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              ABSTRACT 
 

The concepts of fuzzy regular-I-closed set and fuzzy semi-I-regular set in fuzzy ideal topological spaces are 
investigated and some of their properties are obtained. 
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1. INTRODUCTION 

 
The fundamental concept of a fuzzy set was introduced 
in Zadeh [1]. Subsequently, Chang [12] defined the 
notion of fuzzy topology. An alternative definition of 
fuzzy topology was given by Lowen [15]. Yalvac [4] 
introduced the concepts of fuzzy set and function on 
fuzzy spaces. In general topology,by introducing the 
notion of ideal, [16], and several other authors carried 
out such analysis. There has been an extensive study on 
the importance of ideal in general topology in the paper 
of Janković & Hamlet [14]. Sarkar [7]  introduced the 
notions of fuzzy ideal and fuzzy local function in fuzzy 
set theory. Mahmoud [3] investigated one application of 
fuzzy set theory. Hatir & Jafari [13] and Nasef & Hatir 
[8] defined fuzzy semi-I-open set and fuzzy pre-I-open 
set via fuzzy ideal. 
 
 
 
 
 

2. PRELIMINARIES 
 
Through this paper, X represents a nonempty fuzzy set 
and fuzzy subset A of X, denoted  by A ≤ X, then is 
characterized by a membership function in the sense of 
Zadeh   [1]. The basic fuzzy sets are the empty set, the 
whole set the class of all fuzzy sets of X which will be 
denoted by 0X , 1X and I X , respectively. A subfamily τ 
of I X is called a fuzzy topology due to Chang [12] . 
Moreover, the pair (X,τ) will be meant by a fuzzy 
topological space, on which no separation axioms are 
assumed unless explicitly stated. The fuzzy closure, the 
fuzzy interior and the fuzzy complement of any set in A 
in (X,τ) are denoted by Cl(A), Int(A) and 1X -A, 
respectively. A fuzzy set which is a fuzzy point WONG 
[17] with support x∈X and the value λ∈ (0,1] will be 
denoted by xλ .  The value of a fuzzy set A for some 
x∈X will be denoted by A(x). Also, for a fuzzy point xλ 
and a fuzzy set A we shall write xλ∈A to mean that λ ≤ 
A(x). For any two fuzzy sets A and B in (X,τ), A ≤ B if 
and only if A(x) ≤ B(x) for all x∈X. A fuzzy set in (X,τ) 
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is said to be quasi-coincident with a fuzzy set B, 
denoted by AqB, if there exists x∈X such that 
A(x)+B(x)>1  [11]. A fuzzy set V in (X,τ) is called a q-
neigbourhood (q-nbd, for short) of  a fuzzy point xλ if 
and only if there exists a fuzzy open set U such that xλ 
qU≤ V  [11]. We will denote the set of all q-nbd of xλ in 
(X,τ) by Nq(xλ). A nonempty collection of fuzzy sets I 
of a set X is called a fuzzy ideal ([7]) on X if and only if 
(1) A∈I and B ≤ A, then B∈I (heredity), (2) if A∈I and 
B∈I, then A∨ B∈I (finite additivity). The triple (X,τ,I) 
means fuzzy ideal topological space with a fuzzy ideal I 
and fuzzy topology τ. For (X,τ,I) the fuzzy local 
function of A ≤ X with respect to τ and I  is denoted by  
A* (τ, I) (briefly A* ) [7]. The fuzzy local function A* 
(τ, I) of A is the union of all fuzzy points xλ such that if 
N∈Nq(xλ ) and E∈ I then there is at least one y∈X for 
which N(y)+A(y)-1>E(y)  [7] . Fuzzy closure operator 
of a fuzzy set A in (X,τ, I) is defined as Cl*(A)=A∨ A*  
[7]. In (X,τ, I), the collection τ*(I) means an extension 
of fuzzy topological space than τ via fuzzy ideal which 
is constructed by considering the class β={U-
E:U∈τ,E∈I } as a base  [7]. 

Lemma 1. Let (X,τ, I) be a fuzzy ideal topological 
space and A,B fuzzy subsets of  X. Then the following 
properties hold: 

a) If  A ≤ B ,then  A* ≤ B* , 
b) A* = Cl(A*) ≤ Cl(A) , 
c) (A*)* ≤  A* , 
d) (A∨ B)* = A*∨ B*  ([7]). 

Definition 1.  A fuzzy subset A of a fuzzy ideal 
topological space (X,τ, I) is said to be  
 

a) fuzzy-I-open [3] if A≤ Int(A*), 
b) fuzzy α -I-open  [2] if A≤ Int(Cl*(Int(A))), 
c) fuzzy semi-I-open [13]  if A≤ Cl*(Int(A)), 
d)  fuzzy pre-I-open [8] if A≤ Int(Cl*(A)), 
e)  fuzzy α *-I-open [2] if Int(A)= Int(Cl*(Int(A))), 
f) fuzzy t-I-set [8]  if Int(A)= Int(Cl*(A)), 

 
 

Nasef & Hatir et al. [8] gave the following diagram 
using some of the expressions of Definitioin 1: 

 

          fuzzy open set                    fuzzy α -I-open set                     fuzzy pre-I-open set 

 

                                                    fuzzy semi-I-açık                

                                                                Diyagram I 

3. FUZZY REGULAR -I-CLOSED SETS 

We give some new definitions for fuzzy sets and some 
theorems in any ideal fuzzy topological spaces. 

Definition 2. A fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I) is said to be 

a) fuzzy *-dense -in-itself if A ≤ A*, 
b)  fuzzy τ*-closed  if A* ≤ A, 
c)  fuzzy *-perfect  if A=A*. 

 

Definition 3. A fuzzy subset A of a fuzzy ideal 
topological space (X,τ, I) is said to be fuzzy regular-I-
closed if A=(Int(A))*. 

We denote by FRIC(X) the family of all fuzzy regular-
I-closed subsets of (X,τ, I). 

Theorem 1. In a fuzzy ideal topological space (X,τ,I), 
the following statements hold: 
 
a)  Every fuzzy regular-I-closed set is fuzzy *-perfect 
set, 
b)  Every fuzzy *-perfect set is fuzzy τ*-closed set, 
c)  Every fuzzy τ*-closed set is fuzzy t-I-set, 
 
Proof. a) Let A be a fuzzy regular-I-closed set. Then, 
we have A=(Int(A) )*.Since Int(A) ≤ A, (Int(A) )* ≤ 
A*.Then we have A=(Int(A) )* ≤ A*.Since A=(Int(A) 
)* ,                          A*=((Int(A) )*)* ≤ (Int(A) )*=A. 

Therefore, we obtain A=A*.This shows that A is fuzzy 
*-perfect set. 

b) Let A be a fuzzy *-perfect set. Then, we have A=A*. 
Therefore, we obtain A* ≤ A. This shows that A is 
fuzzy τ*-closed set. 

c) Let A be a fuzzy τ*-closed set. Then, we have A*≤ 
A⇒   A∨  A*≤ A∨ A                                  ⇒  Cl*(A) 
≤ A⇒  Int(Cl*(A)) ≤ Int(A).Since A≤ Cl*(A)  ⇒  
Int(A) ≤ Int(Cl*(A)). Therefore,we obtain Int(A) = 
Int(Cl*(A)). This shows that A is fuzzy t-I-set. 

Remark 1.The converses of Theorem 1 need not be 
true as the following examples show. 

Example 1. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,4  A(b)=0,7  A(c)=0,5 
                           B(a)=0,6  B(b)=0,3  B(c)=0,5 
We put  τ = {0X,1X,A}. If we take I={0X}, then B is 
fuzzy *-perfect set but not fuzzy regular-I-closed set. 

Example 2. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,1  A(b)=0,3  A(c)=0,5 
                           B(a)=0,4  B(b)=0,6  B(c)=0,7  
We put  τ = {0X,1X,A}. If we take I=P(X), then B is 
fuzzy τ*-closed set but not fuzzy *-perfect set. 
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Example 3. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,2  A(b)=0,3  A(c)=0,1 
                           B(a)=0,5  B(b)=0,6  B(c)=0,7 

We put  τ = {0X,1X,A}. If we take I={0X}, then B is 
fuzzy t-I-set but not fuzzy τ*-closed set  

For the relationship related to several sets defined 
above, we have the following diagram: 

 

fuzzy regular-I-closed set                 fuzzy *-perfect set                   fuzzy τ*-closed set  

   

                                                                                         fuzzy t-I-set                                                                         

                                                             Diagram II 

 

Remark 2.Since every fuzzy open set is fuzzy α -I-
open, fuzzy regular-I-closed and                fuzzy α-I-
open (fuzzy open) set are independent concepts as show 
in the following examples; 

Example 4. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,3  A(b)=0,2  A(c)=0,4 
                           B(a)=0,7  B(b)=0,8   B(c)=0,6 
We put  τ = {0X,1X,A}. If we take I={0X}, then B is 
fuzzy regular-I-closed set but not              fuzzy α -I-
open (fuzzy open) set. 

Example 5. In Example(3) A is fuzzy α -I-open (fuzzy 
open) set but not                                      fuzzy regular-I-
closed set. 

Theorem 2. For a fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I ), the following property 
holds: A is a fuzzy regular-I-closed set if and only if A 
is a fuzzy semi-I-open set and a fuzzy *-perfect set. 
 
Proof. Necessity. The proof is obvious [Theorem 1 a), 
Diagram II]. 
Sufficiency. Let A be a fuzzy semi-I-open set and a 
fuzzy *-perfect set. Since A is                         a fuzzy 
semi-I-open set, there is A ≤ Cl*(Int(A)). Respectively, 
by using Lemma 
1 a), d) and c) 
        A≤ (Cl*(Int(A)))*= (Int (A) ∨  (Int (A))*)* 
                                     = (Int (A))*  ∨  ((Int (A))*)* ≤ 
(Int (A))*, 
and hence we have A* ≤ (Int(A))*. On the other hand, 
since Int (A) ≤ A , 
we already have (Int(A))* ≤ A* using Lemma 1a). 
Therefore, we obtain 
that A* = (Int(A))*. Furthermore by hypothesis, since A 
is also a fuzzy *-perfect set, we have A = A*. So, A = 
A*= (Int(A))*; that is, A = (Int(A))* and hence A is a 
fuzzy regular-I-closed set. 
 

 
 
 
 
 

4. FUZZY SEMI-I-REGULAR SETS  
 We give some new definitions for fuzzy sets and some 
examples for those fuzzy sets in any ideal fuzzy 
topological spaces. 

 
Definition 4. A fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I ) is said 
to be fuzzy semi-I-regular if A is both a fuzzy t-I-set 
and a fuzzy semi-I-open set. 
 
We will denote the family of all fuzzy semi-I-regular 
sets of (X, τ, I )  by 
FSIR(X ), if there is no chance for confusion with the 
fuzzy ideal. 
 
Remark 3. Note first that fuzzy t-I-sets and fuzzy semi-
I-open sets are independent 
concepts as shown in the following examples. 
 
Example 6. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,3  A(b)=0,1  A(c)=0,6 
                           B(a)=0,5  B(b)=0,2   B(c)=0,7 
We put  τ = {0X,1X,A}. If we take I={0X}, then B is 
fuzzy semi-I-open set but not fuzzy t-I-set. 

 Example 7. In Example 2. B is fuzzy t-I-set but not 
fuzzy semi-I-open set. 

Theorem 3. In a fuzzy ideal topological space (X, τ, I ), 
the following properties hold: 
 
a)  Every fuzzy regular-I-closed set is a fuzzy semi-I-
regular set. 
b)  Every fuzzy semi-I-regular set is a fuzzy semi-I-
open set. 
c)  Every fuzzy semi-I-regular set is a fuzzy t-I-set. 
 
Proof. a) Let A be a fuzzy regular-I-closed set. 
According to Diagram II,                                A is both a 
fuzzy t-I-set and a fuzzy semi-I-open set. So, A is a 
fuzzy semi-I-regular set. 
b), c) The proof is obvious as seen by Definition 4.  
 
Remark 4. The converses of  Theorem 3  need not be 
true as the following examples show. 
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Example 8. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,1  A(b)=0,3  A(c)=0,8 
                           B(a)=0,7  B(b)=0,6  B(c)=0,9  
We put  τ = {0X,1X,A}. If we take I=P(X), then A is 
fuzzy semi-I-regular set but not fuzzy regular-I-closed 
set. 

Example 9. In Example 6. B is fuzzy semi-I-open set 
but not fuzzy semi-I-regular set. 

Example 10. In Example 2. B is fuzzy t-I-set but not 
fuzzy semi-I-regular set. 

By Theorem 3 and Diagram II, we obtain the following 
diagram: 

 

fuzzy regular-I-closed set                                     fuzzy *-perfect set 

  

fuzzy semi-I-regular set                                    fuzzy τ*-closed set  

    

fuzzy semi-I-open set                                     fuzzy t-I-set 

                                                                 Diagram III 

Remark 5. Since every fuzzy *-perfect set is a fuzzy 
τ*-closed set and every fuzzy semi-I-regular set is a 
fuzzy semi-I-open set, a fuzzy τ*-closed (hence fuzzy*-
perfect) set and a fuzzy semi-I-open (hence fuzzy semi-
I-regular) set are independent concepts as shown in the 
following examples. 
 
Example 11.  In Example 3. A is fuzzy semi-I-regular 
(hence fuzzy semi-I-open) set but not a fuzzy τ*-closed 
set. 
 
Example 12. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,2  A(b)=0,6  A(c)=0,5 
                           B(a)=0,8  B(b)=0,4  B(c)=0,5 
We put  τ = {0X,1X,A}. If we take I={0X}, then B is 
fuzzy *-perfect (fuzzy τ*-closed) set but not a fuzzy 
semi-I-open (hence fuzzy semi-I-regular) set. 

Remark 6. Since every fuzzy open set is a fuzzy α -I-
open set and a fuzzy pre-I-open set,       a fuzzy pre-I-

open (hence resp. fuzzy α -I-open and fuzzy open) set 
and a fuzzy semi-I-regular set are independent concepts 
as shown in the following examples. 
 
Example 13. In Example 1. A is a fuzzy open (hence 
fuzzy α -I-open and fuzzy pre-I-open) set, but not fuzzy 
semi-I-regular set. 

Example 14. Let X={a, b, c} and A, B be fuzzy subsets 
of X defined as follows: 
                           A(a)=0,3  A(b)=0,1  A(c)=0,2 
                           B(a)=0,7  B(b)=0,2  B(c)=0,6 
We put  τ = {0X,1X,A}. If we take I={0X}, then B is a 
fuzzy semi-I-regular set but not fuzzy pre-I-open (hence 
fuzzy α -I-open) set. 

Diagram III can be expanded to the following diagram 
using Remark 5 and Remark 6. 
 

 

fuzzy regular-I-closed set                                    fuzzy *-perfect set 

  

fuzzy semi-I-regular set                                      fuzzy τ*-closed set  

    

fuzzy semi-I-open set                                     fuzzy t-I-set 

 

fuzzy open set                          fuzzy α -I-open set                       fuzzy pre-I-open set 

                                                               Diagram IV 
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5. FUZZY ABI –SETS 
 
We give some another new definitions for fuzzy sets 
and the relationships between them. In addition, we 
give some diagram for those fuzzy sets. 

 
Definition 5. A fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I )  is said to be a fuzzy AI -set 
(resp. fuzzy BI -set , fuzzy I-local closed set ) if A 
=U∧V , where U∈τ  and V is fuzzy regular-I-closed 
(resp. fuzzy t-I-set, fuzzy *-perfect ). 
 
Definition 6. A fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I ) is said to be a fuzzy ABI -set 
if A =U∧V , where U∈τ and V is fuzzy semi-I-regular 
set. 
We will denote the family of all fuzzy ABI -sets in (X, 
τ, I ) by FABI (X) if there is no chance for confusion 
with the ideal. 
 
Theorem 4. In a fuzzy ideal topological space (X, τ, I ), 
the following properties hold: 
 
a) Every fuzzy open set is a fuzzy ABI -set. 

b) Every fuzzy semi-I-regular set is a fuzzy ABI -set. 
c) Every fuzzy ABI -set is a fuzzy BI -set. 
d) Every fuzzy AI -set is a fuzzy ABI -set. 
 
Proof. a), b) Since X∈ τ ∧  FSI R(X), the statements 
are clear. 
c) Since every fuzzy regular-I-closed set is fuzzy semi-
I-regular it is obvious by Diagram III. 
d) Since every fuzzy semi-I-regular set is a fuzzy t-I-set 
it is obvious by Diagram III. 
 
Remark 7. The converses of  Theorem 4.  need not be 
true as shown in the following examples. 
 
Example 15. In Example 8. B is fuzzy ABI -set but not 
fuzzy open set. 

Example 16. In Example 1. B is fuzzy ABI -set but not 
fuzzy semi-I-regular set. 

Example 17. In Example 2. B is fuzzy BI -set but not 
fuzzy ABI -set . 

Example 18. In Example 8. B is fuzzy ABI -set but not 
fuzzy AI -set . 

 

By using  Theorem 4 and Remark 7  we have the following diagram: 
 
 
 fuzzy open set                             fuzzy AI -set                                  fuzzy I-local closed set 

  

             fuzzy ABI -set                                    fuzzy BI -set 

                                                              Diagram V 

 

Remark 8. A fuzzy ABI -set and a fuzzy I-local closed 
set are independent concepts as shown in the following 
examples. 
 
Example 19. In Example 3. B is fuzzy ABI -set but not 
fuzzy I-local closed set. 
 
Example 20. In Example 12. B is fuzzy I-local closed 
set but not fuzzy ABI -set . 
 
Remark 9. As every fuzzy α-I-open set is fuzzy pre-I-
open, a fuzzy pre-I-open (hence Fuzzy α-I-open) set and 
a fuzzy ABI -set are independent concepts as the 
following examples show. 
 

Example 21. In Example 1. B is fuzzy pre-I-open 
(hence fuzzy α-I-open) set but not fuzzy ABI -set . 
 
Example 22. In Example 14. B is fuzzy ABI -set but not 
fuzzy pre-I-open (hence fuzzy α-I-open) set. 
 

Theorem 5.  For a fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I ),the following property holds: 
Every fuzzy ABI -set is fuzzy semi-I-open. 
 
Proof. Let A be a fuzzy ABI -set. Then according to 
Definition 6, A = U∧V , where U∈τ and V is fuzzy 
semi-I-regular set. By Definition 4, V is also fuzzy 
semi-I-open set. Since V is fuzzy semi-I-open,  
                       A = U∧V ≤ U ∧  Cl* (Int (V )) ≤  Cl* 
(U ∧  Int (V )) 
                                             = Cl* (Int (U ∧  V )) = Cl* 
(Int (A)) 
and hence A ≤ Cl* (Int (A)) by using Definition 1 c) 
This shows that A is fuzzy semi-I-open. 
 
Remark 10. The converse of Theorem 4  need not be 
true as shown by the following example. 
 
Example 23. In Example 6. B is fuzzy semi-I-open set 
but not fuzzy ABI -set. 
 
 
By using Diagrams I and V  with Remarks 8 ,9,10 and 
Theorem 5 we have the following diagram: 
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              fuzzy open set                             fuzzy AI -set  

                                                                                                                  fuzzy I-local closed set 

fuzzy pre-I-open set                  fuzzy α-I-open set                              fuzzy ABI -set 

   

                                    fuzzy semi-I-open set                                             fuzzy BI -set 

    

                                                              Diagram VI 

Theorem 6. For a fuzzy subset A of a fuzzy ideal 
topological space (X, τ, I ),the following properties are 
equivalent: 
a) A is a fuzzy open set, 
b) A is a fuzzy α-I-open set and a fuzzy ABI -set, 
c) A is a fuzzy pre-I-open set and a fuzzy ABI -set. 

Proof. We prove only the implication c) ⇒  a), the 
other implications 
a) ⇒  b) and b) ⇒  c) being obvious from Diagram 
VI. 
c) ⇒  a). Let A be a fuzzy pre-I-open set and a fuzzy 
ABI -set. Then, since A is 
a fuzzy pre-I-open set, we have A≤ Int(Cl*(A)). 
Furthermore, because A is a fuzzy ABI -set, we have A 
= U ∧V , where U is fuzzy open and V is a fuzzy 
semi-I-regular set. Since Cl* is a fuzzy Kuratowski 
closure operation,  
                   A≤ Int(Cl*(A)) = Int(Cl*(U ∧V )) ≤ 
Int(Cl*(U) ∧  Cl*(V ))  
                                                  = Int(Cl*(U))  ∧  
Int(Cl*(V))   
and hence 
                   A≤ Int(Cl*(U)) ∧  Int(Cl*(V))    (1.5) 
 
Additionally, since V is a fuzzy semi-I-regular set, V is 
also a fuzzy t-I-set. Thus,                   Int (V ) = 
Int(Cl*(V)). Using this in (1.5), we have 
A≤ Int(Cl*(U))  ∧  Int(Cl*(V))= Int(Cl*(U))  ∧  Int (V 
). 
Therefore, we obtain that A≤ Int(Cl*(U))  ∧  Int (V ). 
Besides, because 
A≤ U, we have 
            A = U∧A ≤ U∧  [ Int(Cl*(U)) ∧  Int (V )] 
                = [U∧  Int(Cl*(U)) ] ∧ Int (V ) = U∧ Int (V 
) 
and A ≤ U∧ Int (V ). Since U is an fuzzy open set, we 
have  
                   A ≤ U∧ Int (V )=Int (U∧V ) = Int (A). 
Thus A ∈ τ . 
 

6. DECOMPOSITIONS OF FUZZY REGULAR-I-
CONTINUITY 
We give some decompositions of fuzzy regular-I- 
continuity and some examples for those continuity in 
any ideal fuzzy topological spaces. 

 

Definition 7. A function f : (X, τ, I ) → (Y,  Ψ) is said 
to be fuzzy *-perfectly continuous (resp. fuzzy semi-I-
regular continuous, fuzzy semi-I-continuous [13], 
FRIC-continuous , fuzzy contra*-continuous) if for 
every V∈ Ψ, f  -1(V) is fuzzy *-perfect (resp. fuzzy 
semi-I-regular, fuzzy semi-I-open, fuzzy regular-I-
closed, fuzzy τ*-closed ) set of (X, τ, I ). 
 
Theorem 7. For a function f : (X, τ, I ) → (Y,  Ψ) the 
following statements hold: 
 

a) Every FRIC-continuous is fuzzy *-perfectly 
continuous, 

b) Every FRIC-continuous is fuzzy semi-I-
regular continuous, 

c) Every fuzzy *-perfectly continuous is fuzzy 
contra*-continuous, 

d) Every  fuzzy semi-I-regular continuous is 
fuzzy semi-I-continuous. 

 
Proof. This follows from Theorem1 , Theorem 2 and 
Definition 7. 
 
Remark 11. The converses of  Theorem 7.  need not be 
true as shown in the following examples. 
 
Example 24. Let X={a, b, c},Y={x, y, z} and A, B be 
fuzzy subsets defined as follows: 
                                     A(a)=0.7 A(b)=0.4 A(c)=0.8 
                                     B(x)=0.3 B(y)=0.6 B(z)=0,2 
Let τ={0X,1,A}, Ψ ={0Y,1Y,B} and I={0 X }. Then the 
function f : (X, τ, I ) → (Y,  Ψ) defined by ƒ(a)=x, 
ƒ(b)=y and ƒ(c)=z then  f is fuzzy *-perfectly 
continuous but not FRIC-continuous. 
 
Example 25. Let X={a, b, c},Y={x, y, z} and A, B be 
fuzzy subsets defined as follows: 
                                  A(a)=0.1 A(b)=0.4 A(c)=0.3 
                                  B(x)=0.3 B(y)=0.5 B(z)=0,2 
Let τ={0X,1X,A}, Ψ ={0Y,1Y,B} and I={0 X }. Then the 
function f : (X, τ, I ) → (Y,  Ψ) defined by ƒ(a)=x, 
ƒ(b)=y and ƒ(c)=z then  f is fuzzy semi-I-regular 
continuous  but not FRIC-continuous. 
 
Example 26. Let X={a, b, c},Y={x, y, z} and A, B be 
fuzzy subsets defined as follows: 
                                  A(a)=0.8 A(b)=0.2 A(c)=0.4 
                                  B(x)=0.9 B(y)=0.4 B(z)=0,7 
Let τ={0X,1X,A}, Ψ ={0Y,1Y,B} and I={0 X }. Then the 
function f : (X, τ, I ) → (Y,  Ψ) defined by ƒ(a)=x, 
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ƒ(b)=y and ƒ(c)=z then  f is fuzzy contra*-continuous  
but not fuzzy *-perfectly continuous. 
 
Example 27. Let X={a, b, c},Y={x, y, z} and A, B be 
fuzzy subsets defined as follows: 
                                  A(a)=0.2 A(b)=0.7 A(c)=0.1 
                                  B(x)=0.6 B(y)=0.8 B(z)=0,3 
Let τ={0X,1X,A}, Ψ ={0Y,1Y,B} and I={0 X }. Then the 
function f : (X, τ, I ) → (Y,  Ψ) defined by ƒ(a)=x, 

ƒ(b)=y and ƒ(c)=z then  f is fuzzy semi-I-continuous but 
not fuzzy semi-I-regular continuous. 
 
 We have the following diagram using Diagram IV and 
Theorem 7 and Remark 11: 

 

 

 

FRIC-continuous                             fuzzy *-perfectly continuous 

                                                                                                                  

fuzzy semi-I-regular continuous             fuzzy contra*-continuous  

 

fuzzy semi-I- continuous                                      

 

fuzzy continuous                     fuzzy α -I-continuous                  fuzzy pre-I-continuous 

                                                                Diagram VII  

7. DECOMPOSITIONS OF FUZZY AI -
CONTINUITY 
We give some decompositions of fuzzy AI- continuity 
and some diagram for those continuity in any ideal 
fuzzy topological spaces. 

 
Theorem 8. For a fuzzy  subset A of a fuzzy ideal 
topological space (X, τ, I ),the following property holds: 
A is a fuzzy AI -set if and only if A is a fuzzy semi-I-
open set and a fuzzy I-local closed set. 
 
Proof. This is obvious from Definition 5 and Theorem 
2. 
 
Definition 8. A function f : (X, τ, I ) → (Y,  Ψ) is said 
to be fuzzy AI -continuous (resp. fuzzy ABI -
continuous, fuzzy I-LC-continuous ,fuzzy BI -
continuous ) if for every V ∈ Ψ, f  -1(V)  is fuzzy AI -set 
(resp. fuzzy ABI -set, fuzzy I-local closed set, fuzzy BI -
set) of (X, τ, I )  

 
Theorem 9. For a function f : (X, τ, I ) → (Y,  Ψ), the 
following properties hold: 
 
a) If f is fuzzy continuous, then f is fuzzy ABI -
continuous; 
b) If f is fuzzy semi-I-regular continuous, then f is fuzzy 
ABI -continuous; 
c) If  f is fuzzy ABI -continuous, then f is fuzzy BI -
continuous; 
d) If  f is fuzzy AI -continuous, then f is fuzzy ABI -
continuous. 
 
Proof. The proof is obvious from Theorem 4 . 
 
 
We have the following diagram using Diagram VI , 
Definition 8 and Theorem 9: 
 

 
                    fuzzy continuous                             fuzzy AI -continuous  

                                                                                                                 fuzzy I-LC-continuous 

fuzzy pre-I-continuous             fuzzy α-I-continuous         fuzzy ABI -continuous 

   

                                    fuzzy semi-I-continuous                                      fuzzy BI -continuous 

 
                                                           Diagram VIII 
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Theorem 10. For a function f : (X, τ, I ) → (Y,  Ψ), the 
following properties are equivalent:  
a) f is fuzzy continuous; 
b) f is fuzzy α-I-continuous and fuzzy ABI –continuous; 
c) f is fuzzy pre-I-continuous and fuzzy ABI -
continuous. 
 
Proof. This is an immediate consequence of Theorem 6. 
  
Theorem 11. For a function f : (X, τ, I ) → (Y,  Ψ), the 
following property holds: f is fuzzy AI -continuous if 
and only if f is fuzzy semi-I-continuous and fuzzy I-LC-
continuous. 
 
Proof. This is an immediate consequence of Theorem 8.  
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