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Abstract

The wood material has strategic importance in economic development. Innovations are the basic premise of
commercial success in the wood industry, as in all industries. The density of wood provides valuable information
about the physical and mechanical properties of the wood, and it is also directly related to the productivity in the
forest industry. Many non-destructive test studies have been conducted to evaluate the physical properties of wood
structures. This study was conducted to predict the density of wood in the species of oak (Quercus robur) and
beech (Fagus orientalis L.) using the number of pixels in a grayscale image and data mining. To this purpose, pixel
density of data was processed with the data collected from the images of wood specimens. This data was used as
descriptor variables in artificial neural networks and random forest algorithm. The designed artificial neural
network model and random forest algorithm allowed the prediction of density with an accuracy of 95.19% and
96.36%, respectively for the testing phase. As a result, this study showed that pixel density and data mining have
the potential to be used as an instrument for predicting the density of wood.
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Odun Yogunlugu Tahmini i¢in Veri Madenciligi ve Piksel Dagilimi
Yaklagimi

Oz

Ahsap, ekonomik kalkinmada stratejik bir éneme sahiptir. Yenilikler, tiim endistrilerde oldugu gibi ahsap
endiistrisinde de ticari basarinin temelini olusturur. Ahsabin yogunlugu, ahsabin fiziksel ve mekanik 6zellikleri
hakkinda degerli bilgiler saglar ve ayrica orman endiistrisindeki verim ile de dogrudan ilgilidir. Ahsap yapilarin
fiziksel ozelliklerini degerlendirmek igin birgok tahribatsiz test ¢aligmalari yapilmistir. Bu galisma, gri tonlamali
goriintiideki piksel sayis1 ve veri madenciligini kullanarak mese (Quercus robur) ve kayin (Fagus orientalis L.)
agacmin yogunlugunu tahmin etmek i¢in yapildi. Bu amagla, ahsap goriintiilerden elde edilen piksel yogunlugu
verileri kaydedildi. Bu veriler yapay sinir aglari ve rastgele orman algoritmalarinda tanimlayici degiskenler olarak
kullanilmugtir. Tasarlanan yapay sinir ag1 ve rastgele orman algoritmalari, test agsamasinda sirasiyla % 95,19 ve
%96,36 dogrulukla yogunluk tahmini saglamistir. Sonug¢ olarak, bu ¢alisma piksel yogunlugunun ve veri
madenciliginin ahgsabin yogunlugunu ongérmede bir ara¢ olarak kullanilma potansiyeline sahip oldugunu
gostermistir.

Anahtar Kelimeler: Veri madenciligi, yapay sinir aglari, rastgele orman, dijital goriintiiler, odun
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1. Introduction

The potential that the wood industry offers for international economies cannot be underestimated. One of the most
important parameters for determining wood quality is density (Diaconu et al., 2016). Wood density is a significant
wood feature for both solid wood and fiber products in both conifers and hardwoods, and it affects the
performance of most wood products (Osborne et al., 2016; Zobel and Jett 1995). At the same time, it is related to
the cutting power requirement in woodworking machinery (Chuchala et al., 2014). There are several methods
currently used for the quality control of wood density.

Data mining has seen a rapid increase over the years and is being used successfully in various applications. Data
science techniques have the potential to benefit other scientific disciplines (Komi et al., 2017). Data mining is the
term that is used for methods of discovering hidden patterns and correlations through data to predict the outcomes
(Eskandarian et al., 2017). Presently, machine learning is used in many industries. Artificial neural network
(ANN) is a numerical model based on the structure and working features of biological neural networks (Simon
1999). The networks can discover the relationship between inputs and outputs (Lin and Lee 1996; Schinker et al.,
2003; Tiryaki et al., 2015; Rapidminer 2018). ANN can be used to evaluate data collected by optical, acoustic or
other sensors. The important piece of the study research explains the applications for the forecast of technological
and sensory aspects by means of different regression tools of ANN. (Lana et al., 2006; Foca et al., 2011). A typical
ANN consists of three consistent layers; input layer made of the independent factors, output layer represented by
the responses, and a hidden layer(s) in-between made of a certain number of nodes connecting the input layer to
the output layer (Tang et al., 2004; Youshia et al., 2017). As shown in Figure 1, the main components of an
artificial neuron are inputs, weights, summation function, activation function, and output.
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Figure 1. A typical multilayered ANN architecture. (S6zen et al., 2018; Tiryaki et al., 2015).

Random Forest (RF) is a group learning algorithm based on the concept of randomized decision trees. This
algorithm has great potential to solve real-world problems (Ao et al., 2019). Random forests models have
excellent classification and regression performance. There are two main parts of the theory related to random
forests models. The primary is the consistency of the models, i.e. whether they can converge to an optimal
resolution as the data set grows infinitely large. The second is the rate of convergence (Sun et al., 2018).

Many studies have shown that digital image processing is a very effective and reliable method for various usage
areas (Wuetal., 2012; Zor et al., 2016; Gogebakan and Erol 2018). Image analysis can be defined as the extraction
of meaningful information from images. A pixel is the basic logical unit in digital image (Wu and Zhang 2019).
Digital 8-bit gray images have the number of pixels at different each grayscale intensity. These pixels can have
values in the range of 0 to 255. The values provide information about how bright the image is. (Wang et al., 2019).
Bright pixel intensities are represented with high numerical values. 255 is the maximum value. Dark pixels are
represented with low values. 0 is the minimum value. Vision technology has existed in the forest product industry
since the early 1980s. The most research has been done in the development of automatic visual inspection methods
in the wood industry for the presence of defects, However, to the authors’ knowledge, studies on the prediction
of wood density are quite limited (Khalid et al., 2008). Digital image analysis has the potential to provide more
information for wood density measurements (Hryniewicz et al., 2015).
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In this paper, a novel method is proposed based on pixel distribution and data mining to predict the density of
wood. The results obtained demonstrated that Pixel Intensity, Number of Pixels give valuable information about
wood density.

2. Material and Methods

2.1. Materials

In this study, oak (Quercus robur) and beech (Fagus orientalis) wood were used at different densities. These
selected wood samples are frequently used in the forest industry. The moisture content of all samples was 12%.
Air dried samples were cut to nominal dimensions of 55 mm x 25 mm x 25 mm. The density of the wood materials
was calculated and recorded in accordance with the standard TS 2472.

2.2. Methods

2.2.1. Color Image acquisition and conversion to gray images

Digital images were recorded using LabVIEW Vision Builder Al (National Instruments Corporation, Austin,
USA). LabView is a graphical programming language that is produced by National Instruments (Luna-Moreno
et al., 2015). The software has many advantages, including the strong connection between the camera and the
computer (Shi et al., 2016; Wang et al., 2012). The camera used in the study had a resolution of 1624 px x 1234
px. A computer was connected to the camera with firewire (IEEE1394). All experiments were conducted on CPU
i7, 6GB RAM, 2TB Hard Disk Drive (HDD). RGB color images have red, green and blue color spaces. Each
color space is 8-bit. With Labivew software, red color space was extracted from color image and gray images at
8 bit depth were obtained. Figure 3 shows the color image and the gray image obtained from the color image with
the LabView software and its corresponding code.
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Figure 2 The gray image obtained from the color image.

2.2.2. Collecting pixel data from gray image

The total number of pixels in each grayscale value from gray wood images was recorded with the Labview
software. Figure 3 shows a graphical representation of the quantitative distribution of pixels per grayscale value
for a sample.
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Figure 3. Graphical representation of the quantitative distribution of pixels per grayscale value for a sample.

The data set was created in the number of pixels, pixels values, wood type and wood density obtained. Table 1
shows a part of the data set used in the study. The data set has 1 special attribute, 257 regular attributes. The
number of pixels with a value of 0 to 255 and wood type were considered the inputs of the models, while the
wood density was the output.

Table 1. A part of the data set used in the study.

Number of Wood Wood Th_e numl_)er of Th_e numper of _The nL_lmber of
samples density type pixels with a pixels with a pixels with a value
value of 0 value of 1 of 2
1 0,76 Oak 0 0 0
2 0,72 Oak 0 0 0
3 0,74 Oak 0 0 0
4 0,76 Oak 0 0 0
5 0,69 Oak 0 0 0
6 0,67 Beech 0 0 0
7 0,64 Beech 0 0 0
8 0,81 Beech 0 0 0
9 0,68 Beech 0 0 0
10 0,66 Beech 0 0 0

2.2.3. Models training

RapidMiner software (RapidMiner, Inc., Boston, USA) was used to interrogate the Pixel distribution dataset and
build an ANN and RF classifier for predicting the wood density. RapidMiner is a code free modern analytics
platform that includes predictive analytics. However, it is widely used in the world and consists of machine
learning algorithms (Yadav et al., 2015). This software is used to measure the predicting performance. The
number of pixels with a value of 0 to 255 and Wood type were considered the inputs of the ANN and RF models,
while the wood density was the output. The dataset consisted of a total 257 attributes and 480 instances. The
recorded data was divided into two parts: training (80%) and testing data (20%). RapidMiner is used with
operators and there is an operator for every need of data mining. Figure 4 shows RapidMiner operation for model
production (Random Forest and Artificial neural networks) with operators.
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Figure 4. RapidMiner operation for model production (Random Forest and Acrtificial neural networks) with
operators.

The parameters of the models are optimized with the rapidminer software. Figure 5 shows the process used for
optimization (Number of trees, maximal depth, hidden layers and training cycles).
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Figure 5 The process used for optimization.

To test model efficiency, the correlation, root mean squared error, absolute error, relative error, spearman rho and
kendall tau were calculated. Table 2 shows the parameters of the models.

Table 2. The parameters of the models.

Decision Tree

Artificial neural network

Number of trees

32

Hidden layers 2

Criterion

least square

Training cycles 200

maximal dept

h 19

Learning rate 0,01
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The average relative error (E;), root mean square error (RMSE) and are good indicator of the performance of a
particular model. The equations used for performance are shown below:

|0 — Al
Er = TXlOO (1)

(2)

In Equations (1-2), O is is the predicted values, A is the experimental values, ti is the experimental values, tdi is
the predicted values, N is the total number of samples, and is the average of predicted values.

3. Result and Discussion
3.1. Wood Density

The density values of the oak and beech wood are given in Table 3. Density values of the samples varied between
0.572 and 0.891 g/cm®,

Table 3. The density values of the oak and beech wood.

Wood Type Average (g/cm?®) Deviation Number of Samples
Oak 0,749 0,0534 240
Beech 0,704 0,0540 240

3.2. Artificial Neural Networks and Random Forest

In the present study, ANN and RF model were used to evaluate the prediction results for wood density. The error
between the experimental and predicted values of wood density for testing data are given in Table 4.

Table 4. the error between experimental and predicted values of wood density for testing data.

Sample Wood ANN Prediction RF Prediction | Error (%) | Error (%)

number | density (Wood density) (Wood density) ANN RF
1 0,762 0,744 0,703 2,30 7,67
2 0,791 0,796 0,778 -0,63 1,64
3 0,714 0,730 0,730 -2,25 -2,25
4 0,741 0,754 0,735 -1,70 0,81
5 0,771 0,879 0,766 -13,94 0,72
6 0,750 0,759 0,758 -1,17 -1,08
7 0,768 0,760 0,768 1,05 0,00
8 0,700 0,753 0,710 -7,55 -1,36
9 0,728 0,726 0,748 0,32 -2,69
10 0,681 0,643 0,700 5,57 -2,85
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Table 3 continues

11 0,721 0,745 0,738 -3,26 241
12 0,821 0,789 0,775 3,89 5,64
13 0,710 0,768 0,758 -8,16 -6,83
14 0,700 0,722 0,710 -3,14 -1,36
15 0,801 0,840 0,811 -4,92 -1,28
16 0,732 0,752 0,726 -2,75 0,78
17 0,648 0,733 0,761 -13,15 -17,48
18 0,724 0,741 0,759 -2,37 -4,94
19 0,689 0,722 0,701 -4,74 -1,73
20 0,691 0,700 0,687 -1,24 0,62
21 0,686 0,701 0,694 -2,25 -1,23
22 0,768 0,727 0,722 5,29 6,03
23 0,765 0,724 0,702 5,29 8,16
24 0,725 0,742 0,714 -2,33 1,54
25 0,603 0,684 0,667 -13,40 -10,57
26 0,712 0,689 0,670 3,30 5,93
27 0,711 0,661 0,675 7,06 5,10
28 0,680 0,616 0,648 9,38 4,61
29 0,639 0,704 0,703 -10,22 -10,05
30 0,608 0,695 0,658 -14,30 -8,17
31 0,608 0,665 0,638 -9,30 -4,93
32 0,675 0,710 0,697 -5,16 -3,22
33 0,733 0,720 0,720 1,71 1,75
34 0,698 0,714 0,708 -2,36 -1,50
35 0,713 0,721 0,713 -1,07 -0,01
36 0,779 0,753 0,745 3,29 4,38
37 0,768 0,774 0,770 -0,81 -0,23
38 0,794 0,754 0,770 5,00 2,98
39 0,723 0,723 0,719 0,01 0,51
40 0,692 0,666 0,664 3,77 4,02
41 0,672 0,652 0,650 3,05 3,28
42 0,712 0,760 0,750 -6,76 -5,37
43 0,754 0,741 0,745 1,62 113
44 0,759 0,746 0,753 1,77 0,78
45 0,757 0,780 0,763 -3,12 -0,81
46 0,754 0,755 0,751 -0,22 0,32
47 0,759 0,748 0,760 1,32 -0,20
48 0,750 0,768 0,777 -2,48 -3,69
49 0,779 0,790 0,785 -1,37 -0,74
50 0,649 0,633 0,665 2,46 -2,49
51 0,800 0,781 0,798 2,38 0,30
52 0,820 0,791 0,791 3,63 3,60
53 0,775 0,764 0,772 1,39 0,32
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Table 3 continues

54 0,767 0,767 0,762 0,10 0,63
55 0,739 0,752 0,750 -1,74 -1,37
56 0,710 0,743 0,718 -4,63 -1,14
57 0,625 0,742 0,707 -18,66 -13,02
58 0,718 0,719 0,707 -0,17 1,50
59 0,789 0,726 0,743 8,05 5,84
60 0,779 0,799 0,770 -2,60 1,15
61 0,760 0,722 0,733 4,97 3,57
62 0,813 0,734 0,710 9,70 12,64
63 0,610 0,714 0,660 -17,12 -8,30
64 0,658 0,704 0,691 -7,04 -5,03
65 0,693 0,720 0,712 -3,91 -2,68
66 0,703 0,677 0,673 3,66 4,24
67 0,696 0,720 0,720 -3,51 -3,43
68 0,751 0,720 0,689 4,20 8,29
69 0,621 0,721 0,656 -16,11 -5,76
70 0,603 0,697 0,654 -15,61 -8,57
71 0,772 0,718 0,688 7,07 10,99
72 0,677 0,598 0,655 11,68 3,16
73 0,711 0,646 0,712 9,08 -0,10
74 0,750 0,746 0,730 0,53 2,72
75 0,757 0,743 0,735 1,93 2,95
76 0,772 0,751 0,739 2,77 4,25
77 0,781 0,786 0,755 -0,62 3,27
78 0,654 0,752 0,643 -15,04 1,62
79 0,763 0,755 0,744 1,09 2,46
80 0,708 0,733 0,754 -3,64 -6,57
81 0,722 0,744 0,700 -3,00 2,99
82 0,701 0,756 0,724 -7,90 -3,37
83 0,726 0,745 0,735 -2,50 -1,20
84 0,789 0,761 0,741 3,55 6,03
85 0,784 0,789 0,748 -0,54 4,67
86 0,774 0,784 0,765 -1,31 1,22
87 0,747 0,746 0,750 0,15 -0,30
88 0,797 0,732 0,765 8,27 4,01
89 0,776 0,796 0,766 -2,52 1,27
20 0,675 0,720 0,695 -6,60 -2,95
91 0,674 0,667 0,670 1,00 0,53
92 0,760 0,698 0,709 8,08 6,75
93 0,722 0,677 0,668 6,27 7,43
94 0,731 0,722 0,716 1,21 2,04
95 0,748 0,721 0,729 3,65 2,55
96 0,656 0,714 0,685 -8,93 -4,50
Auverage error: % 4,81 % 3,64
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Figure 6 shows the relationship between the experimental and predicted wood densities for training.
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Figure 6. The relationship between experimental and predicted wood density for training
Various performance measures related to the ANN and RF model have shown in Table 5.

Table 5. Various Performance Measures Related ANN and RF Model

Test The Root mean Absolute Relative  Spearman  Kendall
Model .
Type  correlation  squared error error error rho tau
ANN Testing 0.617 0.044 0.034 4.81% 0.706 0.519
Training 0.686 0.047 0.036 5.05% 0.695 0.506
RE Testing 0.761 0.034 0.026 3.64% 0.755 0.581
Training 0.976 0.015 0.011 1.58% 0.972 0.862

Consequently, a satisfactory prediction profile was obtained with the correlation of determination (R), which the
R > 0.7 value for a predictable the RF model. The ANN model had a lower correlation rate (R =0.617) for testing.
The accuracy of RF and ANN model were respectively 96,36% and 95.19% for testing. According to the
literature, these results were successful (Wadie et al., 2006). There were correlations between wood density and
wood anatomy (Pritzkow et al., 2014). It is reported that, in general, most wood with a higher density is likely to
have a darker color with a reddish hue, while most species with a lower density is likely to have a lighter color
with a yellowish hue (Rojas and Martina 1996; Nishino et al., 1998; Janin et al., 2001; Masanori and Nakano
2004; Montes et al., 2007). This can be explained by the relationship between color and genetic variation (Montes
et al., 2007). The results of this study coincide with the results of the literature.

4. Conclusion

1. The modern research in data mining on digital image issues is in a continuous evolving stage. The contribution
of this study lied in the development of ANN and RF model to predict the wood density based on Pixel
distribution and data mining.

2. According to the obtained results, the presented study was promising for estimates. The RF model performed
with an accuracy of 96.36% for testing phase and 98.42% for training. The ANN model performed with an
accuracy of 95.19% for testing phase and 94.95% for training.

3. Density is an effect on efficiency and quality in wood products. For example, density is related to pulp yield
and timber strength. The determination of the required results by experiment is time-consuming. The method
suggested in the study can be considered as a rapid and alternative way.
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4. Data mining and image analysis can be used for quality control in the forest industry. However, further
research is needed in this regard.
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