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ABSTRACT

The classification of almost contact B—metric manifolds is considered. It is shown that
D—homothetic deformation of these manifolds in the class F; (i =0,1,4,5) remains in the same
the class F;. We study almost contact B—metric structure on 5—dimensional nilpotent Lie algebras.
The class of the left invariant almost contact B—metric structures on corresponding Lie groups is
investigated. Finally, we determine the class of 5—dimensional nilpotent Lie algebras with almost
contact B—metric structure.
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1. Introduction

The classifications of almost contact B—metric manifolds and almost contact metric manifolds were obtained
in [2, 4, 5, 7]. The eleven basic classes of almost contact B—metric manifolds were obtained by using the
structure tensor of type (0,3) [5]. In [1] the concept of D—homothetic deformation of an almost contact
B—metric manifolds is introduced and some properties of these are investigated. Left invariant almost contact
metric structure on every connected odd dimensional Lie group give rise to almost contact metric structure on
corresponding Lie algebras [8]. The classification of 5—dimensional nilpotent Lie algebras with almost contact
metric structure is given in [3].

Our aim in this paper is to determine the class of 5—dimensional nilpotent Lie algebras with respect to the
given almost contact B—metric structure. In Section 2 we recall some facts about the almost contact B—metric
manifolds and it is shown that D—homothetic deformation of these manifolds within a certain class remains
within the same class. In Section 3 we give almost contact B—metric structure on 5—dimensional nilpotent
Lie algebras g; for i =1,...,6. We determine the class of 5—dimensional nilpotent Lie algebras g; with this
structure. Finally, it is proved that the vector field ¢ is a Killing vector field for each g,.

2. Almost Contact B—metric Manifolds

Let M be a smooth manifold of dimension (2n + 1). If M has an almost contact structure (¢, n,{) consisting
of an endomorphism ¢ of the tangent bundle, a Reeb vector field ¢, its dual 1—form 7 such that the following

relations are satisfied
P’ =-Id+n®E ¢ =1, 1)

then, (M, ¢,n,§) is called almost contact manifold. In addition, if (M, ¢, &, n) admits a pseudo-Riemannian
metric g of signature (n + 1,n) such that

gz, 0y) = —g(z,y) +n(z)n(y),
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for all vector fields z, y, then, (M, ¢, &, n, g) is called almost contact B—metric manifold.

The horizontal distribution induced by the contact 1—form 7 is denoted by H = kern. Taking the restrictions
of o to H and g to H, (H, ¢|u, g|r) can be considered as an almost complex manifold with Norden metric of
dimension 2n.

The structure group of the almost contact B—metric manifolds is O(n, C) x 1, that is, O(n,C) x 1 consists of
(2n + 1) x (2n + 1) matrices of the following type

A B Onxl
~B A Opx1|., AA'—BB'=1,  AB'+ BA'=0,,
01><n 01><n 1

where A, B € GL(n,R) and I,, and 0,, are the unit matrix and zero matrix, respectively.
In [5] the almost contact B—metric manifolds are classified using the tensor F of type (0, 3) defined by

F(JZ, Y, Z) = g((vx(p)yv Z);

where V is the Levi-Civita connection of g. Moreover, the following properties of F are valid:

F(x,y,2) = F(x,2,y) = F(x, 0y, 92) + n(y) F(z,§, 2) +n(2)F(2,y,8), 2.2)
(Van)y = g(Va&,y) = F(z, 0y,8). '

Eleven basis classes of these manifolds are denoted by Fi,. .., F11. The class of Fj is defined by the condition

F=0,ie,Vp=VéE=Vn=Vg=0.
The Lie 1-forms associated with F' are defined by

9(1‘) = gijF(eiy €j,l‘), 9*(.’13) = gijF(eiv PEj, '7;)7 w(x) = F(é.afvx)a (23)

where g¥’s are the entries of the inverse matrix of g with respect to the basis {e;, ¢} of T, M.
An almost contact B—metric structure (p,7,£) on a connected Lie group G is said to be left invariant if g is
the left invariant and if the left multiplication map L, : G — G has the following properties

@wodLy =dL,0pand dL,(§) =&,

foralla € G.
Let g be odd dimensional Lie algebra. An almost contact B—metric structure on g consists of a one-form 7, a
tensor field ¢, a vector field £ such that

P’ =-Id+n®¢ @) =1 glez,ey) = —g(z,y) +n(z)n(y), (2.4)

for all vector fields z, y where g is a B—metric.

2.1. D—homothetic Deformation on Almost Contact B—metric Structures

Let (M, ¢,&,n,g) be an almost contact B—metric manifold. The structure (¢, E, 7, g) satisfying the relations

_ ~ 1 _
=t =26 P=¢ g=—tg+tt+1)nen, (2.5)

with the positive constant ¢ is called a D—homothetic deformation of (M, ¢,&,n, g).
The relation between the tensors F and F can be found in [1]:

~ tt+1
F(xvyaz):_tF(x7yaz)+ (+ )

{dn(py, z)n(x) — dn(y, pz)n(x) (2.6)
—dn(z, y)n(z) — dn(z, p2)n(y)}.

Theorem 2.1. The Lee forms 0, 6* and & of D—homothetic deformation has the relation 6 (z) = —6(x), 0* (z) = —0*(z),

w(x) = 7w ().
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Proof. By using (2.6) we have

F(ei,ei7x)

F(géelﬁ(ﬁe’iax) =

F(eiaséeivx) =

F (ge;,e;, ) =

= tF(ei,ei,ac) +

Y iy (gewsen @)

t(t+1
tF(goei,(pe,»,x) + ( )

dn (@eia 61‘) n ($) )
tF(e’iv e, x)v

tF(pe;, e, ).

Therefore, by direct computations we have

0(

and

x) =

gijp(eia @j,l‘)

n 2n

1 - 1
7;F(€i,81’,$)+ Z 2

i=1 i=n+1

l*:’(e,;,ei,:c)
- "1 -
F(e;,e;,z) + Z ;F(@ei, pe;, )

i=1 =1

M Dy (e (@)

|:tF(€i, ei,m) +

tt+1)
2

—tF(pe;, pei, x) — dn (peq, ei)n ()

n
Z (—=F(ei, e, ) + F(pe;, pe;, )
i—1

—0(x).

= gijﬁ(ei,ej,x)
n 1 2n 1

- z 67,7@617 )+ Z gF(e'thei?x)
=1 1=n+1
1. "1 -

= . ;F €i, P, T Z; 8067,7617
=1 i=1
n 1. ~

= ; [F(ei,@elﬁx) +F(§0€i7€i,l’)]
i=1
n

= _F(ei7(pei7x) - F((pehei;m)
i=1

= —0"(x).

With the relation (2.6) we get the equality F(¢, &, x) = tF (£, €, z). Hence,

w(x) =

F(&?évx) = tigp(fvé-?x) = ?tF (gvgax) = %OJ (ZL') .
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Theorem 2.2. [6] Let (M, ¢, &, n,g) be the class F; (i = 0,1,4,5). In this case, the following conditions hold:
a)If M € Fo,then N = [p, o] =dn=F =V =Vn=VE{=0=0* =w =0,
b)If M € Fy, then N = [, ] = dn =V = VE=0(£) = 6" (€) =w =0,
If M e Fy then N = [p,p] =dn=6*=w =0,
A)IfM € Fs, then N = [p, ] =dn=60=w = 0.

Theorem 2.3. Let (M,¢,&,1,9) be the class F; (i =0,1,4,5). Then, D—homothetic deformation (M,(,€,7,3) of
(M, 9, n,g) belongs to the class F; (i = 0,1,4,5).

Proof. Let (M, ¢,€,m,9) be the class F; (i =0,1,4,5). From the Theorem (2.2) we know that dn = 0. Then,
according to the identity (2.6) we obtain immediately

F(z,y,2) = tF (z,y,2) . (2.7)

1) If M belongs to the class F; then, F' = 0 and dn = 0. Hence, F = 0. This implies that (M L@, &, g) belongs
to the class Fp.

2) If M belongs to the class Fi, then, we have dn = 0 and the condition of the class F; is satisfied. By using
this condition and (2.7) we obtain

5 3 6)0(62) + (e, 5)0(50) — (2, G)A(72) — 33w, 5)0(E)

- %{tg(x’ ©y)0(pz) + tg(z, 0z)0(py) — tg(ez, 0y)0(?z) — tg(pz, p2)0(p*y)}

=1 21 {9(z, 0y)0(p2) + gz, 02)0(0y) — g(ex, 0y)0(L*2) — glez, 02)0(9?y)}

(I Y,z ) —F(x,y,z)
Therefore, (M, ¢,€,7, ) is in the class F;.

3) Let M be the class F4. Then, we have dn = 0 and the condition of the class F; is satisfied. Bearing in mind
this condition and (2.7) we obtain the following equality:

5 B W)IGr, 52) + i(2)g(Br, B9))
=3 (—9( ) {=t2n(y)g(pz, p2) —t2n(2)g(wx7@y)}>

=t [—21”9 (&) {n(w)g(pz, v2) + n(2)g(pz, wy)}}

=tF (z,y,2) = F (z,y,2).
Hence, (M, 3, &1, g) is the class Fj.
4) Let M be the class F5. Bearing in mind dn = 0, the condition of 75 and (2.7) we get the relation

50 @ T)3Br, 2) + i(=)o(Pe, )

! <19* (©) {—t2n(y)g(pz, 2) — t2n(2)g(pz, y)}>

2n

:t};ﬁwamwMWaa+m@wwawﬂ

=tF (x,y,2) = F (2,y,2).

O

This means that (M, @, &, 7, §) is in the class Fs.

www.iejgeo.com m


http://www.iej.geo.com

S. Bulut & S. E. Ermis

3. Almost contact B—metric Structures on g;

5—dimensional nilpotent Lie algebras are divided into nine classes [3]. g;’s are five-dimensional nilpotent Lie

algebras with corresponding basis {e, ..., e5} and non-zero brackets in the following:

g1 [617 62] = €5, [63, 64] = €5

g2 le1,ea] = e3,[e1,e3] = es, [e2,e4] = €5

g3 : [e1,ea] =e3,[e1,e3] = ey, [er,e4] = e5,[e2,e3] = €5

(3.1)

g4 [er,ea] =e3,[er,e3] = ey, [e1,e4] = €5

gs [617 62] = €3, [61, 63] = €4, [627 63] = €5

96 [617 62] = €3, [61, 63] = €4, [62, 63] = €5

The rest of the classes g7, gs, g9 are abelian. Almost contact metric structures on g; were defined and the
classification of five-dimensional nilpotent Lie algebras are obtained in [3]. Moreover, almost contact metric
structures on 5-dimensional nilpotent Lie algebras are investigated in [9].

Firstly, we investigate the classes of the following almost contact B—metric structure with respect to the basis
{e1,...,e5} oneach g;.

g(elael) = 9(62762) =g (65765) =g (63763) =g (64764) = 1a
p(e1) = €3, p(e2) = eq, p(e3) = —e1, p(ea) = —e€2, p(e5) =0,
é- = €5, 1= ev.

Theorem 3.1. The Lie algebra g, belongs to the class Fs & Fio.

Proof. By using the non-zero brackets [e1, e2] = e5, [e3, e4] = e5 and Kozsul's formula, the covariant derivatives
of the non-zero basic elements are given by

1 1 1
Ve162 = 5657 v€1e5 == 75627 vezel = 75657 v€265 = 5617
1
Ve,e4 = 565 Ve, e5 = 264 Ve,e3 = 56 Ve,e5 = 5
1 1 1 1
Vese1r = —52 Vesea = 561 Veses = PR Veseq = —5es-

Fori=1,...,5,weget F (e;,e;,z) =0and F (e;, pe;, z) = 0. Thus, by (2.3) it is easy to see that § (z) = 6* (z) = 0.
Moreover, we get the following non-zero components F' (e;, e, ;) = Fjji, of the structure tensor:

1
Fius = Fy5 = Fisgs = Fus1 = — <,

2
F514 = F5q1 = —1, .
Fa35 = F305 = Fos3 = F350 = >
Fso3 = Fy32 = 1.

Then, we establish the following form of F' for arbitrary vectors x,y, 2:
F <Zx¢€m Zyjejv Z%%)
i j k

= inijkF (eis €5.ex)

F(z,y,2)

i,k
1 1 1 1
= ——X1YaZ5 — —TaY1Z5 — —T1Y524 — —Tals21 — T5Y124 — T5YsZ
212;145 24?/15 213/54 242/51 5Y124 5Y421
1 1 1 1
+§$2y325 + §I3y225 + §$2y523 + 5953%22 + Z5Y223 + TsYsza.

The latter equality implies that F' is represented in the form F(z,y, z) = Fs(z,vy, 2) + Fio(z, y, z). Therefore, we
prove that g, belongs to the class Fs @ Fio. O
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Theorem 3.2. The Lie algebra g, belongs to the class Fo & Fg & Fio.

Proof. By using the relations [e1, e2] = €3, [e1, e3] = €5, [e2, e4] = e5 and Kozsul’s formula we get

1 1 1
Ve, €2 = 568 Ve, €3 = €2 + 565 Ve, €5 = 58 Ve,e1 = 568
1 1 1 1 1
Ve,3 = 5 Ve, 04 = 565 Ve,5 = 564 Ve,e1 = 362~ 56
1 1 1 1
v€3€2 = *5617 v€3€5 = 5617 ve462 = 75657 v(:'465 = 5627
1 1 1
vesel = 5637 Vesez = 564, Ve563 = 561, Ve5€4 = 562-
5
By (2.3) wehave §(§) = 6*(¢) =0and 0 (z) = 29, 0* () = x4 forany = = inei.
i=1
The components of the structure tensor F (e;, €, e;) = Fjji can be found as
1
Fiio = Fio1 = P34 = Fiyz = F341 = F314 = ok
1
F115 = Foos = F335 = Fuys = Fi51 = Foso = F353 = Fysa = 5

1
F330 = F393 = 5
Fs511 = Fsoo = F533 = F544 = 1.

For any z,y, 2, the tensor F' can be written in the following way:

F (inei, Zyjej, sz€k>
i j k

F(x,y,z)

= Zojiyjsz (e, €j.ex)
i3k

1
= §9U1y122 + 5»’51:1/22’1 + §$1y324 + §x1y423 + §x3y4z1 + 55533/124

1 1 1 1 1 1
+§x1y125 + §$2y225 + 55532/325 + §x4y425 + §x1y521 + §$2y522

1 1 1 1
+§x3y523 + §x4y524 - 51’39322 - §$3y223 + T5y121 + T5Y222

+T5Y323 + TsYaza.

Since

1 1 1 1 1
Fy(x,y,2) = 5T1Y1%5 + 512Y2%5 + 53Y%5 + 5T4Ya%s + 511Y521

1 1 1
+ 55622/522 + §$3y523 + 53343/524,

Fio(z,y,2) = 51121 + Tsy222 + T5y323 + T5ya2a

and the other terms are in the class F3, the tensor F' can be written as F(x,y,z) = Fa(x,y,2) + Fs(z,y,2) +
Fio(z,y, z). This means that F' € F, @ Fs ® Fi9. Hence, the Lie algebra g, is in the class 7> & Fs @ Fio. O

Theorem 3.3. The Lie algebra g3 belongs to the class F1 & Fa & F3 & Fs & Fo.
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Proof. Using [e1, e2] = e3, [e1,e3] = eq, [e1,e4] = e5, [e2, €3] = e5, we compute the non-zero components of the
Levi-Civita connection V with respect to g as follows:

Ve, €2 = %63, Ve, €3 = %62 + %64, Ve, €4 = —%63 + %es, Ve, €5 = %64,
Ve,e1 = —363, Ve,e3 = _%el + %657 Ve, €5 = %637 Vese1 = %62 - %647
Vese2 = —%el - %65, Veseq = —%eh Veses = 3627 Ve,e1 = —%eg - %65,
Ve,e3 = —%eh Ve,e5 = %eh Vese1 = 264, Vese2 = 3637 Vese3 = 562,
Vese4 = %el.

5
By (2.3) it is easy to verify that §(¢) = 6*(§) = 0 and 6 (z) = 2, 0* () = 24 for any = = me@i- By virtue of the
i=1
latter equalities we establish the basic components F (e;, e;, ex) = Fjj;i, of F in the following:

1
!
2

Fi14 = Fia1 = F319 = F301 = F393 = I330 = F334 = F343 = 5

Iy = Fozz = Fyzz3 = Fypp = —1,
F510 = Fyo1 = Fs34 = Fry3 = 1.

Fi19 = Fio1 = Fia3 = Fi3o = Flo5 = Fiso = Fi34 = Fia3 =

Fy15 = Fosy = F314 = F341 = F3y5 = F354 = Fy35 = Fys3 =

Then, we have

F(z,y,2)

F (Zmiei, Zyjej7 szek>
i j k

= inijkF (€i,ej.er)
i,5,k

1 1 1 1 1
= §x1y122 + 533111221 + §$1y223 + §$1y322 + §I1922’5

1 1 1 1 1
+§z1y522 + 556124324 + §x1y423 + 51’23/125 + §I2y521

1 1 1
+§x3y1z4 + §x3y421 + §x3y425 + §x3y524 + 515431325

+1 1 1 1 1
2x4y523 2x1y124 2331y42’1 2x3y122 23:331221

1 1 1 1

——T3Y223 — —X3Y322 — =—X3Y324 — —IL3Y423 — To2Y1%
23y23 231/32 23?434 23:1143 2Y121

—X2Y323 — T4Y323 — T4Y121 + TsY122 + TsY221 + T5Y324 + T5Ya23

where
1 1 1 1 1
Fy(z,y,2) = §$1y225 + §$2y125 + 59631/425 + §I4y325 + §I1y522

1 1
+ §x2y521 + §x3y524 + §x4y5z3

Fio(z,y,2) = x5y122 + T5y221 + T5Y324 + TsYa23
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and the other terms are in the space Wi = Fi(z,y,2) + Fa(x,y, 2) + F3(z,y, 2), the tensor F is F(xz,y,z2) =
Wi + Fs(z,y,2) + Fio(z,y, 2). Thatis, F € Fy & Fo & F3 & Fg @ Fio. Therefore, the lie algebra gs is in the class
F1 @ Fo ® F3 b Fg d Fro- O

Theorem 3.4. The Lie algebras g4 belongs to the class Fo & Fs & Fg @ Fio.

Proof. With the aid of the relations given in g4, the basic components of the Levi-Civita connection V can be
found as

1 1 1 1
Ve, 2 = 5637V61€3 =gzet ;e Ve, €4 = et 5657Ve1€5 = 5%
1 1 1 1
V62€1 = 7563, VG2€3 = 7561, VG3€1 = 562 — 564, Ve362 = 7561,
1 1 1 1
v6364 = 7561, ve461 = 7563 — 565, ve463 = 7561, Ve4e5 = 561,
1 1
Vesel = 564, v65€4 = 561.

5
By (2.3) it can be easily check that (¢) = 0*({) =0 and 0 (z) = 6* (z) = 0 for any = = Zziei. The components

i=1
F (ei,ej,er) = Fiji, of F are given by
1
Fiig = Fio1 = Fio3 = Fizg = Fios = Fis2 = Fi3a = Flyz = %7
F314 = F341 = Fy35 = Fys3 = Fs19 = F501 = Fr34 = Fr43 = >
1
Fi1y = Fiyy = F310 = F3g1 = F393 = I3 = F334 = F343 = 5
Fy1 = Fy33 = —1.
Hence, we obtain
Floas) = F (z e, z)
i 3 &
= Z:I?iyjsz (ei,ejvek)
ik
1 n 1 n 1 n 1 n 1 ;
= —XqY122 + —T1Y221 + =T1Y223 + —T1Y329 + —
B 1Y122 ) 1Y221 ) 1Y2%3 B 1Y322 B 1Y2%25
+1 n 1 + 1 1 1 ;
- ZL1YsZ4 + —T1YsZs — —T3YsZs — — T
23012!522 B 1Y3z4 5 1Y423 B 3Y223 B 3Y322

1 1 1 1 1
+5X4Y32s + 5T4Ys523 + SX5Y122 + STsY221 + ST5Y324

2 2 2 2 2
n 1 1
2I5y423 29312/124 211713/42’1 2x3y122 2x3y221
1 1 1
+§$3y124 + §x3y4z1 — §$3y32’4 - §m3y4z3 — T4Y121 — T4Y323
where
1 1 1 1
Fy(x,y,2) = 219225 + 5x3Ya2s + s 21Ys22 + S T4Ys523,
2 2 2 2
1 1 1 1
Fio(z,y,2) = §$5y122 + §$5y221 + §:r5y3,z4 + 59053/423.
Since F(x,y,z) = Fa(z,y, 2) + Fs3(z,y, 2) + Fs(x,y, 2) + Fio(z,y, z), the tensor F' is in the class F, @ F3 & Fg &
Fio0. Then, the Lie algebra g4 belongs to the class F»> & F3 @ Fg & Fio. O
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Theorem 3.5. The class of the Lie algebra g5 is F1 & F3 & Fgs & Fio.

Proof. In similar way, the basic terms of the Levi-Civita connection V can be calculated as

1 1 1
Ve, €2 = 564 Ve, €3 = 565 Ve, €4 = 562> Ve, €5 = 568
1 1
v52€1 = _5647 v6264 = _5617 v6361 = _5657 v63e5 = 5617
1 1 1 1
Vee1 = 562 Ve,€2 = 5 Vese1 = 568 Veses = 51

By direct computation we obtain 0(§) = 0*({) =0 and 6 (z) = —x1, 0* (x) = —x3 for any z. We get the basic
components F (e;, e, e;) = Fiji, as follows:

1
Fi15 = Fi51 = F335 = F353 = Fy14 = Fyg1 = 3
1
Fy19 = Foyy = Fy3q = Foyz = Fo3 = Fyzo = —3
Fiog = Fiyq = F511 = Fs33 = 1
Therefore, the tensor F' is written as
F(z,y,2) = F (Z%‘% > vjes, Z%%)
i j k
= Y awyjuF (eiejer)
1,5,k
1 n 1 n 1 n 1 n 1
= —T1Y1%5 + =T 1Y521 + —T3Y325 + —T3Ys523 + —XTay1 2
9 1Y1zs 9 1Y521 B 3Y3%25 2 3Y523 5 4Y124
n 1 1 1 1
2x4y4z1 2$2y122 21323/221 23029324 2»’52?}423
1 1
—59649223 - 53042/322 + X1Y222 + T1Y424 + T5Y121 + T5Y323.
It can be easily see that F' is in the class F; & F3 & Fg @ Fio. Namely, the Lie algebra g5 belongs to 71 & F35 @
Fs @ Fio- O

Theorem 3.6. The Lie algebra gg belongs to the class F1 & Fa & F3 & Fs & Fo.

Proof. Similarly, the basic components of V are computed as follows:

1 1 1 1
V€162 = 5637 v€1€3 = 562 + 5647 v€1€4 = 75637 v€2€1 = 75637
1 1 1 1 1 1 1
Ve,e3 = —51 + 565 Ve85 = 568 Vese1 = 562~ 5% Vese2 = —5€1 = 565
1 1
Veseq = 51 Ve, e5 = 22 Vese1 = —563; Ve,e3 = —5€1 Vese2 = 263 Vese3 = 62

Then, using the equality (2.3) we get the identities 0(§) = 6*(£) =0, 0 (z) = 2 and 0* (z) = z4 for any z. The
basic components F;j;, are

)

Fi19 = Fio1 = Flo3 = Fizg = Fy5 = Fosy = Fi3g = Fiyz =

DO | =

F314 = F341 = F512 = Fsp1 = Fs34 = Fru3 = 345 = F354 =

b

1
Fi14 = Fiy1 = F319 = F301 = F393 = I330 = F334 = I343 = 5

Fy11 = Fo3g = Fyz3 = Fy1 = —1.
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Therefore, the latter equalities imply that F is represented in the form

F(z,y,2) = F (Ziﬂiei, Zyjeja Z%%)

= inyjsz (eir€j.ex)

1,5,k
1 n 1 n 1 " 1 n 1 n 1
= —_ Z — — — - -

2x1y1 2 2581y221 23313122’3 2x1y3z2 2$2y125 2332y52’1

+1 + ! + + L + L + L
2$1y32’4 2x1y423 296319124 2$3y42’1 21‘5y122 2$5y221

+1 " 1 1 1 1
2$5y324 2x5y423 290129124 2x1y4z1 2$3y122 2x3y2z1
1 1 1 1 n 1 n 1
2553212?13 2903?/322 29539324 2$3y423 2x3y425 230311524

—X2Y121 — X2Y323 — X4Y323 — T4Y121-

It is easily checked that F' € F; & F» & F3 @ Fg @ Fio. That is, the Lie algebra g is in the class F1 & Fo & F3 &
Fs & Fio. O

Theorem 3.7. The vector field £ defined on the Lie algebras g; for i = 1,...,6 is a Killing vector field.

Proof. Letx = Zziei andy = Zyj e;. Now, we will show that the following condition is satisfied for every g;:
i J

g (vva y) =g (vyf» I.C) . (32)

For the Lie algebra g,, we obtain that

9(Va&y) = > iy (Ve,loe;)
7 o L I
= x1y22 3321/12 9032/42 m4y32,
9(Vy&z) = ZyjﬂCig (Ve,&e)
! 1 1 1
= —y1x2§ + y2$1§ - y3x4§ + y4333§-
Thus, the vector field ¢ is a Killing vector field for g;.
For the Lie algebra g,, we get
1 1 1 1
g(Ve&,y) = —T1Ysy — T2l + T3Y15 + TaYrg = g (V€ ).

Therefore, ¢ is a Killing vector field for g,. In similar way, it can be easily shown that the vector field £ is a
Killing vector field for the Lie algebras g3, g4, g5 and ge. O

Corollary 3.1. 5—dimensional nilpotent Lie algebras g; for i = 1,...,6 are K—contact B—metric manifolds.
By the straightforward computations we establish the following theorem:

Theorem 3.8. The Ricci curvatures and scalar curvatures of 5—dimensional nilpotent Lie algebras g; fori =1,...,6 are
calculated as
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Ricci Curvature R(x,y) Scalar Curvature s
1 1 1 1
g1 —53312/1 - 51‘23/2 + §x3y3 + catyt + 2%yP -1
1 3
g9 xlyl + z2y2 . §x4y4 B 15y5 5
1 1, - 1 1
g3 _§x1y1 _ §x1yo a2y 4 §x3y3 — ozt ByP =
1 1 1 1.
9 fxlyl + foyQ + x3y3 _ fx4y4 + 7$oy5 1
2 2 2
1 1 1 1
g5 xlyl + fx2y2 . fx3y3 + fx4y4 _ fx5y5 1
2 2 2
1 1 1 1
g6 22y? + §$3y3 - 5w §x5y5 5
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