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Abstract
In this paper, we will introduce the notion of convergence of two dimensional interval sequences and show
that the set of all two dimensional interval numbers is a metric space. Also, some ordinary vector norms
will be extended to the set of two dimensional interval vectors. Furthermore, we will give definitions of
statistical convergence, statistically Cauchy and Cesàro summability for the two dimensional interval
numbers and we will get the relationships between them.
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1. Introduction
It is known that many mathematical structures have been constructed with real or complex numbers. In recent

years, these mathematical structures were replaced by interval numbers and these mathematical structures have
been very popular for three decades.

In order fully and effectively to utilize pure mathematics for the analysis of natural phenomena, we must be
aware that there are many phases concerning which mathematics and reality do not perfectly agree. For example
neither one point on the real number axis is sufficient to represent a physical quantity, no any trace of a moving
body described completely as a continuous function of time having no breadth. The concept of an interval is
more fundamental than that of a real number. The concept of an interval is fundamental is not only in the case of
numerical calculation. It is better to use an interval instead of real number. Interval arithmetic was first suggested
by Dwyer [2]. Development of interval arithmetic as a formal system and evidence of its value as a computational
device was provided by Moore [11] and Moore and Yang [12]. Furthermore, Moore and others [2, 3, 6, 7, 10] have
developed applications to differential equations. Chiao [1] introduced sequence of interval numbers and defined
usual convergence of sequences of interval numbers. Markov [8, 9] studied on interval arithmetic. Şengönül and
Eryilmaz [15] introduced and studied convergent and bounded sequence spaces of interval numbers and showed
that these spaces are complete metric space. The concept of a two dimensional interval is more fundamental than
that of a one dimensional interval. In this paper, we introduce and study two dimensional interval sequences.

Received : 20-02-2020, Accepted : 14-01-2021

https://doi.org/10.36753/mathenot.692053


94 F. Nuray, U. Ulusu & E. Dündar

The set of all ξ = (ξ1, ξ2) ∈ R2 satisfying the condition ξ1` ≤ ξ1 ≤ ξ1r and ξ2` ≤ ξ2 ≤ ξ2r is called the two
dimensional interval (or two dimensional interval vector) and is denoted by

(
[ξ1`, ξ1r], [ξ2`, ξ2r]

)
. Let’s denote the

set of all closed two dimensional intervals by R2. Any elements of R2 are called a closed rectangle or closed two
dimensional interval and it denoted by ξ. That is

ξ =
{
(ξ1, ξ2) ∈ R2 : ξ1` ≤ ξ1 ≤ ξ1r and ξ2` ≤ ξ2 ≤ ξ2r

}
.

For all ξ1, ξ2 ∈ R2, we have ξ1 = ξ2 if and only if ξ1` = ξ2`, ξ1r = ξ2r, ξ1` = ξ2` and ξ1r = ξ2r.

ξ1 + ξ2 =
{
(ξ1, ξ2) ∈ R2 : ξ1` + ξ2` ≤ ξ1 ≤ ξ1r + ξ2r, ξ1` + ξ2` ≤ ξ2 ≤ ξ1r + ξ2r

}
.

If α > 0 then
αξ = {(ξ1, ξ2) ∈ R2 : αξl ≤ ξ1 ≤ αξr and αξl ≤ ξ2 ≤ αξr}

and α < 0 then
αξ = {(ξ1, ξ2) ∈ R2 : αξr ≤ ξ1 ≤ αξl and αξr ≤ ξ2 ≤ αξl}.

ξ1ξ2 =
([

min{ξ1`ξ2`, ξ1`ξ2r, ξ1rξ2r, ξ1rξ2`}, max{ξ1`ξ2`, ξ1`ξ2r, ξ1rξ2r, ξ1rξ2`}
]
,[

min{ξ1`ξ2`, ξ1`ξ2r, ξ1rξ2r, ξ1rξ2`}, max{ξ1`ξ2`, ξ1`ξ2r, ξ1rξ2r, ξ1rξ2`}
])
.

The absolute value of a two dimensional interval is defined by

|ξ| = max
{
|ξ`|, |ξr|, |ξ`|, |ξr|

}
. (1.1)

2. Main Results
Theorem 2.1. The set of all two dimensional interval numbers R2 is a metric space with the metric d defined by

d(ξ1, ξ2) = max
{
|ξ1` − ξ2`|, |ξ1` − ξ2`|, |ξ1r − ξ2r|, |ξ1r − ξ2r|

}
.

Proof. The positivity and symmetry of d are obvious. Let’s show the triangle inequality. If ξ1, ξ2 and ξ3 ∈ R2, then

d(ξ1, ξ2) = max
{
|ξ1` − ξ2`|, |ξ1` − ξ2`|, |ξ1r − ξ2r|, |ξ1r − ξ2r|

}
,

d(ξ3, ξ1) + d(ξ3, ξ2) = max
{
|ξ3` − ξ1`|, |ξ3` − ξ1`|, |ξ3r − ξ1r|, |ξ3r − ξ1r|

}
+max

{
|ξ3` − ξ2`|, |ξ3` − ξ2`|, |ξ3r − ξ2r|, |ξ3r − ξ2r|

}
= max

{
|ξ3` − ξ1`|+ |ξ3` − ξ2`|, |ξ3` − ξ1`|+ |ξ3` − ξ2`|,
|ξ3` − ξ1`|+ |ξ3r − ξ2r|, |ξ3` − ξ1`|+ |ξ3r − ξ2r|,
|ξ3` − ξ1`|+ |ξ3` − ξ2`|, |ξ3` − ξ1`|+ |ξ3` − ξ2`|,
|ξ3` − ξ1`|+ |ξ3r − ξ2r|, |ξ3` − ξ1`|+ |ξ3r − ξ2r|,
|ξ3r − ξ1r|+ |ξ3` − ξ2`|, |ξ3r − ξ1r|+ |ξ3` − ξ2`|,
|ξ3r − ξ1r|+ |ξ3r − ξ2r|, |ξ3r − ξ1r|+ |ξ3r − ξ2r|,
|ξ3r − ξ1r|+ |ξ3` − ξ2`|, |ξ3r − ξ1r|+ |ξ3` − ξ2`|,
|ξ3r − ξ1r|+ |ξ3r − ξ2r|, |ξ3r − ξ1r|+ |ξ3r − ξ2r|

}
.

Now since
|ξ1` − ξ2`| ≤ |ξ3` − ξ1`|+ |ξ3` − ξ2`|,
|ξ1` − ξ2`| ≤ |ξ3` − ξ1`|+ |ξ3` − ξ2`|,
|ξ1r − ξ2r| ≤ |ξ3r − ξ1r|+ |ξ3r − ξ2r|

and
|ξ1r − ξ2r| ≤ |ξ3r − ξ1r|+ |ξ3r − ξ2r|,

we have
d(ξ1, ξ2) ≤ d(ξ3, ξ1) + d(ξ3, ξ2).
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In the special case
ξ1 =

(
[ξ1`, ξ1r], [0, 0]

)
= [ξ1`, ξ1r]

and
ξ2 =

(
[ξ2`, ξ2r], [0, 0]

)
= [ξ2`, ξ2r],

we obtain the metric
d(ξ1, ξ2) = max

{
|ξ1` − ξ2`|, |ξ1r − ξ2r|

}
defined on the set of all interval numbers.

Definition 2.1. A sequence of two dimensional interval numbers{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

is said to be bounded if there exists a real number M > 0 such that |ξk| ≤M for all k ∈ N.

Definition 2.2. The infinite sequence of two dimensional interval numbers{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

is said to be convergent to a bounded two dimensional interval number

ξ =
(
[ξ`, ξr], [ξ`, ξr]

)
if for each ε > 0 there exists a positive integer N such that d(ξk, ξ) < ε for all k ≥ N . In this case, we write
limk→∞ ξk = ξ.

Thus,
lim
k→∞

ξk = ξ ⇔ lim
k→∞

ξk` = ξ`, lim
k→∞

ξkr = ξr, lim
k→∞

ξk` = ξ` and lim
k→∞

ξkr = ξr.

As an example, let {
ξk =

([
1

k + 1
,
k + 1

k

]
,

[
k

k + 1
,

2k

k + 1

])}
,

then
lim
k→∞

ξk =
(
[0, 1], [1, 2]

)
.

A two dimensional interval sequence {ξk} is nested if ξk+1 ⊆ ξk for all k.

Every nested two dimensional interval sequence {ξk} converges and has the limit
⋂∞

k=1 ξk.

For a sequence of (xk) of real numbers, it is easy to see that

lim
k→∞

xk = x⇔ lim
k→∞

|xk − x| = 0.

This can be extended to the sequences of two dimensional intervals.

Theorem 2.2. Let the sequence of two dimensional intervals{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

be convergent to a bounded two dimensional interval

ξ =
(
[ξ`, ξr], [ξ`, ξr]

)
,

then
lim
k→∞

ξk = ξ ⇔ lim
k→∞

|ξk − ξ| = 0.
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Proof.

lim
k→∞

ξk = ξ ⇔ lim
k→∞

ξk` = ξ`, lim
k→∞

ξkr = ξr, lim
k→∞

ξk` = ξ` and lim
k→∞

ξkr = ξr

⇔ lim
k→∞

|ξk` − ξ`| = 0, lim
k→∞

|ξkr − ξr| = 0, lim
k→∞

|ξk` − ξ`| = 0 and lim
k→∞

|ξkr − ξr| = 0

⇔ max
{

lim
k→∞

|ξk` − ξ`|, lim
k→∞

|ξkr − ξr|, lim
k→∞

|ξk` − ξ`|, lim
k→∞

|ξkr − ξr|
}
= 0

⇔ lim
k→∞

max
{
|ξk` − ξ`|, |ξkr − ξr|, |ξkl − ξl|, |ξkr − ξr|

}
= 0

⇔ lim
k→∞

|ξk − ξ| = 0.

Definition 2.3. The infinite sequence of two dimensional interval numbers{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

is said to be two dimensional interval Cauchy sequence if for each ε > 0 there exists a positive integer N such that
d(ξi, ξj) < ε for all i, j ≥ N .

An n-dimensional two dimensional interval vector is an ordered n-tuples of two dimensional intervals.

ξ = [ξ1, ξ2, . . . , ξn]
T =

[(
[ξ1`, ξ1r], [ξ1`, ξ1r]

)
,
(
[ξ2`, ξ2r], [ξ2`, ξ2r]

)
, . . . ,

(
[ξn`, ξnr], [ξn`, ξnr]

)]T
.

If |ξ| = 0, then ξ is said to be a zero two dimensional interval and ξ must be a degenerate interval
0 =

(
[0, 0], [0, 0]

)
.

Some well-known inequalities can be extended to the two dimensional interval vectors as in the following two
lemmas with absolute value defined in (1.1).

Lemma 2.1. Let ξ1 and ξ2 be two dimensional intervals, then

|ξ1 + ξ2| ≤ |ξ1|+ |ξ2|.

Proof.

|ξ1 + ξ2| = max
{
|ξ1i` + ξ2i`|, |ξ1ir + ξ2ir|, |ξ1i` + ξ2i`|, |ξ1ir + ξ2ir|

}
≤ max

{
|ξ1i`|+ |ξ2i`|, |ξ1ir|+ |ξ2ir|, |ξ1i`|+ |ξ2i`|, |ξ1ir|+ |ξ2ir|

}
= max

{
|ξ1i`|, |ξ1ir|, |ξ1i`|, |ξ1ir|}+max{|ξ2i`|, |ξ2ir|, |ξ2i`|, |ξ2ir|

}
= |ξ1|+ |ξ2|

The inner product of two dimensional interval vectors is defined trough the two dimensional interval multipli-
cation as follows:

< ξ1, ξ2 > =

n∑
i=1

ξ1iξ2i

=

n∑
i=1

(
[ξ1i`, ξ1i2], [ξ1i`, ξ1ir]

)(
[ξ2i`, ξ2i2], [ξ2i`, ξ2ir]

)
=

n∑
i=1

(
[min{ξ1i`ξ2i` , ξ1i`ξ2ir , ξ1irξ2ir , ξ1irξ2i`}, max{ξ1i`ξ2i` , ξ1i`ξ2ir , ξ1irξ2ir , ξ1irξ2i`}],

[min{ξ1i`ξ2i` , ξ1i`ξ2ir , ξ1irξ2r, ξ1rξ2`}, max{ξ1`ξ2i` , ξ1i`ξ2ir , ξ1irξ2ir , ξ1irξ2i`}]
)
.

Lemma 2.2. Let ξ1 and ξ2 be two dimensional interval vectors in (R2)n. Then

| < ξ1, ξ2 > | ≤ | < ξ1, ξ1 > |
1
2 | < ξ2, ξ2 > |

1
2 .
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Proof. Let α be any real number and the following inequality is always true

| < αξ1 + ξ2, αξ1 + ξ2 > | ≥ 0.

Then

0 ≤ | < αξ1 + ξ2, αξ1 + ξ2 > |
≤ | < α2ξ1, ξ2 > +2α < ξ1, ξ2 > + < ξ1, ξ2 > |
≤ α2| < ξ1, ξ2 > +2|α|| < ξ1, ξ2 > |+ | < ξ1, ξ2 > |.

The right hand side of the last inequality is a quadratic form for |α| and it is always greater than or equal to 0.
Therefore

| < ξ1, ξ2 > |2 − | < ξ1, ξ1 > || < ξ2, ξ2 > | ≤ 0,

thus

| < ξ1, ξ2 > | ≤ | < ξ1, ξ1 > |
1
2 | < ξ2, ξ2 > |

1
2 .

Let (R2)n be the set of two dimensional interval vectors. Some properties of the classical vector norms can be
extended to the two dimensional interval vectors. The max-norm of a two dimensional interval vector on (R2)n is a
non-negative valued function

‖.‖ : (R2)n → R+ ∪ {0}

that satisfies following properties:

(1) ∀ξ ∈ (R2)n − {0}, ‖ξ‖ > 0,

(2) ∀ξ ∈ (R2)n and α ∈ R, ‖αξ‖ = |α|‖ξ‖,

(3) ∀ξ, ζ ∈ (R2)n, ‖ξ + ζ‖ ≤ ‖ξ‖+ ‖ζ‖.

Theorem 2.3. (R2)n with the following norm is a normed space

‖ξ‖ =

(
n∑

i=1

|ξi|
1
2

)2

.

Proof. If ξ 6= 0, then ‖ξ‖ > 0.

‖αξ‖ =

(
n∑

i=1

(
max

{
|αξi` |, |αξir |, |αξi` |, |αξir |

})2) 1
2

= |α|

(
n∑

i=1

(
max

{
|ξi` |, |ξir |, |ξi` |, |ξir |

})2) 1
2

= |α|‖ξ‖.
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‖ξ + ζ‖ =

(
n∑

i=1

|ξi + ζi|2
) 1

2

=

(
n∑

i=1

(
max

{
|ξi` + ζi` |, |ξir + ζir |, |ξi` + ζi` |, |ξir + ζir |

})2) 1
2

=

(
n∑

i=1

|ξimi
+ ζimi

|2
) 1

2

(mi = `, `, r or r)

= ‖ξm + ζm‖2 (ordinary vector norm)
≤ ‖ξm‖2 + ‖ζm‖2

=

(
n∑

i=1

|ξimi
|2
) 1

2

+

(
n∑

i=1

|ζimi
|2
) 1

2

≤

(
n∑

i=1

max
{
|ξi` |2, |ξir |2, |ξi` |

2, |ξir |2
}) 1

2

+

(
n∑

i=1

max
{
|ζi` |2, |ζir |2, |ζi` |

2, |ζir |2
}) 1

2

= ‖ξ‖+ ‖ζ‖

where ξm = [ξ1m1
, ξ2m2

, . . . , ξnmn
]T , ζm = [ζ1m1

, ζ2m2
, . . . , ζnmn

]T . Thus, axioms of the norm function are hold and
the proof is completed.

Observe that

‖ξ‖1 =

n∑
i=1

|ξi|

and

‖ξ‖∞ = max
i

{
max

{
|ξi`|, |ξir|, |ξi`|, |ξir|

}}
are the other norms on (R2)n.

3. Statistical Convergence

Statistical convergence of sequences of numbers was introduced by Fast [4]. In [13], Schoenberg established
some basic properties of statistical convergence and also studied the concept as a summability method.

A sequence (xk) is said to be statistically convergent to the number ` if for every ε > 0

lim
n→∞

1

n
|{k ≤ n : |xk − `| ≥ ε}| = 0.

In this case, we write st− limxk = `. limxk = ` implies st− limxk = `, so statistical convergence may be considered
as a regular summability method. This was observed in [13] along with the fact that the statistical limit is a linear
functional on some sequence spaces.

In [5], Fridy proved that if (xk) is a statistically convergent sequence, then there is a convergent sequence (yk)
such that

lim
n→∞

1

n
|{k ≤ n : xk 6= yk}| = 0.

Now we will give definitions of statistical convergence, statistically Cauchy and Cesàro summability for the two
dimensional interval numbers and we will get the relationships between them.
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Definition 3.1. The infinite sequence of two dimensional interval numbers{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

is said to be statistically convergent to a bounded two dimensional interval number

ξ =
(
[ξ`, ξr], [ξ`, ξr]

)
if for each ε > 0

lim
n→∞

1

n

∣∣{k ≤ n : d(ξk, ξ) ≥ ε
}∣∣ = 0,

where the vertical bars denote the number of elements in the enclosed set. In this case, we write st− limk→∞ ξk = ξ.

Thus,

st− lim
k→∞

ξk = ξ ⇔ st− lim
k→∞

ξk` = ξ`, st− lim
k→∞

ξkr = ξr, st− lim
k→∞

ξk` = ξ` and st− lim
k→∞

ξkr = ξr.

Statistical convergence is a natural generalization of ordinary convergence. If limk→∞ ξk = ξ, then
st− limk→∞ ξk = ξ. The converse does not hold in general. For example, let (ξk) be following sequence:

ξk :=

{ (
[k, k + 1], [k + 1, k + 2]

)
, if and k is a square integer,(

[0, 0], [0, 0]
)

, otherwise.

This sequence of two dimensional interval numbers is not convergent. But since

1

n
|{k ≤ n : d

(
ξk,
(
[0, 0], [0, 0]

))
≥ ε| ≤

√
n

n
,

this sequence is statistically convergent to the
(
[0, 0], [0, 0]

)
.

Definition 3.2. The infinite sequence of two dimensional interval numbers{
ξk =

(
[ξk`, ξkr], [ξk`, ξkr]

)}∞
k=1

is said to be statistically Cauchy sequence if for each ε > 0 there exists a positive integer N such that

lim
n→∞

1

n

∣∣{k ≤ n : d(ξk, ξN ) ≥ ε
}∣∣ = 0.

Theorem 3.1. The following statements are equivalent:

i. (ξk) is a statistically convergent sequence,

ii. (ξk) is a statistically Cauchy sequence,

iii. (ξk) is a sequence for which there is a convergent sequence (ζk) such that limn→∞
1
n

∣∣{k ≤ n : ξk 6= ζk
}∣∣ = 0.

The theorem can be proved using techniques similar to those in [5], so we omit it.

Definition 3.3. We say that (ξk) is Cesàro summable to ξ if

lim
n→∞

1

n

n∑
k=1

d(ξk, ξ) = 0.

Theorem 3.2. .

i. If (ξk) is Cesàro summable to ξ, then it is statistically convergent to ξ,

ii. If (ξk) is bounded and statistically convergent to ξ, then it is Cesàro summable to ξ.

The theorem can be proved using techniques similar to those in [13], so we omit it.
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