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Abstract
In this paper, we study three types of rotational surfaces in Galilean 3-spaces. We classify
rotational surfaces satisfying

L1G = F (G + C)
for some constant vector C ∈ G3 and smooth function F , where L1 denotes the Cheng-Yau
operator.
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1. Introduction
Let M be a hypersurface of the (n + 1)−dimensional Euclidean space En+1. A smooth

mapping ϕ : M → En is said to be of k−type if it can be expressed as a sum of eigenvectors
of Laplace operator ∆ corresponding to k distinct eigenvalues of ∆ [6]. If ϕ is an immersion
from M to En+1 is of k−type, then the submanifold M is said to be of k−type [3, 7]. A
good survey on finite type submanifolds is given by Chen in [4].

As a special case of the above definition, one can obtain that ϕ = G is of 1−type if and
only if ∆G = λ(G + C) for a constant λ ∈ R, a constant vector C and G is the Gauss map
of M . On the other hand, if the Gauss map G of M satisfies

∆G = F (G + C) (1.1)
for a non-zero function F ∈ C∞(M) and a constant vector C = (C1, C2, . . . , Cn), then
M is said to have pointwise 1−type Gauss map. Many researchers investigated on hyper-
surfaces with such Gauss map in different ambient spaces [5, 11, 13, 17]. Moreover, since
the Laplacian operator of a hypersurface M immersed in En+1 is a second-order linear
diferential operator arising naturally as the linearized operator of the first variation of
the mean curvature for normal variations of hypersurfaces, so the Laplace operator ∆ can
be considered as the first one of a sequence of n operators L0, L1, L2, . . . , Ln−1 where Lk

stands for the linearized operator of the first variation of the (k + 1)−th mean curvature
which arises from normal variations of hypersurfaces for a fixed k = 2, 3, . . . , n − 1, (see
more, [1, 12]). Note that in case k = 0, the operator L0 = −∆ nothing but the Laplacian
operator; when k = 1 the operator L1 is the operator � introduced by Cheng and Yau in
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[8] and called the Cheng-Yau operator. Recently in [14–16], authors have investigated the
surfaces with L1−pointwise 1−type Gauss map in Euclidean 3-space, E3, defined as

L1G = F (G + C)
for some constant vector C ∈ E3 and smooth function F , where L1 denotes the Cheng-Yau
operator.

Motivated by the concept of the Cheng-Yau operator of hypersurfaces of Euclidean
3-space, we would like to give next definition:
Definition 1.1. An admissible surface M in the Galilean space G3 is said to have
L1−pointwise 1−type Gauss map if its Gauss map satisfies

L1G = F (G + C) (1.2)
for a smooth function F ∈ C∞(M) and a constant vector C ∈ G3. More precisely,
an L1−pointwise 1−type Gauss map is said to be of the first kind if (1.2) is satisfied
C = 0; otherwise, it is said to be of the second kind. Moreover, if (1.2) is satisfied for
F = const. (resp., L1G = 0), then we say that M has L1−(global) 1−type Gauss map,
(resp., L1−harmonic Gauss map).

On the other hand, we are going to use the following lemma obtained for surfaces in E3

in [15]:
Lemma 1.2. Let M be an oriented surface in E3 with the Gaussian curvature K and the
mean curvature H. Then the Gauss map G of M satisfies

L1G = −∇K − 2HKG. (1.3)
Indeed, the problem of classification of surfaces in Euclidean spaces according to the

properties of their curvatures has a long history. Besides Euclidean geometry, a range of
new types of geometries, like Minkowski geometry, isotropic geometry, have been invented
and developed in the last two centuries. Among these geometries there are also Galilean
and pseudo-Galilean geometries. Several articles also appeared on the geometry of some
special surfaces in these spaces studied in [2, 9, 10,18–23].

Note that Yoon, Kim and Jung studied rotation surfaces with L1-pointwise 1-type Gauss
map in pseudo-Galilean space G1

3, in [24]. They classified only two types of rotational
surfaces satisfiying the condition (1.2) in pseudo-Galilean space. But, in [10], the authors
showed that there are three types of rotational surfaces in Galilean spaces.

The main interest of this paper is to obtain complete classification of rotational surfaces
satisfying (1.2) in the Galilean 3-space G3. In Section 2, we introduce the notations that
we are going to use and give a brief summary of basic definitions in theory of surfaces in
Galilean spaces. In Section 3, we obtain the complete classification of rotational surfaces
satisfying (1.2) in the Galilean 3-space.

2. Preliminaries
First, we would like to give a brief summary of basic definitions, facts and equations in

the theory of surfaces of Galilean 3-space (see for details, [21, 22]).
The Galilean 3−space G3 arises in a Cayley-Klein way by pointing out an absolute figure

{ω, f, J} in the 3-dimensional real projective space P3(R). Here ω is the ideal (absolute)
plane, f is the absolute line and J is the fixed elliptic involution of points of f . Then the
homogeneous coordinates (x0 : x1 : x2 : x3) 6= (0 : 0 : 0 : 0) are introduced such that ω is
given by x0 = 0, f is given by x0 = x1 = 0 and J , by (0 : 0 : x2 : x3) 7→ (0 : 0 : −x3 : x2).

In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x1 : x2 : x3), the distance
between two points Pi = (xi, yi, zi) with i ∈ {1, 2} is defined by

d(P1, P2) =
{

|x2 − x1| if x1 6= x2,√
(y2 − y1)2 + (z2 − z1)2 if x1 = x2
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The group of motions of G3 is a six-parameter group. Regarding this group of motions,
except the absolute plane, there exist two classes of planes in G3: Euclidean planes that
contain f and in which the induced metric is Euclidean and isotropic planes that do not
contain f and in which the induced metric is isotropic. Also, there are four types of
lines in G3: isotropic lines that intersect f , non-isotropic lines that do not intersect f ,
non-isotropic lines in ω and the absolute line f (see [10]).

Let X⃗ = (x1, x2, x3) be a vector in G3. If x1 = 0, then X⃗ is called isotropic, otherwise
non-isotropic. Note that, the x1−axis is non-isotropic while the x2−axis and the x3−axis
are isotropic, for standard coordinates (x1, x2, x3). Morever, a plane of the form x1 =
const. is called an Euclidean plane, otherwise isotropic. For two vectors X⃗ = (x1, x2, x3)
and Y⃗ = (y1, y2, y3), the Galilean scalar product is calculated by〈

X⃗, Y⃗
〉

=
{

x1y1 if x1 6= 0 or y1 6= 0,
x2y2 + x3y3 if x1 = y1 = 0

The norm of vector X⃗ in G3 is defined by
∥∥∥X⃗∥∥∥ :=

√〈
X⃗, X⃗

〉
. If

∥∥∥X⃗∥∥∥ = 1, then X⃗ is called

a unit vector. Also, the Galilean cross product of the vectors X⃗ and Y⃗ being at least one
is non-isotropic is defined by

X⃗ × Y⃗ =
(
0, x3y1 − x1y3, x1y2 − x2y1

)
. (2.1)

Assume that U is an open set of R2 and S is a Cr−surface such that r ≥ 2, immersed
in G3 parametrized by

φ : U → R2, φ(u1, u2) = (φ1(u1, u2), φ2(u1, u2), φ3(u1, u2)) . (2.2)

Let us denote ∂φ

∂ui
= φ,i,

∂φk

∂ui
= (φk),i and ∂2φk

∂ui∂uj
= (φk),ij such that 1 ≤ k ≤ 3

and 1 ≤ i, j ≤ 2. Then a surface is admissible (i.e., without Euclidean tangent planes) if
and only if (φ1)ui 6= 0 for some i = 1, 2. Let S ⊂ G3 be a regular admissible surface. We
define a side tangential vector by

σ = (φ1),1φ,2 − (φ1),2φ,1
W

(2.3)

and a unit normal vector N as
N = φ,1 × φ,2

W
(2.4)

where the function W = ‖φ,1 × φ,2‖ (see [19]).
Now, we introduce the second fundamental coefficients

Lij =
〈

φ,ij(φ1),1 − (φ1),ijφ,1
(φ1),1

, N

〉
=
〈

φ,ij(φ1),2 − (φ1),ijφ,2
(φ1),2

, N

〉
(2.5)

by which the Gaussian curvature K and the mean curvature H of the surface can be
written by

K = L11L22 − L12
2

W 2 , H = 1
2

2∑
i,j=1

gijLij , (2.6)

where

g1 = (φ1)2
W

, g2 = (φ1)1
W

, and gij = gigj for i, j ∈ {1, 2}

(see [10]).
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2.1. Rotation surfaces in G3

In Galilean 3-space G3, there are two types of rotations. A Euclidean rotation is given
by

x′ = x,

y′ = cos αy + sin αz, (2.7)
z′ = − sin αy + cos αz.

where α is the Euclidean angle. An isotropic rotation is given by

x′ = x + bα,

y′ = y + αx + bα2

2
, (2.8)

z′ = z

where α is called the isotropic angle and b is a positive constant.

Now we would like to give the following definition of a rotational surface in G3 given in
[10]:

Definition 2.1. A rotational surface in G3 is a surface that is traced out by a planar
curve, the profile curve, rotated in G3. The rotation is either a Euclidean rotation about
an axis in the supporting plane of the profile curve, or an isotropic rotation for which a
bundle of fixed planes is chosen, [10].

From the definition given above, a rotational surface in G3 is the orbit of points on a
profile curve γ lying on a plane, under a subgroup G of rotations in G3. Note that a plane
is said to be isotropic if it contains both of isotropic and non-isotropic vectors. Otherwise
it is called Euclidean. By considering this difference, when G is chosen to be a subset of
isotropic rotations, γ can be contained in either an Euclidean plane or an isotropic plane.
On the other hand, if G is a subset of Euclidean rotations in G3, then γ must lie on
an Euclidean plane. Therefore, there exists three types of rotational surface in Galilean
3-space, [10] as follows:

Type I. By isotropic rotating an isotropic profile curve γ(t) = (0, f(t), g(t)) lying on
the Euclidean yz−plane, then a type I rotational surface is parametrized by

φ(s, t) =
(

bs, f(t) + b

2
s2, g(t)

)
. (2.9)

Type II. By isotropic rotating an non-isotropic profile curve γ(t) = (f(t), g(t), 0) lying
on the isotropic xy−plane, then a type II rotational surface is parametrized by

φ(s, t) =
(

f(t) + bs, g(t), sf(t) + b

2
s2
)

(2.10)

where f and g are real functions and b is a positive constant.

Type III. By Euclidean rotating an non-isotropic profile curve γ(t) = (f(t), g(t), 0)
lying on the isotropic xy−plane, one can get a type III rotational surface parametrized by

φ(s, t) = (f(t), g(t) cos s, g(t) sin s) (2.11)

where f and g are real functions.
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3. Classification of rotational surfaces with Cheng-Yau operator in G3

In this section, we obtain complete classification of rotational surfaces satisfying (1.2)
in G3.

3.1. Rotational surface of Type I
Let S be an admissible surface in G3 defined by (2.9) with the profile curve γ(t) =

(0, f(t), g(t)). Up to isometries of G3, we may assume b = 1. Also, the profile curve can
be chosen to be

f ′2(t) + g′2(t) = 1, (3.1)

where ′ is the ordinary derivative corresponding variable. Moreover, the adapted frame
{e1, e2, G} on the rotational surface S is given by

e1 = φs = (1, s, 0), (3.2)

e2 = φt

‖φt‖
= (0, f ′(t), g′(t)), (3.3)

G = e1 × e2 = (0, −g′(t), f ′(t)). (3.4)

By (2.6), the Gaussian curvature K and the mean curvature H of S are given by

K = g′ (f ′′g′ − f ′g′′) and H = f ′g′′ − f ′′g′

2
. (3.5)

Now, we put f ′(t) = a(t) and (3.1) implies g′(t) =
√

1 − a2(t). Then (3.3), (3.4) and (3.5)
turn into

e2 = (0, a(t),
√

1 − a2(t)), (3.6)

G = (0, −
√

1 − a2(t), a(t)), (3.7)
K = a′(t), (3.8)

H = −a′(t)
2
√

1 − a2(t)
. (3.9)

Thus, by using (1.3), we have

L1G = −a′′(t)e2 + a′(t)2√
1 − a2(t)

G. (3.10)

3.1.1. L1−harmonic Gauss map. Let S be a rotational surface defined in (2.9) in
G3. Suppose that S has L1−harmonic Gauss map, i.e., L1G = 0. Then from (3.10), we
conclude a′(t) = 0. Therefore, (3.8) and (3.9) give K = H = 0. Hence we have, the
following.

Theorem 3.1. An admissible surface S defined in (2.9) in G3 has L1−harmonic Gauss
map if and only if it is flat and minimal.

Furthermore, by combining Theorem 3.1 with [10, Theorem 4.2], we have directly the
following result.

Theorem 3.2. Let S be a rotational surface defined in (2.9) in G3. Then S has L1−harmonic
Gauss map if and only if it is an open part of a parabolic cylinder or an isotropic plane
parametrized by a family of parabolas.
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3.1.2. L1−pointwise 1-type Gauss map of the first kind. First, we are going to
consider L1−pointwise 1-type Gauss map of the first kind. Let S be a rotational surface
defined in (2.9) in G3. Then from (3.10), we have

− a′′(t)e2 + a′(t)2√
1 − a2(t)

G = FG,

which implies that a′′(t) = 0 and a′(t) 6= 0. Thus, we get a′(t) = K0 following that the
Gaussian curvature K of S is a non-zero constant. Thus, by considering the assumption
f ′(t) = a(t) and (3.1), the smooth functions f, g are given by

f(t) = K0t2

2
+ ct + d, (3.11a)

g(t) = 1
2K0

[
sin−1(K0t + c) + (K0t + c)

√
1 − (K0t + c)2 + d0

]
, (3.11b)

where K0, c, d, d0 ∈ R0. So, we have the following theorem:

Theorem 3.3. Let S be a rotational surface defined by (2.9) in G3. Then S has L1−pointwise
1-type Gauss map of the first kind if and only if S is parametrized by

φ(s, t) =
(

s, f(t) + s2

2
, g(t)

)
,

where the smooth functions f, g are given in (3.11).

Corollary 3.4. If a rotational surface defined by (2.9) in G3 has L1−pointwise 1-type

Gauss map of the first kind, then (1.2) is satisfied for C = 0 and F = K0
2√

1 − (K0t + C0)2

with K0, C0 ∈ R0.

3.1.3. L1−pointwise 1-type Gauss map of the second kind. Now, we state, type
I rotational surface with L1−pointwise 1-type Gauss map of the second kind. Let S be
a rotational surface defined in (2.9) in G3 and suppose that it has L1−pointwise 1-type
Gauss map of the second kind. Then (1.2) is satisfied for F 6= 0 and C = (C1, C2, C3) 6= 0.
So, (1.2) and (3.10) give

−a′′(t) = F 〈C, e2〉 , (3.12a)
a′2(t)√
1 − a2(t)

= F (1 + 〈C, G〉) , (3.12b)

〈C, e1〉 = 0. (3.12c)

From (3.2) and (3.12c), we get directly C1 = 0. On the other hand, if we combine (3.12a)
and (3.12b) with (3.6) and (3.7), we get

F (C2a(t) + C3

√
1 − a2(t)) = −a′′(t),

F (−C2

√
1 − a2(t) + C3a(t) + 1) = a′(t)2√

1 − a2(t)
,

which yield that the function a(t) satisfies

C2
(a(t)a′2(t) − a′′(t)(a(t)2 − 1)√

1 − a2(t)

)
+ C3(a′2(t) + a′′(t)a(t)) + a′′(t) = 0. (3.13)

Therefore, we have the following theorem:
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Theorem 3.5. Let S be a rotational surface defined by (2.9) in G3. Then S has L1−pointwise
1-type Gauss map of the second kind if and only if S is parametrized by

φ(s, t) =
(

s,

∫ t

a(τ)dτ + 1
2

s2,

∫ t√
1 − a2(τ)dτ

)
where the smooth function a(t) satisfies (3.13).

Corollary 3.6. Let S be a rotational surface defined by (2.9) in G3. If (1.2) is satisfied
for C = (0, 0, C3) 6= 0, then the smooth functions f, g are given by

f(t) = 1
C3

(
−t + 1

3C3d1
(1 + 2C3(d1t + d2))3/2

)
+ d3, (3.14a)

g(t) = ±
∫ (

1 +
(

− 1
C3

± 1
C3

√
1 + 2C3 (d1t + d2)

)2)1/2
dt. (3.14b)

Proof. Assume that C = (0, 0, C3). By considering this assumption in (3.13), we obtain
the following ODE,

C3(a′(t))2 + a′′(t) (1 + C3a(t)) = 0 (3.15)
whose general solution is given by

a(t) = − 1
C3

± 1
C3

√
1 + 2C3 (d1t + d2), (3.16)

where d1, d2 ∈ R. By considering the assumption f ′(t) = a(t) and (3.1), the smooth
functions f, g are obtained as in (3.14). �

3.2. Rotational surface of Type II
Let S be an admissible surface in G3 defined in (2.10). Without loss of generality, we

may assume that b = 1 and that the profile curve γ(t) = (f(t), g(t), 0) is parametrized by
arc-length. So the surface S can be rewritten as

φ(s, t) =
(

t + s, g(t), st + s2

2

)
. (3.17)

The adapted frame {σ, e2, G} on the rotational surface S is given by

σ = (0, g′(t), −t)√
t2 + g′(t)2

, (3.18)

e2 = (1, g′(t), s), (3.19)

G = (0, t, g′(t))√
t2 + g′(t)2

. (3.20)

By (2.6), the Gaussian curvature K and the mean curvature H of S are given by

K = g′(t) (tg′′(t) − g′(t))
(t2 + g′(t)2)2

, (3.21a)

H = tg′′(t) − g′(t)

2
√

t2 + g′(t)23/2 . (3.21b)

Therefore, the operator L1 of the Gauss map given in (1.3) can be expressed as

L1G = −K ′(t)e2 + g′(t) (tg′′(t) − g′(t))2

(t2 + g′(t)2)7/2 G. (3.22)
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3.2.1. L1−harmonic Gauss map. Let S be a rotational surface of type II defined in
(2.10). Suppose that L1G = 0. Then from (3.22), we get

K ′(t) = 0 and g′(t)
(
tg′′(t) − g′(t)

)
= 0.

Therefore, (3.21a) and (3.21b) give K = H = 0. Hence, we have the following result.

Theorem 3.7. An admissible surface S defined in (2.10) in G3 has L1−harmonic Gauss
map if and only if it is flat and minimal.

Moreover, by combining Theorem 3.7 with [10, Theorem 4.6], we have

Theorem 3.8. Let S be a rotational surface of type II defined in (2.10) in G3. Then
S has L1−harmonic Gauss map if and only if it is an open part of an isotropic plane
parametrized by a family of parabolas, a parabolic cylinder or a cyclic surface (parabolic
sphere).

3.2.2. L1−pointwise 1-type Gauss map of the first kind. Let S be a rotational
surface of type II, defined in (2.10), with L1−pointwise 1-type Gauss map of the first
kind. Then from (3.22), we have

K ′(t) = 0 and − g′(t) (tg′′(t) − g′(t))2

(t2 + g′(t)2)7/2 = F.

From the first equation above, we get K(t) = K0 being non-zero constant. By considering
this result in the first equation given in (3.21a), we obtain the following ODE

g′(t)
(
tg′′(t) − g′(t)

)
= K0(t2 + g′(t)2)

2
. (3.23)

To solve (3.23), we set g′(t) = y(t); then

y(ty′ − y) = K0(t2 + y2)2

whose general solution is

y(t) = ±
√

−K0(t2 + 2c)(1 + K0(t2 + 2c))t
K0(t2 + 2c)

,

where K0, c ∈ R0. Hence, the obtained solution was considered into the assumption
g′(t) = y(t), we get

g(t) = ±2c cosh−1
(

u(t) ∓
√

u2(t) − 1
2K0

)
, (3.24)

where u(t) = K0t2 − 1
2 . So, we have the following theorem:

Theorem 3.9. Let S be a rotational surface defined by (2.10) in G3. Then S has
L1−pointwise 1-type Gauss map of the first kind if and only if S is parametrized by

φ(s, t) =
(

t + s, g(t), st + s2

2

)
,

where the smooth functions g are given in (3.24).

3.2.3. L1−pointwise 1-type Gauss map of the second kind. Let S be a rotational
surface of type II defined in (2.10). Assume that it has L1−pointwise 1-type Gauss map
of the second kind. Then (1.2) is satisfied for C = (C1, C2, C3) 6= 0 and F 6= 0. From (1.2)
and (3.22), we have

− K ′(t)e2 + g′(t) (tg′′(t) − g′(t))2

(t2 + g′(t)2)7/2 G = F (G + C), (3.25)
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which implies

−K ′(t) = F 〈C, e2〉 , (3.26a)

− g′ (tg′′ − g′)2

(t2 + g′2(t))7/2 = F (1 + 〈C, G〉) , (3.26b)

0 = 〈C, σ〉 . (3.26c)

Let us distinguish the following cases:
(1) Assume C1 = 0. Then (3.19) and (3.26a) implies K ′ = 0. On the other hand,

(3.20) and (3.26b) give F = g′(t) (tg′′(t) − g′(t))2

(t2 + g′(t)2)7/2 . Therefore (3.25) implies C = 0,

which is a contradiction.
(2) If C1 6= 0, then from (3.19) and (3.26a), we rewrite the equation (3.26a) as

− K ′(t)
C1

= F. (3.27)

On the other hand, from (3.20) and (3.26b) we obtain,

− g′ (tg′′ − g′)2

(t2 + g′2(t))7/2 = F. (3.28)

Therefore (3.25), (3.27) and (3.28) imply F (G + e2) = F (G + C), which gives
C = e2, which is imposible. Hence, S can not have L1−pointwise 1-type Gauss
map of the second kind.

Therefore, we have the following theorem:

Theorem 3.10. There is no a type II rotational surface defined by (2.10), generated by a
non-isotropic curve in G3 with L1−pointwise 1-type Gauss map of the second kind.

3.3. Rotational surface of Type III
Let S be an admissible surface in G3 defined in (2.11). Up to isometries of G3, we

may assume that the non-isotropic profile curve γ(t) = (f(t), g(t), 0) is parametrized by
arc-length, i.e., f(t) = t. Thus the surface S can be reparametrized as

φ(s, t) = (t, g(t) cos s, −g(t) sin s) . (3.29)

Thus, the orthonormal frame {e1, e2} on the tangent plane of S is given by

e1 = φs

‖φs‖
= (0, − sin s, − cos s), (3.30)

e2 = φt

‖φt‖
= (1, g′(t) cos s, −g′(t) sin s). (3.31)

Moreover, the Gauss map of S is

G = e1 × e2 = (0, − cos s, sin s). (3.32)

Also by(2.6), the Gaussian curvature K and the mean curvature H of S are given by

K = −g′′(t)
g(t)

and H = − 1
2g(t)

. (3.33)

Thus, the Cheng-Yau operator L1 of the Gauss map given in (1.3) can be expressed as

L1G =
[

g′′(t)
g(t)

]′
e2 + g′′(t)

2g(t)2 G. (3.34)
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3.3.1. L1−harmonic Gauss map. Let S be a rotational surface defined in (2.11) in G3.
Assume that L1G = 0. Then from (3.34), we get directly g(t) = c0t + c1 with c0, c1 ∈ R.
By considering this result the first expression in (3.33), we get K = 0. Therefore, we have
the following.
Theorem 3.11. An admissible surface S defined in (2.11) in G3 has L1−harmonic Gauss
map if and only if it is flat.

Also, by combining Theorem 3.11 with [10, Theorem 4.9], we have the following result.
Theorem 3.12. Let S be a type III rotational surface defined in (2.11) in G3. Then S has
L1−harmonic Gauss map if and only if it is an open part of a cylinder over an Euclidean
circle or a circular coni.
3.3.2. L1−pointwise 1-type Gauss map of the first kind. Let S be a rotational
surface of type III defined in (2.11) in G3. Suppose that S has L1−pointwise 1-type Gauss
map of the first kind. Then from (3.34) and L1G = FG, we have

g′′′(t)g(t) − g′′(t)g′(t) = 0 and
g′′(t)
g(t)2 = F.

From the first equation given above, we conclude
g′′(t) = K0g(t), K0 ∈ R. (3.35)

Therefore, from the first equation given in (3.33), we have the surface S has non-zero
constant Gaussian curvature.

Now, if K0 is positive, then the general solution of (3.35) is
g(t) = A sinh(

√
K0t) + B cosh(

√
K0t), (3.36)

otherwise,
g(t) = A sin(

√
K0t) + B cos(

√
K0t), (3.37)

where A, B ∈ R. Thus, we have the following theorem:
Theorem 3.13. Let S be a rotational surface of type III defined in (2.11) in G3. Then S
has L1−pointwise 1-type Gauss map of the first kind if and only if S is parametrized by

φ(s, t) = (t, g(t) cos s, −g(t) sin s) ,

where the function g(t) is given in (3.36) or (3.37).
3.3.3. L1−pointwise 1-type Gauss map of the second kind. Assume that S is a
rotational surface of type III defined in (2.11) in G3 and that it has L1−pointwise 1-type
Gauss map of the second kind. By considering the conditions (1.2) and (3.34) together,
we get

g′′(t)g′(t) − g′′′(t)g′(t)
g2(t)

= F 〈C, e2〉 , (3.38a)

g′′(t)
g2(t)

= F (1 + 〈C, G〉) , (3.38b)

0 = 〈C, e1〉 , (3.38c)
where F is a non-zero smooth function and C = (C1, C2, C3) is a constant vector in G3.
Let us distinguish the following cases:

(1) If C1 = 0, then from (3.38c) and (3.30), we get
C2 sin s + C3 cos s = 0.

As {sin s, cos s} forms a set of linearly dependent functions, we get
C2 = 0 and C3 = 0.

But this is a contradiction.
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(2) If C1 6= 0, then from 〈C, e2〉 = C1, 〈C, e1〉 = 0 and 〈C, G〉 = 0. Thus the constant
vector C becomes C = C1e2 which implies g′(t) = 0 because of (3.31). However,
in this case (3.34) gives L1G = 0, which is a contradiction.

So, we have the following theorem:

Theorem 3.14. There is no a rotational surface of type III defined in (2.11), generated
by a non-isotropic curve in G3 with L1−pointwise 1-type Gauss map of the second kind.
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