a projective R-module for i = 1, 2. Consider the following
diagram of R-modules where K ≤ N and π is the canonical R-epimorphism from N onto
N/K and g is any R-homomorphism.

MR1

g
��

h1

uukkkk
kkkk

kkkk
kkkk

k

N = NR1 ⊕ NR2
π // N

K = NR1
KR1

⊕ NR2
KR2

// 0

The R-module N is an R1-module by nr1 = n1r1 for n = n1 + n2 ∈ N and r = r1 + r2 ∈
R = R1 ⊕ R2. Then π(n) = π(n1) + π(n2) = π1(n1) + π2(n2), it follows that π = π1 ⊕ π2
with π1 is an epimorphism from NR1 onto NR1/KR1 and π2 is an epimorphism from NR2
onto NR2/KR2. Since g is also an R1-homomorphism, we have g(MR1) ⊆ NR1/KR1.
By hypothesis, there exists an R1-homomorphism h1 : MR1 → NR1 such that g = π1h1 =
πh1. Hence MR1 is a projective R-module. A similar proof reveals also that MR2 is a
projective R-module. Therefore M = MR1 ⊕ MR2 is a projective R-module. �
Proposition 3.8. Let R be a Dedekind domain. Then the following are equivalent.

(1) Every cosingular R-module is projective;
(2) R is a field;
(3) Every cosingular R-module is projective relative to every injective R-module.

Proof. (1) ⇐⇒ (2) Similar to the proof of [5, Proposition 2.6].
(1) =⇒ (3) Obvious.
(3) =⇒ (1) Let M be a cosingular module. Consider the following diagram for a module
N and K ≤ N :

M

f
��

N
π //

ι2
��

N/K //

ι1
��

0

E(N) π1 // E(N)/K // 0.

Since M is projective relative to E(N), there exists a homomorphism g : M → E(N) such
that π1g = ι1f . For any m ∈ M , we have g(m) + K = π1g(m) = ι1f(m) = f(m) ∈ N/K.
This implies that g(m) ∈ N . Hence g(M) ⊆ N . Therefore M is N -projective. �
Proposition 3.9. Let R be a ring and consider the following conditions.

(1) Every cosingular R-module is projective relative to every free R-module;
(2) Every cosingular R-module is projective relative to every projective R-module;
(3) Every cosingular R-module is projective relative to every flat R-module;
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(4) Every cosingular R-module is R-projective.
Then (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4). Also, all of them are equivalent for finitely generated
modules.
Proof. (3) =⇒ (2) =⇒ (1) =⇒ (4) Obvious.
(1) =⇒ (3) Let M be a cosingular module and N a flat module. Then N is a homomorphic
image of a free module F , say h : F → N is an epimorphism. For any submodule K of N ,
consider the following diagram:

M

f
��

g

vvnnn
nnn

nnn
nnn

nnn
n

F
h // N

π // N/K // 0.

By (1), M is F -projective, and so there exists a homomorphism g : M → F such that
πhg = f . Thus M is N -projective due to the homomorphism hg : M → N .
(4) =⇒ (1) Let M be a finitely generated cosingular module and F be a free module. We
may assume that F =

⊕
i∈I Ri where Ri = R for all i ∈ I. Since M is R-projective, by

[8, Proposition 4.35], M is also F -projective. �
The following is a consequence of [5, Theorem 3.3].

Proposition 3.10. Let R be a commutative perfect ring. Then the following are equiva-
lent.

(1) Every cosingular R-module is projective;
(2) R is GV ;
(3) R is semisimple.

As a consequence, every cosingular Zn-module is projective if and only if Zn is GV if
and only if n is square-free.

The following theorem, which presents an equivalent condition for a ring R such that
every cosingular R-module is projective, is taken from [13, Corollary 3.9]. We bring it here
for the sake of completeness (Note that corresponded results in [13] are in σ[M ] and we
bring it here in the category of right R-modules).
Theorem 3.11. Let R be a ring. If every R-module is a direct sum of a noncosingu-
lar module and a semisimple module, then every cosingular R-module is projective. The
converse holds, if every cosingular R-module is amply supplemented.
Proof. (=⇒) Let M be a cosingular R-module. By hypothesis M = U ⊕ V where U
is noncosingular and V is semisimple. Being M cosingular implies U = 0. So M is
semisimple. Let f : N → M be an epimorphism where N is a projective R-module.
Then, by hypothesis N = K ⊕ T where K is noncosingular and T is semisimple. Then,
f(K) = f(Z(K)) = f(Z(N)) ⊆ Z(M) = 0. It follows that K ⊆ Kerf . Hence, Kerf =
K ⊕ (T ∩ Kerf). Since T is semisimple, T = S ⊕ (T ∩ Kerf) for a submodule S of T .
Therefore, N = K ⊕(T ∩Kerf)⊕S = Kerf ⊕S. So Kerf ≤⊕ N . Hence, M is projective.
(⇐=) Let M be an R-module. Since M/Z(M) is cosingular, by hypothesis M/Z(M) is
projective. Then M = Z(M) ⊕ L, where L is cosingular and Z(M) is noncosingular. We
show that L is semisimple. To prove this, we show that every submodule H of L, is a
direct summand of L. Consider natural epimorphism π : L → L/H. Since L is amply
supplemented, by [13, Theorem 3.5], π(Z2(L)) = Z

2(L/H). Hence Z
2(L/H) = 0 (because

L is cosingular). By [13, Proposition 2.1(3)], (L/H)/(Z(L/H)) is cosingular. Now by
assumption and [8, Lemma 4.30], Z(L/H) is a direct summand of L/H. This yields that
Z(L/H) = Z

2(L/H) = 0. It follows that L/H is cosingular. Therefore, H ≤⊕ L by
the fact that every cosingular R-module is projective and [8, Lemma 4.30]. Hence L is
semisimple. �



982 Y. Talebi et al.

Recall that a ring R is semilocal in case R/J(R) is semisimple. Now let R be a semilocal
ring such that J(R) ⊆ Soc(RR). By [14, Corollary 2.7(1)], Soc(RR) = Z(RR). Then the
ring R

Soc(RR) = R
Z(RR) is semisimple. If M is a cosingular R-module, it is not hard to check

that M is a cosingular R
Z(RR) -module. So M is semisimple as both an R and R

Z(RR) -module.

Corollary 3.12. Let R be a ring such that every cosingular R-module is semisimple (for
example, a semilocal ring R with J(R) ⊆ Soc(RR)). Then R has (P ) if and only if every
cosingular R-module is projective.

Proof. (=⇒) Let M be an R-module. Then M = Z(M) ⊕ K for a submodule K of M by
the property (P ). It is clear that Z(M) is noncosingular and K is cosingular and hence
semisimple by assumption. Therefore, Theorem 3.11 yields us the result.
(⇐=) Let M be an R-module. Since M/Z(M) is cosingular, by hypothesis, M/Z(M) is
projective. Hence Z(M) is a direct summand of M . �
Lemma 3.13. If R is a right GV -ring, then every injective R-module is noncosingular.

Proof. Let E be an injective R-module and f : E → U be an R-module homomorphism
where U is a small R-module. Then E/Kerf is a small R-module and hence by Corollary
3.3, E/Kerf is projective. It follows that E = Kerf ⊕ L where L is small injective.
Clearly L must be zero. So E is noncosingular. �
Proposition 3.14. Let R be an Artinian serial ring with J(R)2 = 0. If every injective
R-module is noncosingular, then every cosingular R-module is projective.

Proof. By assumption, every R-module is a direct sum of an injective module and a
semisimple module. Since every injective R-module is noncosingular, the result follows
from Theorem 3.11. �

The following example shows that if R is a ring such that every cosingular R-module is
projective, then R need not be a V -ring.

Example 3.15. Let F be a field and R =
[
F F
0 F

]
the ring of 2 × 2 upper triangular

matrices over F . By [3, Example 13.6], every singular (left and right) R-module is injective.

Hence R is a left and right GV -ring. Since J(R) =
[
0 F
0 0

]
, R can not be a (left and right)

V -ring. Also R is (left and right) hereditary Artinian serial from [3, Example 13.6]. It
is easy to check that J(R)2 = 0. Therefore, every cosingular R-module is projective by
Proposition 3.14.

Proposition 3.16. Let R be a right perfect ring such that every noncosingular R-module
is injective. If every cosingular R-module is projective, then R is an Artinian serial ring
with J(R)2 = 0.

Proof. Let M be an R-module. By hypothesis M/Z(M) is projective. There exists a
submodule C of M such that M = Z(M) ⊕ C, where Z(M) is noncosingular and C is
cosingular. Since every cosingular R-module is projective and R is right perfect, every
cosingular R-module is semisimple (see Proposition 3.5). It follows that M is a direct sum
of an injective and a semisimple module. Hence, by [3, 13.5], R is an Artinian serial ring
with J(R)2 = 0. �

Abyzov [1] defined a module to be weakly regular if, whenever N is a submodule of M
which is not contained in Rad(M), then N contains a nonzero direct summand of M .

Corollary 3.17. Let R be a ring such that an R-module M is injective if and only if it
is noncosingular. If R is right perfect, then the following statements are equivalent.
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(1) Every cosingular R-module is projective;
(2) Every R-module is weakly regular;
(3) R is an Artinian serial ring with J(R)2 = 0.

Proof. It follows from Propositions 3.14, 3.16 and [1, Theorem 4]. �
Theorem 3.18. Let R be a right perfect ring or a ring such that every δ-cosingular R-
module is semisimple. Then the following statements are equivalent.

(1) Every δ-cosingular R-module is projective;
(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective.

Proof. We prove the theorem in perfect case. The latter case is similar.
(1) =⇒ (2) It is obvious.
(2) ⇐⇒ (3) Follows from Theorem 3.1.
(3) =⇒ (4) Let M be a cosingular R-module. Since R is a right GV -ring, it follows from
Proposition 3.5 that M is semisimple. Set M =

⊕
i∈I Mi where each Mi is simple. Since R

is right GV , each Mi is projective (because each of them is simple cosingular). Therefore,
M is projective.
(4) =⇒ (3) By Theorem 3.1.
(3) =⇒ (1) Let M be a δ-cosingular R-module. By a similar argument to Proposition
3.5, it can be shown that M is semisimple. We set M =

⊕
i∈I Mi a direct sum of simple

δ-cosingular R-modules. By (3), every Mi where i ∈ I is projective. Now the result
follows. �
Theorem 3.19. Let R be a ring such that every δ-cosingular R-module is semisimple.
Then the following assertions are equivalent.

(1) Every δ-cosingular R-module is projective;
(2) Every simple δ-cosingular R-module is projective;
(3) R is a right GV -ring;
(4) Every cosingular R-module is projective;
(5) For every R-module M , Zδ(M) is a direct summand of M ;
(6) R has (P ).

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) Follows from Theorem 3.18.
(1) =⇒ (5) Let M be an R-module. By [10, Proposition 2.5], M/Zδ(M) is δ-cosingular.
Now by (1), M/Zδ(M) is projective. It follows that Zδ(M) is a direct summand of M .
(5) =⇒ (1) Let M be a δ-cosingular R-module. By assumption, there exists a decomposi-
tion M =

⊕
i∈I Si, such that each Si is simple. By a similar argument to the first part of

the proof of Theorem 3.11, each Si is projective. Therefore, M is projective.
(4) ⇐⇒ (6) It follows from Corollary 3.12. �

Let M be an R-module. Recall from [12] that a module M has C∗ property provided
that every submodule N of M contains a direct summand K of M such that N/K is
cosingular.

A ring R is called right C∗ if every R-module has C∗ property. It is shown that R
is right C∗ if and only if every R-module is a direct sum of a cosingular module and an
injective module (see [12, Theorem 2.9]).

Remark 3.20. Let R be a ring. Consider the following statements.
(1) R is right C∗;
(2) R has (P ).

If R is right hereditary, then (1) =⇒ (2) and if every noncosingular R-module is injective,
then (2) =⇒ (1).
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Proof. (1) =⇒ (2) Let M be an R-module. By (1), there exists a decomposition M = C⊕
E, where C is cosingular and E is injective. Since R is right hereditary, E is noncosingular.
So Z(M) = Z(E) = E.
(2) =⇒ (1) Since R has (P ), we conclude that M = Z(M) ⊕ C. Then C is cosingular.
Clearly Z(M) is noncosingular and by assumption is injective. So the result follows from
[12, Theorem 2.9]. �
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Birkhäuser, 2004.
[5] D. Keskin, N. Orhan, P. Smith and R. Tribak, Some rings for which the cosingular

submodule of every module is a direct summand, Turk. J. Math. 38, 649-657, 2014.
[6] D. Keskin and R. Tribak, When M -cosingular modules are projective, Vietnam J.

Math. 33 (2), 214-221, 2005.
[7] G.O. Michler and O.E. Villamayor, On rings whose simple modules are injective, J.

Algebra 25, 185-201, 1973.
[8] S.H. Mohamed and B.J.Müller, Continuous and Discrete Modules, London Math. Soc.

Lecture Notes Series 147, Cambridge, University Press, 1990.
[9] A.C. Özcan, On GCO-modules and M -small modules, Commun. Fac. Sci. Univ. Ank.

Ser. A1 Math. Stat. 51 (2), 25-36, 2002.
[10] A.C. Özcan, The torsion theory cogenerated by δ-M -small modules and GCO-

modules, Comm. Algebra 35 (2), 623-633, 2007.
[11] V.S. Ramamurthy and K.M. Rangaswamy, Generalized V -rings, Math. Scand. 31,

69-77, 1972.
[12] Y. Talebi and M.J. Nematollahi, Modules with C∗-condition, Taiwanese J. Math. 13

(5), 1451-1456, 2009.
[13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M -small modules, Comm.

Algebra 30 (3), 1449-1460, 2002.
[14] R. Tribak and D. Keskin, On ZM -semiperfect modules, East-West J. Math. 8 (2),

193-203, 2006.
[15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading,

1991.


