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Abstract
For a commutative ring R with unity, the R-algebra of strictly upper triangular n × n
matrices over R is denoted by Nn (R), where n is a positive integer greater than 1. For the
identity matrix I, α ∈ R, A ∈ Nn(R), the set of all elements αI +A is defined as the scalar
upper triangular matrix algebra STn(R) which is a subalgebra of the upper triangular
matrices Tn(R). In this paper, we investigate the R-algebra automorphisms of STn (R) .
We extend the automorphisms of Nn (R) to STn (R) and classify all the automorphisms of
STn (R) . We generalize the results of Cao and Wang and prove that not all automorphisms
of STn (R) can be extended to the automorphisms of Tn(R).
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1. Introduction
Kezlan [3] proved that: “If R is a commutative ring with unity, then every R-algebra

automorphism of the algebra of upper triangular n×n matrices over R is inner ”. Coelho [2]
extended Kezlan’s result for any ring R. Cao and Wang [1] classified all the automorphisms
of strictly upper triangular matrix algebras over a commutative ring R. In this work, we
would like to generalize these results and determine how such central automorphisms exist
on STn (R) but not on Tn(R).

Let R be a commutative ring with unity and Nn (R) be the algebra of all n × n strictly
upper triangular matrices over R, where n is a positive integer greater than 1.

Define STn (R) with unity matrix I,

STn (R) = {αI + A : α ∈ R, A ∈ Nn (R)} .

If X ∈ STn (R), we may write X = αI + A = αI +
∑
i<j

aijEij where α ∈ R and

A ∈ Nn (R). STn (R) is a subalgebra of Tn (R) and let us call the scalar upper triangular
matrix algebra. The standard matrix units are the matrices Eij with a 1 at (i, j) position
and zero elsewhere. Clearly, the set of matrices {Eij : 1 ≤ i < j ≤ n} form a basis of
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Nn (R). For n ≥ 4, consider c = (c2, . . . , cn−2) ∈ Rn−3. Y.Cao and J. Wang [1] defined
the central automorphisms of Nn(R), µc : Nn(R) → Nn(R) such that for any A ∈ Nn(R)

µc (A) = A +
(

n−2∑
k=2

ak,k+1ck

)
E1n.

With respect to the basis of Nn(R), automorphisms can be written as:

µc(Ei,i+1) = Ei,i+1 + ciE1n

for 2 ≤ i ≤ n − 2 and
µc(Eij) = Eij

for j ̸= i + 1. For any matrix X ∈ STn(R), let S1, S2, ..., Sn−1 define the diagonals of
X = αI +

∑
i<j

aijEij as follows:

S1 = {a12, a23, . . . , an−1,n} ,

S2 = {a13, a24, . . . , an−2,n} ,

...
Sn−1 = {a1n} .

2. Automorphisms of STn(R)
There are no invertible elements in Nn (R), hence one cannot define an inner auto-

morphism by the usual terminology. For a fixed matrix X ∈ Tn (R) with 1 on the main
diagonal, the map Θ(Y ) = XY X−1 is an inner automorphism [1]. The restriction of Θ on
Nn (R) is also an automorphism of Nn(R).

Moreover, we define the inner automorphism θ on STn (R), with a given invertible
matrix B ∈ Tn (R) and for any A ∈ STn (R) as

θ(A) = BAB−1.
In this section, we are going to classify the automorphisms of STn (R). We first inves-

tigate the central automorphisms of STn(R) in the classification. It is not difficult to see
that, for n ≥ 4,

µc : STn(R) → STn(R)

is an automorphism of STn(R). To avoid the details of a tedious proof, we use Kezlan’s
[3] notation. Let

θ : Tn(R) −→ Tn(R)

be an R-algebra automorphism of Tn (R). Define

θ (Ekk) =
[
e

(k)
ij

]
for k = 1, 2, . . . , n

θ (Ek,k+1) =
[
a

(k)
ij

]
for k = 1, 2, . . . , n − 1.

The results in [3] show that a
(k)
k,k+1 is a unit with a

(k)
k,k = 0, e

(k)
k,k = 1 and e

(q)
k,k = 0 for q ̸= k.

Remark 2.1. In terms of the image of matrix units under θ, it is shown that, kth diagonal
entry of θ(Ekk) is 1, while the other diagonal entries are 0. That is θ(Ekk) is in the form
θ(Ekk) = Ekk + Jk where Jk is strictly upper triangular. For k = 1, · · · , n we use the fact
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that θ(Ekk) is the idempotent, that is θ(Ekk) = θ(Ekk)θ(Ekk). Thus as a consequence of
[3], θ(Ekk) has the following form:

θ(Ekk) =



0 · · · 0 e
(k)
1,k ∗ . ∗

... · · ·
...

... . . .

0 · · · 0 e
(k)
k−1,k ∗ . ∗

0 · · · 0 1 e
(k)
k,k+1 . e

(k)
k,n

0 · · · 0 0 0 . 0
...

...
...

...
...

...
...

0 . 0 0 0 . 0


. (2.1)

The following proposition gives us the property of θ(Ekk) =
[
e

(k)
ij

]
.

Proposition 2.2. Assume that θ(Ekk) =
[
e

(k)
ij

]
for k = 1, . . . , n. If i < j then for i =

1, . . . , n − 1
j∑

k=i

e
(k)
ij = 0.

Proof. It was shown in [3] that

e
(p)
kk =

{
1 if p = k
0 if p ̸= k.

Consider
(
e

(1)
ij , e

(2)
ij , . . . , e

(r)
ij

)
as an r-tuple and define r-tuple sum as e

(1)
ij +e

(2)
ij + . . .+e

(r)
ij .

To use induction on r, we start with the case r = 2. Using the multiplication of matrix
units Epp and Ep+1,p+1 we get

EppEp+1,p+1 = 0.

Since θ(0) = 0, in our notation this result can be viewed as:[
e

(p)
ij

] [
e

(p+1)
ij

]
= 0.

For p = 1, ..., n − 1, (
e

(p)
p,p+1 + e

(p+1)
p,p+1

)
Ep,p+1 = 0.

Then we obtain e
(p)
p,p+1 + e

(p+1)
p,p+1 = 0 for all 2-tuples. Assume our claim is true for the sum

of (r − 1)-tuples. That is
p+r−2∑

i=p

e
(i)
p,p+r−2 = 0 for p = 1, . . . , (n − r) + 2.

Use induction on p. For p = 1,

e
(1)
1r + e

(2)
1r + . . . + e

(r−1)
1r + e

(r)
1r = 0.

Now consider each case for t = 1, . . . , (r − 1). We know that EttErr = 0. Apply the
automorphism θ to EttErr, we get

θ(EttErr) = 0.

For t = 1, . . . , (r − 1) the following terms can be obtained. If t = 1,(
e

(1)
1r + e

(r)
1r +

r−1∑
i=2

e
(1)
1i e

(r)
ir

)
E1r = 0.
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For 1 < t ≤ r − 1, (
e

(t)
1r +

r−1∑
i=2

e
(t)
1i e

(r)
ir

)
E1r = 0.

By using the sum
θ(E11Err + E22Err + . . . + E(r−1),(r−1)Err) = 0,

we get

e
(1)
1r + e

(2)
1r + ... + e

(r−1)
1r + e

(r)
1r +

r−1∑
j=2

(
r−1∑
i=1

e
(i)
1j e

(r)
jr

)
= 0.

By the assumption we have, for j = 2, ..., r − 1, that
r−1∑
j=2

(
r−1∑
i=1

e
(i)
1j e

(r)
jr

)
= 0.

Also the calculations on θ(Eii), in (2.1), can be used to deduce the result,

e
(1)
1r + e

(2)
1r + . . . + e

(r−1)
1r + e

(r)
1r = 0.

Assume that our assumption is true for p = q, that is

e
(q)
q,q+r−1 + e

(q+1)
q,q+r−1 + . . . + e

(q+r−2)
q,q+r−1 + e

(q+r−1)
q,q+r−1 = 0.

Now consider the case p = q + 1. We want to prove that

e
(q+1)
q+1,q+r + e

(q+2)
q+1,q+r + . . . + e

(q+r−1)
q+1,q+r + e

(q+r)
q+1,q+r = 0.

Apply the automorphism θ to EttEq+1,q+1 for t = 1, . . . , q we get

θ(EttEq+1,q+1) = 0.

For t = q + 1, e
(q+1)
q+1,q+r + e

(q+r)
q+1,q+r +

q+r−1∑
i=q+2

e
(q+1)
q+1,i e

(q+r)
i,q+r

Eq+1,q+r = 0.

For q + 1 < t < q + r, e
(t)
q+1,q+r +

q+r−1∑
i=t

e
(t)
q+1,ie

(q+r)
i,q+r

Eq+1,q+r = 0.

Consider the following sum:

θ(Eq+1,q+1Eq+r,q+r + Eq+2,q+2Eq+r,q+r + . . . + Eq+r−1,q+r−1Eq+r,q+r) = 0,

then we have

e
(q+1)
q+1,q+r + e

(q+2)
q+1,q+r + . . . + e

(q+r−1)
q+1,q+r + e

(q+r)
q+1,q+r +

q+r−1∑
j=q+2

q+r−1∑
i=q+1

e
(i)
q+1,je

(q+r)
j,q+r

 = 0.

By the assumption we have
q+r−1∑
j=q+2

q+r−1∑
i=q+1

e
(i)
q+1,je

(q+r)
j,q+r

 = 0

and this implies

e
(q)
q,q+r−1 + e

(q+1)
q,q+r−1 + . . . + e

(q+r−2)
q,q+r−1 + e

(q+r−1)
q,q+r−1 = 0.

Thus the proof is completed. �
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Lemma 2.3. Let R be a commutative ring with identity and θ be an R-algebra automor-
phism of STn (R) . If n = 2, 3 then θ is an inner automorphism ηD for some D ∈ Tn(R).

Proof. For the automorphism θ : STn (R) → STn (R) as given in Remark 2.1, let

θ (Ekk) =
[
e

(k)
ij

]
for k = 1, 2, . . . , n

θ (Ek,k+1) =
[
a

(k)
ij

]
for k = 1, 2, . . . , n − 1.

Recall that all the diagonal entries a
(k)
ii of θ (Ek,k+1) are zero and

e(p)
qq =

{
1 if p = q
0 otherwise.

Also a
(1)
12 , a

(2)
23 , . . . , a

(n−1)
n−1,n are all units.

For n = 2, consider A ∈ STn (R) where

A =
[
α b
0 α

]
for α, b ∈ R. Every matrix A ∈ ST2 (R) can be written as linear combination of matrix
units. That is,

A = αE11 + bE12 + αE22.

Applying θ to A, we get

θ (A) = αθ (E11) + bθ (E12) + αθ (E22).

By using the notation of Remark 2.1,

θ (αE11) =
(

α αe
(1)
12

0 0

)

θ (bE12) =
(

0 ba
(1)
12

0 0

)

θ (αE22) =
(

0 αe
(1)
12

0 α

)
.

As a result,

θ (A) =
[
α αe

(1)
12 + ba

(1)
12 + αe

(2)
12

0 α

]
for some invertible element a

(1)
12 ∈ R. By Proposition 2.2, we have that e

(1)
12 + e

(2)
12 = 0 and

θ (A) =
[
α ba

(1)
12

0 α

]

for some invertible element a
(1)
12 ∈ R. Choosing D =

[1 0
0
(
a

(1)
12

)−1

]
∈ T2 (R) , we can

obtain that

θ (A) = DAD−1

which means that all the automorphisms of ST2 (R) are inner.
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For the case n = 3, we proceed with the steps similar to the case n = 2 in order to
determine the invertible matrix B.

Let A =

α b c
0 α d
0 0 α

 ∈ STn (R) . By using matrix units, we get

θ (E11) =

 1 e
(1)
12 e

(1)
13

0 0 0
0 0 0



θ (E22) =

 0 e
(2)
12 e

(2)
13

0 1 e
(2)
23

0 0 0



θ (E33) =

 0 0 e
(3)
13

0 0 e
(3)
23

0 0 1



θ (E12) =

 0 a
(1)
12 a

(1)
13

0 0 0
0 0 0



θ (E23) =

 0 0 a
(2)
13

0 0 a
(2)
23

0 0 0


and we obtain

θ (A) =

α ba
(1)
12 ca

(1)
12 a

(1)
23 + ba

(1)
13 + da

(2)
13 + α

(
e

(1)
13 + e

(2)
13 + e

(3)
13

)
0 α da

(2)
23

0 0 α

 .

Similarly, it can be deduced from Proposition 2.2,

e
(1)
13 + e

(2)
13 + e

(3)
13 = 0 ⇒ α

(
e

(1)
13 + e

(2)
13 + e

(3)
13

)
= 0.

Hence,

θ (A) =

α ba
(1)
12 ca

(1)
12 a

(1)
23 + ba

(1)
13 + da

(2)
13

0 α da
(2)
23

0 0 α

 .

It is now easy to define the invertible matrix B ∈ T3 (R) as,

B =


1 a

(1)
13

(
a

(1)
12 a

(2)
23

)−1
0

0
(
a

(1)
12

)−1
−a

(1)
13

(
a

(1)
12

)2 (
a

(2)
23

)−1

0 0
(
a

(1)
12

)−1 (
a

(2)
23

)−1


so that

θ (A) = ηB = BAB−1.

�

Now, we can state the main theorem of this paper.
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Theorem 2.4. Let θ be an R-algebra automorphism of STn (R) and R be a commutative
ring with identity. For n ≥ 4,

θ = ηDµcλP

where ηD, λP are inner automorphisms and µc is a central automorphism of STn (R).

Proof. First, apply θ to each Eii for i = 1, . . . , (n − 1). The S2 diagonal only contains
the elements e

(p)
i,i+1. Thus we obtain

i+1∑
p=i

e
(p)
i,i+1Ei,i+1 for p = 1, . . . , n − 1.

By Proposition 2.2, we can get
i+1∑
p=i

e
(p)
i,i+1 = 0.

A consequence of above sum allows us just to see the image of Ei,i+1 under θ. We examine

θ(Ei,i+1) = a
(i)
i,i+1Ei,i+1 for i = 1, . . . , n − 1,

We want to show that a
(k)
p,p+1 = 0 if k ̸= p. On the contrary, assume that a

(k)
p,p+1 ̸= 0 and

take k = 1 to get a contradiction. Apply θ to the equality Ep,p+1E23 = 0, we obtain
θ(Ep,p+1E23) = θ(Ep,p+1)θ(E23)[

a
(p)
ij

] [
a

(2)
ij

]
= 0.

Consider the term a
(p)
12 a

(2)
23 E13 on the left side of the above equality. Since a

(p)
12 a

(2)
23 = 0 and

a
(2)
23 is a unit by [3], then a

(p)
12 = 0. If k > 1, apply θ to the equality Ek,k+1Ep+1,p+2 to get[

a
(k)
ij

] [
a

(p+1)
ij

]
= 0.

Consider the term a
(k)
p,p+1a

(p+1)
p+1,p+2Ep,p+2 = 0 on the left side of the above equality. Since

a
(k)
p,p+1a

(p+1)
p+1,p+2 = 0 and a

(p+1)
p+1,p+2 is a unit then a

(k)
p,p+1 = 0 but, this is a contradiction. Now

defining the diagonal matrix D ∈ Tn(R) with diagonal entries from the set{
1, (a(1)

12 )−1, (a(1)
12 .a

(2)
23 )−1, . . . , (a(1)

12 .a
(2)
23 . . . an−1,n)−1

}
we have the following result on the

diagonal S2,
η−1

D θ(Ei,i+1) = Ei,i+1 for i = 1, . . . , n − 1.

We are going to use induction on t to prove that there exist inner automorphisms ηPt with
Pt ∈ Tn(R) and

η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1 for i = 1, . . . , n − 1 and t = 2, . . . , n − 1.

Assume that we have

η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1

for i = 1, . . . , n − 1, on the diagonals S1, . . . , St. What about on the diagonal St+1? Apply
θ to Eii, we can obtain the sum

t∑
p=i

e
(p)
i,i+tEi,i+t for i = 1, ..., n − t + 1.

By Proposition 2.2, we have
t∑

p=i
e

(p)
i,i+tEi,i+t = 0.
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Then we just consider the rest, that is:

η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1 +

n−t∑
j=1

b
(i)
j,iEj,j+t.

We want to show b
(i)
j,i = 0 if j ̸= i and j ̸= i − t + 1. Assume that b

(q)
p,q ̸= 0 with p ̸= q

with p ̸= q + 1 − t. If p < n − t then we apply η−1
Pt

η−1
D θ to Eq,q+1Ep+t,p+t+1, we get

η−1
Pt

η−1
D θ(Eq,,q+1Ep+t,p+t+1) = 0. Thus, we obtain the following results:Eq,q+1 +

n−t∑
j=1

b
(q)
j,q Ej,j+t

Ep+t,p+t+1 +
n−t∑
j=1

b
(p+t)
j,p+tEj,j+t

 = 0

and
b

(p+t)
q+1,p+tEq,p+t+1 + b(q)

p,qEp,p+t+1 = 0.

Hence b
(q)
pq = 0, we get a contradiction. If p = n − t then apply η−1

Pt
η−1

D θ to Ep−1,pEq,q+1
we get

η−1
X η−1

D θ(Ep−1,pEq,q+1) = 0
and

b(q)
pq Ep−1,p+t + b

(p−1)
q−t,p−1Eq−t,q+1 = 0.

Since b
(q)
pq = 0, we get a contradiction again. Hence, on the St+1 diagonal we have

η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1 + b

(i)
i−t+1,iEi−t+1,i+1 + b

(i)
i,i Ei,i+t.

However, we want to get η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1.

To prove this, we use induction again. Assume that there exists an inner automorphism
λGk−1such that on the St+1 diagonal:

λ−1
Gk−1

η−1
Pt

η−1
D θ(Ei,i+1) = Ei,i+1 for i = 1, . . . , k − 1,

and
λ−1

Gk−1
η−1

Pt
η−1

D θ(Ei,i+1) = Ei,i+1 + d
(i)
i−t+1,iEi−t+1,i+1 + d

(i)
i,i Ei,i+t for i = k, . . . , n − 1.

Setting Z = I + d
(k)
k−t+1,kEk−t+1,k − d

(k)
k,kEk,k+t and Gk = Gk−1Z then for 1 ≤ i < k we

have
λ−1

Gk
η−1

Pt
η−1

D θ(Ei,i+1) = Ei,i+1 + δi,k−td
(k)
k+1−t,kEi,k

on the St+1 diagonal. For i = k−t, applying λ−1
Gk−1

η−1
Pt

η−1
D θ to the equality Ek−t,k−t+1Ek,k+1 =

0, we obtain
d

(k)
k+1−t,kEk−t,k+1 = 0

on the diagonal St+1. Hence
d

(k)
k+1−t,k = 0.

We get
λ−1

Gk
η−1

Pt
η−1

D θ(Ek,k+1) = Ek,k+1

for i = 1, · · · , k. For i > k, as stated on [1], we have

λ−1
Gk

η−1
Pt

η−1
D θ(Ei,i+1) = Ek,k+1 + (d(i)

i−t+1,i+1 + δk+t,id
(k)
kk )Ei+1−t,i+1 + d

(i)
ii Ei,i+t.

Thus, there exists an inner automorphism λPn−1 of STn(R) such that

λ−1
Pn−1

η−1
D θ(Ei,i+1) = Ei,i+1

on the Sn−1 diagonal. We want to know what happens on the Sn diagonal. Assume that,
we have

λ−1
Pn−1

η−1
D θ(Ei,i+1) = Ei,i+1 + ciE1n for i = 1, . . . , n − 1
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on the Sn diagonal. If we apply λ−1
Pn−1

η−1
D θ to Eii, we get

(e(1)
1n + e

(2)
1n + . . . + e

(n−1)
1n )E1n.

By Proposition 2.2,
(
e

(1)
1n + e

(2)
1n + . . . + e

(n−1)
1n

)
= 0 and if we take

Z = I + cn−1E1,n−1 − c1E2n

as in [1], we get
λ−1

Z λ−1
pn−1η−1

D θ(Ei,i+1) = Ei,i+1 for i = 1, n − 1
and

λ−1
Z λ−1

Pn−1
η−1

D θ(Ei,i+1) = Ei,i+1 + ciE1n for i = 2, . . . , n − 2.

Setting c = (c2, . . . , cn−2), we get
µ−1

c λ−1
Z λ−1

pn−1η−1
D θ(Ei,i+1) = Ei,i+1 for i = 1, . . . , n.

So we have
µ−1

c λ−1
Z λ−1

pn−1η−1
D θ = 1.

Thus
θ = ηDµcλP ,

for some P ∈ Tn(R). �
Remark 2.5. Let Nn (R) be the strictly upper triangular matrix algebra over R, then

Aut (Nn (R)) ≃ Aut (STn (R)) .

Example 2.6. Let A ∈ ST4(R) be defined as


a b c d
0 a e f
0 0 a r
0 0 0 a

 .

We can check that θ : ST4(R) → ST4(R) defines an automorphism via

θ




a b c d
0 a e f
0 0 a r
0 0 0 a


 =


a b c d − 3e
0 a e f
0 0 a r
0 0 0 a

 .

But θ is not an inner automorphism. Notice that Aut (STn (R)) * Aut (Tn (R)) . Then all
the automorphisms of STn (R) cannot be extended to the automorphisms of Tn(R).
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