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ABSTRACT 

Let G  be simple, connected weighted graphs, where the edge weights are positive definite matrices. In this 

paper, we will give an upper bound on the spectral radius of the adjacency matrix for a graph G  and 
characterize graphs for which the bound is attained. 
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1. INTRODUCTION 

We consider simple graphs, that is, graphs which have 
no loops or parallel edges. Thus a graph ( , )G V E=  

consist of a finite set of vertices, V , and a set of 

edges, E , each of whose elements is an unordered pair 

of distinct vertices. We generally take { }1,2,...,V n= . 

A weighted graph is a graph, each edge of which has 
been assigned a square matrix, called the weight of the 
edge. All the weight matrices will be assumed to be of 
the same order and will be assumed to be positive 
definite. In this paper, by "weighted graph" we will 
mean a "weighted graph with each of its edges bearing 
a positive definite matrix as weight", unless otherwise 
stated. 

Let G be a weighted graph with n vertices. Denote by 

,i jw  the positive definite weight matrix of order p of 

the edge ij, and assume that , ,i j j iw w= .We write i ~ j 

if vertices i and j are adjacent. For i V∈ , the set of 

neighbors of i  is denoted by iN . Let ,
:

i i j
j i j

w w
∼

= ∑ . 

The adjacency matrix of a graph G is a block matrix, 

defined as ( ),( ) i jA G a= , where 

,

,

:

0 : .

i j

i j

w i j
a

otherwise

∼
= 


 

In the definition above, the zero denotes the pxp  zero 

matrix. Thus A(G) is a square matrix of order np . On 

the other hand, the eigenvalues of a graph are the 
eigenvalues of its adjacency matrix. Thoroughly this 

paper, 1ρ  is called the spectral radius of a matrix. 

In literature [1,4,5,6,7], there are a lot of studies deal with 
upper and lower bounds for the spectral radius of 
unweighted graphs. In this paper we obtain an upper 
bound for weighted graph, and this bound compare with 
Das and Bapat’s bound in [2]. 

2. A BOUND ON SPECTRAL RADIUS OF 
WEIGHTED GRAPHS 

The following is a consequence of the Cauchy-Schwarz 
inequality. The proof is omitted.  

Lemma 2.1 (Horn and Johnson [3]) Let B be a 
Hermitian nxn  matrix with 1ρ  as its largest eigenvalue, 

in modulus. Then for any 

( 0), ( 0)n nx R x y R y∈ ≠ ∈ ≠ , the spectral radius 

satisfies 

1
T T Tx By x x y yρ≤        (1) 

Equality holds if and only if x  is an eigenvector of B  

corresponding to 1ρ  and y xα=  for some Rα ∈ . 

Lemma 2.2 (Weyl, Horn and Johnson [3]) Let 
, nA B M∈  be Hermitian and ( ), ( )i iA Bρ ρ  and 

( )i A Bρ +  be arranged in increasing order 

( 1 2 1...n nρ ρ ρ ρ−≤ ≤ ≤ ≤ ). For each 1,2,...,k n=  we 

have 
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1( ) ( ) ( ) ( ) ( )k n k kA B A B A Bρ ρ ρ ρ ρ+ ≤ + ≤ + . 

Lemma 2.3 (Das and Bapat [2]) Let 1 2, ,..., kB B B  be 

positive definite matrices of order n  and let 

1

k

ii
B B

=
=∑ . If x  is an eigenvector of each iB  

corresponding to largest eigenvalue 1( )iBρ  for all i , 

then x  is also an eigenvector of B  corresponding to 

largest eigenvalue 1( )Bρ . 

Theorem 2.4 Let G  be a weighted graph which is 

simple, connected and let 1ρ  be the largest eigenvalue 

(in modulus) of G , so that 1ρ  is the spectral radius of 

G . Then, 

1 1 , 1 ,
: :

max ( ) ( )i k j k
i j

k k i k k j

w wρ ρ ρ
∼

∼ ∼

  
≤  

  
∑ ∑       (2) 

where ,i jw  is the positive definite weight matrix of order 

p  of the edge ij . Moreover equality holds if and only 

if  

i) G  is a weight-regular graph or G  is a weight-
semiregular bipartite graph. 

ii) ,i jw  has a common eigenvector corresponding to the 

largest eigenvalue 1( )jwρ  for all ,i j  [2]. 

Theorem 2.5. Let G  be a weighted graph which is 

simple, connected and let 1ρ  be the largest eigenvalue 

(in modulus) of G , so that 1ρ  is the spectral radius of 

G . Then, 

2
1 1 , 1 , ,

:

max ( ) ( )
i j

i k j k k i
i

k k i j k N N

w w wρ ρ ρ ′ ′
′∼ ∈ ∩

  
≤ + 

  
∑ ∑ ∑ (3) 

where ,i jw  is the positive definite weight matrix of 

order p  of the edge ij , i jN N∩  is the set of common 

neighbors of i  and j . Moreover, equality holds if and 

only if  

i) G  is a weight-regular graph or G  is  a weight-
semiregular bipartite graph 

ii) ,i jw  has a common eigenvector corresponding to the 

largest eigenvalue 1( )jwρ  for all ,i j . 

Proof. Let consider matrix 2( )A G  such that ( )A G  is 

the adjacency matrix of graph G  and 1ρ  the spectral 

radius of ( )A G  adjacency matrix. So, 
2

1ρ  is also the 

spectral radius of 2( )A G .  

Let ( )1 2, ,...,
TT T T

nX x x x=  be an eigenvector 

corresponding to the spectral radius 
2

1ρ  for 2( )A G . 

We assume that ix  is the vector component of X  

such that  

{ }maxT T
i i k k

k V
x x x x

∈
= .       (4) 

Since X  is nonzero, so is ix . We have 

2 2
1( )A G X Xρ=         (5) 

Since G  is a simple, connected and , ,i j j iw w= , the 

( ),i j th block of 2( )A G  matrix is defined by 

2
,

:

, ,

:

:

0 :

i j

i k
k k i

j k k i i j
k N N

i j

w if i j

w w if N N

if N N

∼

∈ ∩

 =



∩ ≠ ∅

 ∩ =∅

∑

∑   

                         (6) 

From the i-th equation of 
(5), we have 

2 2
1 , , ,

: : i j

i i k i i k k j j
k k i j k k N N

x w x w w xρ
∼ ∈ ∩

= +∑ ∑ ∑    

                         (7) 

i.e., 

2 2
1 , , ,

: : i j

T T T
i i i i k i i i k k j j

k k i j k k N N

x x x w x x w w xρ
∼ ∈ ∩

= +∑ ∑ ∑     

                         (8) 

i.e. 

2 2
1 , , ,

: : i j

T T T
i i i i k i i i k k j j

k k i j k k N N

x x x w x x w w xρ
∼ ∈ ∩

= +∑ ∑ ∑  

                        (9) 

           2
, , ,

: : i j

T T
i i k i i i k k j j

k k i j k k N N

x w x x w w x
∼ ∈ ∩

≤ +∑ ∑ ∑ by (1)    

                      (10) 

           

( )

( )

2
1 ,

:

1 , ,
: i j

T T
i i i i i k

k k i

T T
i i j j i k k j

j k k N N

x x x x w

x x x x w w

ρ

ρ

∼

∈ ∩

 
  

≤  
+ 
  

∑

∑ ∑
by(4)  

       (11) 

           

( ) ( )2
1 , 1 , ,

: : i j

T T T T
i i i i i k i i i i i k k j

k k i j k k N N

x x x x w x x x x w wρ ρ
∼ ∈ ∩

≤ +∑ ∑ ∑
                      (12) 

Thus, we get 
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2
1 1 , 1 , ,

:

2
1 , 1 , ,

:

( ) ( )

max ( ) ( )

i j

i j

i k i k k j
k k i j k N N

i k i k k j
i

k k i j k N N

w w w

w w w

ρ ρ ρ

ρ ρ

∼ ∈ ∩

∼ ∈ ∩

≤ +

  
≤ + 

  

∑ ∑ ∑

∑ ∑ ∑
 

Hence this completes the proof of (4). 

 

Example 2.5 Let 1G  and 2G  following graphs. 

 

 

The bounds of spectral radius are following: 

 

                            1ρ             (2)            (3) 

    1G   13.63      18.88      16.64 

    2G    8.63       10.34        8.91 

 

 

2G  

1,2 2,1 2,3 3,2

2,4 4,2 2,5 5,2

5,6 6,5

1 1 2 1
,

1 4 1 2

5 2 1 0
, ,

2 5 0 1

1 1

1 1

w w w w

w w w w

w w

   
= = = =   

   

   
= = = =   

   

 
= =  

 

 
6 5 2 

3 

4 

1 

4 

1G  2 

3 

1 

3,4 4,3

2,4 4,2 1,3 3,1

6 2 2

2 6 2 ,

2 2 10

5 0 2 3 1 1

0 5 2 , 1 3 1

2 2 5 1 1 5

w w

w w w w

− 
 = = − 
 − − 

−   
   = = = = −   
   − −   
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Consequently, we see that the bound in (3) is better 
than the bound (2). But, this is an open problem for all 
weighted graphs. 

Corollary 2.6 Let G  be a weighted graph which is 
simple, connected in which the edge weight are 
positive number (i.e. 1 1x  matrices). Then, 

1 max i i j
i

j

d N Nρ
  

≤ + ∩ 
  

∑  

where id  is the degree of vertex i  and i jN N∩  is 

the number of common neighbors of i  and j  vertices. 
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