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Abstract 

This study addresses the problem of minimizing tool switching instants in automated 

manufacturing systems. There exist a single machine and a group of jobs to be processed on it. 

Each job requires a set of tools, and due to limited tool magazine capacity, and because it is not 

possible to load all available tools on the machine, tools must be switched. The ultimate goal, in 

this framework, is to minimize the total number of tool switching instants. We provide a 

mathematical programming model and two constraint programming models for the problem. 

Because the problem is proven to be NP-hard, we develop two heuristic approaches, and compare 

their performance with methods described in the literature. Our analysis indicates that our 

constraint programming models perform relatively well in solution quality and execution time in 

small-sized problem instances. The performance of our greedy approach shows potential, 

reaching the optimal solution in 82.5% of instances. We also statistically demonstrate that the 

search algorithm enhances the quality of the solution obtained by the greedy heuristic, particularly 

in large sets. Hence, the solution approach, i.e., the greedy heuristic and the search algorithm 

proposed in this study is able to quickly reach near-optimal solutions, showing that the method is 

appropriate for manufacturing settings requiring sudden adjustments. 
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1. INTRODUCTION 

 

Advances in information technologies and data analytics led to the emergence of smart factories, which 

include highly flexible and automated manufacturing operations by incorporating real-time data into their 

system. Despite the developments of newly designed systems, such as re-configurable manufacturing 

system (RMS), companies still need to adapt automated manufacturing systems to deal with large product 

variety and complex system requirements. 

 

In automated manufacturing systems, each operation demands a set of various tools to be loaded on a 

machine. Each numerically controlled machine has its own tool magazine but because of economic 

restrictions, the capacity of these is less than the total number of tool slots needed in all operations. Thus, 

it is not possible to avoid tool switching between the processing of different jobs. Ineffective management 

of tool operations may result in underutilized resources, due to the increase in machine idle time (Shirazi 

and Frizelle [1]). Calmels [2] discusses the impact of the roles of tool operations in automated 

manufacturing systems.  

 

Tool switching problem is one of the key tenets of the automated manufacturing system, and its importance 

has been also recognized in academia. Crama [3] mentions tool switching problems in their study on 

problems faced in automated manufacturing systems and solution approaches. Tang and Denardo [4]   
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assume that the necessary time for tool change is constant and minimize the number of job groups to be 

formed. They develop lower and upper bounds on the optimal solution and use these for branch and bound 

technique. Song and Hwang [5] aim to minimize the number of movements of tool carrier and develop an 

optimal strategy for a given job sequence. Denizel [6] aims to minimize the required number of slots and 

uses Lagrangean relaxation method to develop lower and upper bounds for a branch and bound algorithm. 

Konak et al. [7] develop two tabu search heuristics with the aim of minimizing tool switching instants on a 

single machine. Konak and Kulturel-Konak [8] develop an ant colony solution algorithm for the same 

problem. Adjiashvili et al. [9] develop a polynomial time algorithm to minimize the number of tool 

switching instances in a system incorporating a flexible machine. Baykasoğlu and Ozsoydan [10- 12] study 

the problem of minimizing non-machining times (i.e., tool switching and indexing times) in automatic 

machining centers. Their novel methodology employs shortest path algorithm and two metaheuristics to 

determine index positions where duplication of cutting tools is allowed [10]. In a later study, they propose 

a simulated annealing approach to minimize tool switching and indexing times [11]. They also consider the 

problem under dynamic operating conditions and propose a simulated annealing algorithm with the 

objective of minimizing the makespan [12]. Chaves et al. [13] develop a hybrid heuristic approach for the 

problem of minimizing the number of tool switches. Furrer and Mütze [14] develop a branch-and-bound 

based algorithm which aims to minimize simultaneously the number of tool switches and machine stops 

over time. Marvizadeh and Choobineh [15] develop three heuristics for the problem of minimizing number 

of setups and compare the solution performance of the three heuristics by conducting a computational 

experiment. Paiva and Carvalho [16] propose an iterated local search metaheuristic based on a new graph 

representation for the job sequencing and tool switching problem. Dang et al. [17] focus on the scheduling 

problem of a group of jobs on identical parallel machines, where each job needs a different set of tools to 

be processed, and they develop a mathematical model for the problem. They also propose a matheuristic 

technique that combines a genetic algorithm and an integer linear programming model in order to solve 

industry-sized problems at scale. They observe that the matheuristic surpasses the mathematical model in 

solution quality. Atta et al. [18] develop a harmony search algorithm for the tool indexing problem, and 

report that the proposed search algorithm exhibits a promising performance. For the job sequencing and 

tool switching problem, da Silva et al. [19] propose a new mathematical model in the multicommodity flow 

framework and observe that it performs better in both execution time and the optimality gap. 

 

Several studies in the literature consider practical job grouping problems. Smed et al. [20] develop an 

integer programming model and heuristic approach for job grouping problem in a production line, 

significantly improving the system. Yuan et al. [21] study planning of container terminals to minimize the 

makespan. Jans and Desrosiers [22] propose a new formulation for the job grouping problem to eliminate 

the symmetry between the identical machines. They also develop different symmetry breaking constraints, 

such as variable reduction and lexicographic ordering constraints, and conclude that the proposed 

formulations outperform the existing approaches in the literature. Dadashi et al. [23] consider a new version 

of tool switching problem, with tool life that may be faced in practice, and propose a genetic algorithm 

approach. 

 

In this study, we provide a mathematical formulation and two constraint programming models which yield 

good solution quality for the problem. Because the problem of interest is proven to be NP-Hard by Konak 

et al. [7], we develop an easily-implementable heuristic algorithm with the goal of obtaining good solutions 

in large problem sets. Then, we compare the proposed algorithm with Konak et al’s [7] approach. For small 

sized problem instances, the proposed heuristic approach produces optimal or near-optimal solutions in 

very short computational times, and for a majority of large instances, our algorithm performs better than 

that of Konak et al. [7].   

 

The outline of the paper is as follows: In Section 2, we provide the definition of the problem setting and the 

mathematical model. In Section 3, constraint programming approach is discussed, and two models 

developed for minimizing tool switching instants are presented. Sections 4 and 5 give the heuristic 

algorithm and search algorithm that aims to improve the heuristic solution, respectively. In Sections 2-5, 

the computational experiments on the corresponding method are reported. We conclude the paper with 

future research directions in Section 6. 

 



115  Burak GOKGUR, Selin OZPEYNIRCI / GUJ Sci, 35(1): 113-130 (2022) 

 
 

2. PROBLEM DEFINITION AND MATHEMATICAL MODEL 

 

In this section, we first visit the problem environment and explain the notation used. We then present the 

mathematical model for job grouping problem. Suppose there are n jobs to be processed on a single 

machine. There exists t types of tools and the tools in set l(i) must be installed on the machine in order to 

process job i. We assume that every tool holds one slot, and that the number of tools demanded by each job 

cannot be greater than the tool magazine capacity. Finally, the tool magazine of the machine can hold c 

tools.  

 

Indices:  

i: Job index, i=1,2,...,n 

k: Tool type index, k=1,2,...,t     

g: Group index, g=1,2,...,s 

 

Parameters:  

l(i): Set of tools required by job i 

c: Tool magazine capacity  

 

Decision variables 

𝑋𝑖𝑔: 1, if job i is assigned to group g; 0, otherwise 

𝑌𝑘𝑔: 1, if tool type k is assigned to group g; 0, otherwise 

𝑍𝑔: 1, if group g is created; 0, otherwise 

 

The mathematical model (JG) is given below: 

 

           (JG) Minimize ∑ 𝑍𝑔
𝑠
𝑔=1                    (1) 

    s.t. 

   ∑ 𝑋𝑖𝑔 = 1, ∀𝑖𝑠
𝑔=1                    (2) 

  𝑍𝑔 ≥ 𝑋𝑖𝑔 , ∀𝑖, 𝑔                   (3) 

  𝑋𝑖𝑔 ≤ 𝑌𝑘𝑔, ∀𝑖, 𝑔, 𝑘 ∈ 𝑙(𝑖)                  (4) 

  ∑ 𝑌𝑘𝑔 ≤ 𝑐, ∀𝑔𝑡
𝑘=1                    (5) 

  𝑋𝑖𝑔 ∈ {0,1}, ∀𝑖, 𝑔                   (6) 

  𝑌𝑘𝑔 ∈ {0,1}, ∀𝑘, 𝑔                   (7) 

    𝑍𝑔  ∈ {0,1}, ∀𝑔.                   (8) 

 

The objective (1) is to minimize the number of groups so that the total number of tool switching instants is 

minimized. Constraint set (2) ensures that every job is assigned to exactly one group. Constraint set (3) 

guarantees that a job can be assigned to a group only if that group is created. Also, a job can be assigned to 

a group only if required tools are assigned to that group (4). Constraint set (5) prevents the number of tools 

required by a group from exceeding the tool magazine capacity. Finally, (6-8) are the set constraints. Next, 

we provide an illustrative example to elaborate on the problem’s dynamics. 

 

2.1. An Illustrative Example 

 

To elucidate the problem environment, this section provides an illustrative example, followed by the 

presentation of the optimal solution.  

 

Consider an automated manufacturing system in which there are ten jobs to be processed on a single 

machine with tool magazine capacity of three tool slots. Suppose that eight different tool types are required 

to complete the processing of all ten jobs. Tables 1 and 2 present tool requirements of each job and the 

available number of tool copies, respectively. 
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Table 1. Set of tools requirement by each job 

Job 1 2 3 4 5 6 7 8 9 10 

Tools 5,6 1 1 6,8 6,8 3,4 1 1,4 8 7 

 

Table 2. Number of tool copies 

Tool 1 2 3 4 5 6 7 8 

Number of copies 1 2 2 1 2 2 2 1 

 

The optimal number of job groups equals 3; that is, ten jobs are clustered into three different groups based 

on the tool types required by each to be processed. The optimal grouping structure of the operations is 

presented in Table 3. 

 

Table 3. The optimal grouping structure of the illustrative example 

Job 1 2 3 4 5 6 7 8 9 10 

Group 1 1 1 2 2 3 1 3 2 2 

 

Table 4. The optimal tool allocation of the illustrative example 

Group 1 2 3 

Set of tools 1,5,6 6,7,8 1,3,4 

 

The optimal solution, presented in Table 3, shows that the number of different tool types assigned to each 

group does not exceed the machine’s tool magazine capacity. The corresponding tool allocation is presented 

in Table 4. For instance, tool types 1, 5 and 6 are assigned to Group 1. The jobs assigned to Group 2 (3) 

require tool types 6, 7 and 8 (1, 3 and 4) to be processed. Also, in Table 3, we can easily discern that each 

job is assigned to exactly one group.  

 

In the next section, we provide a numerical study that demonstrates the performance of the mathematical 

model. Then, we present our proposed solution approaches, i.e., constraint programming and heuristic 

models, to obtain near-optimal solutions in short computational times. 

 

2.2. Computational Experiments on Mathematical Model 

 

We generate several problem instances of different sizes to apply the solution approaches as given in Table 

5. |l(i)| values are drawn from discrete uniform distribution and the tools in set l(i) are generated randomly. 

 

Table 5. Problem parameters for small instances 

Set n t |l(i)| c 

1 10 8 U[1,2] 3 

2 10 16 U[1,4] 6 

3 15 8 U[1,2] 3 

 

Model is coded using Visual C++ and solved using CPLEX 11.2 on a Pentium 4, 3 GHz, 1.96 GB RAM 

computer. 10 instances are generated with each parameter combination and the solutions are given in Table 

6. 

 

 

Table 6.  Optimal number of job groups and solution times 

Problem Set 
Number of 

job groups 

Solution 

time (sec.) 
Problem Set 

Number of 

job groups 

Solution 

time (sec.) 

1-1 3 6.74 3-1 4 7.31 

1-2 3 4.93 3-2 3 6.73 

1-3 3 5.02 3-3 3 7.45 

1-4 3 4.89 3-4 4 9.35 

1-5 3 5.06 3-5 4 6.02 
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1-6 2 4.45 3-6 3 7.48 

1-7 4 5.17 3-7 3 4.77 

1-8 3 4.58 3-8 4 6.82 

1-9 3 4.81 3-9 4 6.27 

1-10 2 4.19 3-10 3 6.62 

2-1 3 23.62 4-1 5 217.93 

2-2 3 5.31 4-2 4 9.54 

2-3 4 5.11 4-3 5 131.03 

2-4 4 11.15 4-4 4 20.00 

2-5 3 5.37 4-5 3 7.10 

2-6 3 4.77 4-6 4 45.23 

2-7 3 5.87 4-7 4 32.58 

2-8 3 4.83 4-8 5 11.63 

2-9 3 5.99 4-9 5 73.47 

2-10 4 4.64 4-10 4 29.06 

 

As seen in Table 6, for small sized problems, the mathematical model reaches the optimal solutions in a 

very short time, but the solution time increases with problem size. 

 

3. CONSTRAINT PROGRAMMING APPROACH 

 

Constraint programming approach is a subfield of artificial intelligence and converts the characteristics of 

a combinatorial problem to the properties of constraint satisfaction problem. Constraint programming 

approach is often preferred, especially for modeling and solving scheduling problems because efficient 

constraint-based scheduling algorithms can quickly reach the optimal solution and prove the optimality. 

Constraint programming algorithms and modeling techniques are also used for problems other than 

scheduling. However, in these problems, although the optimal solution can be found quickly, the model 

cannot prove its optimality. In this study, the constraint programming model uses IBM ILOG CP Optimizer 

2.3 software, in which definitions are given for many constraint programming algorithms, and resource 

constraints required for modeling.  

 

In the literature of tool management and operation scheduling, there are several studies on constraint 

programming approach for solving problems, such as scheduling of flexible manufacturing systems with 

machine and tool limitations (Zeballos [24], Zeballos et al. [25]), scheduling with machine eligibility 

constraints (Edis and Ozkarahan [26]), integrated view of scheduling problems in a flexible manufacturing 

setting (Novas and Henning [27]), and parallel machine scheduling with tool loading (Gökgür et al. [28]). 

In the subsequent section, we present a detailed view of the constraint programming models developed for 

the job grouping problem. 

 

3.1. Constraint Programming Models 

 

In the formulation of the mathematical model provided in Section 2, we observe that it is possible to 

compactly formulate the problem of the assignment of jobs to groups, along with the required set of tools. 

For this aim, we provide two different constraint programming models. 

 

One way to model the assignment of jobs and the corresponding set of required tools to the same group is 

changing the structure of the variable X, as shown in constraint set (13), whose domain is the indices of the 

available group numbers. 𝑋𝑖 = 𝑔 if and only if job i is assigned to group g. Then, logical constraints (11) 

state that if job i is assigned to group g its required set of tools must be loaded to the same group. The 

ultimate goal of the constraint programming model JG-CP1 is to understand the impact of eliminating 

redundancies in the assignment of jobs to groups. The developed constraint programming model (JG-CP1) 

is given below: 

 

           (JG-CP1) Minimize ∑ 𝑍𝑔
𝑠
𝑔=1                   (9) 
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    s.t. 

  𝑍𝑋𝑖
= 1, ∀𝑖                    (10) 

  (𝑋𝑖 = 𝑔) → (𝑌𝑘𝑔 = 1), ∀𝑖, 𝑔, 𝑘|𝑘 ∈ 𝑙(𝑖)              (11) 

  ∑ 𝑌𝑘𝑔 ≤ 𝑐, ∀𝑔𝑡
𝑘=1                  (12) 

𝑋𝑖 ∈ {1, … , 𝑠}, ∀𝑖                 (13) 

𝑌𝑘𝑔 ∈ {0,1}, ∀𝑘, 𝑔                 (14) 

𝑍𝑔  ∈ {0,1}, ∀𝑔.                 (15) 

 

The objective function (9) minimizes the total number of groups. Constraint (10) ensures that a group is 

opened when a job is assigned to it. Constraint (11) forces a job and its required set of tools to be present 

on the same group. In constraint (11), we use a logical type of constraint to ensure that both a job and its 

required tool set are assigned to the same group. Constraint (12) states that number of tools assigned to a 

group cannot be greater than its capacity. Constraints (13), (14) and (15) are the set constraints. 

 

The observation made from the problem is that group numbers do not impact the solution, i.e., groups are 

indistinguishable. In the mathematical model provided in Section 2, we differentiate between the group 

numbers, bringing additional complexity to the problem. Therefore, eliminating the symmetry among group 

numbers may accelerate the search and improve the solution quality. 

 

There are two different types of symmetry in constraint programming: solution symmetry and problem 

symmetry. Solution symmetry can be defined as the permutation of pairs of variable and value which keeps 

the set of solutions; problem symmetry, on the other hand, is a permutation of pairs of variable and value 

which maintains the set of constraints. The special cases of these two types of symmetry are called variable 

and value symmetry.  Variable symmetry indicates that the variables in the variable set are freely replaced, 

and the value symmetry is the free replacement of values. Different methods have been developed to break 

symmetries in problems; three of these are reformulation, static symmetry breaking, and dynamic symmetry 

breaking (Gökgür et al. [28]). In this study, we lexicographically order the columns using the global lex 

constraint to avoid redundancies in the presence of row/column symmetry. Hence, we incorporate a new 

constraint set, i.e., constraint set (22), into the second constraint programming model to lexicographically 

order the group numbers in grouping the jobs. The second constraint programming model with global lex 

constraint, (JG-CP2), is given below: 

 

           (JG-CP2) Minimize ∑ 𝑍𝑔
𝑠
𝑔=1                 (16) 

    s.t. 

   𝑍𝑔 ≤ 1, ∀𝑔                    (17) 

   𝑍𝑔 ≥ 𝑋𝑖𝑔 , ∀𝑔, 𝑖                   (18) 

             ∑ 𝑋𝑖𝑔 = 1𝑠
𝑔=1 , ∀𝑖                   (19) 

𝑋𝑖𝑔 ≤ 𝑌𝑘𝑔, ∀𝑖, 𝑔, 𝑘|𝑘 ∈ 𝑙(𝑖)                (20) 

 ∑ 𝑌𝑘𝑔 ≤ 𝑐, ∀𝑔𝑡
𝑘=1                  (21) 

 𝑙𝑒𝑥(∑ 𝑋𝑖𝑔
𝑠−1
𝑔=1 , ∑ 𝑋𝑖𝑔+1

𝑠−1
𝑔=1 ), ∀𝑖                (22) 

 𝑋𝑖𝑔 ∈ {0,1}, ∀𝑖, 𝑔                 (23) 

 𝑌𝑘𝑔 ∈ {0,1}, ∀𝑘, 𝑔                 (24) 

   𝑍𝑔  ∈ {0,1}, ∀𝑔.                 (25) 

 

The objective function (16) minimizes the total number of groups. Constraints (17) and (18) state that a 

group is not opened unless a job is assigned to the group. Constraint (19) ensures that a job can only be 

assigned to exactly one group. Constraint (20) ensures that a job and its required tool set to be processed 

are assigned to the same group. Constraint (21) is a tool magazine capacity constraint which states that 

number of tools assigned to a group cannot be greater than its capacity. In constraint (22), we 

lexicographically order group indexes using lex global constraint (readers interested in propagation 

algorithms for lexicographic ordering are referred to Frisch et al. [29]). Constraints (23), (24) and (25) are 

the set constraints. 
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We now turn our attention to the illustrative example we presented in Section 2.1 to elaborate on the 

dynamics of the constraint programming models we introduced in this section, namely JG-CP1 and JG-

CP2. Tables 7-8 and 9-10 demonstrate the optimal solutions achieved by the constraint programming 

models JG-CP1 and JG-CP2, respectively.   

 

Table 7. Results of the illustrative example achieved by JG-CP1 

Job 1 2 3 4 5 6 7 8 9 10 

Group 1 1 1 2 2 3 1 3 2 2 

 

Table 8. The optimal tool allocation of the illustrative example 

Group 1 2 3 

Set of tools 1,5,6 6,7,8 1,3,4 

 

Table 9. Results of the illustrative example achieved by JG-CP2 

Job 1 2 3 4 5 6 7 8 9 10 

Group 1 1 1 2 2 3 1 3 2 2 

 

Table 10. The optimal tool allocation of the illustrative example 

Group 1 2 3 

Set of tools 1,5,6 6,7,8 1,3,4 

 

In the first constraint programming model, i.e., JG-CP1, Equations (10), (11), and (12) mainly preserve the 

feasibility of the solution produced by the model. Constraint (10) ensures that an additional group is not 

created unless a job remains unassigned to any of the existing groups. Table 7 shows that the optimal 

number of groups equals three, and each job is assigned to one of these three groups, based on the set of 

different tool types they require. Besides, constraint (12) provides that the number of different tool types 

assigned to each group does not exceed the machine’s tool magazine capacity, which is three in this 

example. When we observe the set of different tool types assigned to each group from Table 8, we can see 

that constraint (11) ensures that a job and its required set of different tool types are present in the same 

group. 

 

In the JG-CP2 model, Equations (17), (18), (19), (20), and (21) ensure the feasibility of the solution to be 

produced. On the other hand, constraint (22) prevents the model from exploring the equivalent regions of 

the feasible search space. Equations (17) and (18) ensure that a group is created if a job is assigned to that 

group. Table 9 indicates that there are only three groups that all ten jobs are assigned to. Table 9 

demonstrates that each job is assigned to exactly one group, which is satisfied by Constraint (19). Also, we 

can observe from Table 10 that constraints (20) and (21) guarantee, respectively, that each job and its 

required set of tool types are assigned to the same group, and that the number of different tool types assigned 

to each group is less than or equal to the machine’s tool magazine capacity. 

 

3.2. Computational Experiments on Constraint Programming Models 

 

In this subsection, results of computational experiments designed to compare two constraint programming 

models are reported. Small sized problem instances given in Table 5 are used. A time limit of 1 hour is set, 

and the execution of the algorithm is terminated if optimal solution is not found in this duration. Also, the 

restart option is chosen as the search type for each CP model. Both models reach the optimal solution in all 

instances within the specified time limit. Table 11 gives the average computation time in seconds for the 

two CP models. 

 

 

Table 11. Average solution times (in seconds) of constraint programming models 

Set JG-CP1 JG-CP2 

1 3.49 3.03 

2 5.47 4.38 
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3 15.28 18.62 

4 1063.00 1309.00 

 

According to Table 11, there is no significant difference between the performances of the two CP models. 

Although each constraint programming model was developed with different techniques, both perform 

reasonably well in small sized problem instances and find the optimal solutions in all instances within the 

specified time limit. However, it can be readily noticed from Table 11 that the solution time increases as 

the problem size increases in complexity in terms of the number of jobs and of different tool types.  

 

Hence, it is apparent that the computation overhead may be extended with an increase in the number of jobs 

and tool types, including toolkits, i.e., symmetry breaking constraints aimed at eliminating symmetries in 

the problem (Flener et al. [30]). Therefore, a need emerges for a solution approach which yields promising 

solutions within reasonable execution times, especially in large-sized problem instances. 

 

4. HEURISTIC APPROACH 

 

This section presents a greedy approach that starts with computing the number of common tools required 

by each pair of jobs. The pair with the highest number of common tools is then selected to form a group, if 

the total number of tools does not exceed the tool magazine capacity. The job with the largest number of 

common tools with these jobs is added to the group, if feasible. After the tool magazine is full, any jobs 

that do not require additional tools are added to the group. A new group is created when no more jobs can 

be added to the existing group. The procedure continues until all jobs are assigned to a group. 

 

In this section, we first explain the steps of the heuristic algorithm and then discuss its performance. 

 

4.1. Steps of the Heuristic Approach 

 

The parameters used in the heuristic algorithm are defined below: 

 

D: Set of jobs that have not been assigned to a group yet 

Uij:  Number of common tools of jobs i and j in set D  

wg: Set of tools required by the jobs in group g 

Ag: Set of jobs assigned to group g 

 

The steps of heuristic algorithm are explained below:  

Step 0. Set D = {1, 2, ..., n}, Ag = Ø and wg = Ø for all g. 

Step 1.  Find Uij values for all (i, j) pairs in D such that Uij = |l(i)l(j)|, i, j ∈ D. Set g = 1. 

Step 2.  Find jobs i' ∈ D and j' ∈ D such that Max{Uij} = Ui'j'. 

2.a. If  all Ui'j' values  are  equal  to 0,  find  a  job  p ∈ D  that  requires  the maximum number of tools. 

Remove job p from set D and add to set Ag. Set wg = l(p) and go to Step 3. 

2.b. If |l(i')l(j')| > c, set Ui'j'  = 0 and repeat Step 2. 

2.c. If |l(i')l(j')| ≤ c, assign jobs i' and j' to group g. Remove them from set D and add to set Ag. Set 

wg = l(i') ∪ l(j'). 

If |wg| < c, go to Step 3. If |wg| = c, go to Step 5. 

Step 3. Find a job k ∈ D such that the number of common tools of job k with the jobs in set Ag is 

maximum, i.e., Maxi∈D{|l(i) ∩ w(g)|} = |l(k) ∩ w(g)|. 

3.a. If |l(k) ∪ w(g)| = 0, go to Step 4. 

3.b. If |l(k) ∪ w(g)| > c, repeat Step 3 without job k. 
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3.c. If |wg ∪ l(k)| ≤ c, assign job k to group g. Remove it from set D and add to set Ag. Set wg = wg ∪ 

l(k). 

If |wg| < c, repeat Step 3. If |wg| = c, go to Step 5. 

Step 4. Find the unused tool magazine capacity for group g, c − |wg|. Find a job q ∈ D such that |l(q)| ≤ c − 

|wg|. Remove job q from set D and add to set Ag. Set wg = wg ∪ l(q). Repeat Step 3. If no such q 

exists, go to Step 6. 

Step 5. Find a job h ∈ D such that l(h) ⊆ wg.  Assign job h to group g.  Remove it from set D and add to set 

Ag. Continue until no more jobs can be assigned to group g. Go to Step 6. 

Step 6. If D = Ø, stop. Otherwise, set g = g + 1 and go to Step 2. 

 

Step 1 requires computation for each pair of jobs that can be shown to be O(n2). Step 2 requires finding the 

largest Uij value, and in the worst case, all pairs may have to be evaluated, which corresponds to O(n2). This 

step has to be repeated for every pair, due to the condition indicated in Step 2b. Hence, the computational 

complexity of this step can be O(n4) in the worst case. Other steps do not require higher level of 

computations. As a result, the heuristic runs in O(n4).   

 

4.2. Computational Experiments on the Heuristic Approach 

 

In order to measure the performance of the heuristic approach, we run experiments on the problem sets 

given in Table 5 and problem sets developed by Konak et al. [7] given in Table 12. They generated 30 

instances for each parameter combination. The algorithm is coded using Visual C++ and solved on an AMD 

Phenom(tm) II P820, 1.80 GHz, 4 GB RAM computer. 

 

Table 12. Problem parameters of Konak et al. [7] 

Problem Set n t c 

L-I 40 20 15 

L-II 50 25 20 

L-III 60 30 25 

VL-I 120 30 20 

VL-II 120 60 20 

VL-III 150 30 20 

VL-IV 150 60 20 

VL-V 180 30 20 

VL-VI 180 60 20 

VL-VII 210 30 20 

VL-VIII 210 60 20 

 

Table 13 gives the number of groups found by the heuristic approach and mathematical model for small 

problem sets. All instances are solved in less than 1 second. The heuristic approach reaches the optimal 

solution in 33 of 40 instances (82.5%). In the remaining 7 (17.5%), the heuristic approach forms an additional 

group. Although it is a myopic approach, the performance on small problem sets is quite satisfactory. 

 

We also apply two sample t-test to the differences in means of the number of groups in the optimal solution 

(O) and heuristic solution (H). For this aim, the following hypothesis is designed: 

 H0: O−H =0 

 H1: O−H0  
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with a 1−=0.99 confidence. The value of t statistic is obtained by the following equation: 

 

 𝑡0 =
𝑥̅𝑂−𝑥̅𝐻

𝑆𝑝√
1

𝑛𝑂
+

1

𝑛𝐻

  

 

where 𝑥̅𝑂 and 𝑥̅𝐻 are the sample means for the number of groups found by the mathematical model and 

heuristic approach, respectively. These parameters are calculated as 𝑥̅𝑂 = 3.5 and 𝑥̅𝐻 = 3.7. There are 

𝑛𝑂 = 𝑛𝐻 = 40 instances (observations) for small sized problems. 𝑠𝑝
2 is calculated as 𝑠𝑝

2 =
(𝑛𝑂−1)𝑠𝑂

2 +(𝑛𝐻−1)𝑠𝐻
2

𝑛0+𝑛𝐻−2
 where the sample variances are calculated as 𝑠𝑂

2 = 0.564103 for the optimal solution 

and 𝑠𝐻
2 = 0.676923 for the heuristic solution. Hence, the value of test statistic is 𝑡0 = −1.135454. Since 

𝑡𝛼/2,𝑛𝑂+𝑛𝐻−2 = 𝑡0.005,78 = 2.64034, and −2.64034 < 𝑡0 < 2.64034, the null hypothesis cannot be 

rejected.          

 

Table 13. The number of groups found by the mathematical model and the heuristic approach for small 

problem sets 

Problem Set Optimal 

Solution 

Heuristic 

Solution 

Problem Set Optimal 

Solution 

Heuristic 

Solution 

1-1 3 3 3-1 4 4 

1-2 3 3 3-2 3 3 

1-3 3 3 3-3 3 3 

1-4 3 3 3-4 4 4 

1-5 3 3 3-5 4 4 

1-6 2 3 3-6 3 4 

1-7 4 4 3-7 3 3 

1-8 3 3 3-8 4 5 

1-9 3 3 3-9 4 4 

1-10 2 3 3-10 3 3 

2-1 3 3 4-1 5 6 

2-2 3 3 4-2 4 4 

2-3 4 4 4-3 5 5 

2-4 4 4 4-4 4 4 

2-5 3 3 4-5 3 4 

2-6 3 3 4-6 4 4 

2-7 3 3 4-7 4 5 

2-8 3 3 4-8 5 5 

2-9 3 3 4-9 5 5 

2-10 4 4 4-10 4 5 

 

The results of the computational experiments conducted to measure the performance of heuristic algorithm 

on large problem sets generated by Konak et al. [7] are reported in Table 14. The first columns provide the 

results found by Konak et al. [7] for sets L-I, L-II and L-III. The optimal solution or the upper bound with 

the gap in parentheses found by the IP model are given for L-I. For L-II and L-III, best solution found after 

10 replications of tabu search are given. The second columns report the solutions found by our heuristic 

approach. As seen in the table, heuristic algorithm gives poor results in large problem sets, which is 

expected due to its myopic nature. 

 

We employ two sample t-test to the differences in means of the number of groups in the tabu search solution 

(T) and heuristic solution (H) for large problem sets, with the aim of testing the following hypothesis: 

 H0: T−H =0 

 H1: T−H0  

with a 1−=0.99 confidence. The required parameters are calculated as 𝑥̅𝑇 = 9.348837, 𝑥̅𝐻 = 11.48837, 

𝑠𝑇
2 = 12.18276 and 𝑠𝐻

2 = 17.73516. We consider 86 instances (observations) where both algorithms 
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return a solution. Hence, the value of test statistic is 𝑡0 = −3.62746. Since 𝑡𝛼/2,𝑛𝑇+𝑛𝐻−2 = 𝑡0.005,174 =

2.640379, and 𝑡0 < −2.640379, we reject the null hypothesis.          

 

Table 14. The number of groups found by the heuristic algorithm for large problem sets 

 L-I 

 

L-II 

 

L-III 

Problem 

Set 

Optimal / 

Upper Bound 

Heuristic 

Solution 

Tabu 

Search 

Heuristic 

Solution 

Tabu 

Search 

Heuristic 

Solution 

1 9(%44) 10 9 13 10 14 

2 8(%35) 12 16 17 9 10 

3 3 4 9 11 8 13 

4 9(%44) 10 2 2 5 6 

5 6 7 11 12 13 16 

6 7(%26) 8 12 15 12 15 

7 - 11 8 10 14 16 

8 7(%28) 9 8 11 10 14 

9 8(%39) 10 10 12 12 15 

10 9(%42) 10 13 17 10 13 

11 10(%50) 11 8 12 14 18 

12 10(%59 10 10 12 8 10 

13 8(%50) 11 4 5 12 20 

14 - 12 17 19 13 16 

15 12(%58) 13 9 15 11 13 

16 4 5 7 8 9 13 

17 5 6 13 14 16 18 

18 11(%58) 12 11 14 4 5 

19 6 8 14 17 15 16 

20 8(%37) 9 10 11 8 12 

21 3 3 8 10 12 16 

22 9(%35) 9 4 4 12 17 

23 - 14 9 12 7 9 

24 6 7 10 13 3 4 

25 9(%53) 12 13 16 17 18 

26 9(%44) 11 7 8 5 7 

27 10(%50) 12 14 16 8 11 

28 - 15 5 6 11 13 

29 9(%44) 11 4 5 19 23 

30 8(%37) 8 11 12 8 10 

 

We also carried out experiments on very large problem sets (VL-I)-(VL-VIII) generated by Konak et al. 

[7]. Konak et al. [7] report the average number of job groups found by two tabu search algorithms TSBE2 
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and TSLE. Table 15 gives these results and the number of job groups found by our heuristic algorithm. The 

optimal solutions of these problem sets are not found. 

 

Table 15. The average number of groups found by the heuristic algorithm for very large problem sets 

Problem Set TSBE2 TSLE Heuristic Solution 

VL-I 32.4 28.3 35.07 

VL-II 61.8 55.8 52.53 

VL-III 37.3 34.6 41.17 

VL-IV 80.9 71.4 64.90 

VL-V 43.3 40.6 49.86 

VL-VI 99.9 85.7 77.80 

VL-VII 53.5 46.4 56.33 

VL-VIII 118.6 100.2 89.90 

 

The solution times of the heuristic algorithm are less than 1 second, even for very large problems, hence not 

reported. Average number of job groups found by our heuristic are less than that of both tabu search 

algorithms in 4 out of 8 problem sets, and larger in other sets. 

 

Clearly, the heuristic algorithm performs better on very large problem sets compared to large sets. One 

possible reason is that, for large sets, the heuristic solutions are compared with the best solution found by 

tabu search experiments, but for very large sets, with average performance of tabu search algorithms.  

Another possible reason is that, with increasing problem size, the deterioration of tabu search performance 

is faster than heuristic algorithm. 

 

5. SEARCH ALGORITHM 

 

This section gives the definition of the search algorithm developed to improve the solutions of heuristic 

algorithm. The search algorithm takes the initial solution found by heuristic algorithm and searches for better 

solutions in the neighborhood. A neighbor solution is found by reassigning a job from its group to another group 

together with the required tools. Throughout the algorithm, only feasible solutions are considered, i.e. a job is 

reassigned only if the tool magazine capacity is not exceeded. If we can find a solution among the neighbors 

of the initial solution with a smaller number of groups, this is set as the current solution, and we start searching 

for a better solution in its neighborhood. Otherwise, we search the neighborhoods of the neighbors. Thus, we 

obtain a tree structure. To limit the tree size, we allow searching on a maximum of three levels; and if the 

solution cannot be improved, we consider one of the neighbors as the current solution and build a new tree. 

The maximum of three levels is determined by analyzing the solutions of the heuristic in a preliminary study.  

The search algorithm is terminated on reaching the upper limit for computation time or the solutions analyzed. 

Figure 1 shows the tree structure of the search algorithm. In this section, we first explain the steps of the search 

algorithm and then discuss its performance. 

 

Figure 1. Tree structure of the search algorithm 
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5.1. Steps of the Search Algorithm 

 

The steps of the search algorithm are described below. We use the same notation given in Section 4. 

 

Step 1. Find an initial feasible solution using the heuristic given in Section 4, and denote this solution by S. 

Set i=1 and l=1 where i and l correspond to job and search level indices, respectively. 

Step 2. If l = 3, terminate the algorithm. If l < 3, remove job i from its current group and place it in another 

group with its required tools. 

2.a. Suppose i ∈ Ag, then Ag → Ag\{i}, wg → wg\{k|k ∈ l(i), k l(q),∀q ∈ Ag and g≠i}. 

2.b. Choose one of the groups randomly and denote it by b such that b≠g, if |wb ∪ l(i)| ≤ c, then 

Ab → Ab ∪ {i}, wb → wb ∪ l(i) and keep this solution as N1(S). Otherwise, choose another 

b. 

2.c. If N1(S) includes less number of groups than S, then set S = N1(S) and go to Step 2. If there 

are same number of groups in N1(S) and S, apply Step 2.a for another group b. If there is 

no reduction in the number of groups, repeat this step for all groups and keep the feasible 

solutions found as N2(S), N3(S)... 

2.d. If i = n, go to Step 3. If i < n, set i = i + 1 and repeat Step 2. 

 

Step 3. If l = 3, terminate the algorithm. If l < 3, set l = l + 1. If there is no reduction in the number of 

groups in the neighborhood of S, find the neighbors of neighbors of S and repeat Step 2. Obtain a 

tree structure as in Figure 1. When the algorithm finds a solution with less number of groups, keep 

it as S and go to Step 2. If there is no reduction in the number of groups in the second level of the 

tree, go to Step 4. 

Step 4. If l = 3, terminate the algorithm. If l < 3, set l = l +1. Generate the third level of the tree. Search the 

neighborhood of solutions N11(S), N12(S)... When the algorithm finds a solution with less number 

of groups, keep it as S and go to Step 2. If there is no reduction in the number of groups in the third 

level of the tree, select randomly one of the solutions found so far, keep it as S and go to Step 2. 

 

In Step 2, we try to assign each job to another group, which requires a computation of O(n2) in the worst 

case. We evaluate all neighbors for at most 3 levels, which leads us to a computational complexity of 

O((n2)3) = O(n6).    

 

5.2. Computational Experiments on the Search Algorithm 

 

We perform a computational experiment on problem instances given in Section 4.2 to evaluate the 

performance of the search algorithm. In small problem instances, the search algorithm could not improve 

the initial solutions found by the heuristic approach. In these problem sets, heuristic approach performs 

very well, and finds the optimal solution of most instances. Table 16 reports the solutions of Konak et al. 

[7] and the search algorithm for large instances. Solution times are not reported since the algorithm 

terminates in less than 1 second.  

 

Table 16. The number of groups found by the search algorithm for large problem sets 

 L-I 

 

L-II 

 

L-III 

Problem 

Set 

Optimal / 

Upper Bound 

Search 

Algorithm 

Tabu 

Search 

Search 

Algorithm 

Tabu 

Search 

Search 

Algorithm 

1 9(%44) 10 9 11 10 14 

2 8(%35) 11 16 17 9 10 

3 3 3 9 11 8 10 

4 9(%44) 10 2 2 5 6 

5 6 7 11 12 13 15 
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6 7(%26) 8 12 14 12 15 

7 - 11 8 10 14 16 

8 7(%28) 9 8 10 10 12 

9 8(%39) 10 10 12 12 14 

10 9(%42) 9 13 15 10 12 

11 10(%50) 11 8 10 14 17 

12 10(%59) 10 10 11 8 10 

13 8(%50) 10 4 5 12 19 

14 - 11 17 18 13 14 

15 12(%58) 13 9 13 11 13 

16 4 5 7 7 9 12 

17 5 6 13 13 16 17 

18 11(%58) 10 11 12 4 5 

19 6 7 14 17 15 15 

20 8(%37) 8 10 11 8 11 

21 3 3 8 10 12 14 

22 9(%35) 9 4 4 12 15 

23 - 14 9 10 7 8 

24 6 7 10 12 3 4 

25 9(%53) 11 13 16 17 17 

26 9(%44) 11 7 7 5 7 

27 10(%50) 11 14 15 8 10 

28 - 14 5 6 11 12 

29 9(%44) 10 4 5 19 23 

30 8(%37) 8 11 12 8 10 

 

 

 

Table 17. The average number of groups found by the search algorithm for very large problem sets 

Problem Set TSBE2 TSLE Search Algorithm CPU Time (sec) 

VL-I 32.4 28.3 34.60 2.70 

VL-II 61.8 55.8 52.50 2.47 

VL-III 37.3 34.6 40.60 5.35 

VL-IV 80.9 71.4 64.70 5.13 

VL-V 43.3 40.6 49.86 - 

VL-VI 99.9 85.7 77.80 - 

VL-VII 53.5 46.4 56.33 - 

VL-VIII 118.6 100.2 89.90 - 

 

Table 16 shows that the search algorithm improves the initial solution for large problem sets. We apply two 

sample t-test to the differences in means of the number of groups in the tabu search solution (T) and 
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heuristic solution (H) for large problem sets given in Table 16, with the aim of testing the following 

hypothesis for the improved solutions: 

 H0: T−H =0 

 H1: T−H0  

with a 1−=0.99 confidence. The sample mean and variance for tabu search results remain the same, and 

the required parameters for the improved heuristic solutions are calculated as 𝑥̅𝐻 = 10.81395 and 𝑠𝐻
2 =

15.68263. Hence, the value of test statistic is 𝑡0 = −2.57388. Since 𝑡𝛼/2,𝑛𝑇+𝑛𝐻−2 = 𝑡0.005,174 =

2.640379, and −2.640379 < 𝑡0 < 2.640379, we cannot reject the null hypothesis. The result of the t-test 

shows that the search algorithm significantly increases the quality of the heuristic solutions. 

 

The average solutions of Konak et al. [7] and the search algorithm for very large problems are given in 

Table 17. The search algorithm slightly improves the initial solution for large and very large problem sets. 

In the first four sets of very large problems, the search algorithm provides improvements in very short times, 

but in the final four, an improved solution cannot be obtained due to the search tree’s increasing size. 

Therefore, we give the initial solution in the table for these sets. The CPU times of the initial solutions are 

all less than 1 second, hence not reported. When we compare the search algorithm with the tabu search 

algorithm developed by Konak et al. [7], we can say that none of the algorithms dominate in terms of 

solution quality. In half of the problem sets, our algorithm gives better solutions than Konak et al’s. [7]. 

 

Figure 2 from Konak et al. [7] shows the average solution times of tabu search algorithms for very large 

problem sets. Comparing the algorithm in terms of solution times, we observe that our algorithm is much 

faster than both tabu search approaches. 

 

 
Figure 2. Average solution times of tabu search algorithms for very large problem sets (Konak et al. [7]) 

 

6. CONCLUSION 

 

We study the problem of minimizing the number of tool switching instants in an automated manufacturing 

system. Each job demands a set of tools to be processed. We assume that the assignment of jobs to machines 

is known. In addition to the job processing times, it may be necessary to switch the tools between jobs since 

the tool magazine capacity is too small to hold all necessary tools. We aim to reduce the total time to complete 

all jobs by minimizing the total tool switching times. Since the tool switching times are constant, regardless 

of the type and number of tools, the problem can be considered as a job grouping problem, with the objective 

of minimizing the number of groups. 

 

We develop a mathematical programming model and two constraint programming models. These models 

can find the optimal solution for small sized problems but perform less well for large sized instances since 

the problem is NP-hard. Therefore, we develop a heuristic approach to obtain feasible solutions in 

reasonable times. We then construct a search algorithm to improve the heuristic solution. 

 

We compare the performance of the heuristic algorithm proposed in this study with that of Konak et al.’s 
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[7] tabu search algorithm. The computational tests show that the methods are equivalent in terms of solution 

quality; however, our heuristic approach produces good quality solutions in a shorter time. This study 

provides the following managerial insights on the efficient planning of tool management: 

• We propose one mathematical programming model and two constraint programming models which 

pave the way for decision makers to increase the efficiency of a manufacturing system. 

• The solution approach proposed by the study provides high quality (optimal or near optimal) 

solutions in a very short time, which indicates the applicability of the approach to manufacturing 

systems requiring frequent adaptation to rapid changes (or adjustments). 

• Operating efficiency of a manufacturing system can be increased through the proposed solution 

approach. This implicitly augments utilization level of resources and, in turn, increases the system’s 

manufacturing capacity. 

 

The performance of constraint programming models may be improved by developing problem-specific 

constraint programming solution approaches or hybrid solution approaches. Also, the proposed approaches 

can be adapted and applied to the extension of this problem, in which the time needed for switching tools 

depends on their type and number. 
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