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ABSTRACT: In this study, we examine some spectral properties of a npe periodic eigenvalue problem for
the differential equation-y’ + q(x)y = Ay, x € [a,¢) U (c,b] together with the periodic boundary conditions at
the end-pointx = a, b given byy(a) = y(b), ¥'(a) = y'(b) and with the interface conditions at the interior point
of singularityx = c, given byy(c+) = ay(c—), Yy (c+) = By (c—) where q(x) is the continuous functiom, are
real numbers and is complex eigenvalue parameter.
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1. Introduction

Eigenvalue problems associated with ordinary differéetiguations arise in considering physi-
cal problems,such as determining the temperature disisitbaf a heat conducting rod vibration
problems of the wire hanging on some internal points, wavkdiifusion problems and etc. by

the method of separation of variables (see, for example d@¢drima, 2011)). The typical

equation that often occurs in eigenvalue problems is ofdim f

2
(9 5% 2005 + ag(x) + Aly = 0 (L.1)
If we introduce

P09 = exp [ 2l = 2 p(9.ri0 = 2

into equation (1.1) we obtain

d dy

(PO )+ (A0 +Ar(x)y =0 (12)

which is known as the Sturm-Liouville equation. In termsiuod self-adjoint operator

L= &(p&)ﬂLq

the equation (1.2) can be written as
Lyl +Ar(x)y=0

whereA is a spectral parameter independenkoénd p,q andr are real-valued functions of
X. To ensure the existence of solutions, wedetndr be continuous ang be continuously
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differentiable in a closed finite intervéd, b]. Recall that the Sturm-Liouville equation (1.2) is
called regular in the intervé, b] if the functionsp(x) andr (x) are positive The Sturm-Liouville
equation

d oD Ar(x))y=0 b

S (P00 )+ (A0 +Ar(x)y =0, x€ [ab

in which p(a) = p(b), together with the periodic boundary conditioria) = y(b) andy'(a) =

y (b) is called a periodic Sturm-Liouville system. Not that infdient areas of natural sciences
many problems arise in the form of boundary value problemslwing interior singularities.
In recent years, there has been growing interest in boungtahye problems with discontinu-
ous coefficients(see, for example, (Allahverdiev et al12Xandemir and Mukhtarov, 2018;
Mukhtarov and Aydemir, 2015; Panakhov and Sat, 2013; YandIMukhtarov, 2018) and ref-
erences cited therein).

In this study, we examine some spectral properties of a npe periodic eigenvalue problem
for the differential equation

—yY'+q(X)y= Ay, x€l[ac)u(c,b (1.3)
together with the periodic boundary conditions at the eoiMgx = a, b given by
y(@) =y(b), ¥ (a) =y (b) (1.4)
and with the interface conditions at the interior point ofggilarityx = ¢, given by
y(ct+) = ay(c—), Y (ct) = By (c-) (1.5)

where g(x) is the continuous functioa,3 are real numbers aml is complex eigenvalue pa-
rameter.

2. Construction of the in terms of the Left-Hand and Right-Hand Eigensolu-
tions

Let us consider the periodic Sturm-Liouville problem on tdisjoint intervals together with
additional interface conditions given by (1.3)-(1.5).

Theorem 2.1.LetA 3 = 1. Then the discontinuous periodic Sturm-Liouville prob(&m3)-(1.5)
is self adjoint.

Proof. Consider the problem (1.3)-(1.5). Denotellgthe differential operator

Ly = —y' +q(x)y

Let y1,y» € C?[a,b] that satisfies the given boundary and interface condititr®<(1.5). We
shall show that,

c— b
/a [yiLy2 — yoLy1|dx+ /C+ [yiLy2 —yoLy1]dx=0
By definition (1.5)
Ly = —y] +ay1

Ly> = —y5 +Qy2
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Multiplying the first equality byy, and the second equality lyy and then subtracting yields,

yily2 — Yolyr = (Yiy2 — Yoy1)'
Now integrating by parts ovéa,c) U (c,b] we obtain

[ ny2— yabys)ax= Yh(e-)ya(e-) ~yhle-ya(e-)] — Ba(@a(a) — Yo(@ya(a)

and

[ 0Ly YoLyn)dx= DA()a5) ~YalI(b)] ~ DAl alet) ~vh(e e

_l’_
Thus, we get

c— b
/a (Yaky2 — yoLy1)dx+ /C+ (yilyz —YaLyn)dx= (Yiy2 —Yoy1)' [§ +(Vay2—Yoyr)' 2
Sincey; andy; satisfies the conditions (1.4)-(1.5) we obtain

(Vay2—Yayn)' 1§ +(vay2— o)’ [2,= 0
Consequently,

c— b
/a [y1Ly2 — yolys]dx+ /C+ [yiky2 —y2Ly1]dx=0
Thus, the discontinuous Periodic Sturm-Liouville Probl@dn8)-(1.5)) is self-adjoint.

Theorem 2.2.LetA.3 = 1. Then the eigenvalues of the discontinuous periodic Stuouville
Problem (1.3)-(1.5) are real.

Proof. Let(A,y) be any eiganpair. Then we have

Y’ +q(x)y=Ay

—Y'+a()y =AY
Multiplying the first equation by and the second equation and then subtracting yields,
(Vy—YV) = A=Ay
Now integrating by parts ovéa,c) U (c,b] we obtain
— c— — b
Y=Y IS +Fy-Y 8= (=) [yt 4 —2) [ yyox

C+
Thus, we get

YYy=Yy) la = Y (c—)y(c—) =Y (c-)ylc-)] - Y (@)y(a) — Y (a)y(a)]
and
Yy-y9) 2= [V (b)y(b) — ¥ (b)y(b)] — [ (c+)y(c+) — Y (c+)¥(c+)]

Since(A,y) is eiganpair andr, 8 are real, theiiA,y) must be the eigenpair of the same problem
(1.3)-(1.5). Therefore, we have

y(@) =Yy(b), Y(a) =Y (b)
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ylct) = ayle—), ¥ (c+) = BY (c-).
Taking in view these equalities, we have

— c— b
(A —/\)[/ yydx+ [ yyd¥ =0

a C+

From this it follows that
(A=A)=0
Thus, the eigenvalues of the periodic Sturm-Liouville J4(B5) are real.

Theorem 2.3. Let A, and A, are distinct eigenvalues of the discontinuous periodiar8tu
Liouville Boundary Value Problem (1.3)-(1.5) ¢mc) U (c,b]. Then their corresponding eigen-
functions y and y;, are orthogonal on k[a, ¢) & Lo(c, b], that is

c— b
L 3 0ym(ax [ ynym(x)dx=0

Proof. By assumption

—Ym =+ A(X)¥m = Amym

~Yn+A(X)¥n = Anyn.
Multiplying the first equation by, and the second equation kg and then subtracting yields,
(YnYm —YmYn)" = (Am—An)Ymyn

Now integrating by parts ovéa,c) U (c,b] we obtain

i) 1§+~ Vo) 2= O M) [ ymnc)+ [yt
Sinceym andyy, satisfy the conditions (1.4)-(1.5) we get

[Ya(€=)Ym(c—) = Ym(c—)¥n(c—)] — [Yn(2)Ym(@) — ym(@)yn(a)]
+  [Ya(0)Ym(b) = Ym(B)Yn(b)] — [Ya(C+)Ym(C+) — Ym(C+)yn(c+)] =0

Consequently

C_

b
=2l [ Yoyt [ ymyac = 0.

a

UsingAm # Ap we find

c— b
/ YmYndX+/ Ymyndx=0
a C+
The proof is complete.

Theorem 2.4. Let y=y;(X) be the solution of the equationy.:= Yy’ + q1(xX)y = 0 satisfying
transmission conditions at the point of interactios-xc, given by

y(c+) = ay(c—), y(c+) = By (c-), (2.1)
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let y=y»(x) be the solution of the equationy.:= —y” + g2(x)y = 0 satisfying the same trans-
mission conditions and letS3 = 1. If g2(X) < gi1(x) on[a,c) U (c,b], then between any to con-
secutive zeros ofiyx) there is at least one zero of ().

Proof. By assumption

Y1 +a1(X)y1=0

Y2 +02(X)y2 =0
Multiplying the first equation by, and the second equation fpyand then subtracting yields,

(Yay2 — Yoy1)' = (G2(X) — q1(X))y1y2

Let x; andx, with X1 < x be consecutive zeroes pf. Now integrating by ports oveixs, X2)
we obtain
X2
(v =¥oyn) 1= [ (@20 ~ qa0)yayatix
1
sincey1(X1) =Yy1(X2) =0,

X2

Vhixe)ya(x0) ~YA0a)yaloa) = [ “(6R(%) ~ () yryaix (2.2)
Suppose,it possible, that does not have a zero @ry, xp). Consider the case< x; < Xz < C.
Without loss of generality we can suppose thgix) > 0 andy2(x) > 0 over(xi,x2). These
conditions ensure that the integral on the right of (2.2)psifive. However, on the left, we have
y1(x1) > 0 andy; (x2) < 0. These conditions ensure that the left side of (2.2) is tiegavhich
presents us with contradiction: right-hand sid® and left-hand side: 0.Thusy,(x) is vanish
at least once between the zeroeyk). Since the conditions describiryg(x) are given, we
conclude thay,(x) must change sign betwean= x; andx = xo.

The cases < X1 < X <banda<x; <c< X <bare similar.
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