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Abstract
In this study, we investigate how to construct surfaces using a line of curvature in a 3-
dimensional Lie group. Then, by utilizing the Frenet frame, we give the conditions that
a curve becomes a line of curvature on a surface when the marching-scale functions are
more general expressions. After then, we provide some crucial examples of how efficient
our method is on these surfaces.
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1. Introduction
A line of curvature is one of the important characteristic curves on a surface and has

been a long standing research focus in differential geometry. A line of curvature on a
surface is a curve on a surface whose tangent at each point is the principal direction of
the surface.

Traditionally, most of the studies for a line of curvature deal with finding and computing
them. Also, the researches on the line of curvature are determined by three forms as the
representations of the surface, that is, parametric form, implicit form and discrete sampling
form [8]. In [6,8] Li et al. studied the method of how to establish parametric surfaces using
a line of curvature. Also, Ergun et al. [5] gave a parametric surface family using a spacelike
(timelike) line of curvature in Minkowski space. In [10], the authors described a method to
extract the generic features of free form parametric surfaces for shape interrogation. Che
and Paul [1] studied an approach to analyze and compute the lines of curvature and their
differential geometry defined on implicit surfaces. Also, in [13] authors presented a scheme
for computing and visualizing the lines of curvature defined on the implicit surface. On the
other hand, many geometers considered recently the reverse problems of the traditional
research mentioned above. The basic idea of the reverse problems is to regard the wanted
surfaces as an extension from the given line of curvature, and represented it in terms of
some functions and the Frenet frame of a spatial curve. Li et al. [6] introduced firstly
the method of how to construct surfaces passing through a line of curvature and gave
interesting examples in Euclidean space. In [7], the authors proposed a new method to
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construct a developable surface with a given curve as the line of curvature of it. After, in
[5,9] authors gave the necessary and sufficient conditions for the given non-null curve to be
the line of curvature on a spacelike or timelike surface in Minkowski space and investigated
the problem of constructing a surface from a given non-null line of curvature.

In this study, we improve the method of Li et al. [6,8] to get parametric surfaces using
a line of curvature in a Lie group. We also consider marching-scale functions as more
general expressions and derive the conditions that the given curve becomes a common line
of curvature on the surface. We furthermore investigate some representative curves that
are given to show the parametric surfaces possessing these curves as lines of curvature.

2. Preliminaries
Let G be a Lie group with a bi-invariant metric ⟨, ⟩ and g denote the Lie algebra of G.

Denote by D the corresponding Levi-Civita connection of G. Then g is isomorphic to TeG,
where e is the identity (the neutral element) of G. For the bi-invariant metric ⟨, ⟩ on G,
thus we get

⟨X, [Y, Z]⟩ = ⟨[X,Y ], Z⟩ (2.1)
and

DXY = 1
2

[X,Y ], (2.2)
for all X,Y, Z ∈ g. Let r : I ⊂ R → G be a curve parametrized by the arc-length s and
{X1, X2, ..., Xn} be an orthonormal basis of g. We can express any two vector fields V
and W along r as V =

n∑
i=1

viXi and W =
n∑

i=1
wiXi, where vi : I → R and wi : I → R are

smooth functions. Also, the Lie bracket of V and W is written by

[V,W ] =
n∑

i,j=1
viwj [Xi, Xj ]. (2.3)

T = r′, where r′ = dr
ds , and W ′ =

n∑
i=1

w′
iXi, where w′

i = dwi

ds
. Then we get

Dr′W = W ′ + 1
2

[T,W ]. (2.4)
Let α : I ⊂ R → G be a curve in a 3-dimensional Lie group G with the Frenet frame
{T,N,B}. Then the Frenet formulas are written by

DTT = k1N, DTN = −k1T + k2B, DTB = −k2N,

where T = α′, k1 = ∥DTT∥ = ∥T ′∥ and k2 are the curvatures of α in G.
Also, a smooth function k2(s) is defined by [2, 12]:

k2 = 1
2

⟨T, [N,B]⟩ . (2.5)

Proposition 2.1. (cf. [12]) Let α : I ⊂ R → G be a curve parametrized by the arc-length
s in a 3-dimensional Lie group G. Then, the following relations hold:

[T,N ] = ⟨[T,N ], B⟩B = 2k2B,

[B, T ] = ⟨[B, T ], N⟩N = 2k2N,

[N,B] = ⟨[N,B], T ⟩T = 2k2T.

Remark 2.2. Let G be a 3-dimensional Lie group with a bi-invariant metric. Then it
is one of the Lie groups SO(3), S3 or a commutative group and the following statements
hold ([2, 4]):

(i) If G is SO(3), then k̄2(s) = 1
2 .

(ii) If G is S3 ∼= SU(2), then k̄2(s) = 1.
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(iii) If G is a commutative group, then k̄2(s) = 0.

The normal vector η of the surface Ψ(s, t) is given by

η (s, t) = ∂Ψ (s, t)
∂s

× ∂Ψ (s, t)
∂t

.

3. General surface family with a line of curvature
In this section, we construct a surface family with a line of curvature in a 3-dimensional

Lie group G. We give the conditions for the given curve to be the line of curvature for
the parametric surface when the marching-scale functions are given by the three types of
expressions.

Let α(s) be a curve as defined on the Frenet frame {T,N,B}. Then we can give the
parametric form of a surface given by the curve α(s) as follows:

Ψ (s, t) = α(s)+x(s, t)T (s) + y(s, t)N(s) + z(s, t)B(s),
L1 ≤ s ≤ L2 and T1 ≤ t ≤ T2,

(3.1)

where x (s, t) , y (s, t) and z (s, t) are all C1 functions. These functions are said to be the
marching-scale functions.

A curve α(s) on the surface Ψ(s, t) in G is said to be isoparametric if the equations

x (s, t0) = y (s, t0) = z (s, t0) = 0,
L1 ≤ s ≤ L2 and t0 ∈ [T1, T2],

(3.2)

hold, where t0 is a parameter such that α(s) = Ψ(s, t0).
The next theorem is well known and useful:

Theorem 3.1. ([11]) A curve on a surface is a line of curvature if and only if the surface
normals along the curve form a developable surface.

Now, we show the conditions for α(s) being the line of curvature on Ψ (s, t).
Let the normal surface of α(s) be

Φ(s, t) = α(s) + tη1,

where η1 = cosϑN + sinϑB is a vector orthogonal to the curve α(s) and N,B are the
principal normal and the binormal of the curve α(s), respectively.

It is well known that the normal surface Φ(s, t) is developable if and only if det(α′, η1, η
′
1) =

0 [3]. Thus we obtain

det(α′, η1, η
′
1) = 0

⇐⇒
(
T, cosϑN + sinϑB,−k1 cosϑT − (ϑ′ sinϑ+ sinϑ(k2 − k2))N

+(ϑ′ cosϑ+ cosϑ(k2 − k2))B

)
= 0

⇐⇒ ϑ′ + (k2 − k2) = 0
⇐⇒ ϑ′ = −(k2 − k2)

⇐⇒ ϑ = −
∫ s

s0
(k2 − k2)ds+ ϑ0,

where s0 is the initial value of s and ϑ0 = ϑ(s0). Along this study, we suppose that s0 = 0.
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To compute the normal vector of Ψ(s, t), we obtain the followings:

∂Ψ (s, t)
∂s

=
(

1 + ∂x (s, t)
∂s

− y (s, t) k1(s)
)
T (s)

+
(
x (s, t) k1(s) + ∂y (s, t)

∂s
− z (s, t) (k2(s) − k2(s))

)
N (s)

+
(
∂z (s, t)
∂s

+ y (s, t) (k2(s) − k2(s))
)
B(s),

∂Ψ (s, t)
∂t

= ∂x (s, t)
∂t

T (s) + ∂y (s, t)
∂t

N (s) + ∂z (s, t)
∂t

B (s) ,

which implies the normal vector η of the surface Ψ(s, t) is given by

η (s, t) = ∂Ψ (s, t)
∂s

× ∂Ψ (s, t)
∂t

=
[(
x (s, t) k1(s) + ∂y (s, t)

∂s
− z (s, t) (k2(s) − k2(s))

)
∂z (s, t)
∂t

−
(
∂z (s, t)
∂s

+ y (s, t) (k2(s) − k2(s))
)
∂y (s, t)
∂t

]
T (s)

+
[
−
(

1 + ∂x (s, t)
∂s

− y (s, t) k1(s)
)
∂z (s, t)
∂t

+
(
∂z (s, t)
∂s

+ y (s, t) (k2(s) − k2(s))
)
∂x (s, t)
∂t

]
N (s)

+
[(

1 + ∂x (s, t)
∂s

− y (s, t) k1(s)
)
∂y (s, t)
∂t

−
(
x (s, t) k1(s) + ∂y (s, t)

∂s
− z (s, t) (k2(s) − k2(s))

)
∂x (s, t)
∂t

]
B (s) .

It follows that we have

η (s, t0) = ψ1 (s, t0)T (s) + ψ2 (s, t0)N (s) + ψ3 (s, t0)B (s) ,

where

ψ1 (s, t0) = ∂y (s, t)
∂s

∣∣∣∣
(s,t0)

∂z (s, t)
∂t

∣∣∣∣
(s,t0)

− ∂z (s, t)
∂s

∣∣∣∣
(s,t0)

∂y (s, t)
∂t

∣∣∣∣
(s,t0)

,

ψ2 (s, t0) = −
(

1 + ∂x (s, t)
∂s

∣∣∣∣
(s,t0)

)
∂z (s, t)
∂t

∣∣∣∣
(s,t0)

− ∂z (s, t)
∂s

∣∣∣∣
(s,t0)

∂x (s, t)
∂t

∣∣∣∣
(s,t0)

,

ψ3 (s, t0) =
(

1 + ∂x (s, t)
∂s

∣∣∣∣
(s,t0)

)
∂y (s, t)
∂t

∣∣∣∣
(s,t0)

− ∂y (s, t)
∂s

∣∣∣∣
(s,t0)

∂x (s, t)
∂t

∣∣∣∣
(s,t0)

.

(3.3)

On the other hand, a curve α(s) is a line of curvature on the surface Ψ(s, t) if and only if
the normal vector η1(s) of the curve is parallel to the normal vector η(s, t0) of the surface,
that is, η1(s)∥η(s, t0). From this fact, there exists a function λ(s) ̸= 0 such that

ψ1 (s, t0) = 0, ψ2 (s, t0) = λ(s) cosϑ and ψ3 (s, t0) = λ(s) sinϑ.

Thus, we have the following theorem.
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Theorem 3.2. A given curve α : I ⊂ R → G is a line of curvature on the surface Ψ (s, t)
with the parametrization (3.1) in a 3-dimensional Lie group G if and only if

x (s, t0) = y (s, t0) = z (s, t0) = 0,
ψ1 (s, t0) = 0, ψ2 (s, t0) = λ(s) cosϑ and ψ3 (s, t0) = λ(s) sinϑ,

ϑ(s) = −
∫ s

s0
(k2 − k2)ds+ ϑ0,

(3.4)

where s ∈ [L1, L2], t0 ∈ [T1, T2] and the functions ϑ(s) and λ(s) ̸= 0 are called controlling
functions.

Therefore, we call the set of surfaces satisfying Theorem 3.2 a surface family with a
common line of curvature in G.

Remark 3.3. Generally we can take ϑ0 = 0. According to x (s, t0) = y (s, t0) = z (s, t0) =

0, we have ∂x (s, t)
∂s

∣∣∣∣
(s,t0)

= ∂y (s, t)
∂s

∣∣∣∣
(s,t0)

= ∂z (s, t)
∂s

∣∣∣∣
(s,t0)

= 0.

Then from the above conditions and using (3.3), we have

ψ2 (s, t0) = − ∂z (s, t)
∂t

∣∣∣∣
(s,t0)

,

ψ3 (s, t0) = ∂y (s, t)
∂t

∣∣∣∣
(s,t0)

.

Thus (3.4) can be rewritten simply

x (s, t0) = y (s, t0) = z (s, t0) = 0,
∂y (s, t)
∂t

∣∣∣∣
(s,t0)

= λ(s) sinϑ,

∂z (s, t)
∂t

∣∣∣∣
(s,t0)

= −λ(s) cosϑ.

(3.5)

For simplification and analysis, we note that there are three types of the marching-scale
functions x (s, t) , y (s, t) and z (s, t) as follows:

1) Considering
x (s, t) = p (s)X (t) ,
y (s, t) = q (s)Y (t) ,
z (s, t) = r (s)Z (t) ,

(3.6)

where p(s), q(s), r(s), X(t), Y (t) and Z(t) are C1 functions, and p(s), q(s) and r(s) are not
identically zero.

2) Considering

x (s, t) =
k∑

i=1
a1ip (s)iX (t)i ,

y (s, t) =
k∑

i=1
a2iq (s)i Y (t)i ,

z (s, t) =
k∑

i=1
a3ir (s)i Z (t)i ,

(3.7)

then
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∂y (s, t)
∂t

∣∣∣∣
(s,t0)

=
k∑

i=1
ka2iq(s)kY (t0)k−1Y ′(t0), (3.8)

∂z (s, t)
∂t

∣∣∣∣
(s,t0)

=
k∑

i=1
ka3ir(s)kZ(t0)k−1Z ′(t0).

3) Considering

x (s, t) = f

(
k∑

i=1
a1ip (s)iX (t)i

)
,

y (s, t) = g

(
k∑

i=1
a2iq (s)i Y (t)i

)
,

z (s, t) = h

(
k∑

i=1
a3ir (s)i Z (t)i

)
,

(3.9)

where aij ∈ R (i = 1, 2, 3; j = 1, 2, ..., k), and X (t) , Y (t) , Z (t) , f, g, h are smooth
functions.

Corollary 3.4. According to the condition (3.5) and by simple computation, the conditions
of the curve α : I ⊂ R → G with a line of curvature on the surface Ψ (s, t) in terms of three
types of the marching-scale functions are given by, such that X (t0) = Y (t0) = Z (t0) = 0,
respectively,

1)
q(s)Y ′(t0) = λ(s) sinϑ,
r(s)Z ′(t0) = −λ(s) cosϑ.

(3.10)

2) From the equations (3.8),

a21q(s)Y ′(t0) = λ(s) sinϑ,
a31r(s)Z ′(t0) = −λ(s) cosϑ.

(3.11)

3)
f (0) = g (0) = h (0) = 0,
g′(0)a21q(s)Y ′(t0) = λ(s) sinϑ,
h′(0)a31r(s)Z ′(t0) = −λ(s) cosϑ.

(3.12)

We analyze the conditions (3.10), (3.11) and (3.12) according to the different expressions
of ϑ(s) as follows:

Case 1. If α : I ⊂ R → G is a curve with (k2 − k2)(s) ̸= 0, then ϑ(s) is a nonconstant
function of a variable s, for X (t0) = Y (t0) = Z (t0) = 0, the conditions (3.10), (3.11) and
(3.12) can be given as, respectively,

1)

Y ′(t0) = λ(s)
q(s)

sinϑ,

Z ′(t0) = −λ(s)
r(s)

cosϑ.
(3.13)
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2)

Y ′(t0) = λ(s)
a21q(s)

sinϑ = ν1,

Z ′(t0) = − λ(s)
a31r(s)

cosϑ = −ν2.

(3.14)

In this case we can take λ(s) = ν1a21λ1(s), q(s) = λ1(s) sinϑ and r(s) = ν1a21λ1(s)
ν2a31

cosϑ.
3)

Y ′(t0) = λ(s)
g′(0)a21q(s)

sinϑ = ν1,

Z ′(t0) = − λ(s)
h′(0)a31r(s)

cosϑ = −ν2.

(3.15)

In this case, we can take λ(s) = ν1g
′(0)a21λ1(s), q(s) = λ1(s) sinϑ and

r(s) = ν1g
′(0)a21λ1(s)
ν2h′(0)a31

cosϑ.

Case 2. This case is the same as all three types of marching-scale functions. If
α : I ⊂ R → G is a curve with (k2 − k2)(s) = 0, then ϑ(s) is constant. If ϑ = kπ + π

2 ,
k ∈ R, i.e., sinϑ = ±1 and cosϑ = 0, then in terms of the Frenet formula in G, we have
binormal vector field B of the curve α(s) is constant. Therefore η1 = cosϑN + sinϑB
= ±B is also a constant vector. In this case, the surface which passes through the given
curve is the osculating plane of the curve. If ϑ ̸= kπ + π

2 , the condition is the same as
Case 1.

Case 3. If (k2 −k2)(s) = 0 and sinϑ = 0, then η1 = cosϑN + sinϑB = ±N. Since the
curve α(s) is a line of curvature, that is, η1(s)∥η(s, t0), we get ψ1 (s, t0) = 0, ψ2 (s, t0) ̸= 0
and ψ3 (s, t0) = 0. Then the curve α(s) is not only a line of curvature but also a geodesic
of the surface Ψ(s, t). For X (t0) = Y (t0) = Z (t0) = 0, the conditions (3.10), (3.11) and
(3.12) can be given as, respectively,

1)
Y ′(t0) = 0,
Z ′(t0) = ±λ(s).

(3.16)

2)
a21 = 0 or q (s) = 0 or Y ′(t0) = 0,

Z ′(t0) = ± λ(s)
a31r(s)

= ν.
(3.17)

In this case, we can take λ(s) = νa31λ1(s) and r(s) = ±λ1(s).
3)

f (0) = g (0) = h (0) = 0,
a21 = 0 or q (s) = 0 or g′ (0) = 0 or Y ′(t0) = 0,

Z ′(t0) = ± λ(s)
h′(0)a31r(s)

= ν.

(3.18)

In this case, we can take λ(s) = νg′(0)a21λ1(s) and r(s) = ±λ1(s).

Example 3.5. Let the base curve α be

α (s) = (cos s, sin s, 0) . (3.19)
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(a) Ψ1 (s, t) with a line of curvature (b) Ψ2 (s, t) with a line of curvature

Figure 1. A member of the surface family with marching-scale functions and its
line of curvature.

Then we obtain
T (s) = (− sin s, cos s, 0) ,
N(s) = (− cos s,− sin s, 0) ,
B(s) = (0, 0, 1) ,

where k1 = 1, k2 = 0, k2 = 1
2

and ϑ(s) = s

2
.

a) If we consider p(s) = q(s) = r(s) = 1, λ(s) = s and
x (s, t) = ts,

y (s, t) = ts sin s
2
,

z (s, t) = −ts cos s
2
,

at t0 = 0 such that (3.13) is satisfied, then we get a member of this family in G = SO(3)
as drawn in Figure 1(a):

Ψ1 (s, t) = α (s) + tsT + ts sin s
2
N − ts cos s

2
B,

where 0 ≤ s ≤ 2π and −1 ≤ t ≤ 1.

b) Considering
x (s, t) = 0,

y (s, t) =
2∑

i=1
a2i (ν1tλ1(s) sinϑ)i ,

z (s, t) =
2∑

i=1
a3i

(
−ν1a21λ1(s) cosϑ sinh t

a31

)i

,

(3.20)

with ν1 = 1, ν2 = −1, λ1(s) = s2 and a2i = a3i = 1, i = 1, 2 such that (3.14) is satisfied.
Then we get another member of a surface in G = SO(3) as plotted in Figure 1(b):
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Ψ2 (s, t) = α (s) +
2∑

i=1

(
ts2 sin s

2

)i

N +
2∑

i=1

(
−s2 cos s

2
sinh t

)i

B,

where π

6
≤ s ≤ π, t0 = 0 and −1

6
≤ t ≤ 1

6
.

4. Conclusions
In this paper, we study the problem of how to construct surfaces using a line of curvature

in a 3-dimensional Lie group. We derive the conditions for the given curve to be the line
of curvature for the parametric surface when the marching-scale functions are given by
the three types of expressions.
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