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Fügen Torunbalcı Aydın 1*

Abstract
In this paper, dual Jacobsthal quaternions were defined. Also, the relations between dual Jacobsthal quaternions
which connected with Jacobsthal and Jacobsthal-Lucas numbers were investigated. Furthermore, Binet’s formula,
Honsberger identity, D’ocagne’s identity, Cassini’s identity and Catalan’s identity for these quaternions were
given.
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1. Introduction
In 1843, Hamilton [1] introduced the set of quaternions which can be represented as

H = {q = q0 + iq1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R} (1.1)

where

i2 = j2 = k2 =−1 , i j =− j i = k , j k =−k j = i , k i =−i k = j .

After the work of Hamilton, several authors worked on different quaternions and their generalizations. ([2]-[22]).

In 1973, Sloane [23] introduced the set of Jacobsthal numbers.
Further, in 1988, Horadam [24]-[25] defined the Jacobsthal and Jacobsthal-Lucas sequences {Jn} and { jn} with the recurrence
relations respectively, as follows

J0 = 0, J1 = 1, Jn = Jn−1 +2Jn−2, f or n≥ 2, (1.2)

and

j0 = 2, j1 = 1, jn = jn−1 +2 jn−2, f or n≥ 2, (1.3)

In 1996, Horadam studied on the Jacobsthal and Jacobsthal-Lucas sequences and he gave Cassini-like formula as follows [26]

Jn+1Jn−1− J2
n = (−1)n.2n−1 (1.4)
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jn+1 jn−1− j2
n = 32.(−1)n+1.2n−1 (1.5)

The first eleven terms of Jacobsthal sequence {Jn} are 0,1,1,3,5,11,21,43, 85,171 and 341. This sequence is given by the
formula

Jn =
2n− (−1)n

3
(1.6)

The first eleven terms of Jacobsthal-Lucas sequence { jn} are 2,1,5,7,17,31
65,127,257,511 and 1025. This sequence is given by the formula

jn = 2n +(−1)n (1.7)

Also, we can see the matrix representations of Jacobsthal and Jacobsthal-Lucas numbers in [27],[28]. The members of these
integer sequences can also be obtained in different ways: Binet formulae or matrix method by Köken and Bozkurt [27]-[28].
Several authors worked on Jacobsthal numbers and polynomials in [29]-[32].

In 2015, Szynal-Liana and Włoch [33] defined the Jacobsthal quaternions and the Jacobsthal- Lucas quaternions respec-
tively as follows

JQn = Jn + i Jn+1 + j Jn+2 + k Jn+3 , (1.8)

and

JLQn = jn + i jn+1 + j jn+2 + k jn+3 . (1.9)

where

i2 = j2 = k2 =−1 , i j =− j i = k , j k =−k j = i , k i =−i k = j.

In 2017, Torunbalcı Aydın and Yüce [34] given a new approach to Jacobsthal quaternions. Furthermore, some relations between
Jacobsthal and Jacobsthal-Lucas quaternions are given in [34].

In 2017, Taşçı [35] defined k-Jacobsthal and k-Jacobsthal-Lucas quaternions as follows

QJk,n = Jk,n + i1 Jk,n+1 + i2 Jk,n+2 + i3 Jk,n+3 (1.10)

and

Q jk,n = jk,n + i1 jk,n+1 + i2 jk,n+2 + i3 jk,n+3 (1.11)

where

i21 = i22 = i23 = i1 i2 i3 =−1 .

In 2017, Cerda-Morales [36] worked on identities of third order Jacobsthal quaternions.
In 2018, Cerda-Morales [37] defined fourth-order Jacobsthal and Jacobsthal-Lucas quaternions as follows

QJn
(4) = Jn

(4)+ i Jn+1
(4)+ j Jn+2

(4)+ k Jn+3
(4) (1.12)

and

Q jn(4) = jn(4)+ i jn+1
(4)+ j jn+2

(4)+ k jn+3
(4) (1.13)

In this paper, dual Jacobsthal and dual Jacobsthal-Lucas quaternions will be defined as follows

JD = {DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 | Jn, n− thJacobsthal number}
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and

jD = {D j
n = jn + i jn+1 + j jn+2 + k jn+3 | jn, n− thJacobsthal-Lucas number}

where

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 .

All the studies on Jacobsthal quaternions are summarized in Table 1.

Table 1. Types of Jacobsthal quaternions [33]-[35].

Definition Multiplication Rules

Jacobsthal JQn = (Jn,Jn+1,Jn+2,Jn+3) (1, i, j,k), i2 = j2 = k2 =−1
quaternion Jn = Jn−1 +2Jn−2, J1 = J2 = 1 i j =− j i = k, j k =−k j = i

k i =−i k = j

k-Jacobsthal QJk,n = (Jk,n,Jk,n+1,Jk,n+2,Jk,n+3) (1, i1, i2, i3),
quaternion QJk,n+2 = k QJk,n+1 +2QJk,n i21 = i22 = i23 = i1 i2 i3 =−1

Dual Jacobsthal DJ
n = (Jn,Jn+1,Jn+2,Jn+3) (1, i, j,k) i2 = j2 = k2 = i j k = 0

quaternion Jn = Jn−1 +2Jn−2, J1 = J2 = 1 i j =− j i = j k =−k j = k i =−i k = 0

2. Dual Jacobsthal Quaternions
In this section, the dual Jacobsthal quaternions will be defined. Also, the relations between dual Jacobsthal quaternions which
connected with Jacobsthal and Jacobsthal-Lucas numbers were investigated.

Dual Jacobsthal quaternions is defined by relation recurrence (1.2) as follows

JD = {DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 |Jn, n− thJacobsthal number} (2.1)

where

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 . (2.2)

Also, the dual Jacobsthal-Lucas quaternion is defined by relation recurrence (1.3) as follows

jD = {D j
n = jn + i jn+1 + j jn+2 + k jn+3 | jn, n− thJacobsthal-Lucas number}, (2.3)

i2 = j2 = k2 = i j k = 0 , i j = − j i = j k = −k j = k i = −i k = 0 .

Let DJ1
n and DJ2

n be n-th terms of the dual Jacobsthal quaternion sequence (DJ1
n ) and (DJ2

n ) such that

DJ1
n = Jn + i Jn+1 + j Jn+2 + k Jn+3 (2.4)

and

DJ2
n = Kn + iKn+1 + j Kn+2 + k Kn+3 (2.5)
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Then, the addition and subtraction of the dual Jacobsthal quaternions is defined by

DJ1
n ±DJ2

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
±(Kn + iKn+1 + j Kn+2 + k Kn+3)

= (Jn±Kn)+ i(Jn+1±Kn+1)+ j (Jn+2±Kn+2)
+k (Jn+3±Kn+3) .

(2.6)

Multiplication of the dual Jacobsthal quaternions is defined by

DJ1
n DJ2

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
(Kn + iKn+1 + j Kn+2 + k Kn+3)

= (Jn Kn)+ i(JnKn+1 + Jn+1Kn)+ j(JnKn+2 + Jn+2Kn)
+k(JnKn+3 + Jn+3Kn).

(2.7)

The scalar and the vector part of DJ
n which is the n-th term of the dual Jacobsthal quaternion (DJ

n) are denoted by

SDJ
n
= Jn and VDJ

n
= iJn+1 + jJn+2 + kJn+3. (2.8)

Thus, the dual Jacobsthal quaternion DJ
n is given by DJ

n = SDJ
n
+VDJ

n
.

Then, relation (2.7) is defined by

DJ1
n DJ2

n = S
DJ1

n
.S

DJ2
n
+ S

DJ1
n
.V

DJ2
n
+S

DJ2
n
.V

DJ1
n
. (2.9)

The conjugate of the dual Jacobsthal quaternion DJ
n is denoted by DJ

n and it is

DJ
n = Jn− i Jn+1− j Jn+2− k Jn+3. (2.10)

The norm of DJ
n is defined as

NDJ
n
=
∥∥DJ

n
∥∥2

= DJ
n DJ

n = J2
n . (2.11)

Then, we give the following theorem using statements (2.1), (2.2) and
JnJn+1 +2Jn−1Jn = J2n,
JnJm+1 +2Jn−1Jm = Jn+m,
Jn+1 +2Jn−1 = jn,
Jn jn = J2n.

(2.12)

Theorem 2.1. Let Jn and DJ
n be the n-th terms of the Jacobsthal sequence (Jn) and the dual Jacobsthal quaternion sequence

(DJ
n), respectively. In this case, for n≥ 1 we can give the following relations:

DJ
n +DJ

n = 2Jn, (2.13)

(DJ
n)

2 +DJ
n DJ

n = 2Jn DJ
n, (2.14)

DJ
n+1 +2DJ

n = DJ
n+2, (2.15)

DJ
n− iDJ

n+1− j DJ
n+2− k DJ

n+3 = Jn, (2.16)

Proof. Proof of four equality can easily be done by the equations

DJ
n = Jn + i Jn+1 + j Jn+2 + k Jn+3, (2.17)
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DJ
n+1 = Jn+1 + i Jn+2 + j Jn+3 + k Jn+4 (2.18)

(2.13):

DJ
n +DJ

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
+(Jn− i Jn+1− j Jn+2− k Jn+3)

= (Jn + Jn)+ i(Jn+1− Jn+1)+ j(Jn+2− Jn+2)
+k(Jn+3− Jn+3)

= 2Jn.

(2.14):

(DJ
n)

2 +DJ
n DJ

n = (Jn + i Jn+1 + j Jn+2 + k Jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
+(Jn + i Jn+1 + j Jn+2 + k Jn+3)
(Jn− i Jn+1− j Jn+2− k Jn+3)

= (JnJn)+ i(JnJn+1 + Jn+1Jn)+ j(JnJn+2 + Jn+2Jn)
+k(JnJn+3 + Jn+3Jn)
+JnJn + i(−JnJn+1 + Jn+1Jn)
+ j(−JnJn+2 + Jn+2Jn)
+k(−JnJn+3 + Jn+3Jn)

= 2JnJn +2i JnJn+1 +2 j JnJn+2 +2k JnJn+3
= 2Jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)
= 2Jn DJ

n

(2.15):

DJ
n+1 +2DJ

n = (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
+2(Jn + i Jn+1 + j Jn+2 + k Jn+3 )

= (Jn+1 +2Jn)+ i(Jn+2 +2Jn+1)+ j (Jn+3 +2Jn+2)
+k (Jn+4 +2Jn+3)

= Jn+2 + i Jn+3 + j Jn+4 + k Jn+5
= DJ

n+2.

(2.16):

DJ
n− iDJ

n+1− j DJ
n+2− k DJ

n+3 = (Jn + iJn+1 + jJn+2 + kJn+3)
− i(Jn+1 + iJn+2 + jJn+3 + kJn+4)
− j(Jn+2 + iJn+3 + jJn+4 + kJn+5)
− k(Jn+3 + iJn+4 + jJn+5 + kJn+6)
= Jn .

Theorem 2.2. Let DJ
n and D j

n be the n-th terms of the dual Jacobsthal quaternion sequence (DJ
n) and the dual Jacobsthal-Lucas

quaternion sequence (D j
n), respectively. The following relations are satisfied

DJ
n+1 +2DJ

n−1 = D j
n , (2.19)

2DJ
n+1−DJ

n = D j
n . (2.20)

Proof. (2.19): From equations (2.17), (2.18) and identity between Jacobsthal number and Jacobsthal-Lucas number jn = Jn+1 +2Jn−1,
it follows that

DJ
n+1 +2DJ

n−1 = (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
+2(Jn−1 + i Jn + j Jn+1 + k Jn+2)

= (Jn+1 +2Jn−1)+ i(Jn+2 +2Jn)
+ j (Jn+3 +2Jn+1)+ k (Jn+4 +2Jn+2)

= jn + i jn+1 + j jn+2 + k jn+3

= D j
n .
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(2.20): Using the identity between Jacobsthal number and Jacobsthal -Lucas number Jn + jn = 2Jn+1 , we get

2DJ
n+1−DJ

n = 2(Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)
−(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= (2Jn+1− Jn)+ i(Jn+2− Jn+1)
+ j (2Jn+3− Jn+2)+ k (2Jn+4− Jn+3)

= jn + i jn+1 + j jn+2 + k jn+3

= D j
n .

Theorem 2.3. Let DJ
n be the n-th term of the dual Jacobsthal quaternion sequence (DJ

n) and DJ
n be conjugate of DJ

n. Then, we
can give the following relations between these quaternions:

(DJ
n)

2 = 2Jn DJ
n− J2

n ,

(DJ
n)

2 +2(DJ
n−1)

2 = 2DJ
2n−1− J2n−1,

DJ
n DJ

n +2DJ
n−1 DJ

n−1 = J2
n +2J2

n−1 = J2n−1,

DJ
n+1 DJ

n+1 +2DJ
n DJ

n = J2
n+1 +2J2

n = J2n+1,

DJ
n+1 DJ

n+1−2DJ
n DJ

n = J2
n+1−2J2

n = J2n+1−4J2
n

(2.21)

Proof. It can be proved easily by using (2.10). Now, we will prove first two equalities

(DJ
n)

2 = JnJn + i(JnJn+1 + Jn+1Jn)+ j (JnJn+2 + Jn+2Jn)
+k (JnJn+3 + Jn+3Jn)

= 2Jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)− JnJn
= 2Jn DJ

n− J2
n .

(DJ
n)

2 +2(DJ
n−1)

2 = J2
n +2 i(Jn Jn+1)+2 j (Jn Jn+2)+2k (Jn Jn+3)
+2(J2

n−1)+4 i(Jn−1 Jn)+4 j (Jn−1 Jn+1)
+4k (Jn−1 Jn+2)

= (J2
n +2J2

n−1)+ i(2JnJn+1 +4Jn−1Jn)
+ j (2JnJn+2 +4Jn−1Jn+1)
+k (2JnJn+3 +4Jn−1Jn+2)

= J2n−1 +2i J2n +2 j J2n+1 +2k J2n+2
= 2DJ

2n−1− J2n−1.

We can prove last three equalities by using equation (2.12) as follows:

DJ
n DJ

n +2DJ
n−1.D

J
n−1 = J2

n +2J2
n−1 = J2n−1,

DJ
n+1 DJ

n+1 +2DJ
n DJ

n = J2
n+1 +2J2

n = J2n+1,

DJ
n+1 DJ

n+1−2DJ
n DJ

n = J2
n+1−2J2

n = J2n+1−4J2
n

where identities JmJn+1 +2Jm−1Jn = Jm+n and J2
n +2J2

n−1 = J2n−1 were used.

Theorem 2.4. Let DJ
n be the n-th term of dual Jacobsthal quaternion sequence (DJ

n). Then, we have the following identities

n

∑
s=1

DJ
s =

1
2
[DJ

n+2−DJ
2], (2.22)

p

∑
s=0

DJ
n+s =

1
2
[DJ

n+p+2−DJ
n+1], (2.23)

n

∑
s=1

DJ
2s−1 =

2DJ
2n

3
+

1
3
[n(2DJ

2−DJ
3)−2DJ

0], (2.24)
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n

∑
s=1

DJ
2s =

2DJ
2n+1

3
− 1

3
[n(2DJ

2−DJ
3)+2DJ

1]. (2.25)

Proof. (2.22) Hence, we can write

n

∑
s=1

DJ
s =

n

∑
s=1

Js + i
n

∑
s=1

Js+1 + j
n

∑
s=1

Js+2 + k
n

∑
s=1

Js+3

=
1
2
[(Jn+2−1)+ i(Jn+3−3)+ j (Jn+4−5)+ k (Jn+5−11)]

=
1
2
[(Jn+2− J2)+ i(Jn+3− J3)+ j (Jn+4− J4)+ k (Jn+5− J5)]

=
1
2
[Jn+2 + i Jn+3 + j Jn+4 + k Jn+5− (J2 + i J3 + j J4 + k J5)]

=
1
2
[DJ

n+2−DJ
2] .

(2.23) Hence, we can write

p

∑
s=0

DJ
n+s =

p

∑
s=0

Jn+s + i
p

∑
s=0

Jn+s+1 + j
p

∑
s=0

Jn+s+2 + k
p

∑
s=0

Jn+s+3

=
1
2
[(Jn+p+2− Jn+1)+ i(Jn+p+3− Jn+2)+ j (Jn+p+4− Jn+3)]

+
1
2
[k (Jn+p+5− Jn+4)]

=
1
2
[Jn+p+2 + i Jn+p+3 + j Jn+p+4 + k Jn+p+5

− (Jn+1 + i Jn+2 + j Jn+3 + k Jn+4)]

=
1
2
[DJ

n+p+2−DJ
n+1] .

(2.24): Using
n−1
∑

i=0
J2i+1 =

2J2n+n
3 and

n
∑

i=0
J2i =

2J2n+1−n−2
3 , we get

n

∑
s=1

DJ
2s−1 =(J1 + J3 + . . .+ J2n−1)+ i(J2 + J4 + . . .+ J2n)

+ j(J3 + J5 + . . .+ J2n+1)+ k(J4 + J6 + . . .+ J2n+2)

=
(2J2n +n)

3
+ i

(2J2n+1−n−2)
3

+ j
(2J2n+2 +n−2)

3

+ k
(2J2n+3−n−6)

3

=
2
3
[J2n + i J2n+1 + j J2n+2 + k J2n+3]

+
1
3
[n(1− i+ j− k)−2(i+ j+3k)]

=
2DJ

2n
3

+
1
3
[n(2DJ

2−DJ
3)−2DJ

0] .
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(2.25): Using
n
∑

i=0
J2i =

2J2n+1−n−2
3 we obtain

n

∑
s=1

DJ
2s =(J2 + J4 + . . .+ J2n)+ i(J3 + J5 + . . .+ J2n+1)

+ j(J4 + J6 + . . .+ J2n+2)+ k(J5 + J7 + . . .+ J2n+3)

=
(2J2n+1−n−2)

3
+ i

(2J2n+2 +n−2)
3

+ j
(2J2n+3−n−6)

3

+ k
(2J2n+4 +n−10)

3

=
2
3
[J2n+1 + i J2n+2 + j J2n+3 + k J2n+4]

+
1
3
[−n(1− i+ j− k)−2(1+ i+3 j+5k)]

=
2DJ

2n+1

3
− 1

3
[n(2DJ

2−DJ
3)+2DJ

1] .

Theorem 2.5. Let DJ
n and D j

n be the n-th terms of the dual Jacobsthal quaternion sequence (DJ
n) and the dual Jacobsthal-Lucas

quaternion sequence (D j
n) ,respectively. Then, we have

D j
n DJ

n −D j
n DJ

n = 2 [Jn D j
n− jn DJ

n ], (2.26)

D j
n DJ

n +D j
n DJ

n =2 jn Jn = 2J2n, (2.27)

D j
n DJ

n −D j
n DJ

n =2 [D j
n Jn +DJ

n jn−2J2n] , (2.28)

D j
n DJ

n +D j
n DJ

n =2J2n. (2.29)

Proof. (2.26):

D j
n DJ

n −D j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn− i Jn+1− j Jn+2− k Jn+3)
−( jn− i jn+1− j jn+2− k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= ( jnJn− jnJn)
+2i( jn+1Jn− jnJn+1)
+2 j ( jn+2Jn− jnJn+2)
+2k ( jn+3Jn− jnJn+3)

= 2Jn( jn + i jn+1 + j jn+2 + k jn+3)
−2 jn(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= 2 [Jn D j
n− jn DJ

n ].

(2.27):

D j
n DJ

n +D j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn− i Jn+1− j Jn+2− k Jn+3)
+( jn− i jn+1− j jn+2− k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)

= jn [Jn− i Jn+1− j Jn+2− k Jn+3]
+(i jn+1 + j jn+2 + k jn+3)Jn
+ jn [Jn + i Jn+1 + j Jn+2 + k Jn+3]
+(−i jn+1− j jn+2− k jn+3)Jn

= 2 jnJn = 2J2n.
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(2.28):

D j
n DJ

n −D j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
−( jn− i jn+1− j jn+2− k jn+3)
(Jn− i Jn+1− j Jn+2− k Jn+3)

= ( jn Jn− jn Jn)+2(i jn+1 + j jn+2 + k jn+3)Jn
+2( jn + i jn+1 + j jn+2 + k jn+3)Jn−2 jn Jn

= 2(D j
n Jn +DJ

n jn−2 jn Jn)

= 2(D j
n Jn +DJ

n jn−2J2n).

(2.29):

D j
n DJ

n +D j
n DJ

n = ( jn + i jn+1 + j jn+2 + k jn+3)
(Jn + i Jn+1 + j Jn+2 + k Jn+3)
+( jn− i jn+1− j jn+2− k jn+3)
(Jn− i Jn+1− j Jn+2− k Jn+3)

= 2 jn Jn = 2J2n.

In proofs, the identities of Jacobsthal and Jacobsthal-Lucas numbers given below were used, respectively,

Jm jn− Jn jm = (−1)n 2n+1Jm−n, jnJn = J2n and jn+2 = jn+1 +2 jn.

Theorem 2.6. (Binet’s Formula). Let DJ
n and D j

n be n− th terms of dual Jacobsthal quaternion sequence (DJ
n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. For n ≥ 1, Binet’s formula for these quaternions are as follows

respectively,

DJ
n =

1
α−β

[
α α

n−β β
n
]

(2.30)

and

D j
n = (α α

n +β β
n) (2.31)

where

α = 1+ i(1−β )+ j (3−β )+ k (5−3β ), α = 2,

β = 1+ i(1−α)+ j (3−α)+ k (5−3α), β =−1,

α = (1−2β )+ i(5−β )+ j (7−5β )+ k (17−7β ), α = 2,

β = (2α−1)+ i(α−5)+ j (5α−7)+ k (7α−17), β =−1.

Proof. The characteristic equation of recurrence relations DJ
n+2 = DJ

n+1 +2DJ
n is

t2− t−2 = 0.

The roots of this equation are α = 2 and β =−1
where α +β = 1 , α−β = 3 , αβ =−2 .
Using recurrence relation and initial values DJ

0 = (0, 1, 1, 3),
DJ

1 = (1, 1, 3, 5) the Binet’s formula for DJ
n, we get

DJ
n = A α

n +Bβ
n =

1
3

[
α α

n−β β
n
]
,
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where A =
DJ

1−DJ
0 β

α−β
, B =

α DJ
0−DJ

1
α−β

and

α = 1+ i(1−β )+ j (3−β )+ k (5− 3β ), β = 1+ i(1−α)+ j (3−α)+ k (5− 3α). Similarly, using recurrence relations
D j

n+2 = D j
n+1 +2D j

n, the Binet’s formula for D j
n is obtained as follows:

D j
n = (α α

n +β β
n)

Theorem 2.7. (Honsberger Identity) For n,m≥ 0 the Honsberger identity for the dual Jacobsthal quaternions DJ
n and DJ

m is
given by

DJ
n DJ

m +2DJ
n−1 DJ

m−1 = 2DJ
n+m−1− Jn+m−1. (2.32)

Proof. (2.32):

DJ
n DJ

m = Jn Jm + i(Jn Jm+1 + Jn+1 Jm)+ j (Jn Jm+2 + Jn+2 Jm)
+k (Jn Jm+3 + Jn+3 Jm)

(2.33)

and

2DJ
n−1 DJ

m−1 = 2(Jn−1 Jm−1)+2i(Jn−1 Jm + Jn Jm−1)
+2 j (Jn−1 Jm+1 + Jn+1 Jm−1)
+2k (Jn−1 Jm+2 + Jn+2 Jm−1)

(2.34)

Finally, adding equations (2.33) and (2.34) side by side, we obtain

DJ
n DJ

m +2DJ
n−1 DJ

m−1 = Jn+m−1 + i(2Jn+m)
+ j (2Jn+m+1)+ k (2Jn+m+2)

= 2DJ
n+m−1− Jn+m−1.

where the identity Jn+m = JmJn+1 +2Jm−1Jn was used [27] and [28].

Theorem 2.8. D’ocagne’s Identity For n,m≥ 0 the D’ocagne’s identity for the dual-complex Jacobsthal quaternions DJ
n and

DJ
m is given by

DJ
m DJ

n+1−DJ
m+1 DJ

n = (−1)n 2n Jm−n (1+ i+5 j+7k ). (2.35)

Proof. (2.35):

DJ
m DJ

n+1−DJ
m+1 DJ

n = [(JmJn+1− Jm+1Jn)]
+ i [(JmJn+2− Jm+1Jn+1)+(Jm+1Jn+1− Jm+2Jn)]
+ j [(JmJn+3− Jm+1Jn+2)+(Jm+2Jn+1− Jm+3Jn)]
+k [(JmJn+4− Jm+1Jn+3)+(Jm+3Jn+1− Jm+4Jn)]

= (−1)n 2n Jm−n (1+ i+5 j+7k ).

where the identity JmJn+1− Jm+1Jn = (−1)n 2n Jm−n was used [27] and [28].

Theorem 2.9. (Cassini’s Identity). Let DJ
n and D j

n be n− th terms of dual Jacobsthal quaternion sequence (DJ
n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. Then, we have

DJ
n−1 DJ

n+1− (DJ
n)

2 = (−1)n 2n−1(1+ i+5 j+7k). (2.36)

D j
n−1 D j

n+1− (D j
n)

2 = (−2)n−1 32(1+ i+5 j+7k). (2.37)
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Proof. (2.36):

DJ
n−1 DJ

n+1− (DJ
n)

2 = (Jn−1Jn+1− J2
n )

+i(Jn−1Jn+2− JnJn+1)
+ j (Jn−1Jn+3−2JnJn+2 + J2

n+1)
+k (Jn−1Jn+4 + Jn+1Jn+2− 2JnJn+3)

= (Jn−1Jn+1− J2
n )

+i(Jn−1Jn+1− J2
n )

+5 j (Jn−1Jn+1− J2
n )

+7k (Jn−1Jn+1− J2
n )

= (−1)n 2n−1(1+ i+5 j+7k).

and (2.37):

D j
n−1 D j

n+1− (D j
n)

2 = ( jn−1 jn+1− j2
n)

+i( jn−1 jn+2− jn jn+1)
+ j ( jn−1 jn+3−2 jn jn+2 + j2

n+1)
+k ( jn−1 jn+4 + jn+1 jn+2− 2 jn jn+3)

= ( jn−1 jn+1− j2
n)

+i( jn−1 jn+1− j2
n)

+5 j ( jn−1 jn+1− j2
n)

+7k ( jn−1 jn+1− j2
n)

= (−2)n−1 32(1+ i+5 j+7k).

where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:

Jm Jn−1 − Jm−1 Jn = (−1)n 2n−1 Jm−n, Jn+2 = Jn+1 +2Jn
jm jn−1 − jm−1 jn = (−2)n−1 32 jm−n, jn+2 = jn+1 +2 jn.

were used [27] and [28].

Theorem 2.10. (Catalan’s Identity). Let DJ
n and D j

n be n− th terms of dual Jacobsthal quaternion sequence (DJ
n) and the dual

Jacobsthal-Lucas quaternion sequence (D j
n), respectively. Then, we have

DJ
n+r DJ

n−r− (DJ
n)

2 =−(−2)n−r J2
r (1+ i+5 j+7k). (2.38)

D j
n+r D j

n−r− (D j
n)

2 =−(−2)n−r 32 j2
r (1+ i+5 j+7k). (2.39)

Proof. (2.38):

DJ
n+r DJ

n−r− (DJ
n)

2 = (Jn+r Jn−r− J2
n )

+i [(Jn+rJn−r+1− JnJn+1)
+(Jn+r+1Jn−r− Jn+1Jn)
+ j [(Jn+rJn−r+2− JnJn+2)
+(Jn+r+2Jn−r− Jn+2Jn)]
+k [(Jn+rJn−r+3− JnJn+3)
+(Jn+r+3Jn−r− Jn+3Jn)]

= −(−2)n−r J2
r (1+ i+5 j+7k).

and (2.39):

D j
n+r D j

n−r− (D j
n)

2 = ( jn+r jn−r− j2
n)

+i [( jn+r jn−r+1− jn jn+1)+( jn+r+1 jn−r− jn+1 jn)]
+ j [( jn+r jn−r+2− jn jn+2)+( jn+r+2 jn−r− jn+2 jn)]
+k [( jn+r jn−r+3− jn+ jn+3)+( jn+r+3 jn−r− jn+3 jn)]

= −(−2)n−r 32 J2
r (1+ i+5 j+7k).
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where identities of Jacobsthal numbers and Jacobsthal-Lucas numbers as follows:

Jn+r Jn−r − Jn Jn =−(−2)n−r J2
r

jn+r jn−r − jn jn = (−2)n−r 32 J2
r .

were used [29].

3. Conclusion
The difference between the Jacobsthal and the dual Jacobsthal quaternions originated from the quaternionic units, i.e., the
quaternionic units for the Jacobsthal quaternion are

i2 = j2 = k2 =−1, i j =− j i = k, j k =−k j = i, k i =−i k = j

whereas for the dual Jacobsthal quaternions they are

i2 = j2 = k2 = i j k = 0, i j =− j i = j k =−k j = k i =−i k = 0.

The set JD forms a commutative ring under the dual Jacobsthal quaternion multiplication and also it is a vector space of
dimensions four on R and its basis is the set {1, i, j,k}. The interesting property of dual Jacobsthal quaternions is that by
their means one can express the Galilean transformation in one quaternion equation. Since the multiplication and ratio of two
dual Jacobsthal quaternions DJ1

n and DJ2
n is again a dual Jacobsthal quaternion, the set of dual Jacobsthal quaternions form a

division algebra under addition and multiplication. There have been several studies on curve theory and magnetism by using
the isomorphism between dual quaternion space and Galilean space G4. Similar applications for dual Jacobsthal and dual
Jacobsthal-Lucas quaternions can be applied to these areas.
Galilean transformation expressed by the dual four-component numbers shows the linkage between the space and time exists in
the Newtonian physics. Moreover, it may have a considerable heuristic value for the study of the underlying mathematical
formalism of physical laws. This study fills the gap in the literature by providing dual Jacobsthal quaternions.
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