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Structures and Z-isometric warping
BELDJILALI Gherici

Abstract

We introduce the notion of Z-isometric warping and we use it to construct a 1-parameter family of K&hlerian
structures from a single Sasakian structure and also a quaternionic Kahlerian structure from a Sasakian
3-structure.
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1. Introduction

The product of an almost contact manifold M and the real line R carries a natural almost complex structure. When this structure
is integrable the almost contact structure is said to be normal.

In 1985, using the warped product M X ¢ R where f € C*(R,.), Oubisia showed that there is a one-to-one correspondence
between Sasakian and Kihler structures [11].

In 2013, building on the work of Tanno [12] (the homothetic deformation on contact metric manifold), Blair [8] introduced
the notion of Z-homothetic warping. He used it to show by another way that there is a one-to-one correspondence between
Sasakian and Kihlerian structures too.

Recently, Beldjilali and Belkhelfa [2] have generalized the idea of Blair, they introduced the notion of generalized
Z2-homothetic bi-warping and they proved that every Sasakian manifold M generates a 1-parameter family of Kdhlerian
manifolds. After that, they gives the notion of generalized doubly Z-homothetic bi-warping [3].

By a similar techniques of Oubiria, Bir [1] and Tshikuna-Matamba [14] pointed out that there is one-to-one correspondence
between Sasakian 3-structures and hyperKihler structures. In [15] and [16] we find the construction of quaternionic kéhlerian
structure from 3-Sasakian structures.

Here, after giving preliminary background on almost Hermitian structures and almost contact metric manifolds in Section 2,
we introduce in Section 3 the notion of Z-isometric warping and prove some basic properties. In Section 4 we give the first
application for this product. Starting from a Sasakian manifold M, we construct a 1-parameter family of Kéhlerian structures
on the product of a R x M which is different from that in [2] and we construct an example. In Section 5, we give the second
application, we constructed a quaternionic kéhlerian structure from 3-Sasakian structures.

2. Preliminaries on manifolds

Recall that an almost Hermitian manifold is a Riemannian manifold (M*",g) equipped with a tensor field J of type (1,1) such
that for all vectors fiels X,Y on M the following two conditions are satisfied:

JFX)=-X, g(UX,JY)=g(X,Y).
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An almost complex stucture J is integrable, and hence the manifold is a complex manifold, if and only if its Nijenhuis
tensor N; vanishes, with
N;(X,Y)=[UX,JY]|-[X,Y]-JX,JY]-J[JX,Y].

Any almost Hermitian manifold (M, g,J) possesses a differential 2-form Q, called the fundamental 2-form or the Kahler 2-form,
defined by

QX,Y) = g(X,JY). (1

(M,J,g) is then called almost Kéhler if Q is closed i.e. dQ = 0. An almost Kéhler manifold with integrable J is called a Kéhler
manifold, and thus is characterized by the conditions: d€2 = 0 and N = 0. One can prove that these both conditions combined
are equivalent with the single condition

VJ=0.

An almost quaternionic metric manifold is a quintuple (M, g,J1,J2,J3), where

(1) : (M,g) is a Riemannian manifold,
(2) : (g,Ja) is an almost Hermitian structure on M for a = 1,2,3; 2)
(3) N =Tz, hJy =01, 31 =D

Almost quaternionic metric manifolds are of dimension 4m and their nomenclature is related to that of almost Hermitian
structures. According Calabi [9], for a structure to be hyperkéhlerian, it is sufficient that in (g,J,J2,J3) two of these structures
are kéhlerians. A differential 4-form is defined by

3
Q == Z Qa A\ Q‘x.
a=1
An almost quaternion metric manifold is quaternion kihlerian manifold if and only if VQ =0 [17].

Proposition 1. ([17], p 161) An almost quaternionic Hermitian manifold is called a quaternionic kihler manifold if an almost
hypercomplex structure Jo, & = 1,2,3 in any local coordinate neighborhood U satisfies

VxJi1 = ®3(X)J2 — (X)J3
VxJy = —ms (X)) + o1 (X)J3 3
Vxl3 = a)z(X)]l — (X)]z

for any vector field X on U, where V is the Levi-Civita connection of the Riemannian metric, and @y, are certain local 1-forms
defined in U. In particular, if all @y for each U are vanishing, then the structure is called hyper-Kdhler. Remark that if
dimM > 4, a quaternionic Kihler manifold is an Einstein manifold.

By an almost contact metric manifold, one understands a quintuple (M, g, ¢,&,1), where
(1) & is a characteristic vector field ;
(2) n is a differential 1-form such that n(&§) = 1;
(3) ¢ is a tensor field of type (1,1) satisfying ¢>X = —X +n(X)&;
@) g(oX,0Y) =g(X,Y) —n(X)n(¥).
Replacing J by ¢, the fundamental 2-form ¢ is defined by
9(X,Y) =g(X, ). ©)

Denoting by V the Levi-Civita connection of g, the covariant derivative of 1 and the exterior differential of 1 are defined,
respectively, by
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2dn(X,Y) = (Vxn)Y — (Vyn)X, (6)

An almost contact metric manifold is said to be almost cosymplectic if the forms ¢ and 1 are closed, that is, d¢p =dn = 0.

Such a manifold is said to be a contact metric manifold if dn = ¢. If, in addition, & is a Killing vector field, then M
is said to be a K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if
Vx& = —@X, for any vector field X on M. On the other hand, the almost contact metric structure of M is said to be normal if
[0, 0](X,Y) =—2dn (X,Y)&, for any X and Y where [@, @] denotes the Nijenhuis torsion of ¢, given by

[0,0](X.Y) = @*[X,Y]+ [@X,9Y] — 0[pX Y] — 0[X, ¢Y].

A normal almost cosymplectic manifold is called a cosymplectic manifold. It is well-known that a necessary and sufficient
condition for M to be cosymplectic is Vo = 0.

A normal contact metric manifold is called a Sasakian manifold. It can be proved that a Sasakian manifold is K-contact,
and that an almost contact metric manifold is Sasakian if and only if

(Vxo)Y =g(X,Y)E —n(Y)X, (7

for any X,Y. Moreover, for a Sasakian manifold we have the following identities:

Vx§=—0X,  (Vxn)(¥)=—g(¢X,Y). ®

Let (¢1,&;, n,) ", be three almost contact structures such that each of them is compatible with the Riemannian structure g (
ie g(¢X,pY)=g(X,Y)—n:(X)n:(Y),i=1,2,3). We say that (M,g,(¢;,&,n;)3_,) is an almost contact metric manifold
3-structure if for any cyclic permutation (i, j ,k) of {1,2,3} the following conditions are satisfied :

() :ni(&j) =n;(&) =0;

2): 0 = 016 = & o
(3):Qiop;—Nj@&=—0joQ+N®E =@

(4):mic@;=-njoQ =M.

Almost contact metric manifolds 3-structure are of odd dimension 4m + 3. If each (¢;, &;, n,)l | is a Sasakian structure then
almost contact metric manifolds 3-structure (@;, &;, n,) ', is called a Sasakian 3-structure and &;,&,, &3 are orthonormal vector

fields, satisfying
[8i,&j] =28

for any cyclic permutation (i, j, k) of {1,2,3} ([6], p.294). Such a manifold with a Sasakian 3-structure is called a 3-Sasakian
manifold. Remark that a 3-Sasakian manifold is an Einstein manifold.

3. Z-isometric warping

Let (M, ,£,m,g) be an almost contact metric manifold with dimM = 2n+ 1. The equation 7 = 0 defines a 2n-dimensional
distribution 2 on M. By an 2n-isometric deformation or Z-isometric deformation we mean a change of structure tensors of the
form

_ _ £ 1 _
® =0, n=an, 52567 g:g+(a2_1)n®n7 a#o
If (M,9,&,m,g) is an almost contact metric structure , then (M, ¢,E,ﬁ,g) is also an almost contact metric structure.
The notion of 2-homothetic warping is very well known [2], [3], [4] and [8]. Given a Riemannian manifolds (M;,g;)
and an almost contact metric manifold (M5, @>,&5,M2,82), and a positive function f on M, the Riemannian metric g =

g1+ fe+f(f—1)n®@n2 on M| X M, is known as a Z-homothetically warped metric.

Now consider the product of a Riemannian manifold (M,g;) and an almost contact metric manifold (M2, ¢2,&>,12,82).
On M| x M, define a metric g by

g=gi+o+(fF-Hmen
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where f is a function non-zero everywhere on M.
Notice that, for all X vectors field on M, orthogonal to &, we have g(X,X) = g>(X,X). That is why, we refer to this construction
as P-isometric warping.

Using the Koszul formula for the Levi-Civita connection of a Riemannian metric
Zg(VXYaz) :Xg(YaZ) +Yg(sz) 7Zg(XaY) +g([XvY]aZ) +g([Z,X],Y) 7g([Y>ZLX)7

where X = (X1,X2), Y = (11,Y2) and Z = (Z,,Z,), one can compute the Levi-Civita connection of the Z-isometrically warped
metric.

Proposition 2. Let V', V2 and V be connections of g1, g» and g respectively. For all vectors field X1,Y1,Z, tangent to M, and
independent of M, and similarly for X»,Y>,7Z> we have:

Vx, Y = V)‘(I Y1,

Vx, Yo =VyX = le(vf) Mm(12)és,

8(Vx,12,2) = ¢(V3,Y2,22) + (f> = 1) (% (82(V%,62,12) + 82(V§,62, X2) ) m2(Z2) + d 2 (X2, Z2) M2 (Y2) +d112(Y2722)772(X2)) ;
which in turn can be used to find ~ g(Vx,Y»,Z1) = —g(Vx,Z1,Y2).

Let o denote the second fundamental form of M, in M| x M, and while f is a function on My, for emphasis we denote its
gradient by grad, f . Then we have the following Theorem.

Theorem 3. For an almost contact metric manifold (M, 9>,&,M2,82) and a Z-isometrically warped metric on My x My we
have the following:

1. M, is a totally geodesic submanifold.

2. M, is a cylindrical submanifold and its second fundamental form is given by
1
02(X2,Y2) = —inz(Xz)nz(Yz)gmdlfz-
3. The mean curvature vector of M, in My X M, is

1 2
H = _mg}’adl‘f .

4. If in addition, dn(&,Xz) = 0 for every X, (equivalently the integral curves of & are geodesics ), then the Reeb vector
field &, is g-Killing if and only if it is g>-Killing.

Proof. Recall that a submanifold N of a Riemannian manifold (M?"*!, g) is called quasi-umbilical [10] if its second fundamental
tensor has the form

o(X,Y)=ag(X,Y)p+BnX)n(Y)p

where o,  are scalars, X,Y are vectors fields on N and p is the unit normal vector field
e If ¢ =0, then N is cylindrical.
e If B =0, then N is umbilical.
e If ¢ = =0, then N is geodesic.
1. Let o be the second fundamental form of M; in M x M. Since Vx, Y| = V}(l Y1, then
o1 =Vx Y1 — Vi, Y1 =0.
2. Let 0, be the second fundamental form of M, in M; x M>. We have
(V. Y2,Z1) —fZi (f)m(X2)n2(Y2)

1
= g ( — inz(Xz)le(Yz)gmdle,Zl)7
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since g(V%ng,Zl) =0 then
02 (X2, Vo) = —%nz(xz)nz(Yz)gmdlfz-
3. Knowing that The mean curvature vector of M, in M| x M, is defined by
1 | 2l
H = 2717_|_1tré,2 and 0p = il ; oa(ei,ei)
where {e;}i—12,+1 orthonormal basis of M, then,

| =2
H = o2 (ei,e;)
=1

2n+1

i=2n+1

- —2(2’117+l)gmdlf2 1:21 M2(ei)ma2(e:)

1
= ———grad f*
R

4. Forall X =X+ X; and Y =Y + Y, two vectors fields on M| x M, we have
& isg—Killing < g(Vx&,Y)+g(Vy&,X) =0.
So,

g8(Vx&,Y) +8(Vv&a,X) = g(Vxix8,Y1+12) +8(Vyiné, X1 +X2)
= g(Vx,&.12)+8(Vx,6.71) +8(Vx, 6. 12)
+8(Vy, 82, X2) +8(Vy, 60, X1) +8(Vr, 62, X5)
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(10)

suppose that d1n2(&,X>) = 0 equivalent to E;12(Xa) = 12 (VéXz) (i.e. Véz &, = 0) then, we can easily verify the following

statements:

8(Vx, &, 1) = %Xl (f)m(¥2),

1
8(Vx,&. 1) = *EY'(fz)nz(Xz)y
8(Vx,&. V) = g(Vi,&.12) + (f2 — 1)dma (X2, Y2).
Replacing in formula (10), we get

g(Vx&,Y)+2(Vv&,X) = ¢(Vx,6,12) +8(V5, 6, %)
82(V%,6,2) + 22(V5,6, X2).

This completes the proof.

4. From a single Sasakian structure to a 1-parameter family of Kahlerian structures.

For our first application of the idea of Z-isometric warping we consider the case where M; = R, M, = M is a Sasakian manifold

and the metric

g=ndr+g+(fF-1)men),

(11

where f,h are two functions non-zero everywhere on R. For brevity, we denote the unit tangent field to R by ;. In this

case the proposition (2) becomes:
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Proposition 4. Let (M, 9.£,1,g) be a Sasakian manifold. Let V and V denote the Riemannian connections of g, and g
respectively. For all XY vector fields tangent to M and independent of R, we have

~ 4
Var 8; = ﬁat,

- - h/ f/

Vx¥ = V¥ + (1= ) (n(X)@Y +n(¥)pX) — - (He(X.Y) + (F(fR) = H)n(X)n(¥)) 3.

1
h
Next, we introduce a class of almost complex structure J on manifold M:

TadX) = (103, X - Z6). (12)

for any vector filds X of M where f, h are functions on R and fh # 0 everywhere.
That J? = —I is easily checked and for all X = (ad;,X),¥ = (bd;,Y) on M we can see that § is almost Hermitian with
respect to J i.e.
(X, JY)=g(X.Y).
Knowing that (VgJ)Y = Vg (JY) — JV¥ with using the proposition (4) and formulas (7) and (8), we get the following
proposition:

Proposition 5. Let (M, ¢,&,1,g) be a Sasakian manifold. Let V and V denote the Riemannian connections of g and g
respectively. For all XY vector fields tangent to M and independent element of R, we have

(VxN)o = (f*%/)pr,

Gy = (5= ) ()8 - 00X = (5 = NEONWE +6(x.01)3).

Therefore, summing up the arguments above, we have the following main theorem:

Theorem 6. Let (M, ,&,1,g) be a Sasakian manifold. The almost Hermitian structure constructed in (11) and (12) is
Kdhlerian if and only if f = %l
Remark 7. In this theorem, for h = ce' where ¢ > 0 i.e. f =1 we get the result of Oubifia ( see [11]).

Remark 8. In [11], Oubiiia showed that there is a one-to-one correspondence between Sasakian and Kdhlerian structures and
in [8], Blair showed by another way this correspondence. Here again, we generalized this correspondence by building another
L-parameter family of Kihlérian structures from a single Sasakian structure (see [2]).

Example 9. For this example, we rely on the example of Blair [5]. We know that R3 with coordinates (x,y,z), admits the
Sasakian structure

{ 1+y> 0 —y 0 10 P 1
8=17 o 1 0 |, o= -1 0 0 |, 5:2(8), n:E(dz—ydx).
-y 0 1 0 y 0 <

So, using this structure, we can define a family of Kihlerian structures (J,§) on R* as follows

4h? 0 0 0
__ Ll 0 (B4R 0 —h?y
S 0 20
0 W%y 0 n?
0 —3yh 0 3h
" 0 0 1 0
= o -1 00
-2 0 y O

27 Vol.2, No. 1, 22-30, 2020



HSIG

Hagia Sophia Journal of Geometry

5. From 3-Sasakian structure to quaternionic Kahlerian structure

For a second application of the idea of Z-isometric warping we consider a three almost contact structures (¢;, &;, 11,-)13:1 ona
manifold M of dimension 4n -+ 3 and we define an almost hypercomplex structure Jo, @ = 1,2,3 on M4 = M x R by

Jo(ad, X) = (fna(X)r?,,tan—%éaL (13)

then we give a Riemannian metric on M by

i=3
§=h2(dl2+g+(f2—1)271:'@711')7 (14)
=1

1

where f,h are functions on R such that fi # 0 everywhere and dt? is the usual metric on R. Then by (2) and (9) one can
showed the following:

Proposition 10. Let (¢;,&;, Th)?:l be an almost contact metric 3-structure on a manifold M of dimension 4n+3 and f.h
are functions on R such that fh # 0 everywhere. Then (M4”+1 , (Ja)gzl, g) constructed as above is an almost quaternionic
Hermitian manifold.

Proof. Obvious. u
Next, let (M*"™3, (¢;,&;,m:)}_,,g) be a 3-Sasakian manifold then, from proposition (4) we can conclude that
- /4
Va, at = Eah
. . W /
Vo X =Vxo = Xt fYn,»(X)é,-,

%Y:Vﬂ+0—ﬁMmWWJ+Mm%m_l

h

Note: we will use the convention of Einstein. (Whenever an index is repeated, it is a dummy index and is summed from 1 to
3).

(et 1)+ (Y =W )m(x)m(1)) 3.

Now, we compute directly V.Jy, a = 1,2,3 we get

Proposition 11. Ler (M4"+3, (95, &, ni)?:l , g) be 3-Sasakian manifold. Let V and V denote the Riemannian connections of
g, and g respectively. For all X,Y vector fields tangent to M and independent of R, we have

Gl = (F=1)ouX+ 1= = et a=123

i)Y = (=)A= 2B 20 - ) ()@Y~ ma(X)guY)
= () = H) (B )m(Y) = 10 T5(1)

i) = (")t (1 £+ 1B 20— ) (0 () gsY —s(X) 1Y)
= Y = H) () = 1OM (),

OB = (F- ") A (1= Pt 9820~ P ()oY~ mX)ga).

o FURY =H) (a0)m () = m () ma(6)) 2,

others =0, and

Ao = (1) (GG Imar)X+ (£~ F)0n ),
Ba = (1= +Ma(X)(Ma(X)& = Mi(X)&a)-
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On the other hand, we have

(@3(X)J2 — 02(X)J3) 0, = § (@2 (X)& — 03(X)&2),

(— (X1 + 01 (X)J5) 3, = L& — o1 (X)&),
(@(X))1 = 01(X))2) 9 = + (01 (X) &2 — n(X)&:1)
and
o3 (X)h—(X)B)Y = @a3(X)@Y — @ (X)@3Y + f(03(X)ma(Y) — 0 (X)M3(Y)) 9,
—3(X) 1+ o1(X)3)Y = —3(X)@1Y + o1 (X)@3Y + f(— s (X)mi (Y) + o1 (X)n3(Y)) 0,
(X)) h—oi(X)h)Y = oX)pY — o (X)eY + f(oa(X)m(Y) — o1 (X)n2(Y)) ;.

Now, we will make a comparison using the proposition (1) we get the following equations:

h/

- = _ f£2 !
f=%.  1=£4r =0,

1
O = (1= f' = f)Na =200 = f)Ma = = (F(fR) = ) e
and moreover that these equations are equivalent to the OED system

h/
f=3 1=LHf=0 0a=2(1-f)ng,

Solving the differential equation system, we obtain the following theorem:

Theorem 12. Ler (¢;,&;, Tli)?:1 be a 3-Sasakian manifold. Then the almost quaternionic Hermitian structure constructed in
(13) and (14) is:

1. Hyper-Kiihlerian structure if and only if f = 1 and h = ce' where ¢ > 0.

2. Quaternionic Kdhlerian structure if and only if
1)

f(t) = —tanh(r +¢y), and ht) = m7

where c| and cy are two arbitrary constants.

Remark 13. In [14], T. Tshikuna-Matamba showed that the method of Oubiiia [11], serves to define an hyperKdhlerian
manifold using a 3-Sasakian manifold. Here, for f =1 and h = ce', (¢ > 0), we can see immediatly that the idea of
Tshikuna-Matamba is a particular case.

6. Doubly D-isometric warping

Finally recall the notion of a doubly warped product metric, namely

g=Fg1+fg,

where £ is a positive function on M| and F is a positive function on M,. If now both (M1, @,&1,1M1,81) and (M2, 02,&2,1M2,82)
are almost contact metric manifolds we can define a doubly Z-isometrically warped metric by

g=a+(FP—1)men+a+(f-1)neon,

where F and f are two functions non-zero everywhere on M| and M, respectively. On the other hand, we can introduce a class
of almost complex structure J on the product manifold M; x M»:

J(X1,X2) = ((P1X1 - %Th(xl)’:z ; (P2X2+§712(X2)§1),

then it is easily seen that (J,g) is an almost Hermitian structure on the product M; x M,. While this is an area of possible
future research.

29 Vol.2, No. 1, 22-30, 2020



HSIG
7. Conclusion

We know that through a conformal and related changes of the metric we can build several bridges between the various known
structures ( almost complex, almost contact, almost Golden,...). Here, we introduced a certain deformation called ”” D-isometric
warping” and we studied some basic properties. As applications, we constructed a 1-parameter family of Kahlerian structures
from a single Sasakian structure with this deformation. Then, a quaternionic Kahlerian structure from a 3-Sasakian structures.
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