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ABSTRACT: This work builds on former research carried out concerning load-extension properties of plain knitted glass technical fabrics. In
related former research, it was determined that a load-extension or a load-contraction curve could be considered in three stages of extension or
contraction. These stages were a) the extension or contraction of the fabric (the first stage), b) the extension of the yarn along with the change
of the shape of the sample (the second stage), and, c) the extension or contraction of the fibres (the third stage). In the same works, theoretical
analyses were then provided to explain the first stage of extension or contraction, and thus some simple equations between load and extension
and between load and contraction together with Poisson’s ratio were obtained. In obtaining the extension of the loop head curve, the equation
of extension of a circular ring had been applied. This formulation enabled the emergence of a method that separates the frictional restrains
and/or fabric jamming forces from the experimentally obtained quadratic curve fittings for plain knitted fabrics. Building on those former
studies, for the present work, similar experimental studies for the first stages of extensions or contractions, were carried out for some more
complex technical weft knitted structures that use E-glass and Aramid yarns. The curve fitting equations are obtained and some empirical
equations are given, assuming that the same method of separating frictional restrains and/or fabric jamming forces from quadratic curve fittings
also applies for complex structures. Extension and contraction rates are also calculated and discussed further. These empirical equations can,
of course, be used in related engineering software.

Keywords: Weft knitted fabric, load-extension, contraction, empirical equations, glass fiber, aramid fiber, initial extension rates, initial
contraction rates.

BAZI KARMASIK CAM VE ARAMID TEKNIK ATKI ORME KUMASLARIN BASLANGIC
YUK-UZAMA OZELLIKLERI iCIN AMPiRiK DENKLEMLER VE POISSON ORANLARI

OZET: Bu caligma, daha dnce cam diiz 6rme kumaslarm yiik-uzama 6zellikleri iizerine yapilan bir ¢alismanin devami niteligindedir. Daha
onceki caligmada cam diiz 6rmek kumaslarin yiik-uzama ve yiik-enden daralma egrilerinin ii¢ asamada gerceklestigi gosterilmistir. Bular; a)
kumas uzamasi ve yandan daralmasi (1. asama), b) iplik uzamasi, incelmesi ve deney numunesinin sekil degistirmesi (2. asama) ve c) lif
uzamasi ve incelmesidir (3. agsama). Ayni ¢aligmada, 1. asamanin agiklanmast i¢in teorik ¢alisma yapilmis, yiik-uzama, yiik-yandan daralma
egrileri igin basit formiiller bulunmus ve Poisson oranlar1 hesaplanabilmistir. Teorik ¢aligmada ilmek basi uzamasi, ilk defa, dairesel elastik
halkanin uzamasi problemi kullanilarak hesaplanmigtir. Bu formiilasyon, diiz 6rme kumaslarda deneysel sonuglara parabolik regresyon
denklemleri yazilabildigi durumlarda siirtinme kuvvetleri ile uzamaya sebep olan dis kuvvetlerin birbirinden ayristirilabilecegi seklinde bir
metod gelistirilmesinin 6niinii agmstir. Onceki ¢alismayi temel alan simdiki ¢aligmada, Cam ve Aramid teknik iplikleri kullanilarak bu sefer
karmasik atki 6rme yapilar igin genis bir deneysel yiik-uzama ve yiik-yandan daralma egrilerinin 1. asamalar1 incelenmistir. Deney
sonuclarinin regresyon denklemleri yazilmis, baz1 sik Aramid orgiileri hari¢ genellikle parabolik regresyon denklemleri elde edilmistir. Elde
edilen parabolik regresyon denklemleri daha 6nceki ¢alismada diiz rgiiler i¢in elde edilen denklemler esas alinarak, bahsi gecen caligmada
bulunan ‘slirtinme ve i¢ kuvvetler ile dis kuvvetlerin ayristirilmasi metodu’ karmasik orgiiler igin de gegerli oldugu kabulii yapilarak
yorumlanmis ve yiik-uzama ve yiik-yandan daralma egrileri ampirik formiiller seklinde ifade edilmistir. Bu ampirik formiiller kullanilarak yiik-
uzama oranlar1 ve yiik-enden daralma oranlarmin hesaplanabildigi yeni bir metod gelistirilmis ve ayrintili olarak irdelenmistir. Bu yeni
¢ikarilan ampirik formiiller, tabi ki, ilgili mithendislik bilgisayar paket programlarinda kullanilabilir.

Anahtar Kelimeler: Atki 6rme kumas, yiik-uzama egrileri, enden daralma, amprik denklemler, cam lifleri, aramid lifleri, baslangi¢ uzama
oranlari, baslangi¢c enden daralma oranlari
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1. INTRODUCTION

Technical applications of knitted fabrics are increasing day by day.
Some technical functions of knitted fabrics depend on the geometry
of the employed structure as well as on potential changes in its shape
under applied loads. In relation to this, Hepworth [1], MacRory et
al [2,3], Popper [4], Shanahan and Postle [5], Hong et al [6] have
worked on load-extension properties of plain knitted fabrics in
course-wise direction. Hepworth [1], MacRory et al [2,3], Popper
[4], Shanahan and Postle [7], Hong et al [6], moreover, have worked
on load-extension properties of plain knitted fabrics in wale-wise
direction. Most of the aforementioned research, however, applied
the non-inflexional elastica theory in modelling the extension of the
loop head curve. The lack of those models was that discontinuities
occurred between the loop head curve and the rest of the loop
curves, hence the models did not completely match the
experimental results. Moreover, frictional resistances were not
properly considered in those early models. Later on, further
research on the geometrical and mechanical properties of technical
glass plain knitted fabrics in their dry relaxed [8,9] and loaded
[10,11] conditions was conducted by Kurbak. Those works [8,9]
pointed out that the dry relaxed technical slack plain knitted fabrics
kept their stable shapes by the effect of frictional restrains. When
the loop heads were assumed to be circular in shape, the reaction
force between the loops could be calculated as

R _ 2sinaqq
s = (1

PBO(Co cOsNg+egg tanng)

where R is the reaction force. B is the bending rigidity, pg, is the
radius of the curvature at point B in Figure 1, and pgy = aq, can
be written. The parameter a,, in turn, is the radius of the circular
loop head curve and c; is the course-spacing at relaxed state. The
other geometrical parameters a;,, and 7 are, respectively, the
leaning angles of the loop head in the third dimension and the
leaning angles of the loop arms in course-wise direction at relaxed
state, where the general forms of these angles, a; and #, are shown
in Figure 1. The parameter e;, is the major diameter of the
imaginary cylinders at relaxed state, which are illustrated in Figure
1.

In further work, Kurbak [10,11] investigated the load-extension
and load-contraction properties of plain knitted glass technical
fabrics experimentally and theoretically. The results showed that
there were three stages of extensions or contractions namely a) the
extension or contraction of the fabric (the first stage), b) the
extension or contraction of the yarn along with the shape changes
of the samples (the second stage), ¢) the extension or contraction
of the fibres (the third stage). Kurbak then conducted a theoretical
work to explain the first stage of extensions or contractions further
and obtained the following equations:

When the fabrics were loaded in the wale-wise direction, the
relation between the extension rate &y, and the load T}y, and also
between the contraction rate €, and T, were given by

Cilt (Vol): 26 No: 116

Figure 1: Plain knitted slack fabric model (Kurbak [11]).
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When the fabrics were loaded in the course-wise direction, the
relation between the extension rate &, and the load T and also
between the contraction rate €, and T, were given by

V1.076,/Tc+Fsc

2 v1.076y%ct¥sc

& =5 )[ —D¢ + (W + 2d) 067245 4)
Sco0d T

£y = — —2C20% ’C (5)

(Co—Sc10d) R

where €y is the extension rate in the wale-wise loaded samples.
&, 1s the contraction rate in the course-wise direction under load
applied in the wale-wise direction. €, is the extension rate in the
course-wise loaded samples. &, is the contraction rate in the
wale-wise direction under load applied in the course-wise
direction.

Dy = v(wo + 22 PooTow

Fsyy = 0.405 g.

Swio = ,u[sin Q4 gy — COS alo] = 0.08705
Swao = [1+psina g, = 1.1954

V1.076,/Fsc

— 2
D¢ = (wy + 24d) 567275

FSC = 0695 g
Sci0 = ,u[cos @19 + v(sin ay 4, — cos am)] = 0.1516

Sca0 = [v + usina, 4| = 0.6874

Where w, and ¢ are the wale-spacing and course-spacing of fully
relaxed fabric (global minimum without friction). Fgy,, Fsc, Swo0a
and S¢,04 are the frictional forces in Equations (2 - 5) which are
applied in dry relaxed state. Dy, D¢, Sy10q and Scioq are the
differences between the dry relaxed fabric parameters (C, W) and
fully relaxed fabric parameters (c,, Wy). The indices in Equations
(2 - 5) are used as such that ¢ and w are used for the load
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application directions, 1 and 2 are used for extension and
contraction respectively.

The diameter of the 136 tex glass yarn d = 0.354 mm was found.
The coefficient of the friction between glass and glass was
obtained as u = 0.24. The bending rigidity B = 2.87 gmm? was
used. For Poisson’s ratio v = 1/2 was found for plain knitted
fabrics. a;q = 61.159° and a; 4, = 51.331° were taken for the
course-wise loaded samples and a;q = 63.031° and aq4, =
54.71° were found for the wale-wise loaded samples. Further
parameters are given in Table 1.

It should be noted here that a;, was the loop head leaning angle
at relaxed fabric state. This angle changed with applying load. The
geometrical model of the plain knit fabric was also drawn at the
last point of the first stage of the load-extension curve. This point
was the fifth point of the dead weights applied. The drawn
geometrical model gave a a;; leaning angle value. The average of
a0 and ay; was then taken as @ 4, value.

Table 1. Reference state parameters of glass plain knitted fabric (Kurbak
[L11D).

Ref. State parameters Reaction
Force
wo/d | co/d | 1/d RIg]
Wale-wise loaded 6.751 | 4.410 | 22.987 3.840
samples
Course-wise loaded 6.763 | 4.455 | 23.361 4.328
samples

The values given in Table 1 were calculated theoretically through
the geometrical and physical parameters at the relaxed state.

In obtaining Equations (3 and 4): (a) The loop head curves were
modelled by using the equation of the extension of a circular ring
(see Kurbak [10]) therefore no discontinuities occurred between
the loop head curve and the rest of the loop curves during the
extension. (b) It was shown that when the experimental quadratic
curve fitting equations

y=a;x*+b x+¢ 6)

were written in the form of

y=a; (x— xo)z + Yo @)

the y,values were the frictional restrains or/and inter fabric
jamming forces. Therefore the equations were written in the form
of

\/(\3/’;_13’0) (8)

and thus the Equations (3 and 4) were obtained.

X —Xg =

Where y is the total load applied in a direction (wale-wise or
course-wise), x is the sample length (h) for extension, or the
minimum fabric width (bmin) for contraction.

In the present work, building on Kurbak’s [8-11] works that are
described above, the first stages of load-extension and/or load
contraction properties of some complex weft knitted structures are

studied experimentally. The aim here is to investigate whether
empirical equations based on the Equations (2-4) can be found for
such complex knitted fabrics as well, based on the assumption that
the y, values in Regression Equations (7) being frictional
restrains and/or fabric jamming forces also applies for complex
fabrics. The outcoming equations are expected to be useful for
engineering software that are generally used for technical
applications of textiles, such as composite reinforcements, stretch
sensors, air permeabilities etc. These kinds of applications usually
start from dry relaxed fabric conditions; therefore the study
particularly focuses on this state. The work, furthermore, is
primarily conducted for composite reinforcement applications,
therefore high modulus yarns such as E-glass and para-aramid are
chosen for the study.

2. EXPERIMENTAL PROCEDURE

e The knitted structures chosen for this study were 1x1 Rib,
Milano Rib, Half Cardigan and Full Cardigan Derivative. Knit
notations of these fabrics are given in Figures 2a, 2b, 2¢ and 2d.
It should be noted here that due to some spiralities that occurred
in the fabrics with Full Cardigan structure itself, the Full
Cardigan Derivative structure that is given in Figure 2d was
chosen for this work.

e Samples were knitted on a 7 gauge (7 needles per inch) V-bed
hand-knitting machine. In order to study the effect of tightness,
the samples were knitted at different cam settings of the
machine, namely, three different cam settings for 1x1 Rib (R6,
R8, and R10), and two different cam settings for Milano Rib
(M8 and M10), Half Cardigan (Y8 and Y10) and Full Cardigan
Derivative (S8 and S10).

e Two types of yarns were used to knit the samples, namely, 136
tex E-glass yarn (EC9 68 1x2 twisted E-glass yarn) and 168 tex
Aramid yarn (Twaron [12], 2012).

bl il T Ll
TP | vrrrrrey

2a) 1x1 Rib 2b) Milano Rib

2¢) Half Cardigan 2d) Full Cardigan Derivative

Figure 2. Knit notations of the fabrics chosen in this work
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Estimations of the yarn diameters: Kurbak [11] estimated the
diameter of 136 tex E-glass yarn as

dy = 1.18 dy, = 0.354 mm ©)

where d,, was the yarn diameter in the yarn cross-section
calculated by using the open fibre packaging model by Hearle,
Grosberg and Backer [13]. It is also known that the yarn diameter
can be related to the square root of the yarn tex. When Equation
(9) is given in terms of the yarn tex, the equation

dy = 0.03035,/TeX grass (10)

is obtained. The yarn diameter of 168 tex aramid is estimated here
by using the equivalent yarn tex of the aramid in glass as

d, = 0.03035 /%42455 = 0.5236 mm

where

(11

pg = 2.55 g/cm? is the density of the glass fibres and p, =
1.44 g/cm?3 is the average density of the aramid fibres.

Estimations of bending rigidities of yarns used: Kurbak [11] used
the same 136 tex E-glass yarn and found the bending rigidity B,
for 136 tex E-glass yarn as

B, = 2.87 gmm? (12)

by using an equation given by Lomov and Verpoest [14] for glass
yarns as

B, = 1.886 107° tex* 4+ 1.937 1072 tex [g mm?] (13)

On the other hand, Kurbak [15], using a different measuring
system, measured the values 2.66 gmm? and 18 gmm? respectively
for the bending rigidities of 136 tex E-glass and 168 tex aramid

. . 287 )
yarns. Assuming that the ratio See obtained between Lomov and

Verpoest’s system of measurements and Kurbak’s system of
measurements for glass yarns is also valid for aramid yarns, the
bending rigidity of 168 tex aramid yarn can be estimated as

2.87

B, = —
a 2.66

18 = 19.3483 gmm? (14)
In summary, for the 136 tex E-glass and 168 tex aramid yarns that
are used in this work, the estimated yarn diameters that are given
in Equations (9) and (11) together with the estimated bending
rigidities given in Equations (12) and (14) are used throughout the

work.

e Two sets of samples were prepared for each structure, each
chosen tightness points, and each yarn. One of the sets was
prepared for wale-wise loadings and the other for loadings in
the course-wise direction.

The samples were prepared in the following manner:

i) Wale-wise loading samples: The intention was to obtain a
hxb=20x10 cm rectangle as the main measuring area of the
samples. Therefore, the sample lengths (h) at dry relaxed fabric
condition were chosen in order to fulfil the minimum of 20 cm
main sample length plus additional fabric parts above and below
the main sample to be used in fixing the jaws of any measurement
tester.

Journal of Textiles and Engineer
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Because of the differences in structure and tightness, it was
challenging to adjust the sample widths (b) to exact 10 cm in their
dry relaxed states. Therefore, a constant knitting zone composed
of 35 needles from each bed (from the back and front beds) was
set. The sample widths (b), accordingly, were obtained as 10 cm
in average.

Because of the high bending rigidities of aramid and glass
technical yarns, fabric samples unravel easily. To prevent the
unravelling, ten rows of cotton borders were knitted at the
beginning and end of each sample. Some examples of E-glass and
aramid wale-wise load-extension measuring samples can be seen
in Figure 3a. The average sample widths (b), which are obtained
by measuring the samples in dry relaxed state at their minimum
places ,is given in Table 2. A total of five wale-wise loading
samples were knitted for each case.

ii) Course-wise loading samples: Again, the abovementioned
hxb = 20x10 cm? main sample area was intended for the course-
wise loading samples as well. In this case, a knitting zone
constitutes the sample lengths (h) of the course-wise loading
samples. Therefore a constant knitting zone of 110 needles on
each bed (front and back) was set. Through this setting, it was
possible to obtain the minimum sample length of 20 cm as well as
the additional fabric parts at the lower and upper sides necessary
for fixing the samples in the jaws of any measuring tester. Again,
it was challenging to keep the sample widths (b) at exactly 10 cm.
Based on the initial tests that were conducted, sufficient numbers
of rows of fabric were knitted as the widths (b) of the course-wise
loading samples and the intended average sample widths (b)
around 10 cm was achieved.

A total of 5 samples per case were knitted to measure the course-
wise extension of the fabrics. The averages of the 5 sample widths
(b), which were measured at their dry relaxed conditions, are given
in Table 2.

To prevent unraveling, 10 rows of cotton borders were knitted at
the beginning and at the end of each sample. It was assumed that
these cotton borders had neglectable minimal effect on the load-
extension measurements.

Some examples of course-wise loading samples are given in
Figure 3b.

(a) (b)
Figure 3. Experimental Samples a) Wale-wise load extension measuring
samples, b) Course-wise load-extension measuring samples.

Tekstil ve Miihendis

SAYFA 384




Empirical Equations and Poisson’s Ratios for Initial Load-Extension Properties

of Some Complex Glass and Aramid Technical Weft Knitted Structures

Arif KURBAK
Sinem OZTURK

Table 2. The average sample widths (b) in cm.

1x1 Rib Milano Rib Half Cardigan Full Cardigan
R6 R8 R10 M8 MI10 Y8 Y10 S8 S10
Glass Wales-wise 9.46 9.8 11.5 8.72 11.54 10.82 11.74 11.5 14.2
Course-wise 10.08 6.7 8.62 9.18 9.68 9.28 8.96 8.34 8.62

Aramid Wales-wise 7.76 10.12 12.12 8.86 | 9.82 11.66 12.1 11.3 13.22
Course-wise 9.14 9.26 8.54 9.64 10.18 9.46 8.3 8.12 7.14

e For each experimental case, one extra sample was prepared to
measure the samples’ dimensional properties.

o Intotal, 216 samples were prepared:

4 types of structure x (2 different tightness value +1 extra tightness
value for 1x1 rib) x 2 types of yarn x 2 directions (wale-wise and
course-wise) x (5 samples from each case to measure the load-
extension properties + 1 extra sample for measuring dimensional
properties of the samples) = 216 samples.

e The measurement methods of dimensional properties at dry
relaxed fabric condition:

i) Courses per cm (cpc) and wales per cm (WpC):

After two weeks of dry relaxation on a smooth surface, courses
per cm (cpc) and wales per cm (WpcC) were counted with a two-
inch square magnifying glass at three different places of the wale-
wise loaded samples. The same was done for the course-wise
loaded samples. Then, the average value was obtained and divided
by 2x2.54 as (cpc) and (wpc).

In the half cardigan structure, the number of courses on the front
side is twice the number of courses on the backside. Thus, in this
work, the number of courses on the backside was taken into
consideration. To obtain the number of courses on the front side,
the number of courses obtained here should be multiplied by two.

ii) Loop length (I):

After two weeks of dry relaxation on a smooth surface, areas in
the size of 10x5 cm? were pointed out at three different regions

Table 3a. Dimensional properties of dry relaxed Glass fabric samples

of each sample and these areas were cut out. From each piece, 5
rows were separated and their course lengths (L) were measured
by hanging 10 g weights below them. With 10 g weight, the curled
yarns were observed to be straightened. The average of 3 parts x
5 rows= 15 course lengths (L) was divided by the average number
of loops (at the back and in the front sides) in a row in order to
obtain the loop length (I).

Donmez and Kurbak [16] and also Kurbak and Alpyildiz [17],
2009b showed that the yarn length of a tuck stitch was slightly
bigger than the stitch length (I) of a normal loop. In the present
work, however, if a row is constructed as a combination of tuck
stitches and normal stitches, the yarn length of tuck stitches and
the yarn length of normal stitches are assumed to be equal. Thus,
the average loop length () was found by dividing the average
course length (L) by the total number of normal stitches plus tuck
stitches in a particular row.

If a structure unit, like the Half Cardigan, has rib rows and rows
that contain tuck stitches, the stitch lengths of the two types of
rows were given separately.

If a structure unit, like the Milano Rib, is a combination of rib rows
and plain knit rows, their stitch lengths were, again, given
separately.

The obtained dimensional properties of dry relaxed samples are
given in Table 3a for E-glass samples and in Table 3b for Aramid
samples.

Knitted Structures | Tightness Loop Lenght (/) [mm] Course per cm (cpc) | Wales per cm (wpc) Mass per unit area g/m?
R6 5.923 9.52 4.69 783.409
1x1 Rib R8 7.330 7.65 3.54 575.587
R10 9.185 5.37 3.02 460.176
Rib/Plain
. . M8 7.815/5.807 8.06 3.84 718.239
Milano Rib Rib/Plain
M10 9.698/ 7.307 6.63 2.86 475.402
Rib/Tuck
. Y8 7.295/1.56 6.32 3.05 842.921
Half Cardigan Rib/Tuck
Y10 9.243/9.842 4.8 2.61 678.354
Rib/Tuck
Full Cardigan S8 7.463 /7.739 4.1 3 842.755
Derivative Rib/Tuck
S10 8.860/9.378 4 23 659.663

Cilt (Vol): 26 No: 116
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Table 3b. Dimensional properties of dry relaxed Aramid fabric samples

Knitted Structures | Tightness Loop Lenght(/) [mm] | Course per cm (cpc) | Wales per em (wpc) Mass per unit area g/m?*
R6 6.620 7.66 3.98 749.002
1x1 Rib R8 7.358 7.49 3.37 691.027
R10 8.813 5.79 3.31 677.532
Rib / Plain
. . M8 7.835/6.775 8.03 4.13 866.605
Milano Rib Rib/Plain
M10 9.769/ 8.805 5.72 3.3 658.282
Rib/Tuck
. Y8 7.524/7.961 5.18 2.88 833.477
Half Cardigan Rib/ Tuck
Y10 8.917/9.498 3.36 2.81 682.489
Rib/ Tuck
Full Cardigan S8 6.844/7.210 6.8 2.9 815.225
Derivative Rib/Tuck
S10 9.007/9.804 3.5 2.5 651.702

It should be remembered that the inverse of (cpc) and the inverse
of (wpc) in Tables 3a and 3b are equal to the course-spacing (C)
and the wale-spacing (W) respectively as

10

=0 [mm] (15)
10

W= [mm] (16)

e Methods of load-extension and load-contraction measurements:

The load-extension and load-contraction properties of the samples
were measured by a special apparatus (Elmali [18]) seen in Figure
4, since standard methods would not have allowed exploring the
load-contraction behaviours of the fabrics in question.

Since technical yarns are too brittle and often break when being
fixed in the jaws of load-extension measurement testers, a special
friction system was designed to be used at the upper and lower
ends of the samples in order to prevent yarn breakages. Load-
extension and load-contraction behaviours of the samples were
measured by hanging dead weights at the lower friction system
given in Figure 4. The dead weights were gradually increased and,
at each load level, the length (h) and the width (b,,,;;,) at the mid
points of the samples were measured with a ruler.

Figure 4. Special apparatus to measure the load-extension properties in
this work (Elmali [18]).

Journal of Textiles and Engineer

According to the initial plan that was set for this study, the first
experiments were in fact devoted to measure all three extension
and contraction stages (the first, second, and third stage).
Therefore, initially, 12 constant dead weights were arranged as
given in Table 4.

Figure 5.The shape of a sample under loading, a) sample shape for the
first stage of extension, b) sample shape for the second and third
stages of extension (Kurbak [11]).

During the initial experiments, it was observed that some
extension in the fabric parts placed in the inner side of the special
friction system shown in Figure 4 inevitably occurred at about the
eighth load level. Therefore, despite the original plan, it was later
decided that, while continuing to measure all stages of the load-
extension and load-contraction curves with 12 constant dead
weights, the present work would be devoted only to the first stage
of extensions or contractions. The rest of the measurements were
solely used for a) predicting the exact load point at which the first
stage of extension ended b) figuring out whether all three stages
of extensions or contractions can be distinguished in complex
structures as in plain knitted structure previously given by Kurbak

[11].
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Table 4. The dead weights used to measure load-extension and load-contraction properties.

Load Levels 1 2 3 4 5 6
Amount of weight (g) 0 238.4 480 800 1050 1563.33
Load Levels 7 8 9 10 11 12
Amount of weight (g) 2050.5 4050.5 6001.5 8360 10700 12570.5

As a result, load-extension and load contraction curves of all
relevant cases were drawn to scale for all 12 dead weights as given
in Table 4.

It was observed that:

i) All three stages of extensions and contractions were
distinguishable in complex structures as they were in plain knitted
fabrics as formerly proven by Kurbak [11]. Some examples of the
obtained load extension and load-contraction curves are given in
Figures 6a and 6b.

ii) The end point of the first stage is determined to be the 5" load
level given in Table 4 for all the cases in question in this study.

iii) Due to the use of a special friction system, no slippages of
fabrics occurred in the friction system for the first stages of
extensions and contractions.

iv) Since the aim of the present work is focused on the
exploration of the first stages of load-extension and load-
contraction properties of the cases in question, hereafter, only the
first 5 load levels given in Table 4 will be used.

Figure 6. Examples of load-extension and load-contraction results for all
three stages (see ref [19]), a) load-extension, b) load-
contraction.

3. EXPERIMENTAL RESULTS

Experimentally obtained h and b,,;, values with changing load
level T are given at tables in APPENDIX A together with example
drawings of load-extension and load-contruction curves for each
table.

Regression analyses are applied to all cases in question and given
in the form of Equation (6). The constants of Regression
Equations (6) are given in Table 5, together with their correlation
coefficients R?:

As seen in Table 5, the correlation coefficients are very high;
therefore, Regression Equations (6) can be used.

For comparison purposes, Regression Equations (6) and their
constants given in Table 5 are written in terms of unit structure
parameters as follows:

a) For the wale-wise loaded samples
__ v
T, = b (wpc) an

is defined, where b (wpc) is the average number of loops on a face
of sample width (b). For the case (i) of contraction equations of
the wale-wise loaded samples, the equation

_x*
b (wpc)

(18)

Wnin =
is used, whereas for the case (ii) of extension equations of the
wale-wise loaded samples (see Figure 5), the equation

X

Cav = 1 (cp) (19)

is used.

It should be noted here that the variable y is the total load applied
on a sample, the variable x is the measured length or width of a
sample under loading condition. the parameter b and h are the
sample width and length respectively at dry relaxed fabric
conditions. cpc and wpc are the course per cm and wales per cm
of the samples at dry relaxed conditions. T, Wy, and ¢, values
are the calculated wale-wise applied load, minimum wale-spacing
(see Figure 5) and average course-spacing of a loop under wale-
wise loading conditions.

If the general regression equation is
y=ax*+bx+c (20)
for the contraction equations of the wale-wise loaded samples

aq1(b wpc) b [
Ty = =00~ Wmin = 10 Wmin + Goos 21)

change of variables are applied, whereas for the extension
equations of the wale-wise loaded samples

_ a(h cpe)® 5 bi(hcpo)? €1 22)
w 100 (b wpc) av 100 (b wpc) (b wpc)

change of variables are applied, where cpc and wpc are given in
Tables 3a and 3b while b parameters are given in Table 2.
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Table 5: Constants of Regression Equations (6) together with their correlation coefficients R?

Contraction, x = bmin [cm] Extension, x = h [cm]
Structure Load Tight | a1 b1 c1 R? a b1 c1 R?
Direction
1x1 RIB Wale-Wise R6™! 86.087 -1553 7246.6 0.984 7.3835 -307.92 34533 0.9739
R8 38.067 -739.28 3597.6 0.9923 6.4031 -274.67 2939.4 0.9861
R10 26.719 -563.73 3958.7 0.978 5.4554 -247.26 2771.8 0.9765
Course- R6™! 12.312 -391.1 2889.7 0.9873 1.1824 -34.639 410.56 0.9963
Wise RS 64.499 -789.9 2410.1 0.9634 1.017 -53.209 664.85 0.9817
R10 57.428 -733.52 2059.5 0.9309 0.9207 -66.554 966.47 0.9589
MILANO Wale-Wise M8 59.717 -1085.1 5131.8 0.9956 7.6744 -301.26 3177.6 0.9943
RIB M10 21.337 -493.3 2935.7 0.9991 4.1551 -168.37 1727.6 0.9741
Course- M8 10.538 -360.36 2601.9 0.9969 5.0279 -160.18 1332.7 0.9966
Wise M10 15.752 -356.55 2000.8 0.9767 4.5162 -175.78 1723.8 0.977
HALF Wale-Wise Y8 106.96 -2272.1 12066 0.9978 3.8588 -187.94 2207.5 0.9894
CARDIGA Y10 121.38 -2655.7 14453 0.9783 4.1865 -208.25 2492.8 0.9875
N Course- Y8 56.381 -1163.5 5947.4 0.9987 1.4622 -77.269 966.67 0.9799
Wise Y10 66.541 -1143.6 4908.8 0.9967 1.4782 -97.486 1360.8 0.977
FULL Wale-Wise S8 30.996 -775.82 4837.1 0.9915 1.9435 -77.354 793.79 0.97
] CARDIGA S10 17.372 -479.63 3322 0.9764 2.0671 -102.84 1239.6 0.9635
3 N Course- S8 71.31 -1316.5 6027.3 0.9957 1.5107 -81.117 1022.6 0.9786
[©) Wise S10 61.012 -986.61 3975.4 0.9891 2.9376 -184.72 2520.6 0.9785
1x1 RIB Wale-Wise R6 226.59 -5209 26675 0.9996 724.83 -14496 0.9979
RS 3.6642 -489.89 4657 0.9756 134.31 -25969 0.9698
R10 42.727 -1010.2 5994.6 0.9316 3.0278 -118.94 1214.7 0.9419
Course- R6 -12919 11810 0.9988 144.71 -2852.3 0.99
Wise RS -673.87 6325.1 0.979 95.359 -1892.8 0.9932
R10 -224.92 1925.3 0.9954 0.72 -27.874 267.3 0.9994
MILANO Wale-Wise M8 -1965.6 17449 0.9937 661.79 -13135 0.9723
RIB M10 31.111 -997.62 6822.5 0.9939 157.2 -3142.9 0.9835
(OR) M10 6.8911 -161.95 513.44 0.9881
Course- M8 -1991.5 19266 0.9799 558.83 -11103 0.9842
Wise M10 -557.73 5734 0.9896 145.16 -2888.4 0.9986
HALF Wale-Wise Y8 227.75 -5886.6 37705 0.9987 24.851 -956.3 9200.5 0.9913
CARDIGA Y10 193.82 -4954.3 31594 0.99 11.109 -427.17 4114.8 0.9882
N Course- Y8 -656.01 6255.1 0.9894 2.1676 -66.358 478.91 0.9896
Wise Y10 -335.15 2747.1 0.9781 1.4557 -79.53 1013.7 0.9804
(OR) Y10 52.573 -1048.8 5103.3 0.9935
FULL Wale-Wise S8 -806.24 9201.8 0.9717 5.5094 -145.29 738.45 0.9823
CARDIGA S10 -341.92 4480 0.9836 13.482 -579.01 6195.7 0.981
g IN (OR) S10 46.636 -1433.9 10816 0.9961
E Course- S8 -772.7 6321.3 0.9907 1.823 -62.759 544.34 0.9853
Z Wise S10 -356.61 2492.1 0.9722 1.6691 -96.791 1271.7 0.9872
A (OR) S10 70.88 -1165.3 4719.9 0.9963
"1: The first point is not included in the regression analyses.

It should be noted here that the w,,;, and c,, parameteres are  for (i) contraction equations and

given in mm, therefore a; and b, constants in Equations (21) and
X

(22) are also divided by 100 and 10 respectively. Wav = 7 ome) (25)
wpc
b) On the other hand, for the course-wise loaded samples, the  for (ji) extension equations should also be considered. Using
€quation Equations (23, 24 and 25), the change of variable equations

T, =—2 23 (b cpc) b

€7 b(epo) 23) T, = %cﬁnm — 2 Cmin + (bcc—;w) (26)
is valid. In this category _ai(hwpc)® 5 bi(hwpe) o

T. = 100(b cpc) ~ *Y  10(bcpc) W + (b cpc) @7

24)

Cmin = b (cpc)
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are obtained to be applied for the contraction equations (i) and for
the extension equations (ii) of the course-wise loaded samples
respectively.

Where T,, cpin and w,,, values are the calculated course-wise
applied load, minimum course-spacing and average wale-spacing
of a loop under the course-wise applied loading conditions.

After applying Equations (21, 22, 26 and 27) in related Regression
Equations (6 or 20) through Table 5, the following forms of
equations are assumed and applied in accordance with the
obtaining of Equation (8) as given in the work of Kurbak [11] for
plain knitted glass fabrics.

a) For the wale-wise loaded samples
i) Contraction

JTw+m

az

Wmin = W(')' * 28)

ii) Extension

JTw+m

az

Cav = Co T

29

b) For the course-wise loaded samples

i) Contraction

(30

€3]

Here, it should be noted that the m values in Equations (28-31) are
assumed to be as frictional restrains and/or fabric jamming forces
as were the Yo values given in Equation (8).

Assuming that the side edges of loaded samples constitute

parabolic curves (see Figure 5a) for the first stages of extensions,

Kurbak [11] found the following equations to obtain w,,, and cg,,

in places of wy,;;, and ¢, in Equations (28 and 30), thus
;2

wo + 3 Wmin (32)

w _1
av 3

1

2
Cav = 3 C(’) + 3 Cmin (33)

When Equations (32) and (33) are replaced in Equations (28) and
(30), the following forms are obtained

_ 2W8+W(’) JTw+m

Way = —5— 270 (34)
_ Zc(';+c('] JTc+m

Cav = —5 e 1.5a, 35

These changes of variables are also applied to all of the related
Regressions Equations (6) through Table 5, by equalizing the w
and c values obtained from Tables 3a and 3b through the
Equations (15) and (16) to the wg and ¢; in Equations (34) and
(35) respectively.

With these final changes, the final forms of Equations (28-31)
become as follows:

a) For the wale-wise loaded samples

i) Contraction

Way = Wo £ 322 (36)
ii) Extension
JTwt

Cav = Co £ 0 (37)
b) For the course-wise loaded samples
i) Contraction
Can = Cp £ T (38)
ii) Extension
Way = Wo £ 370 (39)
where

" 4
wy = 2 (40)
o = "‘;ﬂ 41)
are taken for Equations (36) and (38) and also
a3 = 1.5 a, (42)

is taken for the same Equations (36) and (38) while a, do not
change in Equations (37) and (39) as
a3 = a2 (43)
Similar equations as Equations (17-43) are also valid for the cases
in which the linear regression equations are applied. The only

differences are that the cZ;,,, W25, W2, and c2, parameters should

be equalized to zero and the phrases /T,, + m and /T, +m
should be replaced by T,,, and T all through the Equations (17-43).

The parameters wy, ¢y, M and a5 of Equations (36-39) are given
in Table 6 for all cases considered.

When T is equalized to zero in Equations (36-39), two roots are
obtained for each case if m is positive. For these cases, the relaxed
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fabrics can either be in root 1 condition or in root 2 condition,
which are also given in Table 6. If the m parameter is negative,
there is no root for T is equal to zero. Therefore, for those cases, 0
(zero) are placed in Table 10. If a regression equation is linear,
there is no m value and thus there is only one root. For these cases
‘> (dash) are put in places of m and root in Table 6. All these
situations are explained further in the next section.

Since it is not useful in practice to have too many equations and
also to be able to cover the intermediate tightnesses, some
empirical equations are obtained in the next section.

It is seen from Table 6 that the m values are small enough to be
considered as frictional restrains and/or fabric jamming forces.
Therefore, considering Equation (8) and assuming y, values in
Equation (8) or the m values in Table 6 as frictional restrains
and/or fabric jamming forces is reasonable.

Table 6. The calculated parameters of Equations (36-39) for all the present experimental cases

Co, Wo m az root

Alai™ Wo R6 2.0661 -5.4683 9.2703 0
RS 2.8076 -0.2393 5.4510 0

RI0 3.1287 0.4250 4.5693 2

Alaii o R6 1.0952 -5.4757 7.7672 0
RS 1.4018 0.1784 6.5731 1

RI0 2.1100 0.8543 4.2566 1

Albi c R6 14534 22529 5.1559 1
RS 1.2322 (1.4970) 0.1623 8.6245 2

R10 1.5405 6.1105 7.7338 2

Albii wo R6 1.5616 (2.1322) -1.1635 1.0412 0
R8 3.6949 0.6071 0.9973 1

R10 5.5840 5.1041 0.8518 1

Allai Wo M8 2.6770 -6.0390 6.7073 0
M10 3.5241 -0.7999 3.9805 0

Allaii P M8 12176 -6.6286 7.7173 0
M10 1.5316 -0.5462 4.6992 0

Allbi o M8 1.9541 6.4716 4.1885 1
M10 1.6784 0.2625 4.7693 1

Allbii Wo M8 2.0741 -0.7695 2.0020 0
M10 3.4023 -0.2083 1.5174 0

Alllai Wo Y8 3.2385 0.0085 89118 2
Y10 3.6573 23877 9.1478 2

Alllaii c Y8 1.9204 2.0085 43222 1
Y10 2.5908 3.1642 3.5485 1

Alllbi o Y8 1.7003 0.9413 8.6256 1
Y10 2.0311 0.5120 8.0103 2

Alllbii Wo Y8 43315 0.9230 0.9632 1
Y10 6.3169 5.7310 0.9677 1

AlVai wo S8 3.5204 0.5082 4.9052 1
S10 4.2268 -0.3499 3.5729 0

AlVaii o S8 2.4229 20,7712 1.9462 0
S10 3.1094 1.2093 2.0126 1

AIVbi P S8 2.6127 1.4298 7.4070 1
S10 2.3966 03816 6.8799 2

ATVbii wo S8 44746 1.9387 12611 1
S10 6.8353 11.1244 1.3427 1

Blaix! Wo R6 25112 - 273.645 -
RS 2.9673 - 63.558 -

R10 3.0211 -0.5865 6.21023 0

Blaii P R6 1.3054 - 359.5424 -
RS 1.3300 - 58.9942 -

RI0 1.6961 -1.1623 3.1813 0

BIbi o R6 1.3056 - 193.785 -
RS 1.3472 - 101.0805 -

RI0 1.7298 - 33.738 -

Blbii Wo R6 24762 - 16.4528 -
RS 2.9450 - 9.2681 -

RI0 3.0211 0.0501 0.7988 1
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Table 6. The calculated parameters of Equations (36-39) for all the present experimental cases

Bllai Wy M8 2.4244 - 294.84 -
M10 3.0344 - 68.2995 -

Bllaii o M8 1.2358 - 290.4571 -
M10 1.7476 - 55.4983 -

BIIbi Co M8 1.2483 - 298.725 -
M10 1.7618 - 83.6595 -

BIIbii wo M8 2.4054 - 59.6303 -
M10 3.01485 - 16.4531 -

Blllai wo Y8 3.7064 9.8962 13.1179 1
Y10 3.6922 1.9306 12.1769 1

Blllaii Co Y8 1.8572 (1.5343) -0.0170 8.9122 0
Y10 2.8611 (2.8140) -0.2456 3.8411 0

BIIIbi Co Y8 1.9408 - 98.4 -
Y10 3.3765 4.5695 5.7436 1

(or) Y10 2.9515 - 50.2725 -

BIIIbii Wy Y8 2.6573 0.5896 1.2114 2
Y10 4.8606 2.6015 1.2840 1

BlVai wo S8 3.4713 - 120.936 -
S10 4.4277 6.2299 5.8890 1

(or) S10 3.9763 - 51.288 -

BlVaii o S8 0.9695 6.6958 5.5764 2
S10 3.0676 (2.8414) 0.6345 4.4708 1

BIVbi Co S8 1.4779 - 115.905 -
S10 3.1453 2.7858 6.3130 1

(or) 2.8167 - 53.4915 -

BIVbii wo S8 2.9678 (4.0150) -0.0761 1.0539 0
S10 5.7990 (5.4429) 5.7989 1.2922 1

*

Contraction, ii) Extension

4. SUGGESTIONS OF SOME EMPIRICAL EQUATIONS,
POISSON’S RATIOS AND CALCULATIONS OF
EXTENSION RATES

During the obtaining of empirical equations, the following points
were considered.

1. All of the regression equations for glass yarn gave similar
equations to Equations (3) and (4), which were obtained for plain
knitted fabrics by Kurbak [11]. Therefore. for glass yarn, the
following empirical forms of equations should be written:

a) for wale-wise loaded samples
i) contraction

_ . [rwomad) [Ty 24m ]2
1 a4«/§

Way = Wy (44)

ii) extension

frco)yTw/2+m/2

Cqv = C
av 0+ asw/E

(45)

b) for course-wise loaded samples
i) contraction

fr(co)Term

Cav = Co — V2 agVB

(46)

: A) Glass, B) Aramid, I) 1x1 Rib, II) Milano Rib, IIT) Half Cardigan, IV) Full Cardigan Derivative, a) Wale-wise loaded samples, b) Course-wise loaded samples, 1)

ii) extension

+ frwo—d){/Tc+m

Wav = Wo aVB

(47)
2. The Poisson’s ratio v, in Equation (44) should be equal to the
v, in Equation (46) as

U= U, =0 (43)

During equalizing Poisson’s ratios in Equations (44 and 46), f”
functions were so changed that equalities in Equations (44 and 46)
were remained the same. Changings of f " functions were as such

that ' = ("/y)f"and £ = (“2/y)"".

3. The constant a, in Equation (44) should be equal to a; in
Equation (47), while the same equality between as and ag in

Equations (45) and (46) should also be valid:
a4 = a7 = b2 (49)
as = Qg = b3 (50)

Again during equalizing a, and a, and also equalizing a5 and ag
in Equations (44-47), f' functions were so changed that equalities
in Equations (44-47) were remained the same. Changings of f'

functions were as such that f = (bz/a4) f', f = (bz/ a7) f',
f="a)f andf = (/o) f".
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4. The phrase (w, + 2d) in Equations (3) and (4) was created by
Kurbak [11] because this phrase was proportional with the loop
head radius, a,, of the relaxed plain knitted fabrics. Since, in most
of the rib structures, the radius of the loop heads, a,, proportional
with (wy — d), assumes that wale jamming conditions occurred,
for the extension or contraction in the course’s direction, function
f in Equations (44) and (47) should depend on (wy, — d). In this
work

fwo —d) = (wo —d)"

is taken.

€2

On the other hand, there is no such knowledge for wale-wise
extensions or contractions, but the function f for Equations (45)
and (46) should depend on ¢, because the length (cy) extends at
two ends of a curved part of a loop. Therefore, for f function of
Equations (45) and (46), the form

flco) = cg

is taken.

(52)

The f functions given in Equations (51) and (52) are used here for
various purposes as such that

i) the upper indices n is used for estimating the intermediate
tightnesses,

ii) if any jamming occurs in the fabric in a direction, this can be
easily considered by changing the values of upper indices n etc.,

The final empirical parabolic equations to be used in this work are
as

a) for wale-wise loaded samples
i) contraction

- Wo—-d)™/Tyy/2+m/2

Way = Wo boVB (53)
ii) extension
(co)™"\Tw/2+m/2
Cay = Co + Ob:’—ﬁ (54)
b) for course-wise loaded samples
i) contraction
(co)™/Tc+m
Cap = Co — vobg—ﬁc (55)
ii) extension
—An [
Way = Wo + Wo—d)y Tetm (56)

b,VB

5. For aramid fabrics, most of the regression equations are linear
in forms as

Wey = Wo £ by (57)
T
Cav = Co - (58)
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The form of Equations (57) and (58) obtained for aramid fabrics
can best be explained by using Equations (55) of Kurbak’s work
[11] for plain knitted fabrics as such that Equation (55) in
Kurbak’s work [11] was as

T, +F, = % 8.770 (x — 1)2 (59)
where

x= Lo Mat (60)
When Equation (59) is opened up, the equation

T, +F = % 8.770 (x2 — 2x + 1) (61)

is obtained. Since the bending rigidity, B, of aramid is high as
given in Equation (14), the inclination angles of parabolic curves
between T and w,,, are very high; thus, the arms of the parabolic
curves obtained for this yarn are extended along which are near
the vertical line as given in Figure 7. Because of these higher
inclination angles of parabolic curves, the values of w,,, and w,
becomes too close to each other, and, thus, x? in Equations (61)
becomes as

xz — a_Z = M,\,
az T (wo+2d)?

(62)

When Equations (62) is replaced in Equation (61), an equation is
obtained as

T, +F, = — % 8.770 (2x — 2)

and thus

T,+F,= —b"2B(x — 1) (63)

Figure 7. Comparison of parabolic curve fittings of load-extension
properties of aramid and glass samples.

It is thought that this must be one of the reasons for obtaining
linear regression equations for aramid fabrics. One more reason
for obtaining linear regression equations for aramid fabrics will be
given later in this section.

As a result of the above discussion, the following forms of
empirical equations are used for linear equations of aramid
fabrics:
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a) for wale-wise loaded samples

i) contraction

— _ ., W= Ty
Wav = Wo b,(2B) 2 (64)
ii) extension

- 0 Tw
Cap = Co + b3(2B) 2 (65)
b) for course-wise loaded samples
i) contraction

— ey T 66
Cav = Co b3(2B) c ( )
ii) extension

(wo—ad)"

Way = Wo t+ bzo(ZB) c (67)

According to the above points, the empirical equations were
obtained by the method of trial and error, and they are given in
APPENDIX B.

It should be noted here that Empirical Equations in APPENDIX B
include one more parameter called ‘a’. This parameter is included
to equalize two different Poisson’s ratios in one structure. The
parameter, a, is put wherever it is necessary in the equations.

To be able to apply Equations in APPENDIX B, the parameter, m,
in the equations should also be estimated and discussed further as
given below:

i) if the parameter, m, is negative

If the parameter, m, in an equation is negative and when the
external load T is set to zero, the square root in the equation
becomes irrational. It is thought that these kind of structures are
jammed structures, and some of the external loads are spent to
overcome these jamming forces. The amounts of inner fabric

forces are equal to m; therefore the equation
To=m (68)

should be valid where Ty, is the external load to overcome the inner
fabric force.

In this situation, an equation in the form

L (Wo—d)™/Ti+m

War= Wo boVB (69a)
& T+
Cav= Co +3- (69b)

has no root when T; is equal to zero as seen in Figure 8.

It is not difficult to conclude that, if an extension equation has a
minus M value, the load-extension curve would follow the route
which is given in Figure 9a. Again, if a contraction equation has
minus M value, it should take the route as given in Figure 9b.

Figure 8. Parabolic curve fittings of load-extension properties of knitted
fabrics for negative m values in Equations (69a and 69b).

Figure 9. Possible parabolic curve fittings for a) load-extension and b)
load-contraction results when the parameter m is negative in
Equations (69a and 69b).

For these kind of structures, when a load-extension or a load-

contraction equation is given in the form as
(Wqp 07 Ca) = (Wo 01 ¢) + Dyi(T; + m) (70)

practically obtained wg or c; values should be equal to w, and ¢,
values in Equation (70). The rate of extensions or contractions can
be given for the negative m case in the form as

_ (wgyorcgy)—(wgorcy) _ + Dy (Ti+m) .

£ forT;, = |m|

(wg or co) 7D
The cases Alai > (R6, R8), Alaii > (R6), Albii 2 (R6), Allai >
(M8, M10), Allaii = (M8, M10), Allbii > (M8, M10), AlVai >
(S10), AIVaii = (S10) in E-glass fabrics have these kinds of load-
extension or load contraction curves (see Figure 10a).

(woorco)’

On the other hand, in spite of the linear regression equations that
are applied, these kinds of load-extension or load contraction
curves can be distinguished in some of the aramid fabrics such as
Blai = (R8, R10), Blaii = (R8, R10), Bibi = (R8), BIbii = (R6,
R8), Bllai > (M8, M10), Bllaii > (M8, M10), Bllbi = (M),
Bllbii > (M8), Blllai = (Y8, Y10), BIllbi - (Y8), BIVai 2>
(S8), BIVaii = (S8), BIVbi > (S8) (see Figure 10b).
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Figure 10. a) The load-extension results of wale-wise extended glass
1x1 rib structure knitted with 6 cam setting and parabolic
curve fitting, b) the load-contraction results of wale-wise
extended aramid full cardigan derivative sample knitted with

an 8 cam setting and parabolic curve fitting.

The diameter of the aramid yarn was d = 0.5236 mm while the
diameter of the E-glass yarn was d = 0.354 mm. Therefore, the
aramid fabric samples obtained here were tighter than the E-glass
samples. Since the jamming forces occur in tight fabrics, most of
the load-extension or load-contraction curves of the aramid fabric
samples would have minus m values if they could be written in
parabolic form. It is thought that this is the other reason to obtain
linear regression equations in load-extension or load-contraction
curves of the aramid fabrics in addition to the reason given earlier
in this section. It can be understood that, although the linear
regression equations are applied, some of the aramid load-
extension or load-contraction curves for the first stage are actually
combinations of two different regions, one of which is the T
region and the other is the parabolic region, as seen in Figure 10b:

ii) If the parameter m is positive

For this condition there are two roots of the parabolic equations in
the forms as

+ [(wo—a)™ or c§]\/Ti+m
T byvB

(Wav or Cav) = (WO or CO) (72)

when T is equal to zero. These roots (for the T,,/2 and wy,
relationship, for example) is shown in Figure 11.
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Figure 11. Parabolic curve fittings of load-extension properties of knitted
fabrics for positive m values in Equations (69a and 69b).

For further explanation, regression equations to obtain these roots
for a fabric sample are written in the form as

a) wale-wise loaded samples
i) contraction

Wi, = wo + Dy (m/2) (73)
ii) extension

€12 = €o + D1y, (M/2) (74)
b) course-wise loaded samples

i) contraction

€12 = Co £ Dyc(m) (75)
ii) extension

Wi, = Wyt Dyc(m) (76)

It should be noted here that the minus signs in Equations (73-76)
stand for root 1 while plus signs stand for root 2 where

Dy (m/2) = v e (7)
Dy (m/2) = E022 (79)
D,.(m) = v% (79)
Dye(m) = ool (80)

can be given for the terms in Equations (73-76). Equations (77-
80), in turn, should be evaluated from Empirical Equations in
APPENDIX B for the case considered.

Some more definitions are given here to be used in the rest of the
work as

T, (Wo=d)™{Ty/2+m/2
Do (/g + M) = v s (81)
T &[T /2+m/2
Dy (VW/g+ M) = (82)
D, (T.+m) =v CoTetm (83)

b3VB
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Dy (T, + m) = Wo—aPyTstm

boVB 84)

where Equations (81-84) are used for wale-wise loaded
contraction, wale-wise loaded extension, course-wise loaded
contraction and course-wise loaded extension respectively.

The evaluations of Equations (81-84) again should be done by
using Empirical Equations in APPENDIX B for the case
considered.

As analysed in the work of Kurbak [11] the main reason for
obtaining the two roots is because of friction resistances which are
applied in the dry relaxed fabrics. In the actual situation, the fabric
in a dry relaxed state can either be in root 1 (w; or ¢;) condition
or in root 2 (w, or c¢;) condition.

As a result of the above discussion, to be able to use Empirical
Equations in APPENDIX B, wy and ¢, values should be known.
These values, in turn, can be obtained by using Equations (73-76).
The unknown parameters m in Equations (73-76) should be
estimated first for obtaining wy and ¢, values for the intermediate
tightness points along with which root should be taken as the
starting point of extension or contraction (root 1 or root 2).

The parameters, m, are estimated and the pattern of the starting
root of each curve for E-glass fabric samples were searched
assuming that this present pattern is repeatable. and thus the same
pattern could be obtained in future works. This work is given as in
the following:

o The tightness, l/ d for each case is calculated first using Table

3a and Equation (9). During these calculations, the plain knit
row of the unit cell of Milano Rib, the rib row of the unit cell

of Half Cardigan and the rib row of the unit cell of Full
Cardigan Derivative Structure are used.

e The parameters, m, given in Table 6 and l/ q are drawn in the

graphical forms as seen in Figures 12a and 12b for 1x1 rib; in
Figures 13a and 13b for Milano Rib; in Figures 14a and 14b for
Half Cardigan; and in Figures 15a and 15b for Full Cardigan
Derivative structures.

e Assuming linear relations between m values and tightness l/ d

values, a pattern of m values for each structure was obtained
and is given in the related figures (Figures 12-15).

o The starting roots of extensions and contractions are also shown
on these graphical representations by putting (—) for root 1, (+)
for root 2, and (.) for negative m values on top of each case.

When Figures (12-15) are searched, it is seen that the negative m
values are seen to be obtained mainly for tight fabrics.

It should be added that the glass milano rib structure samples have
mostly negative m values. The reason may be the tighter plain knit
rows of the unit cell of the milano rib. The rib row and the plain
knit rows of the unit cell of the milano rib have been knitted in the
same cam setting which is against the experience that the normal
tightness of plain knit requires a higher cam setting than the
normal cam settings of the 1x1 Rib.

o The relaxed fabrics which are being in root 1 or root 2, is mostly
effective on the extension rates and the contraction rates. Since
the rate of extension and the rate of contraction are preferred in
places of the extension and the contraction themselves in
practice, calculations of the extension rate and contraction rate
are explained briefly as follows:

Figure 12. The parameter m vs. I/d for 1x1 Rib, a) Wale-wise loaded samples, b) Course-wise loaded samples.

Figure 13. The parameter m vs. I/d for milano rib, a) Wale-wise loaded samples, b) Course-wise loaded samples.
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Figure 14. The parameter m vs. I/d for half cardigan, a) Wale-wise loaded samples, b) Course-wise loaded samples.

Figure 15. The parameter m vs. I/d for full cardigan derivative, a) Wale-wise loaded samples, b) Course-wise loaded samples.

@

(b

Figure 16: Load-extension and load-contraction curves when the fabric is in r\root 1 condition, a) load-extension curve, b) load-contraction curve.

i) If the relaxed fabric state is in root 1, for example, for the
contraction of the wale-wise loaded samples, the contraction rate
would be as

[ Wav=(Wo=Daw(m/2)] _ Daw(m/2)=Daw(™/o+™/,)
T we-Daw(m/2)] Wo—Daw (m/2)

Ew (85)
If the relaxed fabric state is in root 1, for example, for the
extension of the wale-wise loaded samples, the extension rate
would be as

& = cav—(co—D1w(m/2)) — Dlw(m/2)+D1w(Tw/2+m/2)
w co=D1w(m/2) [co=D1w(m/2)]

(86)

The relations between TW/ o and &, and between TW/ o and &,
would be as in Figures 16a and 16b, respectively.

ii) If the relaxed fabric state is in root 2 condition, for the
contraction of the same wale-wise loaded sample, the contraction
rate would be as

_ Way—(Wo+tDaw(m/2)) _ =Daw(m/2) = Dy (W/p+™/5)

Eow = T wgtDam/)] Wo+Daw(m/2)

(87)
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If the relaxed fabric state is in root 2 condition, for the extension
of the same wale-wise loaded sample, the extension rate would be
as

e = Car-(WotDiy(m/2) _ ~D1yy (m/2)+ D1y W/, 41/
W™ co+Dyw(m/2) Co+D1y(m/2)

(8%)

The relations between TW/ 2 and &, and between TW/ 2 and &,
would be as in Figures 17a and 17b.

Very similar equations as Equations (85-88) and very similar
curves as in Figures (16-17) are obtained for the course-wise
loaded samples, as well.

It can be seen from the above discussion that the extension rates
and/or the contraction rates are different according to the relaxed
fabrics being in root 1 or root 2. Using the present experimental
results, the equations of m values in terms of tightness (I/d)
(assuming linear relations), the starting roots of the relaxed
fabrics, and the contraction or the extension rates for glass fabrics
are given in APPENDIX C.
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To complete the work, the calculated load-extension and load-
contraction rates are compared with the experimentally obtained
load-extension and load-contraction rates in Figures 18-26 for all
the structures, tightness, and types of yarns used in this work.

During obtaining the theoretical load-extension curves in Figures
18-26, the m, Co, and W values are taken from Table 6. According
to the roots given in Table 6, similar equations as in Equation (71,
85-88) are calculated to obtain the extension or contraction rate
values. As noted above, example calculations of extension and
contraction rates are also given in APPENDIX C for the glass
samples.

During obtaining the experimental extension or contraction rates,
Tables in APPENDIX A are used as

bminci)— b .
€, = —1.5(‘;0 2. (i=1to5) (89)
g =ttt (=1105) (90)
ho

It should be noted here that the contractions are measured in the
middle of the samples as bmin. In order to obtain bay. values, the
side edges of the samples are assumed to be as in Figure 5a in this
work, and similar equations as Equations (34-35) are used for
obtaining ba,. values. Therefore, a dividing factor 1.5 exists in
Equation (89).

The load applied, T, are calculated by dividing the total loads
given at the Tables in APPENDIX A by the average number of
loops on a face of the cross-section of fabric that carries out the
total loads as

T = Total wale—wise Loads (see Tables 5 and 7)
w b (wpc)

C2))

Total course—wise Loads (see Table 6 and 8)
b (cpc)

T.= 92)

(@)

The applied loads T, and T, given in Equations (91-92) are used
for obtaining the theoretical calculations of extension and
contraction rates as well as for obtaining the experimental load-
extension and load-contraction results.

It should be said further that b (wpc) and b (cpc) in Equations (91-
92) are the average number of loops on one face of the samples.
The chosen faces were explained during obtaining (wpc) and (cpc)
parameters by using Equations (15-16). These definitions of
applied loads makes easier to obtain the carried load by a unit
cross-sections of fabrics at any structures by having T,, (wpc)
[g/cm] and T, (cpc) [g/cm] and so on.

In some of the cases, ¢, and w, values given in Table 6 do not
give the calculated extension and/or contraction rates correctly, so
the drawn curves do not follow the experimental points. For these
cases some suitable ¢, and/or w, values are calculated to fit the
experimental points. These calculated new ¢, and/or w, values are
given in Table 6 in brackets. They may be due to five experimental
points which are less for obtaining the correct ¢, and/or w, values.

In some of the tight fabric cases, the calculated curves do not
follow the experimental points. These discrepancies can be
explained as follows; for example, for the glass 6 cam setting tight
fabrics, the first point was put out of the regression equation. It
was later seen that the second point in the 6 cam setting and the
first point in the 8 cam setting of thelx1 rib glass fabric should
also be put out of the regression equations as shown in Figure 10.
This kind of discrepancy is also the result of fewer experimental
points since, if the second experimental point in the 6 cam setting
of the glass fabrics were also left out of the regression equations,
only three point would be left for a quadratic curve fitting.

In spite of some discrepancies mentioned above, it is seen that
Empirical Equations in APPENDIX B can be used to estimate the
extension and the contraction rates for a given load value for any
kind of complex knitted structure at any tightness.

(b)

Figure 17: Load-extension and load-contraction curves when the fabric is in root 2 condition, a) load-extension curve, b) load-contraction curve.
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(i) Contraction (ii) Extension
(a) Wale-wise loaded samples

(i) Contraction (ii) Extension
(b) Course-wise loaded samples
Figure 18: Glass 1x1 rib load-extension results and empirical equations.

(i) Contraction (ii) Extension
(a) Wale-wise loaded samples

(i) Contraction (ii) Extension
(b) Course-wise loaded samples
Figure 19: Glass milano rib load-extension results and empirical equations.
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(i) Contraction (ii) Extension

(a) Wale-wise loaded samples

(i) Contraction (if) Extension
(b) Course-wise loaded samples
Figure 20: Glass half cardigan load-extension results and empirical equations.

(i) Contraction (ii) Extension
(a) Wale-wise loaded samples

(i) Contraction (ii) Extension
(b) Course-wise loaded samples
Figure 21: Glass full cardigan load-extension results and empirical equations.
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(i) Contraction (ii) Extension

(a) Wale-wise loaded samples

(i) Contraction (ii) Extension
(b) Course-wise loaded samples

Figure 22: Aramid 1x1 rib load-extension results and empirical equations.

(i) Contraction (ii) Extension

(a) Wale-wise loaded samples

(i) Contraction (ii) Extension
(b) Course-wise loaded samples
Figure 23: Aramid milano load-extension results and empirical equations.
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(i) Contraction

(ii) Extension

(a) Wale-wise loaded samples

(i) Contraction

(ii) Extension

(b) Course-wise loaded samples
Figure 24: Aramid half cardigan load-extension results and empirical equations.

(i) Contraction

(ii) Extension

(a) Wale-wise loaded samples

(i) Contraction

(i) Extension

(b) Course-wise loaded samples
Figure 25: Aramid full cardigan load-extension results and empirical equations.

5. RESULTS AND DISCUSSION

Results of the initial load-extension and load-contraction
properties of complex weft knitted fabrics will be given in
comparison with the same properties of plain knitted fabric which
was given by Kurbak [11] such that:

i) For the extension and contraction in fabric length direction of
plain knitted glass fabric, linear regression equations with higher
correlation coefficients could be applied while they were quadratic
curve fittings for the fabric width directions. For the extension and

the contraction in both directions for complex weft knitted glass
fabrics, however, quadratic curve fittings could be applied with
higher correlation coefficients. It may be because of the loop arms
which are nearly two dimensional curves for plain knitted fabrics
while they are three dimensional for complex weft knitted
structures.

ii) Mainly three kinds of quadratic curve fittings are obtained for
complex weft knitted fabrics as given in schematic Figures 26a,
26b and 26¢.
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Figure 26. Schematic drawings of curve fittings obtained for load
against extension rates (T vs.%¢E) of complex weft knitted
structures a) quadratic curve fitting with no root, b) quadratic
curve fitting with root 2, ¢) quadratic curve fitting with root
1 and d) the linear load-extension curve.

These three kinds of quadratic load-extension curves could be
calculated in this work by adding the dotted blue curves to the blue
curves in Figures 26a, 260b and 26¢c, to make the curves as
complete parabolas.

It is thought that if the parameter m in Equation (69a) or in
Equation (69b) is negative, the situation in Figure 26a is obtained.
In this situation, no root is obtained when the load is equal to zero.
This can occur because there are jamming forces in tight fabrics,
and the red dotted curve in Figure 26a along with the blue curve
is the actual load-extension curve which can be measured by a
measuring tester.

When the parameter m is positive, the two cases are obtained as in
Figures 26b and 26c¢. It is thought that two roots exist for
Equations (73-76), namely root 1 and root 2, and slack fabrics in
a dry relaxed state can be in root 1 or root 2 conditions, according
to their relaxation from loaded knitting conditions. Fabrics in these
conditions can be in a friction induced equilibrium state. If a
relaxed fabric is in root 2 condition and the extension load is
applied, load-extension rate results are obtained as in Figure 26b.
Again, if a fabric is in root 1 condition and the extension load is
applied, load—extension rate results are obtained as in Figure
26¢.The red dotted line given in Figure 26¢ along with the blue
line is the actual load-extension curve which can be obtained by
using a measuring tester.

The negative m case, the root 1 case, and the root 2 case obtained
during the present experimental work are given in Figures 12-15
for glass samples. Calculations of extension and contraction rates
are also given in Equations (71, 85-88). Apart from these, example
calculations of extension and contraction rates in relation to the
tightness of fabrics are given in APPENDIX C for glass samples.

When Kurbak’s work [11] is examined, it can be seen that root 1
and root 2 conditions also exist in plain knitted glass fabrics.

Journal of Textiles and Engineer

Cilt (Vol): 26 No: 116

iii) In complex knitted fabrics, the other curve fittings obtained are
the linear regression equation which is given in Figure 26d.
While linear regression equations were obtained for the wale-wise
load-extension properties in plain knitted fabric because of the
yarn arms of plain knitted fabrics which were nearly two
dimensional, the linear regression equations obtained for three
dimensional complex weft knitted fabrics are because of higher
bending rigidities along with higher tightness. Linear regression
equations are obtained in tight aramid fabrics. It is thought that
these tight complex weft knitted fabrics with higher bending
rigidities also have parabolic load-extension or load-contraction
curves, but their extensions or contractions are too small to be
approximated by linear curve fittings.

iv) As the initial regions of the load-extension and load-contraction
properties of complex weft knitted fabrics are uncertain
geometrically, some empirical equations are suggested for use in
related engineering software. It is thought that, at least for
experimentally considered tightness regions here, intermediate
load-extension and load-contraction properties can be estimated.
These empirical equations are given as in APPENDIX B.

V) In Empirical Equations given in APPENDIX B, the estimations
of the Poisson’s ratios of the structures are also given. They are
listed below along with the Poisson’s ratio obtained by Kurbak
[11] for plain knitted glass fabrics as

v=20.5 for plain knitted fabric

v = 0.4288 for 1x1 rib

v = 0.3874 for milano rib

v = 0.1996 for half cardigan

v =0.1930 for full cardigan derivative

These estimations of Poisson’s ratios are reasonable since they
decrease according to the complexity of the structure, as they
should be.

vi) According to the method given above, the experimentally
obtained load-extension results for all the samples concerned here
are compared with the given Empirical Equations in APPENDIX
B in Figures 18-25 in which the extension or contraction rates are
calculated with the similar equations as in Equations (71, 85-88).
In most of the cases, the calculated load-extension curves fit with
the experimentally obtained results.

More research, however, must be conducted by having more load
levels in the region during experiments at any tightness point and
also to increase the tightness points to cover intermediate
tightness. It is thought that with this future research, the
parameters cy, Wy, and m in Table 6 can be formulated in relation
to the tightness, 1/d, and, thus, the above procedure will become a
complete method.

Finally, some suggestions can be made on some of the technical
applications of knitted fabrics according to the present results.

e If the load and extension rate relationship is uncertain as in

Figures 26b and 26c¢, it cannot be used for cyclic loading, for
example, for “stretch sensor” applications (see ref. [20]).
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e In composite reinforcement application of knitted fabrics;
Araujo et al. [21] suggested that if a fabric is extended at a
certain rate, the low load region of the load-extension curves
can be omitted and the breaking strengths of composites can be
increased. They used this method with a 20% extension rate.

According to the present work, this suggestion is not suitable for
every tightness of the fabric since the fixed amount of extension
rate could be bigger than the maximum extension of tight fabrics.
Apart from this, fabrics can be in one of the load-extension curves
given in Figure 26; therefore, with a 20% extension (for example,
if a fabric is in root 1 condition as in Figure 26c), the low tension
region will not be completely omitted. It is thought that, instead of
using a certain extension rate, the certain amount of load applied
on a loop should be more suitable to use.

In addition to the above argument that the wale-wise breaking
strengths of the composites reinforced with the plain knitted
fabrics and the milano rib fabrics are obtained to be higher than
the other weft knitted structures in practice, it is interesting to see
that the wale-wise extensions of plain-knitted fabrics and the
milano rib fabrics start from their relaxed conditions given in
Figures 26a, 26b and 26d as seen in Figure 19a, Figure 23a, and
Figure 6 of the reference paper by Kurbak [11].

e Lastly, the mechanical properties of fabrics are calculated by
using their geometrical models nowadays (see refs. [22, 23]).
Before starting of these kinds of calculations, the initial load-
extension properties of the subjected fabric should first be
experimentally investigated. Otherwise, some discrepancies
may occur between the theoretically calculated values and the
measured experimental results. There is one exception: if a
fabric has a special tightness at which the course and/or wale
jamming has just started to occur, on this special tightness point,
the m value becomes zero. For this special tightness point,
theoretical calculations can be carried out without the need for
the initial experimental results.

6. CONCLUSION

In this work, an experimental investigation on the initial load-
extension and load-contraction properties of some complex weft
knitted technical fabrics was carried out based on the work of
Kurbak [11] in plain knitted glass fabrics. The work is
summarized and the conclusion given below:

a) Two types of yarn were used namely 136 tex E-glass and 168
tex aramid. Four different structures were chosen: 1x1 rib,
milano rib, half cardigan, and full cardigan derivative. Two
types of samples were prepared for the wale-wise direction
and the course-wise direction. For the 1x1 rib, three tightness
points were taken: the 6 cam setting, the 8 cam setting, and
the 10 cam setting of the 7 gauge V-bed hand knitting
machine. For the milano rib, the half cardigan, and full
cardigan derivative, two tightness points were taken, the 8
cam setting and the 10 cam setting. Six samples for each
experiment were prepared. A total of 216 samples were
prepared.
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b)

c)

d)

Samples were adjusted so that the usable length (h) and
width (b) were about 20x10 cm? plus enough length to hold
them by a load-extension measuring apparatus.

One sample for each experimental point was used to measure
the initial dimensional properties of the fabric: the loop
length (1), the course-per-cm (cpc), and wales-per-cm (WpC).

The load-extension and load-contraction properties of the
20x10 cm? samples were then measured on a special
apparatus (see Figure 4) using 5 level dead weights. The load
levels were increased from zero to the maximum load of the
first region. For every load level, the lengths (h) and the
middle widths (bmin) of the samples were measured. Five
samples for each experimental point were measured, and
their averages were calculated.

Regression analyses were carried out on the relation between
the loads (T) and lengths (h) and also between the loads (T)
and widths (bmin). Mostly quadratic curve fittings with higher
correlation coefficients were obtained between the load-
extension and the load-contraction results except that, for
some, tight aramid fabrics linear regression equations could
be applied to the experimental results with higher correlation
coefficients.

For comparison purposes, the regression equations
(Equations 6 and Table 5) are written in terms of the loop
parameters Cay, Cmin, Way, Wmin, 1cand Ty using Equations (21-
22,26-27).

The last obtained equations were then turned into the forms
of equations as given in Equations (28-31) according to the
assumption made about the separating method of the
frictional restrains and/or fabric jamming forces from
quadratic curve fittings. In the form of Equations (28-31) the
m values were considered as the frictional restrains or/and
fabric jamming forces for the unit structures of fabrics.

For the first stages of extensions and contractions, Kurbak
[11] gave some equations as Equations (32-35) to replace
Cmin and Wmin values with the Cay and Way values by assuming
that the side edges of the samples follow parabolic curves
under loading conditions (see Figure 5a). Equations (32-35)
are applied to all the Cmin and Wmin values in the regression
equations, and they are turned into the forms given in
Equations (36-39). The parameters of all the obtained
regression equations in the form of Equations (36-39) are
given in Table 6. It is seen in Table 6 that the m values are
small enough to be considered as frictional restrains and/or
fabric jamming forces. Therefore, the assumption made
about the separating method of the m values from quadratic
curve fittings is the reasonable one.

When all the parabolic curve fittings were examined, three
kinds of situations were distinguished:

i) When parameter m is negative (in this case, when external
load Twor Tcis equal to zero), the square root in Equations
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(53-56) become imaginary; therefore, no root is obtained.
This situation was primarily obtained for tight fabrics.

ii) When parameter m is positive; there are two roots, root 1
and root 2. The fabric can be in each of the roots when
the external load is equal to zero. These cases— the
negative m case, the root 1 case, and the root 2 case— are
also given in Table 6 as 0, 1, and 2 respectively. One more
case is that when the linear regression equation is applied.
For the linear equation case, a “dash”(-) is used in Table
6.

g) The first region (initial region) is the most geometrically
uncertain region of the load-extension and load-contraction
curves; thus, if one wants to obtain the mechanical properties
of knitted fabrics by using their geometrical models, this
region may create some problems. Therefore, the attempt
was made to find out if some empirical equations can be
given for this region that can be used in related engineering
software. The empirical equations are given as in
APPENDIX B. While obtaining the empirical equations,
Poisson’s ratios of the structures were also estimated. The
estimated Poisson’s ratios are reasonable since they reduce
with the complexities of the fabrics, as they should be.

h) In Empirical Equations given in APPENDIX B, the
parameters Co, Wo, and m values are taken from Table 6. It is
already known that the parameters Co and Wp are related to
the tightness 1/d. It is attempted to obtain some relationship
between the m parameters and the tightness 1/d, as given in
Figures 12-15. It was thought that, to obtain the exact
relations between the parameter m and the tightness 1/d, some
more tightness points should be taken from each fabric
structure during the experiments.

i) Using Table 6 and the Empirical Equations in APPENDIX
B, the load-extension rates and load-contraction rates are
obtained through some equations which are similar to
Equations (71, 85-88) for all the cases considered here. The
results obtained were compared with the experimentally
obtained extension and contraction rates as given in Figures
18-25.

Figures 18-25 show that the Empirical Equations in
APPENDIX B correctly estimated the extension and
contraction rates. Because only 5 load levels are taken for the
first extension or contraction region in this work, for 7 points
out of 70 points, however, the Coor Wp values were obtained,
which are different from the given points in Table 6. The new
points are also written in brackets in Table 6.

Finally, it can be concluded that three different parabolic curve
fittings of the load-extension and load-contraction rates were
obtained as given schematically in Figures 26a, 26b and 26c. The
linear curve fittings were also obtained for tighter aramid fabrics.
The three kinds of curve fittings in Figures 26a, 26b and 26¢ could
be calculated by Empirical Equation in APPENDIX B through
some equations similar to Equations (71, 85-88); thus, this can be
considered as a new method. It is thought that, when this method

Cilt (Vol): 26 No: 116

is improved by future experiments, it will be useful for obtaining
the load-extension or load-contraction properties of such a
geometrically uncertain region, namely the initial load-extension
or load-contraction region.
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APPENDIX A
The experimentally obtained h and b,,;,, values with changing load levels T are given in Tables Ala and A1b for wale-wise loaded glass
samples, in Table A2a and A2b for course-wise loaded glass samples, in Table A3a and A3b for wale-wise loaded aramid samples and

in Table A4a and A4b for course-wise loaded aramid samples.

Example drawings of load-extension and load contraction curves for each table are also given in Figures Ala, Alb, A2a, A2b, A3a,
A3b Ada and A4b.

Table Al: Measured initial (the first stage) load-extension and load contraction results for wale-wise loaded glass samples.

Glass wale-wise extension
Results
a) extension (h) [cm]

Full Cardigan
1x1 Rib Milano Rib Half Cardigan Derivative
R6 RS R10 M8 M10 Y8 Y10 S8 S10
20 20 20 20 20 20 20 20

27.1 28.88 21.32 |26.1 32.58 33.46 28.34 |35.02

3048 |33 2522 |31.66 36.62 36.82 3648 |42.14

33.06 |35.36 28.58 |34.26 39.62 40.02 40.54 | 45.68

33.92 136.24 29.88 3548 40.9 40.98 41.98 146.8

b) contraction (b) [cm]

Full Cardigan
1x1 Rib Milano Rib Half Cardigan Derivative
Load [g] |R6 RS R10 M8 M10 Y8 Y10 S8 S10
0 11.5 8.7 11.5 10.8 11.7 11.5 14.2
2384 7.8 8.3 9.2 9.2 9.5 9.9 10.7
480 6.0 7.0 6.7 8.5 8.7 8.4 8.3
800 4.8 5.8 5.5 7.8 8.2 7.2 6.8
1050 4.5 54 5.0 7.5 8.0 6.8 6.4

(a) (b)

Figure Al: Example drawings of load-extension and load-contraction results given in Table A1; a) load-extension, b) load-contraction.

Cilt (Vol): 26 No: 116

Journal of Textiles and Engineer Tekstil ve Miithendis

SAYFA EK 1




Empirical Equations and Poisson’s Ratios for Initial Load-Extension Properties Arif KURBAK

of Some Complex Glass and Aramid Technical Weft Knitted Structures® —— Sinem OZTURK

Table A2: Measured initial (the first stage) load-extension and load-contraction results for course-wise loaded glass samples.

Glass course-wise extension
Results
a) extension (h) [cm]

Full Cardigan
1x1 Rib Milano Rib Half Cardigan | Derivative

R6 RS R10 M8 M10 Y8 Y10 S8 S10

20 20 20 20 20 20 20 20

40.82 [57.26 [22.04 [25.66 [39.3 50.2 40.04 45.52

49.86 6626 249 [30.08 |46.6 56.1 46.66 49.08

5558 7032 283 3326 |5134 [60.34 |51.74 52.08

57.76  |72.08 ]129.88 |34.02 |53 61.66 |53.04 52.9

b) contraction (b) [cm]

Full Cardigan

1x1 Rib Milano Rib Half Cardigan Derivative
R6 R10 M8 M10 Y8 Y10 S8 S10

8.6 9.2 9.7 9.3 9.0 8.3 8.6

3.6 8.8 7.8 8.1 6.8 7.3 6.2

2.4 7.7 5.5 7.2 5.8 6.5 52

2.0 6.0 3.8 6.4 5.1 5.7 43

1.8 5.1 3.4 5.9 4.7 5.4 4.0

(a) ()

Figure A2: Example drawings of load-extension and load-contraction results given in Table A2; a) load-extension, b) load-contraction.
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Table A3: Measured initial (the first stage) load-extension and load-contraction results for wale-wise loaded aramid samples.

Aramid wale-wise extension
Results
a) extension (h) [cm]

Full Cardigan
1x1 Rib Milano Rib Half Cardigan Derivative

Load [g] |Ré6 RS R10 M8 M10 Y8 Y10 S8 S10
20 20 20 20 20 20 20 20
20.42 [24.96 20.12 21.26 22.02 23.28 21.64 254
22.76 [33.06 20.46 23.36 23.78 25.98 24.6  |27.92
25.72 136 21.08 25.44 25.04 27.92 272 129.52
26.9  |36.82 21.46 26.24 25.62 28.68 28.04 ]30.1

b) contraction (b) [cm]

Full Cardigan
1x1 Rib Milano Rib Half Cardigan | Derivative
Load [g] RS R10 M8 M10 Y8 Y10 S8 S10
0 10.1 12.1 8.9 9.8 11.7 |12.2 113|132
238.4 9.9 10.1 8.8 9.4 114 |11.6 112|124
480 9.2 8.1 8.7 8.7 11.0  |11.1 109 [11.5
800 8.3 7.4 8.5 8.0 10.6  |10.6 104 |10.6
1050 7.9 7.2 8.3 7.6 10.5 |[10.4 10.1 10.2

(a) (b)

Figure A3: Example drawings of load-extension and load-contraction results given in Table A3; a) load-extension, b) load-contraction.
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Table A4: Measured initial (the first stage) load-extension and load-contraction results for course-wise loaded aramid samples.

Aramid course-wise extension
Results
a) extension (h) [cm]

Full Cardigan

1x1 Rib Milano Rib Half Cardigan | Derivative
Load [g] |Ré6 RS R10 M8 M10 Y8 Y10 S8 S10
0 20 20 20 20 20 20 20 20
238.4 21.94 38.08 20.22 21.42 2536 |40.74 27.18 [42.94
480 25.1 45.08 20.62 23.14 31.02 [47.84 33.98 [49.06
800 28.64 52.48 21.32 25.54 354  |52.54 38.8 |53
1050 30.5 57.76 21.78 27.08 37.16 |54.2 40.52 | 55.04

b) contraction (b) [cm]

Full Cardigan

1x1 Rib Milano Rib Half Cardigan Derivative
R6 R10 M8 M10 Y8 Y10 S8 S10

8.5 9.6 10.2 9.5 8.3 8.1 7.1

7.4 9.6 9.9 9.3 7.5 7.9 6.3

6.6 9.5 9.5 8.8 6.5 7.6 54

5.0 9.3 8.8 8.3 5.7 7.1 4.7

3.8 9.1 8.4 8.0 5.3 6.8 4.3

(a) (b)

Figure A4: Example drawings of load-extension and load-contraction results given in Table A4; a) load-extension, b) load-contraction.
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APPENDIX B

EMPIRICAL EQUATIONS
A) GLASS

1) 1x1 RIB STRUCTURE

a) for wale-wise loaded samples
i) contraction

_ o (wo—a)13828 [Ty, /24m/2
Way = Wo =V 3.4231VB (B
ii) extension
_ coy/Tw/2+m/2
Cav = Co 3.7080 VB (B2)

b) for course-wise loaded samples
i) contraction

M T+
Cap = Co — U—C;7080J§ (B3)
ii) extension
_ (Wo—d)™2,[T,+m
Way = Wo + 3.4231VB (B4)
where
v =—— =0.4288 (B3)
2.3319
n, = 2.6582 — 2.1194 (CO/d —3.7932) (B6)
n, = 2.34071 (WO/d - 5.5671) 325 (B7)
A) GLASS
I1) MILANO RIB STRUCTURE
a) for wale-wise loaded samples
i) contraction
(wo—d) 1975/, /2+m/2
Wap = Wo — V=0t N = (B8)
ii) extension
- 31 Tw/24+m/2
Cay = Co ¥+ 4.9330 VB (B9)
b) for course-wise loaded samples
i) contraction
M T+
Cap = Co— v—l"_%so\g (B10)
ii) extension
_ (wo—d)"2[T,+m
Wav = Wo + 0 6vE (BID)
where Poisson’s ratio
v= —— =103874 (B12)
2.5816 c
n, = 24441 — a5 (B13)
n, = 2.44034 — ¥o/d-585%0 (B14)
3.7364
A) GLASS
I11) HALF CARDIGAN STRUCTURE
a) for wale-wise loaded samples
i) contraction
Wap = Wy — U (wo—d)™  a\/Ty,/24+m/2 (BIS)

1.2504 VB
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ii) extension
= ot eSS Ty /2+m/2
av 0 3.5498VEB

b) for course-wise loaded samples
i) contraction

_ ca?(1/a)To+m
Cav = Co = VT 00s VB
ii) extension

wo—d)"3(Y/g)JTc+m

1.2504VB

Wapy = Wy +

where Poisson’s ratio and a constant, a, are as

1

U= = 0.1996
5.0094
a =1.2891
Wo/ 91484
n, = 0.2506 — —zg.wss

n, = 2.8312 — (c,/d — 4.8031)/1.5423
ns = 0.7535 — (wy/d — 12.2359)/32.4436

A) GLASS

IV) FULL CARDIGAN DERIVATIVE
a) for wale-wise loaded samples

i) contraction

v (Wo—-d) 37 [Ty, /24+m/2

- ‘_’V‘“’ = Wo 2.2267 VB
ii) extension
o = ¢ +cgl a/Ty,/2+m/2
av 0 0.8065 VB

b) for course-wise loaded samples
i) contraction

_ (l/a)x/Tc"'m
Cop = Co—V————
B . 0.8065 VB
ii) extension

wo—d)"2(1/g)JTc+m

Wapy = Wy +

2.2267 VB
where
1
v= =0.1930
5.1798
a=0.9762
cos _

n, = —0.037338 — %

n, = 0.7555 — %%400)
B) ARAMID

1) 1x1 RIB STRUCTURE
a) for wale-wise loaded samples
i) contraction
R6 _ _ ., wo-d)™aTy
RS} Way = Wo —V 0.5662(2B) 2

_ (wo—d)™a,/Ty,/2+m/2
R10}wy, = wy —v TN
ii) extension
c?a Ty

R6 _ _Gla Ty
RS} Cav = Co ¥+ 3.1709(2B) 2

Cilt (Vol): 26 No: 116
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(B16)

(B17)

(B18)

(B19)
(B20)

(B21)

(B22)
(B23)

(B24)

(B25)

(B26)

(B27)

(B28)
(B29)

(B30)
(B31)

(B32)

(B33)

(B34)
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nz
_ o aTy/2+m/2
R10}cyp = ¢ + BTy

b) for course-wise loaded samples
i) contraction

o= o — M)
av 0 3.1709 (2B) €
ii) extension
R6 _ (wo—d)™4(1/a)
RS} Wav = Wo 0.5662(2B) €

(wo-d)™(1/a){/Tc+m
0.5662VB

R10} wy, = wy +

where Poisson’s ratio

1

v= = 0.4288
2.3319
a = 1.0500
~12.4049 +2.2727~2; for =2 < 5.6671
n, =
! 0.2520; for “ > 5.6671
—343.9483 + 137.3074 2; for 2 < 2.5401
n, =
2 3.3608 ; for 2 > 2.5401
3.6553 + 25.3303(co/d — 2.5730); for = < 2.5730
N, =
" |3.6553 + (co/d — 2.5730)/2.1812; for 2 = 25730
Wo
_ 4 for M0
n = 1.9575 + —&—; for =* < 5.6671
1.2957; for =* = 5.6671
B) ARAMID

I1) MILANO RIB STRUCTURE

a) for wale-wise loaded samples

i) contraction

_ (wo—d)5'2548(1/a)T_W

Wav = Wo 34.6900(2B) 2
ii)extension
C4.7778 1 T,
Cop = Co + 2 ) Tw

8.3467 (2B) 2

b) for course-wise loaded samples
i) contraction

_ 36933
Cav = Co = Vg3ser2m) '€

ii) extension
(Wo_d)4.5893a

Wy = Wo +
av 0 % 34690002B) €

where
1
v= = 0.3857
2.5949
a=1.2369
B) ARAMID

I11) HALF CARDIGAN STRUCTURE
a) for wale-wise loaded samples
i) contraction
_ _ (Wo—-d)™/Ty, /2+m/2
Wav = Wo — U 0.5016vE
ii) extension
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(B35)

(B36)

(B37)
(B38)

(B39)
(B40)
(B41)
(B42)

(B43)

(B44)

(B45)

(B46)

B47)

(B48)

(B49)
(B50)

(B51)
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cg? JTw/2+m/2

Cav = Co+ = rosE (B52)
b) for course-wise loaded samples
i) contraction
Y8 L
R i (55
. Te+
Y10}cyy = o — u% (B54)
ii) extension
_ (Wo—d)™4[T,+m
Wav = Wo 0.5016 VB (B55)
where
v= —— =0.1996 (B56)
5.0094
ny = 0.1514 — 2.4037 (w,/d — 7.07861) (B57)
Co/ _
n, = —1.0356 4 (425470 (B583)
d1.616
ny = —02381 + - (B59)
— 07911 — L5070 60
Ny =0 "7 99688 (B60)
B) ARAMID
IV) FULL CARDIGAN DERIVATIVE
a) for wale-wise loaded samples
i) contraction
S8 o (Wo—d)™ Ty
510} Wav = Wo = V57078 2B) 2 (Bo1)
—d 1.0142 TW 2 2
S10}wg, = wo — v =) ﬁ/ m/ (B62)
ii) extension
"2 [Ty /2+m/2
Cap = Co + 0 (B63)
b) for course-wise loaded samples
i) contraction
S8 _ c?
510} Cav = G0~V 0.7692 (28) T. (B64)
_ _ co Te+m
S10jcay = ¢ — v (B65)
ii) extension
(Wo—d)"™4Tc+
Way = W + o (B66)
where
v =——=10.1930 (B67)
5.1798
= —3.2302 + 2/L (B68)
! ' 1.6392
n, = 7.2022 — 1.2190 ¢, /d (B69)
_ Cg/d
ny = 04086 + L= (B70)
n, = 0.7410 — 2o/d 9549 (B71)
7.7947
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APPENDIX C

EXAMPLE CALCULATIONS OF THE PARAMETER m, THE RATES OF EXTENSIONS (€4,,, €1.), AND THE RATES OF
CONTRACTIONS (&3, , €;.) FOR GLASS SAMPLES

The following route and notations should be known in order to understand the calculations:
i) co and w, values should be taken from Table 6 for related cases

ii) The linear relations between tightness points I/d and the parameter m of each fabric structure are assumed to occur as in Figures
12-15.

iii) In the equations in the Appendix, notations as in Equations (77-84) are used. Evaluations of the right-hand side of Equations
(77-84), in turn, should be made by using the related case equations given in Empirical Equations at APPENDIX B.

Example calculations are given below.
A) GLASS
1) 1x1 RIB STRUCTURE

a) Wale-wise loaded samples
i) Contraction

—T, = 1.452 (//; — 20.5); for I/, < 20.5,m < 0

m= 1 _ (CD
(*/4—20.5)
. ﬁ;fcr l/d > 205, root 2
- w/ _10
M;for l/d < 20.5; Tw/2 > To/2
Wo
Eq = . (C2)
~Daw("/2)=Daw(¥/o+™/5) l/ >
Do (") ; for /d >20.5
ii) Extension
—T, = 1452 (}/ ; — 20.5); for /; < 20.5;m < 0 )
m= 1
(*/q=205) l .
=4 for /d > 20.5;root 1

Dlw(TW/z_To/z) . l . T, T,
P2 for Uy <205/, 2 10/,
E1w = Dy (m/ )+D1 (Tw/ +m/ ) I (C4)
w 2 w 2 2/, >
P T ;for t/ ;=205

b) Course-wise loaded samples
i) Contraction
—(Y/4—20.5) ) l .
m = W,for /d < 20.5;root 1 (CS)
1122 (//; - 20.5); for 1/, = 20.5;700t 2

DaemDaeTetm). 1 Uy < 905

Co—Dzc(m)
f2c = —Dac(m) =Dy (Tc+m) l (C6)
W,for /d > 20.5
ii) Extension
_ (Yq-205)

_ [ .
o o == for /4 <205m<0 o

(¢/4—205) I .
===, for !/ 4 = 20.5;ro0t 1
2l for 1) <205, T, 2 T,

) E : C8

F1C T Diclmbiglrpem) .

; for U/ ;=205

wo—D1c(m)
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of Some Complex Glass and Aramid Technical Weft Knitted Structures
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Sinem OZTURK

I1) MILANO RIB

a) Wale-wise loaded samples
i) Contraction

m= —T, = 13336 (//; — 21.1425); for |/, < 21.1425;m < 0
Eow = _M;for l/d < 21.1425; Tw/2 > TO/2

Wo
ii) Extension

m = —T, = 13336 (/; — 21.1425); for |/, < 21.1425; m < 0
£y = 220D o L) | < 21.1425; Tw/2 > T°/2

Co

b) Course-wise loaded samples
i) Contraction

m = —1.3654 (I/; — 21.1425); for !/ ; < 21.1425; 700t 1
- M;]ﬂor l/d < 21.1425

2c —

Co—Dzc(m)
ii) Extension
L. _
m =T, = Y22, o0 1) < 21.1425;m < 0

erp = D1eTe =To)/ - for U < 211425, T, > T,
I11) HALF CARDIGAN

a) Wale-wise loaded samples
i) Contraction

L _
= (/‘izg%ss);for l/d > 20.58; root 2
_ —D2w(m/z)_D2w(Tw/2+m/2) . l
Eaw = wo+Daw (/) for /d = 20.58
ii) Extension
_Yg1®) .
= m,for /d >11.8;root 1
_ Duw (") +Daw(W/p ) l
Bw = co=D1w(™/3) for /d =118

b) Course-wise loaded samples
i) Contraction
~(Y/ 4~22.75)
—H——; for U/, < 22.75;root 1

. _
%:for Y/ = 22.75;root 2

Dac(M)—Dac(Tc+m) | l < 2275
&, = Co—Dzc(m) ifor /d -
2€ T ) =Dpc(m) =Dy (Te+m)
€o+Dzc(m)

m=

ifor U/, > 2275

ii) Extension
_ 20 l .
= oo ; for /d > 20;root 1

_ D1c(m)+D1c(Tc+m) | l
E1e = = e T /g 220
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IV) FULL CARDIGAN DERIVATIVE

a) Wale-wise loaded samples
i) Contraction

Ca2275) 1) .
= Tm,for /d,S22.75,T00t1
~(Y4-22.75)
—Ty = ﬁ;jor l/d >2275:m<0
Daw(™/2)=Daw (W/2+™/) . l
£y = wo D7) 07 1a <2275
2w —DZW(TW/Z_TO/Z)_for l/ > 22.75: TW/ > TO/
wo ’ d - ) 4 2 - 2
ii) Extension
_ (Hq—2275) 1. .
o —To =~4——; for [q; £2275m <0
(Y 4—22.75) ] l )
W,for /d > 22.75;root 1
D1w("/5="%/) T, T,
. mc—ozz;for l/d < 22.75; W/zZ 0/2
1w —

D1 (/) + D1 (W/o+™/)
co=D1w(™/3)

sfor U, 22275

b) Course-wise loaded samples
i) Contraction

(Y-
227, oy U ) < 22755700t 1
S
a=?275) l .
=i for /d > 22.75;root 2
Dac(M)—Dac(Tc+m) | l
. e ; for /d < 22.75
€7 ) =Dac(M)=Dy(Tc+m) | l
et Ll /q 22275
ii) Extension

m = 2.2125 (1/; - 20); for /4 = 20; 00t 1
_ D1c(m)+D1c(Tc+m) | l
Bl = = Doy SO /g 2 20
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