
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (4) (2019), 1110 – 1120

DOI : 10.15672/HJMS.2018.571

Research Article

Isometry classes of planes in (R3, d∞)
Mehmet Kılıç

Eskişehir, Turkey

Abstract
We determine geodesics in Rn

∞ (i.e. (Rn, d∞)) and by using this, classify planes up to
isometry in R3

∞.
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1. Introduction
In metric spaces, it is possible to define length of paths. Let (X, d) be a metric space

and α : [0, 1] → X be a path. Then, the length of α is defined as

sup
P

{
n∑

i=1
d(α(ti−1), α(ti))

}
over all partitions P = {t0 = 0, t1, . . . , tn = 1} of [0, 1] and it is denoted by L(α). If
α satisfies L(α|[0,t]) = t · L(α) for all t ∈ (0, 1), then α is called a natural path. It
is clear that every path has a natural reparametrization. If the path α is natural and
satisfies L(α) = d(x, y), where α(0) = x, α(1) = y, then α is called a geodesic. For a
metric space and any two points in it, there may not exist any geodesic between these
points. For example, S1 = {(x, y) ∈ R2 | x2 + y2 = 1} with induced standard met-
ric and for a = (1, 0) and b = (−1, 0), there is no path connecting these points whose
length is less than π, but the distance between a and b is equal to 2 according to the
standard metric. If there is at least one geodesic between any two points in a met-
ric space, this metric space is called “geodesic space” [2, 7], or “strictly intrinsic space”
according to another terminology [3]. So, S1 is not a geodesic space with the induced stan-
dard metric, but it becomes a geodesic space with the “arc length metric”. (Rn, dp) with

dp((x1, x2, . . . , xn), (y1, y2 . . . , yn)) = p
√

|x1 − y1|p + |x2 − y2|p + · · · + |xn − yn|p
for 1 ≤ p < ∞ and (Rn, d∞) with

d∞((x1, x2, . . . , xn), (y1, y2 . . . , yn)) = nmax
i=1

{|xi − yi|}

are also geodesic spaces. The path t 7→ (1−t)x+ty is a geodesic between x = (x1, x2, . . . , xn)
and y = (y1, y2 . . . , yn) in (Rn, dp) for 1 ≤ p ≤ ∞.

Let (X, dX) and (Y, dY ) be two metric spaces and f be a function from X onto Y . f
is called an isometry if dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X. If there is an isometry
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between two metric spaces, then they are called isometric spaces. It is clear that notion of
isometry deals with not only set on the space but also metric on the space. For example, S1

with the induced standard metric from R2 and the same set with the “arc length metric”
are not isometric.

Aronszajn-Panitchpakdi [1] called a metric space (X, d) hyperconvex, if for any collec-
tion (xi)i∈I of points in X and any collection (ri)i∈I of nonnegative real numbers satisfying
d(xi, xj) ≤ ri + rj for all i, j ∈ I, the intersection of closed balls around xi with radius
ri is nonempty:

⋂
i∈I B̄(xi, ri) 6= ∅. (B̄(xi, ri) = {x ∈ X| d(xi, x) ≤ ri}). In our previous

work [4], we have noted that the plane
L = {(x, y, z) | x + y + z = 0} ⊆ R3

∞

with the induced metric is not hyperconvex; therefore, it is not isometric to the plane
R2

∞ because R2
∞ is hyperconvex. But it is clear that the xy−plane in R3

∞ is isometric to
the plane R2

∞; hence, all planes in R3
∞ are not isometric to each other. Therefore, the

following question arises:
Question 1.1. What are the isometry classes of planes in R3

∞?
In this paper, we have answered this question without using the notion of hypercon-

vexity. In order to do that, first, we have determined geodesics in Rn
∞ and then we have

achieved our main aim.

2. Geodesics in Rn
∞

Definition 2.1. For p = (p1, p2, . . . , pn) ∈ Rn
∞, we define

Sε
i (p) = {q = (q1, q2, . . . , qn) ∈ Rn| d∞(p, q) = ε(qi − pi)}

for i = 1, 2, . . . , n and ε = ± and call them the sectors at the point p (see Fig. 1 and
Fig. 2).

x

y

b

p S+
1 (p)

S+
2 (p)

S−
1 (p)

S−
2 (p)

Figure 1. Sectors of a point p in R2
∞.

Theorem 2.2. Let p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈ Rn be two points, q ∈ Sε
i (p)

and α : [0, 1] → Rn be a natural path such that α(0) = p and α(1) = q. Then α is a
geodesic in Rn

∞ if and only if α(t′) ∈ Sε
i (α(t)) for all t, t′ ∈ [0, 1] such that t < t′.

Proof. (⇒) Let α = (α1, α2, . . . , αn) be a geodesic and assume that α(t′) /∈ Sε
i (α(t)) for

some t < t′. Then, we have d∞(α(t), α(t′)) > ε(αi(t′) − αi(t)). So if we take the partition
0 < t < t′ < 1 of [0, 1], we have

d∞(α(0), α(t)) + d∞(α(t), α(t′)) + d∞(α(t′), α(1)) >

ε(αi(t) − αi(0)) + ε(αi(t′) − αi(t)) + ε(αi(1) − αi(t′)) = ε(αi(1) − αi(0))
= ε(qi − pi)
= d∞(p, q).
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This leads to the contradiction that L(α) > d∞(p, q).
(⇐) Let 0 = t0 < t1 < · · · < tn = 1 be an arbitrary partition of [0, 1]. Since α(tj) ∈

Sε
i (α(tj−1)) for all j = 1, 2, . . . , n, we have d∞(α(tj), α(tj−1)) = ε(αi(tj) − αi(tj−1)); so,

n∑
j=1

d∞(α(tj), α(tj−1)) =
n∑

j=1
ε(αi(tj) − αi(tj−1))

= ε(αi(1) − αi(0))
= ε(qi − pi)
= d∞(p, q).

This implies that L(α) = d∞(p, q) and that α is a geodesic. �

b

O

S+
3 (O)

x
y

z

Figure 2. The sector S+
3 (O) of the origin in R3

∞.

Theorem 2.2 can be restated as follows: Let ε and i be such that q ∈ Sε
i (p), then the

natural path α between p and q is a geodesic if and only if when the sectors Sε
i (.) travel on

the image of α, the rest of the path is contained in the sector at every point (see Figure 3).

x

y

bp

b q
x

y

bp

b q

Figure 3. Two paths between p and q in R2
∞ one of which (on the left) is a

geodesic but the other is not.

Note that for p and q in R2
∞, if the points are in a diagonal position (i.e. there is t ∈ R

such that p = q + t · (1, 1) or p = q + t · (1, −1)), then there is only one geodesic between p
and q. Of course, this is a line segment. If the points are not in a diagonal position, then
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there are infinitely many geodesics between these points. Likewise, for p and q in R3
∞, if

the points are in a cubic diagonal position (i.e. there is t ∈ R such that p = q + t · (1, 1, 1),
p = q + t · (1, 1, −1), p = q + t · (1, −1, 1) or p = q + t · (−1, 1, 1)), then there is only one
geodesic (which is, still, a line segment) between p and q. If the points are not in a cubic
diagonal position, then there are infinitely many geodesics between these points.

x

y

b

p S+
1 (p)

S−
2 (p) b

q

Figure 4. The points p and q are in a diagonal position.

Note that p and q are in a diagonal position in R2
∞ if and only if q ∈ Sε

1(p) ∩ Sδ
2(p)

where ε and δ are plus or minus. Likewise, p and q are in a cubic diagonal position in R3
∞

if and only if q ∈ Sε
1(p) ∩ Sδ

2(p) ∩ Sγ
3 (p) where ε, δ and γ are plus or minus (see Figure 4

and Figure 5).

b
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Figure 5. The points p and q are in a cubic diagonal position.

Now, let us consider a geodesic between two points in R3
∞ and one belongs to the

intersection of only two sectors of the other one. Theorem 2.2 implies that the image of
such a geodesic must belong to the plane where these sectors intersect. So every geodesic
between such points must be a planar curve (see Figure 6).

3. Planes in R3
∞

Let (X, d) be a metric space, x and y be any points in X. Then denote the number of
geodesics between x and y by τ(x, y). For example, let p and q be in R3

∞, then τ(p, q) = 1
if p and q are in a cubic diagonal position; otherwise τ(p, q) = ∞.

Let (X, d) be a metric space, x ∈ X and ε ∈ R+. We define
ν(x, ε) = |{y ∈ Sε(x) | τ(x, y) = 1}|
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Figure 6. A geodesic α between the points p and q.

where Sε(x) is the boundary of the disc of x with radius ε:
Sε(x) = {y ∈ X | d(x, y) = ε} .

One can easily prove the following two propositions:

Proposition 3.1. Let (X, dX), (Y, dY ) be two metric spaces and f : X → Y be an
isometry. Then we have

τ(x1, x2) = τ(f(x1), f(x2))
for all x1, x2 ∈ X.

Proposition 3.2. Let (X, dX), (Y, dY ) be two metric spaces and f : X → Y be an
isometry. Then we have

ν(x, ε) = ν(f(x), ε)
for all x ∈ X and ε ∈ R+.

x

y

b

p

b b

bb

Figure 7. Four points on the boundary of the ε−disc of the point p which are
connected to p by only one geodesic.

In the plane R2
∞, for any point p in it and for any positive number ε, ν(p, ε) = 4. These

four points are the vertices of the boundary of the ε−disc of the point p which is a square
(see Figure 7).

In R3
∞, for any point p in it and for any positive number ε, ν(p, ε) = 8. These eight

points are the vertices of the boundary of the ε−disc of the point p which is a cube (see
Figure 8).

Now we can ask a little more difficult question: Let p be an arbitrary element in the
plane {(x, y, z) ∈ R3

∞ | x + y + z = 0} ⊆ R3
∞ with induced maximum metric and ε be
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Figure 8. Eight points on the boundary of the ε−disc of the point p which are
connected to p by only one geodesic.

any positive real number, then what is the number ν(p, ε)? Maybe we must ask primarily
what the boundary of the ε−disc of p is. Of course, it is the intersection of the plane and
the ε−cube of p (i.e. the boundary of the ε−disc of p in R3

∞). It is surprisingly a regular
hexagon (see Figure 9).

b

b

b

b

b

b

b

b
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z

(1, 0, −1)

(0, 1, −1)

(−1, 1, 0)

(−1, 0, 1)

(0, −1, 1)

(1, −1, 0)

Figure 9. Disc of the origin with radius 1 in the plane x + y + z = 0 is a regular
hexagon.

Obviously, the number ν(p, ε) is independent from p and ε. So we can take p as the
origin and ε = 1. If q is a vertex on the hexagon, q belongs to two sectors of the origin;
therefore, any geodesic between the points origin and q must be in the plane of intersection
of these two sectors. (Note that all these intersection planes are x = ±y, x = ±z and
y = ±z). Since the intersection of the former plane and the latter plane x + y + z = 0 is
the line passing through the points q and the origin, there is only one geodesic between
these points in the plane x + y + z = 0 which is the line segment. If q is a point on the
hexagon and it is not the vertex, then q is contained by only one sector of the origin;
thus, there are infinitely many geodesics between the points q and the origin in the plane
x + y + z = 0. Hence, we have ν(p, ε) = 6 for all points p in the plane x + y + z = 0 and
positive real numbers ε. Then, Proposition 3.2 implies the following corollary:

Corollary 3.3. The plane x + y + z = 0 in the R3
∞ is not isometric to the plane R2

∞.
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Note that the plane ax + by + cz = d is isometric to the plane ax + by + cz = 0 (to see
this, consider the map (x, y, z) 7→ (x, y, z − d

c )); therefore, in order to classify all planes up
to isometry in R3

∞, it is enough to deal with the planes passing through the origin.

Theorem 3.4. The plane ax + by + cz = 0 in R3
∞ is not isometric to the plane R2

∞ if
and only if the number |a|, |b| and |c| are the edges of a non-degenerate triangle i.e. the
inequalities |a|, |b|, |c| 6= 0, |a| + |b| > |c|, |a| + |c| > |b| and |b| + |c| > |a| hold.

Proof. (⇒) Suppose that the numbers |a|, |b| and |c| are not the edges of a non-degenerate
triangle. If two of these numbers are equal to zero, then the plane is the xy−plane, the
xz−plane or the yz−plane and they are obviously isometric to the plane R2

∞. Now,
consider the case where one of these numbers is equal to zero. Without loss of generality,
we may assume that c = 0 and |a| ≥ |b|. Then, all points on the plane are in the form of
(x, −a

b x, z) and the mapping (x, −a
b x, z) 7→ (−a

b x, z) is an isometry from the plane to R2
∞

because
|x1 − x2| ≤

∣∣∣∣a

b

∣∣∣∣ · |x1 − x2|

for all x1, x2 ∈ R.
Now, let a 6= 0, b 6= 0, c 6= 0 and |a| + |b| ≤ |c|. Then, all points on the plane are in the

form of (x, y, −ax+by
c ) and the mapping (x, y, −ax+by

c ) 7→ (x, y) is an isometry from the
plane to R2

∞ because

∣∣∣∣ax1 + by1
c

− ax2 + by2
c

∣∣∣∣ =
∣∣∣∣a(x1 − x2) + b(y1 − y2)

c

∣∣∣∣
≤

∣∣∣∣a

c

∣∣∣∣ · |x1 − x2| +
∣∣∣∣b

c

∣∣∣∣ · |y1 − y2|

≤
(∣∣∣∣a

c

∣∣∣∣ +
∣∣∣∣b

c

∣∣∣∣) · max{ |x1 − x2|, |y1 − y2| }

≤ max{ |x1 − x2|, |y1 − y2| }
for all x1, x2, y1, y2 ∈ R.

(⇐) Let the number |a|, |b| and |c| be the edges of a non-degenerate triangle. Then,
each face of the 1−cube centered at the origin (i.e. S1(O) in R3

∞) intersects the plane
ax + by + cz = 0 along a line segment. The reason for this is the following: For example,
if we try to solve the equations ax + by + cz = 0 and x = 1 together, we can find infinitely
many solutions for y, z ∈ [−1, 1] when |b| + |c| > |a|. This implies that the intersection of
the plane and the square x = 1 and y, z ∈ [−1, 1] is a line segment. As a result, intersection
of the 1−cube centered at the origin and the plane ax + by + cz = 0 is a hexagon which
is the boundary of a 1−disc at the origin in the plane; hence, the number ν(O, 1) = 6 and
it is not isometric to the R2

∞. �
Remark 3.5. Notice that Theorem 3.4 actually can be obtained using L. Nachbin’s The-
orem (Theorem 3 in [6]) and A. Moezzi’s or M. Pavon’s Theorem (Corollary 1.114 in [5]
or Theorem 2.2 in [8]). But here we have given a more elementary proof for it.

Note that the intersection of a cube and any plane passing through the center of the
cube is a tetragon or a hexagon. Actually, Theorem 3.4 says that if the intersection is
a tetragon, then the plane is isometric to R2

∞ and if the intersection is a hexagon, then
the plane is not isometric to R2

∞. Hence, all planes which have the tetragonal intersection
with the 1−cube centered at the origin are isometric to each other. Is it true for the
others? That is, are all planes in R3

∞ which are not isometric to R2
∞ isometric to each

other? Note that every tetragon which is the intersection of a cube and a plane passing
through the center of the cube has equal side lengths (see Figure 10). But the situation
of the planes which have hexagonal intersection is different. For example, x + y + z = 0
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Figure 10. All edges of the tetragon above have the same length which is equal
to length of any edge of the cube in R3

∞.

and 2x + 2y + 3z = 0 have different hexagons (see Figure 11). So, one can easily see that
these two planes are not isometric. Actually, in order to determine the isometry classes of
planes in R3

∞, it is enough to determine the isometry classes of their hexagons (1−disc of
the origin).
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Figure 11. Two different planes (the left is x + y + z = 0 and the right is
2x + 2y + 3z = 0) and their two different hexagons.

Lemma 3.6. Let ax+by+cz = 0 be any plane in R3
∞. Then the planes ±ax±by±cz = 0,

±ax ± bz ± cy = 0, ±ay ± bx ± cz = 0, ±az ± bx ± cy = 0, ±ay ± bz ± cx = 0 and
±az ± by ± cx = 0 are isometric to the plane ax + by + cz = 0.

For the proof, we can consider the example of the map (x, y, z) 7→ (z, −y, x). This map
is obviously an isometry from the plane ax + by + cz = 0 to the plane az − by + cx = 0.
Indeed, all the mappings (x, y, z) 7→ (±w1, ±w2, ±w3), where {w1, w2, w3} = {x, y, z}, give
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us the needed isometries and more. This is because, for instance, (x, y, z) 7→ (−x, −y, −z)
is an isometry from ax+by+cz = 0 to itself. Note that there are exactly 48 such maps and
these are actually all the elements of isometry group of the cube. For example, (x, y, z) 7→
(x, −z, y) is π

2 counter clockwise rotation around the axis x and (x, y, z) 7→ (x, −y, z) is
the reflection with respect to the xz−plane. Denote this group by G and let X be the set
of all planes passing through the origin in R3

∞. Actually, X can be thought as the set of
all hexagons (on the 1−cube of R3

∞) passing through the origin. Then, G acts on the X:
Let the element (x, y, z) 7→ (w1, w2, w3) be denoted by (w1, w2, w3) and defined by

(w1, w2, w3) · (ax + by + cz = 0) := aw1 + bw2 + w3 = 0
where {w1, w2, w3} = {±x, ±y, ±z}.

Thus, Lemma 3.6 can be restated as follows: A plane passing through the origin (in R3
∞)

is isometric to every plane which belongs to its orbit (according to group action above).
Let ax + by + cz = 0 be an element of X that is not isometric to R2

∞. Consider
the case where |a|, |b| and |c| are distinct numbers. Then, the orbit of this plane has
exactly 24 elements because its stabilizer contains only two elements: The identity and
(−x, −y, −z). What are these 24 isometric planes or their hexagons? Note that a hexagon
can be determined by only one edge because the plane containing this edge and the origin
is unique and the hexagon is the intersection of this plane and the cube. An example of
the edges of 24 isometric planes is in Figure 12. It is easy to see that if only two of the
numbers |a|, |b| and |c| are equal, then the orbit of this plane has exactly 12 elements and
if |a| = |b| = |c|; that is, the plane is x + y + z = 0, then its orbit has exactly 4 elements.

b

O

Figure 12. The edges of the 24 isometric hexagons (of the 24 isometric planes).

Theorem 3.7. Let |a|, |b| and |c| be the edges of a non-degenerate triangle. Then the
plane ax + by + cz = 0 is isometric to only planes passing through the origin which belong
to its orbit.

Proof. Suppose that there exist two isometric planes such that one does not belong to
the orbit of other one. Let us consider two hexagons which are the intersections of two
planes and the cube, which is boundary of the disc of the origin with radius one. It is
easy to see that all such hexagons have at least two edges whose lengths are less than or
equal to one (according to the maximum metric). So we can assume that A = (1, a, 1) and
B1 = (b1, 1, 1) are two vertexes of the first hexagon and 0 ≤ a ≤ b1 < 1 because one of the
elements of orbit of this hexagon satisfies that. Note that |AB1| = max{1 − a, 1 − b1} =
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1 − a. Since these two hexagons are isometric, the second hexagon has an edge whose
length is equal to 1 − a. We can assume it is |AB2| with B2 = (b2, 1, 1) and a ≤ b2 < 1.
Obviously b1 6= b2, so let us assume b1 < b2. The equations of these planes are

(a − 1)x + (b1 − 1)y + (1 − ab1)z = 0,

(a − 1)x + (b2 − 1)y + (1 − ab2)z = 0.

Let us D1 = (1, −1, d1) and C1 = (−1, 1, c1) be vertices of the first hexagon and D2 =
(1, −1, d2) and C2 = (−1, 1, c2) are vertices of the second one (see Figure 13). Since those
two hexagons are isometric, either the equations |AD1| = |AD2| and |B1C1| = |B2C2| or
the equations |AD1| = |B2C2| and |AD2| = |B1C1| must hold.

b

b
b

bb

b

b

b

O

A

D1

D2

B1
B2 C1

C2

Figure 13. The first plane is the plane passing through A, B1 and the origin O
and the second one is the plane passing through A, B2 and O.

By the equation of the first plane, we obtain

d1 = b1 − a

1 − ab1
≥ 0 ⇒ a + 1 ≥ 1 − d1 ⇒ |AD1| = a + 1.

Similarly, we can get |AD2| = a + 1. So, the equation |B1C1| = |B2C2| must hold. By
the equations of planes, we obtain

c1 = − b1 − a

1 − ab1
, c2 = − b2 − a

1 − ab2
.

Since a ≤ b1 < b2, we get c2 < c1 ≤ 0 and this implies

|B1C1| = max{b1 + 1, 1 − c1} < max{b2 + 1, 1 − c2} = |B2C2|
and this contradiction completes the proof. �

Notice that Theorem 3.7 says that the number of the isometry classes of planes passing
through the origin in R3

∞ can be identified by the number of the similarity classes of
triangles in the Euclidean plane. If the numbers |a|, |b| and |c| are not lengths of edges of
a non-degenerate triangle, then the plane ax + by + cz = 0 is isometric to the R2

∞; so, all
such planes form one isometry class. If the numbers |a|, |b|, |c| and |a′|, |b′|, |c′| are lengths
of edges of two non-degenerate triangles, then these triangles are similar if and only if the
planes ax + by + cz = 0 and a′x + b′y + c′z = 0 are isometric. As a result, we get the
following corollary:
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Corollary 3.8. Let ax + by + cz = d be a plane in R3
∞.

i) If the numbers |a|, |b| and |c| are not lengths of edges of a non-degenerate triangle,
then this plane is isometric to the R2

∞; hence, all such planes are isometric to each
other.

ii) If the numbers |a|, |b| and |c| are lengths of edges of a non-degenerate triangle,
then this plane is isometric to only planes whose equations can be written as aw1 +
bw2 + cw3 = D where {w1, w2, w3} = {±x, ±y, ±z} and D is any real number.
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