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Abstract 

The present paper deals with the Szász-Mirakyan-Durrmeyer-Stancu operators preserving 𝑒2𝑎𝑥 
for a>0. The uniform convergence of the constructed operators is mentioned in this paper. The 

rate of convergence is examined by employing two different modulus of continuities. After that, 

a Voronovskaya-type theorem is investigated for quantitative asymptotic estimation. Finally, a 

comparison is made theoretically to show that the new constructed operators perform well. 
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1. INTRODUCTION 

 

In 1985, Mazhar and Totik [1] defined Durrmeyer-type generalization of the Szász-Mirakyan operators. In 

2017, Acar et al. [2] introduced a modification of the Szász-Mirakyan operators preserving constants and 

𝑒2𝑎𝑥,   𝑎 > 0. Then Deniz et al. [3] investigated the Szász-Mirakyan-Durrmeyer operators reproducing 

𝑒2𝑎𝑥 for 𝑎 > 0. For 0 ≤ 𝛼 ≤ 𝛽 and 𝑚 > 0 Stancu type Szász-Mirakyan-Durrmeyer operators are given by 

Gupta et al. [4]  

 

 𝑆𝑚,𝑟
(𝛼,𝛽)

(𝑓; 𝑥) = 𝑚 ∑∞
𝑘=0 𝑒−𝑚𝑥 (𝑚𝑥)𝑘

𝑘!
∫

∞

0
𝑒−𝑚𝑡 (𝑚𝑡)𝑘+𝑟

(𝑘+𝑟)!
𝑓 (

𝑚𝑡+𝛼

𝑚+𝛽
) 𝑑𝑡.                                     (1) 

 

We consider the generalized form of the Szász-Mirakyan-Durrmeyer-Stancu operators  

 

 𝑆𝑚,𝑟
𝛼,𝛽,𝜃

(𝑓; 𝑥) = 𝑚 ∑∞
𝑘=0 𝑒−𝑚𝜃(𝑥) (𝑚𝜃(𝑥))𝑘

𝑘!
∫

∞

0
𝑒−𝑚𝑡 (𝑚𝑡)𝑘+𝑟

(𝑘+𝑟)!
𝑓 (

𝑚𝑡+𝛼

𝑚+𝛽
) 𝑑𝑡,                                     (2) 

 

where 0 ≤ 𝛼 ≤ 𝛽, 𝑥 ≥ 0 and 𝑚 > 0. For notational convenience, we briefly denote the operators 𝑆𝑚,𝑟
𝛼,𝛽,𝜃

 as 

𝑆𝑚,𝑟
𝜃 . In this paper, we study the Szász-Mirakyan-Durrmeyer-Stancu operators preserving 𝑒2𝑎𝑥 for 𝑎 > 0. 

In this situation, the function 𝜃(𝑥) which satisfies 𝑆𝑚,𝑟
𝜃 (𝑒2𝑎𝑡; 𝑥) = 𝑒2𝑎𝑥 is obtained as follows: 

  

 𝑒2𝑎𝑥 = 𝑚 ∑∞
𝑘=0 𝑒−𝑚𝜃(𝑥) (𝑚𝜃(𝑥))𝑘

𝑘!
∫

∞

0
𝑒−𝑚𝑡 (𝑚𝑡)𝑘+𝑟

(𝑘+𝑟)!
𝑒

2𝑎(𝑚𝑡+𝛼)

𝑚+𝛽 𝑑𝑡 

          = (
𝑚+𝛽

𝑚+𝛽−2𝑎
)

𝑟+1
𝑒

2𝑎𝛼

𝑚+𝛽
+𝜃(𝑥)(

𝑚(𝑚+𝛽)

𝑚+𝛽−2𝑎
−𝑚)

,   𝑚 + 𝛽 > 2𝑎. 
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By simple computations, we have  

 

 𝜃(𝑥) =
𝑚+𝛽−2𝑎

2𝑎𝑚
{

2𝑎((𝑚+𝛽)𝑥−𝛼)

𝑚+𝛽
+ (𝑟 + 1)ln (

𝑚+𝛽−2𝑎

𝑚+𝛽
)} ,   𝑚 + 𝛽 > 2𝑎.                                     (3) 

 

The aim of the current paper is to investigate the approximation properties of the Stancu type Szász-

Mirakyan-Durrmeyer operators preserving 𝑒2𝑎𝑥, 𝑎 > 0 defined by (2), with 𝜃(𝑥) given in (3). By taking 

𝜃(𝑥) = 𝑥 and 𝛼 = 𝛽 = 𝑟 = 0, we obtain the Szász-Mirakyan-Durrmeyer operators [1]. Some recent papers 

are Szász-Mirakyan type operators which fix exponentials [5], Szász-Mirakyan operators which preserve 

exponential functions [6], Baskakov-Szász-Stancu operators which preserve exponential functions [7], 

Baskakov-Szász-Mirakyan-type operators preserving exponential type functions [8] and Szász-Mirakyan-

Kantorovich operators which preserve 𝑒−𝑥 [9].  

 

2. SOME AUXILIARY RESULTS 

 

Here, for 0 ≤ 𝛼 ≤ 𝛽 and 𝑚 + 𝛽 > 2𝑎, we present three lemmas which are necessarily used in the proof of 

the theorems.  

 

Lemma 1. Let f(t) = e−At . Then for the Szász-Mirakyan-Durrmeyer-Stancu operators we have  

 

 Sm,r
θ (e−At; x) = (1 −

A

m+β+A
)

r+1
e

−A(
mθ(x)

m+β+A
+

α

m+β
)
.                                                                         (4) 

 

Here, θ(x) is given by (3). 

  

Lemma 2. Let ek(t) = tk, k = 0,1,2,3,4. Then we have the next equalities:  

 

 Sm,r
θ (e0; x) = 1, 

 Sm,r
θ (e1; x) =

m

m+β
θ(x) +

r+α+1

m+β
, 

 Sm,r
θ (e2; x) =

m2

(m+β)2 θ2(x) +
m(2r+2α+4)

(m+β)2 θ(x) +
r2+(3+2α)r+α2+2α+2

(m+β)2 , 

 Sm,r
θ (e3; x) =

m3

(m+β)3 θ3(x) +
(3r+9+3α)m2

(m+β)3 θ2(x) +
(3r2+15r+18+6αr+12α+3α2)m

(m+β)3 θ(x) 

                        +
r3+6r2+11r+6+3α(r2+3r+2)+3α2(r+1)+α3

(m+β)3 , 

             Sm,r
θ (e4; x) =

m4

(m+β)4 θ4(x) +
(4r+16+4α)m3

(m+β)4 θ3(x) +
(6r2+(42+12α)r+72+36α+6α2)m2

(m+β)4 θ2(x) 

                        +
(4r3+(36+12α)r2+(104+60α+12α2)r+96+72α+24α2+4α3)m

(m+β)4 θ(x)         

                                         +
r4+(10+4α)r3+(35+24α+6α2)r2+(50+44α+18α2+4α3)r+24+24α+12α2+4α3+α4

(m+β)4 . 

 

Lemma 3.  For k = 0,1,2,4. we briefly denote ϕx
k(t) = (t − x)k. Then for the central moments we get the 

equalities as follows:  

 

 Sm,r
θ (ϕx

0; x) = 1, 

 Sm,r
θ (ϕx

1; x) =
m

m+β
θ(x) +

r+α+1

m+β
− x, 

 Sm,r
θ (ϕx

2; x) = (
m

m+β
θ(x) − x)

2
−

2x(r+α+1)

m+β
+

m(2r+2α+4)θ(x)+r2+(3+2α)r+α2+2α+2

(m+β)2 , 

 Sm,r
θ (ϕx

4; x) =
m4

(m+β)4 θ4(x) +
(4r+16+4α)m3

(m+β)4 θ3(x) +
(6r2+(42+12α)r+72+36α+6α2)m2

(m+β)4 θ2(x) 

                        +
(4r3+(36+12α)r2+(104+60α+12α2)r+96+72α+24α2+4α3)m

(m+β)4 θ(x) 

                        +
r4+(10+4α)r3+(35+24α+6α2)r2+(50+44α+18α2+4α3)r+24+24α+12α2+4α3+α4

(m+β)4  
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                        −4x (
m3

(m+β)3 θ3(x) +
(3r+9+3α)m2

(m+β)3 θ2(x) +
(3r2+15r+18+6αr+12α+3α2)m

(m+β)3 θ(x) 

                        +
r3+6r2+11r+6+3α(r2+3r+2)+3α2(r+1)+α3

(m+β)3 ) 

                                     +6x2 (
m2

(m+β)2 θ2(x) +
m(2r+2α+4)

(m+β)2 θ(x) +
r2+(3+2α)r+α2+2α+2

(m+β)2 ) 

                           −4x3 (
m

m+β
θ(x) +

r+α+1

m+β
) + x4. 

 

Proof. By using the linearity of the Sm,r
θ  operators and Lemma 2, we obtain 

 

Sm,r
θ (ϕx

0; x) = Sm,r
θ (e0; x), 

Sm,r
θ (ϕx

1; x) = Sm,r
θ (e1; x) − xSm,r

θ (e0; x),  

Sm,r
θ (ϕx

2; x) = Sm,r
θ (e2; x) − 2xSm,r

θ (e1; x) + x2Sm,r
θ (e0; x), 

Sm,r
θ (ϕx

4; x) = Sm,r
θ (e4; x) − 4xSm,r

θ (e3; x) + 6x2Sm,r
θ (e2; x) − 4x3Sm,r

θ (e1; x) + x4Sm,r
θ (e0; x).  

  

Remark 4. Taking into consideration the definition of θ(x), we get the following limit results for each 

x ∈ [0, ∞), m + β > 2𝑎 and 0 ≤ α ≤ β  

 

 lim
m→∞

mSm,r
θ (ϕx

1; x) = −2ax                                                                                                      (5) 

 

 and  

 

 lim
m→∞

mSm,r
θ (ϕx

2; x) = 2x.                                                                                                      (6) 

 

3. RESULTS 

 

Let the subspace of all continuous and real-valued functions on the interval [0, ∞) is denoted by 𝐶∗[0, ∞) 

with the condition that 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) exists and also is finite, equipped with the uniform norm. In 1970, Boyanov 

and Veselinov [10] demonstrated the uniform convergence of a sequence of linear positive operators. For 

the new constructed operators (2) with 𝜃(𝑥) as shown in (3), we present the next theorem according to [10].  

 

Theorem 5. If the Stancu type Szász-Mirakyan-Durrmeyer operators (2) satisfy  

 

 lim
m→∞

Sm,r
θ (e−kt; x) = e−kx, k = 0,1,2.                                                                                         (7) 

 

uniformly in [0, ∞), then for each f ∈ C∗[0, ∞)  

 

 lim
m→∞

Sm,r
θ (f; x) = f(x)                                                                                                                  (8) 

 

uniformly in [0, ∞).  

  

Proof. As is already known that lim
m→∞

Sm,r
θ (1; x) = 1. Taking into consideration the equality (4) with θ(x) 

given in (3), we write 

   

 Sm,r
θ (e−t, x) = e−x +

(1+2a)xe−x

m
+ 𝒪(m−2)                                                                           (9) 

 

and  

 

 Sm,r
θ (e−2t, x) = e−2x +

4(1+a)xe−2x

m
+ 𝒪(m−2).                                                                           (10) 
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Thus, we prove that  

 

 lim
m→∞

Sm,r
θ (e−kt; x) = e−kx, k = 0,1,2. 

 

uniformly in the interval [0, ∞). This proof guarantees that lim
m→∞

Sm,r
θ (f; x) = f(x) uniformly in the interval 

[0, ∞) for any f ∈ C∗[0, ∞).  

 

After Boyanov and Veselinov [10], in 2010 Holhoş, [11] examined the uniform convergence of a 

sequence of linear positive operators. For a beneficial estimation of the positive and linear operators, the 

following theorem is presented. 

 

Theorem 6. [11] For a sequence of positive and linear operators Am: C∗[0, ∞) ⟶ C∗[0, ∞), we get  

 

 ‖Am(f; x) − f(x)‖[0,∞) ≤ ‖f‖[0,∞)δm + (2 + δm)ω∗(f, √δm + 2σm + ρm) 

 

for each function f ∈ C∗[0, ∞), where  

 

 ‖Am(e0, x) − 1‖[0,∞) = δm, 

 

 ‖Am(e−t, x) − e−x‖[0,∞) = σm, 

 

 ‖Am(e−2t, x) − e−2x‖[0,∞) = ρm 

 

and the modulus of continuity is denoted by ω∗(f, η) = sup
|e−x−e−t|≤η

x,t>0

|f(t) − f(x)|. In these equalities, 

δm, σm and ρm tend to zero as m → ∞.  

 

Accordingly, we provide a quantitive estimation of the Szasz-Mirakyan-Durrmeyer-Stancu operators 

reproducing e2ax for a > 0 as can be seen:  

 

Theorem 7. For f ∈ C∗[0, ∞), we get the following inequality  

 

 ‖Sm,r
θ f − f‖

[0,∞)
≤ 2ω∗(f, √2σm + ρm),                                                                          (11) 

 

where  

 

 ‖Sm,r
θ (e−t, x) − e−x‖

[0,∞)
= σm, 

 

 ‖Sm,r
θ (e−2t, x) − e−2x‖

[0,∞)
= ρm. 

 

In these equalities, σm and ρm tend to zero as m → ∞. So, Sm,r
θ f converges f uniformly.  

  

Proof. The Szasz-Mirakyan-Durrmeyer-Stancu operators Sm,r
θ  preserve constants. So, δm = 0. One can 

write as 

  

 
k−n

lnk−lnn
<

k+n

2
                                                                                                                             (12) 

 

for 0 < n < k. By choosing k = e−kmx and n = e−x, we get  

 

 e−kmx − e−x <
1−km

2
(xe−xkm + xe−x). 
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Then let us notice that  

 

 max
x>0

   xe−sx =
1

es
                                                                                                                (13) 

 

for each s > 0. Therefore, we have  

 

 e−kmx − e−x <
1−km

2
(

1

ekm
+

1

e
) <

1−km
2

2ekm
. 

 

In addition, by simple computations, we acquire  

 

 Sm,r
θ (e−t, x) = (1 −

1

m+β+1
)

r+1
e

−
mθ(x)

m+β+1
−

α

m+β 

                           = e
−α

m+β
(1−

m+β−2a

m+β+1
)

(1 −
1

m+β+1
)

r+1
(1 +

2a

m+β−2a
)

(r+1)(m+β−2a)

2a(m+β+1)
e

−
m+β−2a

m+β+1
x
 

                      ∶= Kme−kmx. 
 

Thus, we arrive at  

 

 σm = ‖Sm,r
θ (e−t, x) − e−x‖

[0,∞)
= ‖Kme−kmx − e−x‖

[0,∞)
 

        = ‖Km(e−kmx − e−x) + e−x(Km − 1)‖
[0,∞)

 

        < Km (
1−km

2

2ekm
) + Km − 1 → 0 

 

as m → ∞. Here km =
m+β−2a

m+β+1
  and  

 

 Km = e
−α

m+β
(1−

m+β−2a

m+β+1
)

(1 −
1

m+β+1
)

r+1
(1 +

2a

m+β−2a
)

(r+1)(m+β−2a)

2a(m+β+1)
. 

 

In the same manner, if we choose k = e−nmx, n = e−2x in (12) and use (13), we obtain  

 

 e−nmx − e−2x <
2−nm

2
(xe−xnm + xe−2x) <

2−nm

2
(

1

enm
+

1

2e
) <

4−nm
2

4enm
. 

 

On the other hand,  

 

 Sm,r
θ (e−2t, x) = (1 −

2

m+β+2
)

r+1
e

− 2
mθ(x)

m+β+2
 − 

α

m+β 

                       = e
−2α

m+β
(1 − 

m+β−2a

m+β+2
)

(1 −
2

m+β+2
)

r+1
(1 +

2a

m+β−2a
)

(r+1)(m+β−2a)

a(m+β+2)
e

−
2(m+β−2a)

m+β+2
x
 

                      : = Mme−nmx. 
 

Thus, we find  

 

 ρm = ‖Sm,r
θ (e−2t, x) − e−2x‖

[0,∞)
= ‖Mme−nmx − e−x‖[0,∞) 

       = ‖Mm(e−nmx − e−x) + e−x(Mm − 1)‖[0,∞) 

       < Mm (
4−4nm

2

4enm
) + Mm − 1 → 0, 

 

as m → ∞. Here nm =
2(m+β−2a)

m+β+2
  and  
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 Mm = e
−2α

m+β
(1−

m+β−2a

m+β+2
)

(1 −
2

m+β+2
)

r+1
(1 +

2a

m+β−2a
)

(r+1)(m+β−2a)

a(m+β+2)
. 

 

As a consequence, σm and ρm tend to zero as m → ∞.  

 

Section 4 investigates the rate of convergence with the help of the modulus of continuity. 

 

4. THE MODULUS OF CONTINUITY 

 

With the norm ‖f‖CB
= sup

x≥0
|f(x)|, CB[0, ∞) denotes the class of all uniform continuous and bounded 

functions f on [0, ∞). For f ∈ CB[0, ∞),  

 

 ω(f, δ): = sup
0<ℎ≤𝛿

sup
   x,x+h∈[0,∞)

|f(x + h) − f(x)| 

 

presents the modulus of continuity. 

 

               ω2(f, δ): = sup
0<ℎ≤δ

sup
   x,x+h,x+2h∈[0,∞)

|f(x + 2h) − 2f(x + h) + f(x)|, 

 

defines the second order modulus of continuity of the function f ∈ CB[0, ∞) for δ > 0. Peetre’s K-

functionals are given by  

 

 K2(f, δ): = inf
g∈CB

2 [0,∞)
{‖f − g‖CB[0,∞) + δ‖g‖CB

2 [0,∞)}. 

 

Here, CB
2[0, ∞) describes the space of the functions, where f , f′ and f′′ belong to CB[0, ∞). The relationship 

between Peetre’s K-functional and second order modulus of continuity is defined by [12],  

 

 K2(f, δ) ≤ Mω2(f, √δ) 

 

for M > 0.  

 

Lemma 8.  For f ∈ CB[0, ∞), we obtain |Sm,r
θ (f; x)| ≤ ||f||.  

  

Theorem 9.  For f ∈ CB[0, ∞) and for all x ∈ [0, ∞), there exists a constant M > 0, such that  

 

 |Sm,r
θ (f; x) − f(x)| ≤ Mω2(f, √μm) + ω (f, |

mθ(x)+r+α+1

m+β
− x|),                                                (14) 

 

 where  

 

μm =
2m2

(m+β)2 θ2(x) + 2m (
2r+2α+3

(m+β)2 −
2x

m+β
) θ(x) + 2x2 −

4x(r+α+1)

m+β
+

2r2+(4α+5)r+2α2+4α+3

(m+β)2 .         (15) 

 

Here, θ(x) is as shown in (3).  

  

Proof. We define S̃m,r
θ : CB[0, ∞) → CB[0, ∞) auxiliary operators as follows  

 

 S̃m,r
θ (g; x) = Sm,r

θ (g; x) + g(x) − g (
mθ(x)+r+α+1

m+β
),                                                             (16) 

 

where Eqn. (3) gives θ(x). It is important to notice that the operators given by (16) are linear and positive. 

From the Taylor expansion, we have for g ∈ CB
2[0, ∞)  
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 g(t) = g(x) + (t − x)g′(x) + ∫
t

x
(t − u)g′′(u)du,   x, t ∈ [0, ∞).                                                (17) 

 

When S̃m,r
θ  operators are applied to the equation (17) and then Lemma 3 is used, we get 

 

|S̃m,r
θ (g; x) − g(x)| = |S̃m,r

θ (∫
t

x
(t − u)g′′(u)du; x)|.   

 

|S̃m,r
θ (g; x) − g(x)| ≤ |Sm,r

θ (∫
t

x
(t − u)g′′(u)du; x)| + |∫

mθ(x)+r+α+1

m+β
x

(
mθ(x)+r+α+1

m+β
− u) g′′(u)du|.         (18) 

 

Further,  

 

 |Sm,r
θ (∫

t

x
(t − u)g′′(u)du; x)| ≤ Sm,r

θ (∫
t

x
|t − u||g′′(u)|du; x) ≤ ||g′′||Sm,r

θ (ϕx
2; x)         (19) 

 

and  

  

             |∫
mθ(x)+r+α+1

m+β
x

(
mθ(x)+r+α+1

m+β
− u) g′′(u)du| ≤ ||g′′|| (

mθ(x)+r+α+1

m+β
− x)

2
.                      (20) 

 

Rewrite (19) and (20) in (18), then we have  

 

 |S̃m,r
θ (g; x) − g(x)| ≤ ||g′′|| (Sm,r

θ (ϕx
2; x) + (

mθ(x)+r+α+1

m+β
− x)

2
) 

                                = ||g′′|| ((
m

m+β
θ(x) − x)

2
−

2x(r+α+1)

m+β
+

m(2r+2α+4)θ(x)+r2+(3+2α)r+α2+2α+2

(m+β)2  

                                    + (
mθ(x)+r+α+1

m+β
− x)

2
) 

                                           : = ||g′′|| μm,                                                                                           (21) 

 

where  

 

μm =
2m2

(m+β)2 θ2(x) + 2m (
2r+2α+3

(m+β)2 −
2x

m+β
) θ(x) + 2x2 −

4x(r+α+1)

m+β
+

2r2+(4α+5)r+2α2+4α+3

(m+β)2 .         (22) 

 

By using the auxilary operators (16) and Lemma 8, we get  

 

 ||S̃m,r
θ (f; x)|| ≤ ||Sm,r

θ (f; x)|| + 2||f|| ≤ 3||f||.                                                                          (23) 

 

With the help of (16), (21) and (23), for each g ∈ CB
2[0, ∞) we obtain  

 

 |Sm,r
θ (f; x) − f(x)| = |S̃m,r

θ (f; x) − f(x) + f (
mθ(x)+r+α+1

m+β
) − f(x) 

                                 +S̃m,r
θ (g; x) − S̃m,r

θ (g; x) + g(x) − g(x)| 

                                ≤ |S̃m,r
θ (f − g; x) − (f − g)(x)| + |f (

mθ(x)+r+α+1

m+β
) − f(x)| 

                                  +|S̃m,r
θ (g; x) − g(x)| 

                                  ≤ 4||f − g|| + ||g′′||μm + |f (
mθ(x)+r+α+1

m+β
) − f(x)| 

                                  ≤ K2(f, μm) + ω (f, |
mθ(x)+r+α+1

m+β
− x|) 

                                  ≤ Mω2(f, √μm) + ω (f, |
mθ(x)+r+α+1

m+β
− x|).                                                (24) 

  

Remark 10. We see that μm =
2x

m
+ 𝒪(m−2) → 0, when m → ∞. This result guarantees the convergence 

of the Theorem 9. 
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Section 5 investigates the rate of convergence with the help of exponential modulus of continuity.  

 

5. THE EXPONENTIAL MODULUS OF CONTINUITY 

 

The exponential growth of order B > 0 is given by  

 

 ||f||B: = sup
x∈[0,∞)

|f(x)e−Bx| < ∞                                                                                                    (25) 

 

for f ∈ C[0, ∞). Also, 

 

 ω1(f, δ, B) = sup
x∈[0,∞)

h≤δ

|f(x) − f(x + h)|e−Bx                                                                          (26) 

 

gives the first order modulus of continuity of functions f with the exponential growth. Let K be a subspace 

of continuous functions space on [0, ∞), which includes functions f with exponential growth with  

||f||B < ∞.  

 

Assume that the function f belong to Lipschitz class. So, for every δ < 1 and 0 < 𝑐 ≤ 1 

 

 ω1(f, δ, B) ≤ Mδc.                                                                                                                (27) 

 

Theorem 11.  Let Sm,r
θ : K → C[0, ∞) be the sequence of positive and linear operators reproducing e2ax for 

a > 0. It is assumed that Sm,r
θ  give  

 

 Sm,r
θ ((t − x)2eBt; x) ≤ Ca(B, x)Sm,r

θ (ϕx
2; x),                                                                          (28) 

 

for 0 < 𝐵 < 𝑥 <
m

B2. Additionally, if f ∈ C2[0, ∞) ∩ K, 0 < 𝑐 ≤ 1 and f′′ ∈ Lip(c, B), then for  

0 < 𝐵 < 𝑥 <
m

B2, we obtain  

 

 |Sm,r
θ (f; x) − f(x) − f′ (x)Sm,r

θ (ϕx
1; x) −

1

2
f′′(x)Sm,r

θ (ϕx
2; x)| 

                          ≤ Sm,r
θ (ϕx

2; x) (
√Ca(2B,x)

2
+

Ca(B,x)

2
+ e2Bx) ω1 (f′′, √

Sm,r
θ (ϕx

4;x)

Sm,r
θ (ϕx

2;x)
, B), 

where Ca(B, x) = MeBx+1.  

 

Proof. By considering Taylor expansion of the function f ∈ C2[0, ∞) at x ∈ (0, ∞), we obtain  

 

 f(t) = f(x) + f ′(x)(t − x) + f ′′(x)
(t−x)2

2!
+ H2(f; t, x).                                                             (29) 

 

Here the remainder term is H2(f; t, x) =
(t−x)2

2
(f′′(η) − f′′(x)), and η is between t and x. Applying the 

operators Sm,r
θ  to the equality (29), we get  

 

 |Sm,r
θ (f; x) − f(x) − f′(x)Sm,r

θ (ϕx
1; x) −

1

2
f′′(x)Sm,r

θ (ϕx
2; x)| = |Sm,r

θ (H2(f; t, x); x)|

                                                                                                            ≤ Sm,r
θ (|H2(f; t, x)|; x).                   (30)   

Additionally,  

 

 H2(f; t, x) =
(t−x)2

2
(f ′′(η) − f ′′(x)) ≤

(t−x)2

2
{

eBxω1(f ′′, h, B),   |t − x| ≤ h

eBxω1(f ′′, kh, B), h ≤ |t − x| ≤ kh
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It was proved by Tachev et al. [13] that  

 

 ω1(f, kh, B) ≤ keB(k−1)hω1(f, h, B)                                                                                       (31) 

 

for each h > 0 and k ∈ ℕ. With the help of the inequality (31), we obtain  

 

 
(t−x)2eBx

2
ω1(f′′, kh, B) ≤

(t−x)2eBx

2
keB(k−1)hω1(f′′, h, B) 

                                      ≤
(t−x)2

2
(

|t−x|

h
+ 1) eBxeB|t−x|ω1(f′′, h, B) 

                                          ≤
(t−x)2

2
(

|t−x|

h
+ 1) (eBt + e2Bx)ω1(f′′, h, B). 

Thusly,  

 

 |H2(f; t, x)| ≤
(t−x)2

2
(

|t−x|

h
+ 1) (eBt + e2Bx)ω1(f′′, h, B).                                                (32) 

 

Applying the operators Sm,r
θ  to the inequality (32), we write  

 

 Sm,r
θ (|H2(f; t, x)|; x) ≤

1

2
Sm,r

θ ((
|t−x|3

h
+ |t − x|2) (eBt + e2Bx); x) ω1(f′′, h, B) 

                                           = (
1

2h
Sm,r

θ (|t − x|3eBt; x) +
1

2
Sm,r

θ (|t − x|2eBt; x) 

                                          +
e2Bx

2h
Sm,r

θ (|t − x|3; x) +
e2Bx

2
Sm,r

θ (|t − x|2; x)) ω1(f′′, h, B). 

  

With some calculations we get  

 

 Sm,r
θ (|t − x|2eBt; x) = Sm,r

θ (t2eBt; x) − 2xSm,r
θ (teBt; x) + x2Sm,r

θ (eBt; x) 

                                      = e
B(

α

m+β
+

mθ(x)

m+β−B
)

{
m2(m+β)r+3

(m+β−B)r+5 θ2(x) 

                                          + (
(2r+4)m(m+β)r+2

(m+β−B)r+4 +
2αm(m+β)r+1

(m+β−B)r+3 −
2xm(m+β)r+2

(m+β−B)r+3 ) θ(x) 

                                          +
(r2+3r+2)(m+β)r+1

(m+β−B)r+3 +
2α(r+1)(m+β)r

(m+β−B)r+2 +
α2(m+β)r−1

(m+β−B)r+1 

                                          −
2x(r+1)(m+β)r+1

(m+β−B)r+2 −
2xα(m+β)r

(m+β−B)r+1 +
x2(m+β)r+1

(m+β−B)r+1} 

                                     = eBx (1 +
3B(1−2ax+Bx)

m
 

                                          +
B(−1−6βx+9Bx−6βBx2+20B2x2+16a3x3+5B3x3+r(−1+6ax−3Bx))

2xm2  

                                     +
B(12a2x2(−1+Bx)−6Bxα+2ax(3+3βx−18Bx−10B2x2+6α))

2xm2  

                                           +𝒪(m−3))Sm,r
θ (ϕx

2; x). 

 Sm,r
θ (|t − x|2eBt; x) = eBx {1 +

B2x

m
(

3

Bx
−

6a

B
+ 3) 

                                         +
1

2!
(

B2x

m
)

2

(
−1−r

B3x3 +
−6β+9B+6ar−3Br−6Bα+6a+12aα

B3x2  

                                        +
−6βB+20B2−12a2+12aβ−36aB

B3x
+

16a3+5B3+12a2B−20aB2

B3 ) 

                                        +
1

3!
(

B2x

m
)

3

(
−(3/2+3/2r2+3α+3r+3αr+6a)

B5x5 +
6β−9B−9Br+6βr−6ar

B5x4  

                                        +
18β2−54βB+20B2+36βBα−60B2α−40B2r+36a2r+18βBr−36aβr+66arB

B5x3  

                                             +
36a2(1+α)−36aβ−72aαβ+66aB+108aBα

B5x3  

                                        +
18β2B−120βB+120B3−30B3α−48a3r−15B3r−36a2rB+60aB2r+72a2β

B5x2  

                                        +
−108a2B−72a3Bα−36aβ2−180aB2+120aB2α+216aβB−8(15+12α)

B5x2  
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                                         +
−30βB3+63β4+168a4+120a2B2−72a2βB−240aB3+120aβB−96a3β+144a3β

B5x
 

                                        +
7B5−96a5−48a4B+60a2B3+40a3B2−42aB4

B5 ) + 𝒪(m−4)} Sm,r
θ (ϕx

2; x) 

 Sm,r
θ (|t − x|2eBt; x) = eBx {1M0 +

B2x

m
M1 +

1

2!
(

B2x

m
)

2

M2 +
1

3!
(

B2x

m
)

3

M3 + 𝒪(m−4)} Sm,r
θ (ϕx

2; x) 

 Sm,r
θ (|t − x|2eBt; x) = eBx {∑∞

k=0
1

k!
(

B2x

m
)

k

Mk} Sm,r
θ (ϕx

2; x). 

 

Let us choose M0 = 1 and M = max{M0, M1, M2, . . . }. Therefore, we have 

  

Sm,r
θ (|t − x|2eBt; x) ≤ eBxM ∑

∞

k=0

1

k!
(

B2x

m
)

k

Sm,r
θ (ϕx

2; x) 

                                                                     = MeBxe
B2x

m Sm,r
θ (ϕx

2; x). 
 

Since 0 < 𝐵 < 𝑥 <
m

B2,  

 

 Sm,r
θ (|t − x|2eBt; x) ≤ Ca(B, x)Sm,r

θ (ϕx
2; x),                                                                          (33) 

 

where Ca(B, x) = MeBx+1. By employing Cauchy-Schwarz inequality, we obtain the next inequalities  

 

 Sm,r
θ (|t − x|3eBt; x) ≤ √Sm,r

θ (|t − x|2e2Bt; x)√Sm,r
θ (|t − x|4; x) 

                                             ≤ √Ca(2B, x)Sm,r
θ (ϕx

2; x)√Sm,r
θ (ϕx

4; x).                                                (34) 

 Sm,r
θ (|t − x|3; x) ≤ √Sm,r

θ (|t − x|4; x)√Sm,r
θ (|t − x|2; x) 

                                ≤ √Sm,r
θ (ϕx

4; x)√Sm,r
θ (ϕx

2; x).                                                                          (35)  

 

Thus, by using the inequalities (33), (34) and (35) in (30), we write  

 

 |Sm,r
θ (f; x) − f(x) − f′(x)Sm,r

θ (ϕx
1; x) −

1

2
f′′(x)Sm,r

θ (ϕx
2; x)| 

 ≤ (
1

2h
√Ca(2B, x)Sm,r

θ (ϕx
2; x)√Sm,r

θ (ϕx
4; x) +

1

2
Ca(B, x)Sm,r

θ (ϕx
2; x)              

                 +
e2Bx

2h
√Sm,r

θ (ϕx
4; x)√Sm,r

θ (ϕx
2; x) +

e2Bx

2
Sm,r

θ (ϕx
2; x)) ω1(f′′, h, B).                                   (36) 

 

Lastly, when h = √
Sm,r

θ (ϕx
4;x)

Sm,r
θ (ϕx

2;x)
 is chosen and substituted in (36), we get  

 

 |Sm,r
θ (f; x) − f(x) − f′(x)Sm,r

θ (ϕx
1; x) −

1

2
f′′(x)Sm,r

θ (ϕx
2; x)| 

 ≤ Sm,r
θ (ϕx

2; x) (
√Ca(2B,x)

2
+

Ca(B,x)

2
+ e2Bx) ω1 (f′′, √

Sm,r
θ (ϕx

4;x)

Sm,r
θ (ϕx

2;x)
, B). 

 

It must be notices that for fixed x ∈ (0, ∞),  
Sm,r

θ (ϕx
4;x)

Sm,r
θ (ϕx

2;x)
=

6x

m
+ 𝒪(m−2) → 0 as m → ∞, guarantees the 

convergence of Theorem 11. 
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In section 6, in order to investigate the asymptotic behaviour of the constructed operators (2), the 

Voronovskaya-type theorem is given.  

 

6. VORONOVSKAYA-TYPE THEOREM 

 

Theorem 12.  For f, f ′, f′′ ∈ C∗[0, ∞) and x ∈ [0, ∞), we get  

 

 |m(Sm,r
θ (f; x) − f(x)) + 2axf′(x) − xf′′(x)| ≤ |rm(x)||f′(x)| + |tm(x)||f′′(x)| 

                                                                           +2(2tm(x) + 2x + zm(x))ω∗(f′′, m−1/2), 
where  

 

 rm(x) = mSm,r
θ (ϕx

1; x) + 2ax, 
 

 tm(x) =
m

2
Sm,r

θ (ϕx
2; x) − x, 

 

 zm(x) = m2√Sm,r
θ ((e−x − e−t)4; x)√Sm,r

θ (ϕx
4; x). 

  

Proof. By considering the Taylor expansion, we get 

 

 f(t) = f(x) + (t − x)f′(x) +
(t−x)2

2
f′′(x) + k(t, x)(t − x)2.                                                (37) 

 

Here, the remainder term k(t, x) can be written as  

 

 k(t, x): =
1

2
(f′′(ξ) − f′′(x)). 

 

Also, the remainder term is k(t, x) and ξ is a number between x and t. When we apply the Sm,r
θ  operators to 

(37), we have 

 

 Sm,r
θ (f; x) − f(x) = f′(x)Sm,r

θ (ϕx
1; x) +

1

2
f′′(x)Sm,r

θ (ϕx
2; x) + Sm,r

θ (k(t, x)ϕx
2; x). 

 

Then  

 

|m[Sm,r
θ (f; x) − f(x)] + 2axf′(x) − xf′′(x)| ≤ |mSm,r

θ (ϕx
1; x) + 2ax||f′(x)| 

                                                                      +
1

2
|mSm,r

θ (ϕx
2; x) − 2x||f′′(x)| + |mSm,r

θ (k(t, x)ϕx
2; x)|. 

 

It is briefly symbolized that rm(x): = mSm,r
θ (ϕx

1; x) + 2ax and tm(x): =
m

2
Sm,r

θ (ϕx
2; x) − x. Thus,  

 

 |m[Sm,r
θ (f; x) − f(x)] + 2axf′(x) − xf′′(x)| ≤ |rm(x)||f′(x)| + |tm(x)||f′′(x)| 

                                                                                     +|mSm,r
θ (k(t, x)ϕx

2; x)|. 
 

Note that from (5) and (6), we see that rm(x) and tm(x) go to zero as m → ∞. Now, we study the term 

|mSm,r
θ (k(t, x)ϕx

2; x)|.  
 

 |f(t) − f(x)| ≤ (1 +
(e−x−e−t)2

η2 ) ω∗(f, η). 

 

By employing this inequality, we get  

 

 |k(t, x)| ≤ (1 +
(e−x−e−t)2

η2 ) ω∗(f′′, η). 
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For η > 0, if |e−x − e−t| ≤ η, then |k(t, x)| ≤ 2ω∗(f′′, η)  and if |e−x − e−t| > 𝜂, then 

|k(t, x)| ≤
2(e−x−e−t)2

η2 ω∗(f ′′, η). Thusly, we have |k(t, x)| ≤ 2 (
(e−x−e−t)2

η2 + 1) ω∗(f′′, η).  

Accordingly,  

 

 |mSm,r
θ (k(t, x)ϕx

2; x)| ≤ mSm,r
θ (|k(t, x)|ϕx

2; x) 

                                                ≤ 2mω∗(f′′, η)Sm,r
θ (ϕx

2; x) +
2m

η2 ω∗(f′′, η)Sm,r
θ ((e−x − e−t)2ϕx

2; x) 

                                    ≤ 2mω∗(f′′, η)Sm,r
θ (ϕx

2; x) 

                                          +
2m

η2 ω∗(f′′, η)√Sm,r
θ ((e−x − e−t)4; x)√Sm,r

θ (ϕx
4; x). 

 

If we choose η = 1/√m and zm: = √m2Sm,r
θ ((e−x − e−t)4; x)√m2Sm,r

θ (ϕx
4; x), we get  

 

 |m(Sm,r
θ (f; x) − f(x)) + 2axf′(x) − xf′′(x)| ≤ |rm(x)||f ′(x)| + |tm(x)||f′′(x)| 

                                                                                    +(4tm(x) + 4x + 2zm(x))ω∗(f′′, m−1/2). 
 

Remark 13.  After some calculations the following limit result is obtained:  

 

 lim
m→∞

m2Sm,r
θ (ϕx

4; x) = 12x2.                                                                                                    (38) 

 

In addition, we get the result as follows: 

 

 lim
m→∞

m2Sm,r
θ ((e−t − e−x)4; x) = 12x2e−4x.                                                                          (39) 

  

Proof. We have after some calculations  

 

 m2Sm,r
θ (ϕx

4; x) = 12x2 +
12x(1−r−8ax−2βx+4a2x2−2α)

m
 

                             +
3r2 − 96a3x3 + 16a4x4 − 4r(3 − 26ax − 9βx + 18a2x2 − 3α)

m2

+
−72a2x2(−1 + 2βx + 2α)

m2
 

                                +
8ax(7+36βx+24α)+3(−5+12β2x2−4α+4α2+12βx(−1+2α))

m2 + 𝒪(m−3). 

So,  

 

 lim
m→∞

m2Sm,r
θ (ϕx

4; x) = 12x2. 

 

In the same manner, we have  

 

 m2Sm,r
θ ((e−t − e−x)4; x) = 12x2e−4x +

4xe−4x(3r2−6(5+2a+β)x+(65+60a+12a2)x2)

m
. 

                                                          +
4xe−4x(3r(−3+2(5+2a)x)−6(1+α))

m
+ 𝒪(m−2). 

 

Thus,  

 

 lim
m→∞

m2Sm,r
θ ((e−t − e−x)4; x) = 12x2e−4x. 

 

The next corollary is given as a consequence of Theorem 12 and Remark 13 as follows:  
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Corollary 14. Assume that x ∈ [0, ∞) and  f, f ′′ ∈ C∗[0, ∞). Thus,  

 

 lim
m→∞

m(Sm,r
θ (f; x) − f(x)) = −2axf′(x) + xf′′(x)                                                             (40) 

 

holds.  

 

Now, we investigate that our new constructed Szász-Mirakyan-Durrmeyer-Stancu operators which 

reproduce e2ax for a > 0 approximate better than Szász-Mirakyan operators preserving e2ax which is taken 

into consideration by Acar et al. [2]. 

 

Theorem 15. Let f ∈ C2[0, ∞) be an increasing and convex function. Assume that for all m ≥ m0, x ∈
[0, ∞) there is a number m0 ∈ ℕ such that  

 

 f(x) ≤ Sm,r
θ (f; x) ≤ Rm

∗ (f; x).                                                                                                    (41) 

 

Then 

  

 xf′′(x) ≥ 2axf′(x) ≥ 0.                                                                                                                (42) 

 

Contrarily, if inequality (42) holds with strict inequalities at  x ∈ [0, ∞), then there is a number m0 ∈ ℕ 

such that for m ≥ m0  

 

 f(x) < Sm,r
θ (f; x) < Rm

∗ (f; x).                                                                                                    (43) 

  

Proof. From the inequality (41) we have for all m ≥ m0 and x ∈ [0, ∞) that 

  

 0 ≤ m(Sm,r
θ (f; x) − f(x)) ≤ m(Rm

∗ (f; x) − f(x)).                                                             (44) 

 

By using the Voronovskaya-type theorem for Szász-Mirakyan operators preserving e2ax, a > 0 which is 

obtained by Acar et al. [2], we get  

 

 lim
m→∞

m(Rm
∗ (f; x) − f(x)) = −axf′(x) +

x

2
f′′(x).                                                                          (45) 

 

After that, by taking the limit of the inequality (44) as m → ∞ and using Equation (40) and Equation (45), 

we get  

 

 0 ≤ −2axf′(x) + xf′′(x) ≤ −axf′(x) +
x

2
f′′(x).                                                                          (46) 

 

Thus, we directly achieve inequality (42). Contrarily, if inequality (42) holds with strict at x ∈ [0, ∞), then  

 

 0 < −2axf′(x) + xf′′(x) < −axf′(x) +
x

2
f′′(x).                                                                          (47) 

 

Finally, by using Equation (40) and Equation (45) we obtain the desired result.  

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

 

 

 

 



209  Kadir KANAT, Melek SOFYALIOGLU / GU J Sci, 34 (1): 196-209 (2021) 
 

REFERENCES 

 

[1] Mazhar, S.M., Totik, V., “Approximation by modified Szász operators”, Acta Sci. Math., 49: 257-

269, (1985). 

[2] Acar, T., Aral, A., Gonska, H., “On Szász-Mirakyan operators preserving e2ax, a > 0”, 

Mediterranean J. Math., 14(6): 1-14, (2017). 

 
[3] Deniz, E., Aral, A., Gupta, V., “Note on Szász-Mirakyan-Durrmeyer operators preserving e2ax, 

a > 0”, Numerical Functional Analysis and Optimization, 39(2): 201-207, (2018).  

 

[4] Gupta, V., Deo, N., Zeng, X., “Simultaneous Approximation for Szász-Mirakian-Stancu-

Durrmeyer Operators”, Analysis in Theory and Applications, 29(1): 86-96, (2013). 

 
[5] Acar, T., Aral, A., Cárdenas-Morales, D., Garrancho, P., “Szász-Mirakyan Type Operators Which 

Fix Exponentials”, Results Math.,  72: 1393-1404, (2017). 

[6] Aral, A., Inoan, D., Raşa, I., “Approximation properties of Szász-Mirakyan operators preserving 

exponential functions”,  Positivity, 23: 233-246, (2019). 

[7] Bodur, M., Gürel Yılmaz, Ö., Aral, A., “Approximation by Baskakov-Szász-Stancu Operators 

Preserving Exponential Functions”, Constructive Mathematical Analysis, 1(1): 1-8, (2018). 

[8] Gupta, V., Acu, A.M., “On Baskakov-Szász-Mirakyan-type operators preserving exponential type 

functions”, Positivity,  22: 919-929, (2018). 

[9] Gupta, V., Aral, A., “A note on Szász-Mirakyan-Kantorovich type operators preserving e−x”, 

Positivity, 22: 415-423, (2018). 

 
[10] Boyanov, B.D. and Veselinov, V.M., “A note on the approximation of functions in an infinite 

interval by linear positive operators”, Bull. Math. Soc. Sci. Math. Roum., 14(62): 9-13, (1970). 
 

[11] 

 

Holhoş, A., “The rate of approximation of functions in an infinite interval by positive linear 

operators”, Stud. Univ. Babes-Bolyai Math., 2: 133-142, (2010). 

[12] DeVore, RA., Lorentz, G.G., “Constructive Approximation”, Springer, Berlin, 177, (1993). 

[13] Tachev, G., Gupta, V., Aral, A., “Voronovskaja’s theorem for functions with exponential growth”, 

Georgian Mathematical Journal, (2018). doi:10.1515/gmj-2018-0041 
 
 

 


