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Abstract: The present article focuses on obtaining numerical solutions of time fractional KdV-Burger-

Kuramoto equation (KBK) with the finite element collocation method. The finite element collocation

methods are common and effective tool for solving nonlinear problems because of their reasonable com-

putational costs. The idea underlying the method is seeking the numerical solutions in a form of a linear

combination of unknown functions with basis at nodal points by avoid of integration. Thus, in this article,

we achieve more accurate numerical results are obtained with the application of the method to KBK equa-

tion. Additionally, we show the efficiency and effectiveness of the method using comparisons of numerical

results with exact solutions via error norms and their simulations.
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1. Introduction
The date of scientific modelling is as old as humanity history and it is a necessary human way to

copy nature with the aim of representation of a particular nature system, how something works

or prediction and explanation of the life. The role of modelling in science is so important. Let us

try to explain this importance with some examples; if you want to investigate the behaviour of an

atom or a cell, you can’t become so small, if you want to define some features a dinosaur, they

are no longer exist, so you can not jump in a time machine and experience it yourself. Therefore,

modelling and simulations have a vital role in science. There are three types of models, these are

physical modelling, conceptual modelling, and mathematical modelling. The physical modelling is

a way to simulate of an object and relation of parts with each other. The conceptual modelling

is dealing with ideas, it is a type of a mental modelling. Lastly, mathematical modelling is a

translation of a particular phenomenon into mathematical language.

Engineers, researchers and people who work on natural, economics or scientific subjects
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use variables, constants and the relationship between them in order to investigate systems and

characterize the problems which are born from real life. These problems change over time and the

rates of change are expressed via derivative in mathematics. So, the evolution equations become

an important tool and the final step of mathematical modelling. Changing model and researches

help the development the theory of evolution equations. With all that, some materials or system

which are dependent on memory, some damping systems and some physical problems including

anomalous diffusion are modelled correctly by fractional differential equations which are the best

way of modelling [3]. Therefore, fractional calculus is getting become a new growing field in

mathematical modelling with its rich theories and physical background. For this reason many

books, surveys, journals and papers address problems involving fractional calculus and investigate

the solutions of the problems. In order to contribute to literature, we are consider a well known

time fractional model with initial and boundary conditions read as

Dα
t u = −1

2
(u)

2
x + λ1uxx − λ2uxxx − λ3uxxxx + f (x, t) , (x, t) ∈ [0, 1]× [0, 1] (1)

u(x, 0) = u0 (x) ,
u(xl, t) = g1 (t) , u (xr, t) = g2 (t) ,
u′(xl, t) = h1 (t) , u′ (xr, t) = h2 (t)

(2)

where λ1, λ2 and λ3 are any constants, f , u0, g, h are smooth functions and α (0 < α ≤ 1) is

a parameter describing the order of fractional derivative. The model describes long waves on a

viscous fluid flowing down along an inclined plane, unstable drift waves in plasma and turbulent

cascade model in a barotropic atmosphere [4–6].

In this article, we are going to seek numerical solutions of time fractional KdV-Burgers-

Kuramoto (KBK) equation given in Eq. (1) .For this motivation, collocation method based on

finite element approximation are used. At the first step of the article, we achived utilize spatial

discretization L1 algorithm and space discretization of the KBK equation are done with collocation

finite element technique using quintic b-spline basis. In fact, many different types of splines can

be used in order to get smoother approximations for solution of the partial differential equations.

Here, we choose the degree of at most 5 th order spline in order to protect continuity between

elements and this part of the article ends with the equation into algebraic equation system. Finally,

the article is finished with “conclusion” part.

2. Collocation Method for KdV-Burger-Kuramoto Equation

Now, we are going to obtain a numerical scheme for splitting equation system given in Eq. (1)

using collocation finite element method. At the beginning of the process, the interval I = [a, b]
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will be divide into N equal elements such as

a = x0 < x1 < · · · < xN = b

where h = xm+1 − xm is length of every sub-interval will be refer as step size. Then, a collocation

solution uh are going to be constructed on an interval I = [a, b] as following form

uh =

N+2∑
m=−2

δm (t)ϕm (x) (3)

where {xm}Nm=0 are nodal points of each element called as collocation points,

δm (t) (m = −2(1)N + 2)

are time dependent unknown parameters, ϕm (x) are quintic B-spline basis. Each basis are fourth

times continuously differentiable on the entire interval. Now, let us take a break and present define

of the quintic B-spline basis ϕm (x)

ϕm (x) =
1

h5



(x− xm−3)
5
, [xm−3, xm−2]

(x− xm−3)
5 − 6 (x− xm−2)

5
, [xm−2, xm−1]

(x− xm−3)
5 − 6 (x− xm−2)

5 − 15 (x− xm−1)
5
, [xm−1, xm]

(xm+3 − x)
5 − 6 (xm+2 − x)

5 − 15 (xm+1 − x)
5
, [xm, xm+1]

(xm+3 − x)
5 − 6 (xm+2 − x)

5
, [xm+1, xm+2]

(xm+3 − x)
5
, [xm+2, xm+3]

0, otherwise

(4)

Also, let us give the values of ϕm (x) , ϕ′
m (x) , ϕ′′

m (x) , ϕ
′′′

m (x) and ϕ
iv

m (x) order derivatives

at nodal points via a table

xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3

ϕm (x) 0 1 26 66 26 1 0
ϕ′
m (x) 0 5/h 50/h 0 -50/h -5/h 0

ϕ′′
m (x) 0 20/h2 40/h2 -120/h2 40/h2 20/h2 0

ϕ
′′′

m (x) 0 60/h3 -120/h3 0 120/h3 -60/h3 0

(5)

Before substituting collocation solution given in (3) into equation system, we need to discrete

the system using Crack Nicolson formula for ordinary order derivatives and L1 algorithm for

fractional order time derivative given as follows

u = un+1+un

2 ,

Dα
t u = (∆t)−α

Γ(2−α)

n−1∑
k=0

bαk
[
un−k − un−1−k

]
.
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Thus, the system given in Eqs.(1)− (2) are rewritten as

(∆t)−α

Γ(2−α)

n−1∑
k=0

bαk
[
un−k − un−1−k

]
= −u

[
(ux)

n+1+(ux)
n

2

]
+ λ1

[
(uxx)

n+1+(uxx)
n

2

]
−λ2

[
(uxxx)

n+1+(uxxx)
n

2

]
− λ3

[
(uxxxx)

n+1+(uxxxx)
n

2

]
+ f (x, t) .

In order to obtain numerical scheme for KBK equation, when we use the idea that ap-

proximate solution satisfies partial differential equation at collocation points xm , we get following

difference equation

δn+1
m−2 (1− S (e1zm + e2 + e3 − e4)) + δn+1

m−1 (26− S (10e1zm + 2e2 − 2e3 + 4e4))

+δn+1
m (66 + S (6e2 + 6e4)) + δn+1

m+1 (26 + S (10e1zm − 2e2 − 2e3 − 4e4))

+δn+1
m+2 (1 + S (e1zm − e2 + e3 + e4))

=
δnm−2 (1 + S (e1zm + e2 + e3 − e4)) + δnm−1 (26 + S (10e1zm + 2e2 − 2e3 + 4e4))

δnm (66− S (6e2 + 6e4)) + δnm+1 (26− S (10e1zm − 2e2 − 2e3 − 4e4))

+δnm+2 (1− S (e1zm − e2 + e3 + e4))

+f (x, t)−
n∑

k=1

bαk
{(

δn+1−k
m−2 + 26δn+1−k

m−1 + 66δn+1−k
m + 26δn+1−k

m+1 + δn+1−k
m+2

)
−

(
δn−k
m−2 + 26δn−k

m−1 + 66δn−k
m + 26δn−k

m+1 + δn−k
m+2

)}

(6)

where S = Γ (2− α) (∆t)
α
, e1 = 5/2h, e2 = 10λ1/h

2, e3 = 30λ2/h
3 and e4 = 60λ3/h

4. Our prob-

lem has a nonlinearity, so we will convert the problem to linear form by performing transformations

on the nonlinear term as zm = um. The values of parameter zm at the given xm nodal points can

be present as following

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2.

According to collocation method, there should be a match between the number of collocation

points and basis functions [7]. The system given Eq (6) is consisting (N + 5) basis function points

and (N + 1) selected collocation points, therefore, the numerical schemes are redefine as matching

collocation points and basis function. Therefore, four unknown time parameters δ−2 , δ−1, δN+1

and δN+2 which is related with basis functions should be removed from each system and system

redefine with (N + 1) collocation points and (N + 1) basis functions.

This refining procedure is done by using boundary conditions of the problem for u and u′
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at x0 and xN nodal points such as

u (x0, t) = δ−2 + 26δ−1 + 66δ0 + 26δ1 + δ2
u′ (x0, t) =

5
h (δ−2 + 10δ−1 − 10δ1 − δ2)

u′′ (x0, t) =
20
h2 (δ−2 + 2δ−1 − 6δ0 + 2δ1 + δ2)

u (xN , t) = δN−2 + 26δN−1 + 66δN + 26δN+1 + δN+2

u′ (xN , t) = 5
h (δN−2 + 10δN−1 − 106δN+1 − δN+2)

u′′ (xN , t) = 20
h2 (δN−2 + 2δN−1 − 6δN + 2δN+1 + δN+2) .

(7)

Now, we have an algebraic equation system in the form (N + 1)× ( N + 1) . When bound-

aries and terms of the system Eq. (6) is rearranged in matrix norm, we get;

Aδn+1 = Bδn. (8)

The working procedure of the iteration given in (8) is to use the old value of δn to obtain

new and presumably more accurate values of δn+1 and update values of δn at each step.

2.1. Initial State

Iterative methods for the equation system given in (8) begin with an approximation to the solution,

δ(0) to seek provide a series as
{
δ(1), δ(2), δ(3), ...

}
for better approximation. In this section, we are

going to obtain an initial vector in order to begin iteration. For this purpose, we are going to use

known values given in initial condition u (x, t0) = f (x) of the problem with approximate solution

uh (x, t0) following way

uh (x0, t0) = δ−2 + 26δ−1 + 66δ0 + 26δ1 + δ2 = u0 (x0)
uh (x1, t0) = δ−1 + 26δ0 + 66δ1 + 26δ2 + δ3 = u0 (x1)
uh (x2, t0) = δ0 + 26δ1 + 66δ2 + 26δ3 + δ3 = u0 (x2)

...
uh (xN−1, t0) = δN−3 + 26δN−2 + 66δN−1 + 26δN + δN+1 = u0 (xN−1)
uh (xN , t0) = δN−2 + 26δN−1 + 66δN + 26δN+1 + δN+2 = u0 (xN ) .

(9)

As it is seen from the above equation system, there are fewer equations than unknowns. To

obtain a unique solution of the system of equations, we need to eliminate four unknown variables

from the system. Again, the equations given in (7) will help us to elimination. After some simple

calculations, if we rewritten Eq. (9) in matrix form, we get



54 60 6 0 0 0
25.25 67.5 26.25 1 0 0
1 26 66 26 1 0
... . . . . . . . . . . . . ...
0 1 26 66 26 1
0 0 1 26.25 67.5 25.25
0 0 1 6 60 54





δ
(0)
0

δ
(0)
1

δ
(0)
2
...

δ
(0)
N−1

δ
(0)
N


=



u0 (x0)
u0 (x1)
u0 (x2)

...
u0 (xN−1)
u0 (xN )


.
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Now, number of unknown variables equal to the number equations. Thus, solving this system

yields us obtain desired initial vector.

3. Numerical Results and Discussion
In this section, we are going to consider three examples of time fractional KBK equation for interval

I = [0.1] and different values of parameters λ1, λ2, λ3 and fractional order α . The theoretical

solution of this problem is available in literature, In order to validate the proposed method and

measure the accuracy of the numerical results the error norms L2 and L∞ are calculated by giving

formulas as follow

L2 = ∥u− Uh∥2 =

√
h

N∑
j=0

∣∣∣uj − (uh)j

∣∣∣2,
L∞ = ∥u− Uh∥∞ = max

0≤j≤N

∣∣∣uj − (uh)j

∣∣∣ (10)

where u and uh are theoretical solution and numerical solution of the equation, respectively.

3.1. Example 1

Consider a time fractional KBK equation with initial and boundary conditions given as

Dα
t u = − 1

2 (ux)
2
+ λ1uxx − λ2uxxx − λ3uxxxx + f (x, t)

u(x, 0) = 0

where

f(x, t) = 2t2−α

Γ(3−α) cos(2πx)−πt4 sin (4πx)+4λ1π
2t2 cos(2πx)+8λ2π

3t2 sin (2πx)+16λ3π
4t2 cos(2πx)

and the exact solution of time fractional KBK equation is u (x, t) = t2 cos(2πx) is expressed in

[1]. In this numerical experiment, we take λ1 = 1, λ2 = 2 and λ3 = 2 . In order to discuss what is

the effects of the number of step and time partition on the accuracy, the error norms L2 and L∞

are presented for different values of time (∆t) and step size (h) and fractional order parameter α

and tfinal = 1 in Tables 1-4. It is observed that from obtained results,when time step decrease

half-and-half, error norms decrease almost amount %4 − 5. Thus the decreasing values of time

size have a slightly effect on accuracy. Additionally, the effect of step size is related with order

parameter of the equation α . For small α (see in Tables 1-2), decreasing values of step size has a

high increasing effects on the error norm. However, when α parameter is getting higher, decreasing

values of step size effects the error norms with slightly increase. But, when we choose higher values

of α , one can see in Table 3 and 4, decreasing step size yields decreasing error norms as expected

from collocation method.
Since the analytical solution and numerical solution overlap for many values of chosen

variables, the plots of the numerical solution are shown in Figures. 1 for different values of time
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Table 1: Example 1: The error norms L2 and L∞ for α = 0.1 and tfinal = 1

∆t 0.01 0.005 0.0025 0.00125

h L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

0.01 0.501590 0.819300 0.481670 0.786761 0.471699 0.770474 0.466711 0.762326
0.005 2.455074 4.010208 2.474995 4.042753 2.484978 4.059062 2.489976 4.067225
0.0025 3.194241 5.217852 3.214273 5.250577 3.224043 5.266540 3.229241 5.275033
0.00125 3.378098 5.518191 3.399813 5.553667 3.411439 5.572622 3.414204 5.577186

Table 2: Example 1: The error norms L2 and L∞ for α = 0.5 and tfinal = 1

∆t 0.01 0.005 0.0025 0.00125

h L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

0.01 2.077723 3.393803 2.057199 3.360276 2.046771 3.343242 2.041499 3.334631
0.00625 0.323262 0.528042 0.343799 0.561593 0.354238 0.578646 0.359514 0.587265
0.005 0.877381 1.433143 0.897912 1.466686 0.908363 1.483758 0.913635 1.492369
0.0025 1.616197 2.640104 1.636722 2.673632 1.647155 2.690677 1.652406 2.699259
0.00125 1.802030 2.943670 1.822648 2.977347 1.833003 2.994273 3.414204 5.577186

order parameter α. We chose the interval of graphics as [0, 5] , step size as h = 0.01 and time step

size as ∆t = 0.001 , order as α = 0.2, 0.75 and 0.9 , respectively. We notice from Figures 1.

3.2. Example 2

In this numerical experiment, we are going to consider time fractional KBK equation with given

initial and boundary conditions

u(xl, t) = − t2α cos(xl)
Γ(1+2α) , u(xr, t) = − t2α cos(xr)

Γ(1+2α)

u′(xl, t) = − t2α sin(xl)
Γ(1+2α) , u′(xr, t) = − t2α sin(xr)

Γ(1+2α)

u(x, 0) = 0

the forced term of the problem is f (x, t) = tα cos(x)
Γ(1+α) − t4α cos(x) sin(x)

(Γ(1+2α))2
+ λ1

t2α cos(x)
Γ(1+2α) + λ2

t2α sin(x)
Γ(1+2α) +

λ3
t2α cos(x)
Γ(1+2α) and analytical solution is u(x, t) = t2α cos(x)

Γ(1+2α) [2]. In Example 2, the problem is discussed

in interval [xl, xr] = [0, 1] and different final times from 0.1 to 0.6. In order to obtain several

comparison tables, according to absolute error is given in Table 5-6, other variables are chosen

as λ1 = λ2 = λ3 = 1 and α = 0.75, 1,respectively. Also, for our numerical results space step is

Table 3: Example 1: The error norms L2 and L∞ for α = 0.75 and tfinal = 1

∆t 0.01 0.005 0.0025 0.00125

h L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

0.01 3.070501 5.015458 3.054283 4.988967 3.045780 4.975077 3.041362 4.967861
0.00625 0.670316 1.095016 0.654085 1.068499 0.645574 1.054595 0.641152 1.047371
0.005 0.116385 0.190137 0.100139 0.163594 0.091631 0.149695 0.087216 0.142483
0.0025 0.622289 1.016518 0.638489 1.042986 0.646939 1.056796 0.651403 1.064078
0.00125 0.806107 1.316794 0.821751 1.342337 0.831972 1.359063 0.835825 1.365319
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Table 4: Example 1: The error norms L2 and L∞ for α = 0.9 and tfinal = 1

∆t 0.01 0.005 0.0025 0.00125

h L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104 L2 × 104 L∞ × 104

0.01 3.615892 5.90633 3.607046 5.891878 3.602242 5.884031 3.599663 5.879819
0.00625 1.216145 1.986654 1.207291 1.972187 1.202484 1.964333 1.199901 1.960115
0.005 0.662317 1.081895 0.653459 1.067420 0.648644 1.059554 0.646062 1.055336
0.0025 0.076282 0.124594 0.084937 0.138734 0.089913 0.146871 0.092330 0.150816
0.00125 0.260287 0.425191 0.269151 0.439681 0.272848 0.445669 0.275889 0.450654

Figure 1: Physical behavior of numerical solutions of Example 1 for h = 0.01 ,∆t = 0.01 and
α = 0.2, 0.75, 0.9 , respectively

h = 0.1 and time step size is ∆t = 0.001. From Tables 5 and 6, we observe that error-norms has

a slow rise according to increasing final time and numerical solutions are obtained via collocation

method has better approximation for the different values of α according to results given in [2].

3D graph of problem 2 is exhibited in Figure 2 for the interval [0, 5] , h = 0.01 , ∆t = 0.001.

and α = 0.2, 0.75, 0.9

3.3. Example 3:

As a last example, we consider time fractional KBK equation with conditions as follow

8
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Table 5: Example 2: A comparison absolute error norms between present method with [2] for
α = 0.75

α = 0.75 t=0.1 t=0.2 t=0.3
x [2] Collocation [2] Collocation [2] Collocation

0.1 2.12737E-4 1.425555827E-6 2.28422E-4 2.117782172E-6 7.56638E-3 2.636578023E-6
0.2 2.41145E-4 5.001672638E-6 2.65580E-3 7.401239780E-6 9.06168E-3 9.199881243E-6
0.3 2.86820E-4 9.754706651E-6 3.10412E-3 1.4359901838E-5 1.07513E-2 1.7813737870E-5
0.4 3.51375E-4 1.4750674667E-5 3.63645E-3 2.1591250347E-5 1.26528E-2 2.6732887819E-5
0.5 3.19966E-4 1.9083687300E-5 2.78217E-3 2.7763486907E-5 8.89023E-3 3.4314027437E-5
0.6 3.22493E-4 2.1882537269E-5 2.93705E-3 3.1623892290E-5 9.67846E-3 3.9007915198E-5
0.7 3.35989E-4 2.2274092353E-5 3.12840E-3 3.1981620122E-5 1.05325E-2 3.9359355101E-5
0.8 3.61167E-4 1.9321052204E-5 3.36005E-3 2.7616713636E-5 1.14623E-2 3.3928557400E-5
0.9 3.98257E-4 1.1906187843E-5 3.63348E-3 1.6993266607E-5 1.24718E-2 2.0873955458E-5
1 4.47018E-4 0.0000000 3.94789E-3 0.0000000 1.35589E-2 0.0000000000

t=0.4 t=0.5 t=0.6
[2] Collocation [2] Collocation [2] Collocation

0.1 1.76708E-2 3.062339073E-6 9.57606E-2 3.4260E-6 2.20683E-2 3.743322999E-6
0.2 2.18543E-2 1.0681868614E-5 5.85324E-2 1.19547E-5 2.74249E-2 1.3072045992E-5
0.3 2.64650E-2 2.0667842446E-5 1.30486E-2 2.31288E-5 3.19023E-2 2.5299349033E-5
0.4 3.15340E-2 3.0991736731E-5 4.06402E-2 3.46745E-5 3.56728E-2 3.7933801499E-5
0.5 2.04192E-2 3.9754064361E-5 3.80953E-2 4.44699E-5 7.45291E-3 4.8654986503E-5
0.6 2.29045E-2 4.5159269141E-5 6.76929E-2 5.05064E-5 8.91490E-3 5.5265016233E-5
0.7 2.54926E-2 4.5521775607E-5 1.00724E-1 5.08931E-5 9.53959E-3 5.5686801517E-5
0.8 2.82012E-2 3.9209323018E-5 1.36832E-1 4.38218E-5 9.45691E-3 4.7948594769E-5
0.9 3.10362E-2 2.4128363192E-5 1.75597E-1 2.69787E-5 8.77358E-3 2.9537364804E-5
1 3.39907E-2 0.0000000 2.16518E-1 0.0000000 7.57357E-3 0.00000000

u(xl, t) = − t2α sin(xl)
Γ(1+2α) , u(xr, t) = − t2α sin(xr)

Γ(1+2α)

u′(xl, t) = − t2α cos(xl)
Γ(1+2α) , u′(xr, t) = − t2α cos(xr)

Γ(1+2α)

u(x, 0) = 0

f (x, t) = tα sin(x)
Γ(1+α) + t4α cos(x) sin(x)

(Γ(1+2α))2
+ λ1

t2α sin(x)
Γ(1+2α)

−λ2
t2α cos(x)
Γ(1+2α) + λ3

t2α sin(x)
Γ(1+2α)

exact solution of the problem is given as u(x, t) = t2α sin(x)
Γ(1+2α) . As it is in the previous example, we

choose the ∆t = 0.001 , λ1 = λ2 = λ3 = 1 and collocation points as N = 10 on the interval

I = [0, 1] . Tables 7-8 are prepared for the giving the numerical comparisons for different values

of x . Notice from Tables, the numerical solutions at different nodal points are closely agree with

the theoretical solution of the problem and, they have better approximation. Moreover, the error

is low according to using few collocation points. The plots of the solutions are presented for the

interval [0, 5] and same values given for tables in Figure 3. However, in order to change of solution

according to fractional order, α values are chosen as 0.2, 0.75 and 0.9 .

9
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Table 6: Example 2: A comparison of absolute error norms between present method with [2] for
α = 1

α = 1 t=0.1 t=0.2 t=0.3
x [2] Collocation [2] Collocation [2] Collocation
0.1 1.84959E-4 4.44355464E-7 2.90830E-4 9.01012708E-7 9.67277E-5 1.354531357E-6
0.2 2.97674E-4 1.541729248E-6 4.23930E-4 3.123843477E-6 2.76159E-4 4.696476134E-6
0.3 4.25867E-4 2.967349766E-6 5.67587E-4 6.006607148E-6 4.61419E-4 9.030127274E-6
0.4 5.68389E-4 4.428565539E-6 7.19135E-4 8.953614116E-6 6.46241E-4 1.3458731643E-5
0.5 7.24113E-4 5.657686623E-6 8.76214E-4 1.1422144064E-5 8.25379E-4 1.7165512936E-5
0.6 8.91885E-4 6.405705017E-6 1.03672E-3 1.2910934156E-5 9.94495E-4 1.9397068698E-5
0.7 1.07048E-3 6.437027332E-6 1.19879E-3 1.2950401464E-5 1.15008E-3 1.9449231453E-5
0.8 1.25857E-3 5.525346771E-6 1.36074E-3 1.1094600671E-5 1.28944E-3 1.6655266726E-5
0.9 1.45468E-3 3.398148858E-6 1.52113E-3 6.809864703E-6 1.41067E-3 1.0218726996E-5
1 1.65715E-3 0.0000000 1.67872E-3 0.0000000 1.5127E-3 0.0000000

x t=0.4 t=0.5
[2] Collocation [2] Collocation

0.1 7.19605E-4 1.804412500E-6 2.50855E-3 2.249981928E-6
0.2 5.99905E-4 6.258237331E-6 2.64995E-3 7.807250628E-6
0.3 4.94075E-4 1.2035659966E-5 2.83828E-3 1.5020156239E-5
0.4 4.14924E-4 1.7940993125E-5 3.09695E-3 2.2396408915E-5
0.5 3.72850E-4 2.2884474856E-5 3.44474E-3 2.8574469993E-5
0.6 3.75989E-4 2.5860745298E-5 3.89591E-3 3.2297304739E-5
0.7 4.30298E-4 2.5930504938E-5 4.46022E-3 3.2390015051E-5
0.8 5.39558E-4 2.2205117775E-5 5.14289E-3 2.7741028965E-5
0.9 7.05318E-4 1.3623766681E-5 5.94439E-3 1.7023623612E-5
1 9.26776E-4 0.0000000 6.86019E-3 0.0000000

Figure 2: Physical behavior of numerical solutions of Example 2 for h = 0.01 ,∆t = 0.01 and
α = 0.2, 0.75, 0.9 ,respectively
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Table 7: Example 3: A comparison of error norms L2 and L∞ between present method with [2]
for α = 0.75

α = 0.75 t=0.05 t=0.1 t=0.15 t=0.2
x [2] Collocation [2] Collocation [2] Collocation [2] Collocation
0.1 2.27075E-5 1.0199106688E-7 2.46815E-4 0.9151217315 7.82738E-4 0.8634200623 1.72484E-3 0.8377844024
0.2 2.61128E-5 3.2986384012E-7 2.14264E-4 2.9543475464 6.52493E-4 2.7907775679 1.40683E-3 2.7085592083
0.3 2.80289E-5 5.8028333723E-7 1.72666E-4 5.1829071135 4.94899E-4 4.9010987657 1.02750E-3 4.7583496137
0.4 2.78829E-5 7.7362185093E-7 1.19612E-4 6.8844581103 3.04250E-4 6.5112627940 5.76276E-4 6.3219508406
0.5 3.15224E-5 8.5736887105E-7 1.14364E-4 7.6027844858 3.08178E-4 7.1815593500 6.41627E-4 6.9660351142
0.6 3.54238E-5 8.0622215322E-7 8.08914E-5 7.1433136020 1.61045E-4 6.7340566055 2.66399E-4 6.5176961435
0.7 3.64308E-5 6.2527979888E-7 3.35835E-5 5.5673455606 2.33063E-5 5.2457341908 1.85579E-4 5.0652490343
0.8 3.38764E-5 3.6082416268E-7 3.04752E-5 3.2492842068 2.51819E-4 3.070467162 7.27157E-4 2.9614393981
0.9 2.71227E-5 1.0966740355E-7 1.14065E-4 1.0014537630 5.31069E-4 0.9511763780 1.37042E-3 0.9168263713
1 1.55712E-5 0.0000 2.19782E-4 0.0000 8.67153E-4 0.0000 2.12648E-3 0.0000
L2 5.452250E-7 4.8498380E-7 4.579561 E-7 4.437573 E-7
L∞ 8.573689E-7 7.6027840E-7 7181559E-7 6.966035E-7

t=0.25 t=0.3 t=0.4
x [2] Collocation [2] Collocation [2] Collocation
0.1 3.10534E-3 0.8257542647 4.90591E-3 0.8207665259 9.42941E-3 0.8176118113
0.2 2.46587E-3 2.6686380135 3.76612E-3 2.6509976859 6.56591E-3 2.6379935367
0.3 1.71007E-3 4.6864354216 2.42812E-3 4.6515305627 3.23418E-3 4.6162744993
0.4 8.21037E-4 6.2231576346 8.67143E-4 6.1698002315 6.10355E-4 6.0970237738
0.5 1.04190E-3 6.8483029251 1.40877E-3 6.7764233864 1.55604E-3 6.6519550650
0.6 2.74380E-4 6.3903925955 3.61691E-4 6.3008818865 1.84669E-3 6.1165081634
0.7 6.28651E-4 4.9469387332 1.55294E-3 4.8498627656 5.70490E-3 4.6206941846
0.8 1.68784E-3 2.8788404717 3.38895E-3 2.7985508565 1.00748E-2 2.5827196035
0.9 2.92247E-3 0.8854851841 5.49997E-3 0.8492953489 1.50075E-2 0.7402677529
1 4.35005E-3 0.0000 7.91130E-3 0.0000 2.05479E-2 0.0000
L2 4.356309 E-7 4.302325E-7 4.199293E-7
L∞ 6.848303 E-7 6.776423E-7 6.651955E-7

Table 8: Example 2: A comparison of error norms L2 and L∞ between present method with [2]
for α = 1

α = 1 t=0.1 t=0.2 t=0.3
x [2] Collocation [2] Collocation [2] Collocation
0.1 5.68684E-5 5.74636E-10 1.28221E-4 2.290067E-9 4.93990E-4 4.970277E-8
0.2 5.39855E-5 1.854416E-9 1.19191E-4 7.387768E-9 4.39997E-4 1.6028950E-7
0.3 4.85989E-5 3.258108E-9 1.04660E-4 1.2960332E-8 3.69101E-4 2.8057013E-7
0.4 4.05274E-5 4.335789E-9 8.31235E-5 1.7200593E-8 2.76311E-4 3.7081903E-7
0.5 2.95642E-5 4.788543E-9 5.30284E-5 1.8918339E-8 1.56464E-4 4.0519390E-7
0.6 1.54809E-5 4.486534E-9 1.27887E-5 1.7615798E-8 4.30468E-6 3.7348811E-7
0.7 1.96621E-6 3.486531E-9 3.91878E-5 1.3558206E-8 1.85428E-4 2.8273891E-7
0.8 2.30271E-5 2.049010E-9 1.04464E-4 7.839995E-9 4.17885E-4 1.5871350E-7
0.9 4.79469E-5 6.53934E-10 1.84526E-4 2.435719E-9 6.97968E-4 4.674238E-8
1 7.69510E-5 0.00000 2.80724E-4 0.00000 1.03017E-3 0.00000
L2 3.0500 E-9 1.20129 E-8 2.56004 E-8
L∞ 4.7885E-9 1.89183 E-8 4.05194 E-8

t=0.4 t=0.5 t=0.6
x [2] Collocation [2] Collocation [2] Collocation

0.1 1.48989E-3 8.318817E-9 3.49306E-3 1.1919442E-8 6.95761E-3 1.5236319E-8
0.2 1.31699E-3 2.6816112E-8 3.07391E-3 38398689E-8 6.12894E-3 4.9038037E-8
0.3 1.10257E-3 4.6781142E-8 2.56670E-3 6.6651807E-8 5.13534E-3 8.4475253E-8
0.4 8.35246E-4 6.1435507E-8 1.95025E-3 8.6689906E-8 3.94182E-3 1.08247598E-7
0.5 5.03251E-4 6.6449302E-8 1.20250E-3 9.2297917E-8 2.51167E-3 1.12388559E-7
0.6 9.45733E-5 6.0263230E-8 3.00882E-4 8.1557400E-8 8.06986E-4 9.5051338E-8
0.7 4.02820E-4 4.4379625E-8 7.77358E-4 5.7311506E-8 1.21073E-3 6.1196285E-8
0.8 1.00074E-3 2.3629115E-8 2.05467E-3 2.7588516E-8 3.57988E-3 2.3214190E-8
0.9 1.71050E-3 6.246999E-9 3.55273E-3 5.580577E-9 6.33795E-3 6.50645E-10
1 2.54254E-3 0.00000 5.29182E-3 0.00000 9.52067E-3 0.00000
L2 4.16716 E-8 5.72901 E-8 6.88772 E-8
L∞ 6.64493 E-8 9.22979E-8 1.123886E-7
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Figure 3: Physical behavior of numerical solutions of Example 3 for h = 0.01 ,∆t = 0.01 and
α = 0.2, 0.75, 0.9 , respectively
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4. Conclusion
In this article, we have applied a finite element collocation method combined with quintic B-spline

basis is used to obtain a numerical scheme for time fractional KdV-Burgers-Kuramoto Equation

in Caputo sense. Numerical solutions of the equation are discussed for three examples involving

different forced terms. Newly obtained numerical results are presented via tables and graphics. The

accuracy, compatibility and easy adaptability of the method is an interesting part of such methods

and show that the method is reliable, practical and efficient tool for solving many practical problems

which are observed in many physical phenomena.
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