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Abstract
In the present study, Bayesian method of estimating the Pickands dependence function
of bivariate extreme-value copulas is proposed. Initially, cubic B-spline regression is used
to model the dependence function. Then, the estimator of Pickands dependence function
is obtained by the Bayesian approach. Through the estimation process, the prior and
the posterior distributions of the parameter vectors are provided. The posterior sampling
algorithm is presented in order to approximate the posterior distribution. We give a simu-
lation study to measure and compare the performance of the proposed Bayesian estimator
of the Pickands dependence function. A real data example is also illustrated.
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1. Introduction
There has been a growing interest for multivariate modeling of extreme values especially

in the fields of environmental and financial studies. The bivariate extreme-value distribu-
tions are related to the limiting distributions of componentwise maxima of a given sample.
Dependence structure of bivariate rare events like in asset pricing and portfolio choice can
be modelled using extreme value distributions. In this context, inference methods for
modeling the extreme-value dependence structure are getting improved. The stable tail
dependence function and the spectral measure are used to model the extreme-value de-
pendence structure through extreme-value copulas. Consider the random pair (X, Y ) with
joint distribution function H and continuous marginal distributions F and G, respectively,
then following [17], the pair (X, Y ) has extreme value dependence if, and only if, its copula
C can be expressed, for all u, v ∈ (0,1), in the form

C(u, v) = P (F (X) ≤ u, G(Y ) ≤ v) = exp
(

ln(uv)A
[ ln v

ln (uv)

])
, (1.1)

where A belongs to the class A which is defined by A = {A : [0, 1] → R|A is convex and
max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1]}.
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Estimation of the Pickands dependence function is the main step in modeling the mul-
tivariate extremes. Pickands [17] and Deheuvels [8] had early works in estimating the
extreme-value dependence function. Capéraà et al. [6], Hall and Tajvidi [15], Segers [18]
suggested some alternative estimators for Pickands dependence function and they inves-
tigated some of its properties. Genest and Segers [9] proposed a rank-based estimator of
[17] and [6]. Bücher et al. [5] considered minimum-distance principle for the estimator
and provided an infinite class estimators. Zhang et al. [20] and Gudendorf and Segers
[12] studied multivariate case assuming knowledge of marginal distributions and also they
discussed the asymptotic properties of the estimator. Berghaus et al. [3] constructed an
alternative class of estimator for Pickands dependence function for generalized case. They
used the minimum distance approach. Marcon et al. [16] proposed a nonparametric esti-
mator by using Bernstein polynomial approximation. They discussed the properties of the
proposed estimation method. Cormiér et al. [7] proposed a visual tool for detecting the
presence of extreme-value dependence and they used B-splines method for their estima-
tor. There are also some other Bayesian estimations are available in the literature, [13] has
considered a certain functional form for the Pickands function. In this study, a Bayesian
approach which is based on specifying a probability model for the data is suggested to
estimate Pickands dependence function. Our method is different by two ways. First, we do
not consider any functional form for the Pickands function except its constraints, second,
the method of estimating the function is cubic B-splines, which is not used in this frame-
work. We choose Bayesian approach in estimation of Pickands dependence function as
another approach compared to conventional ones since it is shown that in many statistical
problems, the Bayesian methods are more efficient. See, [4].

The remainder of the paper is organized as follows. In Section 2, we define cubic B-spline
regression function for the Pickands dependence function and the Bayesian model which
consists of prior and posterior distributions for the unknown vector of parameters. We
present posterior sampling algorithm using reversible jump MCMC method. In subsection
2.4, we discuss about constraints which are imposed to the Pickands depandence function.
In Section 3, a simulation study is carried out in order to compare our new estimator and
two well-known CFG and Pickands estimators in terms of accuracy and efficiency and a
real-data example is also illustrated in Section 4. Section 5 is devoted to the conclusion.

2. The statistical model
2.1. Cubic B-spline regression model

Consider the extreme value copula given in Equation (1.1). Let t = ln v
ln (uv) and then

A(t) = ln C(u,v)
ln (uv) . The transformation from (u, v) to (t, A(t)) reduce to a convex curve if

and only if, the copula C is the form by Equation (1.1). For more details, see [7].
Let {(Xi, Yi)}n

i=1 be a random sample of size n from an extreme value copula C and
marginals F and G. Consider F̂n and Ĝn be the empirical distributions of F and G which
are defined respectively as

F̂n(z) = 1
n

n∑
i=1

I(Xi ≤ z), Ĝn(z) = 1
n

n∑
i=1

I(Yi ≤ z). (2.1)

Now, For all i in {1, ..., n}, we set Ûi = F̂n(Xi) and V̂i = Ĝn(Yi). Let Ĉn be empirical
copula of {(Ûi, V̂i)}n

i=1. Define Ti = ln (V̂i)
ln (ÛiV̂i)

and Qi = ln Ĉn(Ûi,V̂i)
ln (ÛiV̂i)

. In accordance with the
property of the Pickands dependence function, that is, max(t, 1 − t) ≤ A(t) ≤ 1, division
by n in Equation (2.1) ensures that for i = 1, ..., n, Qi ≥ max(Ti, 1 − Ti). See, [7].

Suppose that the Pickands dependence function A is to be fitted through a set of points
(t1, q1), (t2, q2), ..., (tn, qn). The regression model can be expressed as
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qi = A(ti) + σ2εi, i = 1, 2, . . . , n

where ε1, ..., εn are assumed to be standard normal random variables. As we do not
consider any specific functional form on A, we model {Qi}n

i=1 as

Qi = g(ti;βββ) + σ2εi, i = 1, 2, . . . , n, t ∈ [0, 1],

where g(ti;βββ) is an arbitrary smooth function and βββ is the coefficients vector of the model.
Suppose that m interior knots are k1, k2, . . . , km and g is represented by the cubic B-spline
basis Sj,3(t,kkk), as follows:

g(t;βββ) =
m+4∑
j=1

βjSj,3(t,kkk).

Matrix form of the above model can be written as

QQQ = χm,kkk βββ + σ2εεε,

where

QQQ =


Q1
Q2
...

Qn


(n×1)

, βββ =


β1
β2
...

βm+4


((m+4)×1)

, εεε =


ε1
ε2
...

εn


(n×1)

χm,kkk =


S1,3(t1, kkk) S2,3(t1, kkk) . . . Sm+4,3(t1, kkk)
S1,3(t2, kkk) S2,3(t2, kkk) . . . Sm+4,3(t2, kkk)

...
...

...
S1,3(tn, kkk) S2,3(tn, kkk) . . . Sm+4,3(tn, kkk)


(n×(m+4))

.

2.2. The Bayesian model
2.2.1. The priors. To determine the prior distributions for the parameters, we should
check the number of unknown parameters of the model. The model parameters are: The
number of interior knots, m, knots locations, kkk, model coefficients, βββ, and the variance of
the errors, σ2.

If one fixes the number and the locations of the knots, the only unknown parameters
in the model are βββ and variance σ2. The Normal-Inverse-Gamma (NIG) with (m + 4)-
dimensional mean vector µµµ and (m + 4) × (m + 4)-demensional covariance matrix VVV is the
popular conjugate choice for the prior of βββ and σ2, which is usually denoted by

π(βββ, σ2) = NIG(µµµ,VVV , a, b), a, b > 0,

that is
π(βββ, σ2) = π(βββ|σ2) × π(σ2) = N(m+4)(µµµ, σ2VVV ) × IG(a, b),

where IG(a, b) denotes the Inverse-Gamma distribution with parameters a and b. Then,
we obtain the prior distribution as

π(βββ, σ2) = 1
(2π)

m+4
2 |VVV |

1
2 (σ2)

m+4
2

exp
[
− 1

2σ2 (βββ − µµµ)′
VVV −1(βββ − µµµ)

]

× ba

Γ(a)

( 1
σ2

)a+1
exp − b

σ2

∝
( 1

σ2

)a+ m+4
2 +1

exp
[
− 1

σ2

(
b + 1

2
(βββ − µµµ)′

VVV −1(βββ − µµµ)
)]

.
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If we let a = b = 0 and VVV = n(χ′
m,kkk χm,kkk)−1, the resulting prior is Zellner’s G-prior [19].

Following [10], for a given number of knots, m, we consider a discrete uniform distribution
on the knots locations as follows:

π(kkk|m) =
(

K

m

)−1

, m = 1, 2, . . . , M

where K is the size of candidate set of knot locations and M is the maximum number
of knot sequence allowed. By using the above prior one ensures that all models with
dimension m have equal weights. Finally, to determine a prior to m, we consider uniform
distribution over all possible values, i.e.

π(m) = 1
M

, m ∈ {1, 2, . . . , M}.

Then the prior for the parameter vector is
π(θθθ) = π(βββ, σ2, kkk, m) = π(βββ|σ2, kkk, m)π(σ2)π(kkk|m)π(m).

For the choice of prior, we use well known Zellners G-prior. The priors on the other
parameters of the model (number of knots, location of knots) serve mainly as computation
tools rather than subjective believes. They are used as a key for exploring the parameters’
space. See also, [13].

2.2.2. The likelihood. The likelihood function for the model is defined as the joint
probability of the observed data with the given parameters. Since χm,kkk is fixed, the
likelihood function is obtained as

f(qqq|θθθ) = f(qqq|βββ, σ2, kkk, m) =
( 1

2πσ2

)n
2

exp
[
− 1

2σ2 (qqq − χm,kkk βββ)′(qqq − χm,kkk βββ)
]

.

2.2.3. The posterior. The first step of the inference procedure is to obtain the joint
posterior distribution of (βββ, σ2),

π(βββ, σ2|qqq) ∝ π(βββ, σ2)f(qqq|βββ, σ2),
that is

π(βββ, σ2|qqq) ∝
( 1

σ2

)a∗+ m+4
2 +1

exp
[
− 1

σ2

(
b∗ + 1

2
(βββ − ξξξ)′ΨΨΨ−1(βββ − ξξξ)

)]
,

where
ξξξ = (VVV −1χ

′
m,kkk χm,kkk)−1(VVV −1µµµ + χ

′
m,kkk qqq)

ΨΨΨ = (VVV −1χ
′
m,kkk χm,kkk)−1

a∗ = a + n

2

b∗ = b + 1
2

[µµµ′
VVV −1µµµ + qqq

′
qqq + ξξξ

′
ΨΨΨ−1ξξξ].

Note that the marginal posterior distribution is Inverse-Gamma distribution with param-
eters a∗ and b∗. The marginal posterior of βββ, π(βββ|qqq), results from integrating out σ2 from
the above joint posterior distribution as∫

b∗a∗

(2π)
m+4

2 |ΨΨΨ|
1
2 Γ(a∗)

( 1
σ2

)a∗+ m+4
2 +1

exp
[
− 1

σ2

(
b∗ + 1

2
(βββ − ξξξ)′ΨΨΨ−1(βββ − ξξξ)

)]
dσ2.

Let φ = b∗ + 1
2(βββ − ξξξ)′ΨΨΨ−1(βββ − ξξξ), then,

π(βββ|qqq) = b∗a∗

(2π)
m+4

2 |ΨΨΨ|
1
2 Γ(a∗)

∫ ( 1
σ2

)a∗+ m+4
2 +1

exp(− φ

σ2 )dσ2,
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by using the properties of Gamma function we have

π(βββ|qqq) =
b∗a∗Γ(a∗ + m+4

2 )
(2π)

m+4
2 |ΨΨΨ|

1
2 Γ(a∗)

φ−(a∗+ m+4
2 ).

By simplifying the equation, we see that π(βββ|qqq) is a multivariate t density with n degrees
of freedom. i.e.

π(βββ|qqq) =
Γ(n+p

2 )
Γ(n

2 )π
m+4

2 |nΣ|
1
2

[
1 + (βββ − ξξξ)′ΣΣΣ−1(βββ − ξξξ)

n

](− n+(m+4)
2 )

,

where n = 2a∗, ΣΣΣ = ( b∗

a∗ )ΨΨΨ.
Since we choose the Zellner’s G-prior with µ = 0 as a prior distribution of (βββ, σ2),

we should make some changes in the obtained posterior distribution and also marginal
posterior distributions. Therefore, the posterior of the parameter vector is, π(θθθ|qqq) ∝
f(qqq|θθθ)π(θθθ), that is

π(θθθ|qqq) ∝ (σ2)− n
2 exp

[
− 1

2σ2 (qqq − χm,kkk βββ)′(qqq − χm,kkk βββ)
]

× (2π)− m+4
2 |σ2n(χm,kkk

′
χm,kkk)−1|−

1
2 exp

[
− 1

2σ2βββ
′
(n−1χm,kkk

′
χm,kkk)−1βββ

]
× 1

σ2 × 1(K
m

) × 1
M

.

The marginal posterior distribution of βββ is (m + 4)-variate Student’s t-distribution with
n degrees of freedom, i.e.

βββ|qqq, m,kkk ∼ tm+4(n;ξξξ, Σ),
where

ξξξ = n

n + 1
(χ′

m,kkk χm,kkk)−1χ
′
m,kkk qqq,

Σ = γ

n + 1
(χ′

m,kkk χm,kkk)−1,

γ = qqq
′(In − n

n + 1
χm,kkk (χ′

m,kkk χm,kkk)−1 χm,kkk)qqq,

then,
E[βββ|qqq, m,kkk] = n

n + 1
(χ′

m,kkk χm,kkk)−1 χ
′
m,kkk QQQ

and also the marginal posterior distribution of σ2 given m and kkk is IG(n
2 , γ

2 ). Then we
obtain

E[σ2|qqq, m,kkk] = γ

n − 2
.

2.3. Posterior sampling
The posterior distribution, π(θθθ|qqq), does not have an analytical closed form. Because of

the complex form of this posterior, it does not admit an analytical solution, and should
be approximated. In order to approximate the posterior distribution, we generate random
numbers from posterior distribution by using Gibbs sampling method. To complete the
sampling process by Gibbs method, we need to generate random numbers from the con-
ditional distribution of (kkk, m). Note that due to the varying dimension of this marginal
posterior, we are not able to use the standard sampling methods. So we use the Reversible
Jump algorithm [11]. The marginal posterior distribution of the (kkk, m) is

π(kkk, m) ∝ f(qqq|kkk, m)π(kkk|m)π(m) ∝ (n + 1)−(m+4)/2γ−n/2
(

kkk

m

)−1

.
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The Bayesian inference is then carried out based on the assumption that the true model
is unknown but comes from the class of models M1,M2, . . . where Mm denotes the model
with exactly m knots. The overall subspace is X =

∪∞
m=1 Xm where Xm is the m dimen-

sional space corresponding to model Mm.
Due to the varying dimensionality of our problem, we should design move types between

the subspaces of Xm. This process allows the sampler to freely explore the combined
parameter space if we use the Reversible Jump algorithm. We use three move types,
birth, death and relocation. Birth and death types propose moves between different
dimensions while relocation type proposes moves within a dimension. Throughout the
procedure, we assume that the current model is of dimension m.
Birth. With probability pb,m, propose to add a new knot at a chosen data point
randomly from those which do not currently have a knot.
Death. With probability pd,m, propose to remove a randomly chosen knot which is
present in the model.
Relocation. With probability pr,m, propose to alter a randomly chosen knot, say kj ,
by swapping for a randomly chosen knot which is not present in the model.

We choose the proposal probabilities pp,m = pd,m = pr,m = 1
3 for m = 2, . . . , M − 1;

pd,1 = 0, pb,1 = 1
3 , pr,1 = 2

3 and pb,M = 0, pd,M = 1
3 , pr,M = 2

3 . The acceptance probability
for a Reversible Jump algorithm [11] for a proposal move from model kkk (of dimension m)
to kkk′ (of dimension m′) is given by

ρMm→Mm′ = min
{

1, LRMm→Mm′ × PRMm→Mm′ |J |
}

,

where the ratio of marginal likelihood (LRMm→Mm′ ), prior and proposal ratio
(PRMm→Mm′ ) together with a Jacobian term |J |, that accounts for the change in scale
when moving between models are of potentially different dimensions. In our problem, the
marginal likelihood ratio is

LRMm→Mm′ = p(qqq|kkk′)
p(qqq|kkk)

= p(qqq|kkk′
m′ , m′)

p(qqq|kkkm, m)
= 1√

n + 1

(
γm′,kkk′

γm,kkk

)n
2

,

PRMm→Mm′ = π(m′)
π(m)

π(kkk′
m′)

π(kkkm)
π(Mm)
π(Mm′)

π(kkkm|kkk′
m′)

π(kkk′
m′ |kkkm)

.

Note that because of the use of linear transformations (Birth, Death and Relocation), the
Jacobian term is |J | = 1.

The prior and the proposal ratios for birth, death and relocation moves are pd,m+1
pb,m

,
pb,m−1
pd,m

and 1, respectively. Then the last move is just a standard update in a Metropolis-
Hasting sampler. The rest of the algorithm consists of two usual Gibbs steps: updating
both the coefficients and the variance which can be done easily. In nonparametric settings,
the most important parameter to estimate is the functional form of the regression function
A(t) = ηηη namely ηηη = χβββ. The posterior distribution of ηηη is a mixture of multivariate
t-Student distributions

π(ηηη|qqq) =
∑
m,kkk

π(m,kkk|qqq)π(ηηηm,kkk|m,kkk,qqq),

where
ηηηm,kkk|m,kkk,qqq ∼ tm+4

(
n, χm,kkk ξξξm,

γm,kkk

n
χm,kkk ΣΣΣm,kkk χ′

m,kkk

)
,

and
ξξξm = n

n + 1

(
χ′

m,kkk χm,kkk

)−1
χ′

m,kkk qqq , ΣΣΣm,kkk = n

n + 1

(
χ′

m,kkk χm,kkk

)−1
.

The overall mean and variance of this mixture distribution can be estimated by using the
sample produced from the algorithm.
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2.4. Constraints on the Pickands depandence function
In order to ensure that the new estimator ÂB which is obtained by Bayesian approach

satisfies the properties of the Pickands dependence function, after constructing the esti-
mator ÂB, we use Convhull function in R which is based on the QHull algorithm [2] to
reconstruct a bounded convex estimator. Note that this algorithm has been used with a
slight change so that we consider A(0) = 1 as the start point and A(1) = 1 as the end
point of the algorithm. The rate of convergence in this method is preserved. For more
details, see [1].

3. Simulation study
In this section, we consider 4 families of extreme value distributions; Asymmetric logistic

distribution with α = 0.35, β = 0.75 and τ = 0.25, Galambos distribution with τ = 0.5,
Logistic distribution with τ = 0.5 and Extreme value t-student with 4 degrees of freedom
and τ = 0.5. In each family, we generate a random sample of size 300 and estimate
the Pickands dependence function using our new Bayesian estimator by running 10000
iterations of algorithm following burn-ins of 5000, intrinsic versions of the rank-based
Pickands and Caperaa-Fougeres-Genest (CFG) estimators which are denoted by ÂB, ÂP IC

and ÂCF G, respectively. Figure 1 shows the estimated Bayesian Pickands dependence
function (blue dashed line) for Asymmetric logistic distribution, Galambos distribution,
Logistic distribution, and Extreme value t-student, respectively. Pink and green lines
present Pickands and CFG estimators, respectively and red line is the true Pickands
dependence function. Comparing with the other estimators, Bayesian Pickands estimator
is closer to the true Pickands dependence function for all types of extreme-value copulas.
For all the models, Bayesian estimator fits best even for the asymmetric model.
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Figure 1. Plots with true Pickands dependence function A (red) and three es-
timates based on a random sample of size 300 from the Asymmetric Logistic
(α = 0.35, β = 0.75, τ = 0.25) (top left), Galambos (τ = 0.5) (top right), Logistic
(τ = 0.5) (bottom left), Extreme-value t distributions (τ = 0.5)(bottom right).
ÂCF G (green), ÂP IC (pink), ÂB (blue dashed line).
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Figure 2 shows the sequence of m’s and the corresponding approximated probability
densities. The MAP estimation of m is 2. MAP estimation is the value of the parameter
which maximize the posterior distribution, see [10]. The upper plot gives the sequence of
interior knots and the lower plot gives the corresponding probability densities for asymmet-
ric logistic distribution, Galambos distribution, Logistic distribution and Extreme value
t-student distribution, respectively. Figure 3 shows the mixing behavior of the σ2 with
corresponding running mean (red line) and its histogram. Figure 4 shows the sequence
of MSE’s against iterations. It is seen when the iteration number getting increased then
MSE’s are getting smaller as we expected.

Figure 2. Sequence of m’s of ÂB and the corresponding approximated probability
densities based on a random sample of size 300 from Asymmetric Logistic (α =
0.35, β = 0.75, τ = 0.25) (top left), Galambos (τ = 0.5) (top right), Logistic
(τ = 0.5) (bottom left), Extreme-value t distributions (τ = 0.5)(bottom right).

Finally, a simulation study is carried out to investigate the behavior of the new estima-
tor. Comparisons between three estimators are obtained in terms of MSE. We draw 500
samples of size 300 from two well known extreme value distribution; Logistic and Negative
Logistic distributions. We consider three dependence levels as measured by Kendall’s cor-
relation coefficent τ = 0.25, 0.50, 0.75. For each sample, we approximate ÂB by running
2000 iterations of algorithm following burn-ins of 1000, ÂP IC and ÂCF G and also compute
the true Pickands dependence function. The results of these comparisons are summarized
in Tables 1-2, and Figures 5-6. One can conclude from these results that ÂB has the best
performance at all levels of dependence.
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Figure 3. Estimated Variance of ÂB with running mean (red line) and corre-
sponding histogram based on a random sample of size 300 from Asymmetric Lo-
gistic (α = 0.35, β = 0.75, τ = 0.25) (top left), Galambos (τ = 0.5) (top right),
Logistic (τ = 0.5) (bottom left), Extreme-value t distributions (τ = 0.5)(bottom
right).

Table 1. Mean and Median of MSE of Â for Bayesian, Pickands and CFG es-
timators based on 500 samples size of 300 from Negative Logistic or Galambos
model when τ = 0.25, τ = 0.5 and τ = 0.75.

MSE
Neg. Logistic ÂB ÂP IC ÂCF G

τ = 0.25 Median 0.0004016 0.0006648 0.0014030
Mean 0.0006550 0.0008944 0.0014450

τ = 0.50 Median 0.0003228 0.0006447 0.0007887
Mean 0.0005192 0.0008564 0.0011850

τ = 0.75 Median 0.0001250 0.0003021 0.0002973
Mean 0.0002368 0.0003825 0.0005012

Table 2. Mean and Median of MSE of Â for Bayesian, Pickands and CFG es-
timators based on 500 samples size of 300 from Logistic or Gumbel model when
τ = 0.25, τ = 0.5 and τ = 0.75.

MSE
Logistic ÂB ÂP IC ÂCF G

τ = 0.25 Median 0.0004766 0.0007120 0.0013680
Mean 0.0007081 0.0009970 0.0013910

τ = 0.50 Median 0.0003026 0.0005753 0.0008571
Mean 0.0005170 0.0007923 0.0011840

τ = 0.75 Median 0.0001352 0.0003039 0.0002876
Mean 0.0002530 0.0004215 0.0004596
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Figure 4. Sequence of MSE’s of ÂB against iterations based on a random sample
of size 300 from Asymmetric Logistic (α = 0.35, β = 0.75, τ = 0.25) (top left),
Galambos (τ = 0.5) (top right), Logistic (τ = 0.5) (bottom left), Extreme-value t
distributions (τ = 0.5)(bottom right).

Figure 5. MSE of Â for Bayesian (black line), Pickands (red dashed line) and
CFG (blue dashed line) estimators based on 500 sample size of 300 from Logistic
or Gumbel model when τ = 0.25 (first column), τ = 0.5 (second column), and
τ = 0.75 (third column).
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Figure 6. MSE of Â for Bayesian (black line), Pickands (red dashed line) and
CFG (blue dashed line) estimators based on 500 sample size of 300 from Nega-
tive Logistic or Galambos model when τ = 0.25 (first column), τ = 0.5 (second
column), and τ = 0.75 (third column).

0.0 0.2 0.4 0.6 0.8 1.0

0.
7

0.
8

0.
9

1.
0

t

A

0 1000 2000 3000 4000 5000

2.
0

2.
5

3.
0

3.
5

4.
0

m

2 3 4

m

0.
0

0.
2

0.
4

0.
6

0.
8

0 1000 2000 3000 4000 5000

0.
00

03
30

6
0.

00
03

30
8

0.
00

03
31

0
0.

00
03

31
2

0.
00

03
31

4
0.

00
03

31
6

M
S

E

0 1000 2000 3000 4000 5000

0.
00

07
5

0.
00

08
5

0.
00

09
5

σ2

σ2

0.00075 0.00080 0.00085 0.00090 0.00095

0
40

00
80

00
12

00
0

Figure 7. Real data analysis: Plots with three estimates of Pickands dependence
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(top right), Estimated Variance of ÂB with running mean (red line) and corre-
sponding histogram (bottom left), Sequence of MSE’s of ÂB against iterations
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4. Real Data Analysis
The paper considered a real-data example which is well-known LOSS/ALAE data. The

data comprise 1500 general liability claims randomly chosen from late settlement lags and
were provided by Insurance Services Office. Each claim consists of an indemnity payment
(LOSS) and an allocated loss adjustment expense (ALAE). For more details, see [14].
We estimate Pickands dependence function for LOSS/ALAE data by Bayesian, Pickands
and CFG methods. The plots are given in Figure 7. To compare our estimator with the
alternative estimators, we use MSE. The results are reported in Table 3. As seen from the
values obtained for MSE’s, Bayesian estimate of Pickands dependence function has the
least value among other estimators.

Table 3. MSE of Â for LOSS/ALAE data of ÂB , ÂP IC and ÂCF G.

MSE
ÂB ÂP IC ÂCF G

0.0003302 0.0006948 0.0007949

5. Conclusion
The limiting distributions of componentwise maxima of a given sample are related with

the bivariate extreme-value distributions. These extreme-value distributions are used for
modelling the rare events especially in the fields of financial and enviromental studies.
The extreme-value dependence structures of the rare data can be modelled using the
extreme-value copulas. The Pickands dependence function characterizes the extreme-
value copulas. In this study, we use cubic B-spline regression approach for modeling
the Pickands dependence function and then a Bayesian approach which consists of prior
and posterior distributions for the unknown vector of parameters is used to estimate the
Pickands dependence function. We obtain the prior for the parameter vector and use
Zellner’s G-prior for the choice of the prior. We also give a posterior sampling algorithm
using a reversible jump MCMC method.

We measure the performance of the Bayesian Pickands estimator by a simulation study.
In the simulation study, we consider four families of the extreme-value distributions. For
each family of the distributions, the Bayesian Pickands estimator shows a better perfor-
mance when compared with its alternatives.

Also, a real data analysis consisting the well-known LOSS/ALAE data is presented. We
estimate the Pickands dependence function by Bayesian, Pickands and CFG methods. It
can also be concluded that the Bayesian Pickands estimator has the best performance.
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