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TÜRKİYE
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Abstract

The purpose of this paper is twofold. First, we define the new spaces and investigate some

topological and structural properties. Also, we compute dual spaces of new spaces which

are help us in the characterization of matrix mappings. Second, we give some examples

related to new spaces. A flow chart of the stages of the newly constructed sequence spaces

and the algorithms of the workings at each step are given.

1. Introduction

It is well known that, the ω denotes the family of all real (or complex)-valued sequences. ω is a linear space and each linear subspace of ω

(with the included addition and scalar multiplication) is called a sequence space such as the spaces c, c0 and ℓ∞, where c, c0 and ℓ∞ denote

the set of all convergent sequences in fields R or C, the set of all null sequences and the set of all bounded sequences, respectively. It is clear

that the sets c, c0 and ℓ∞ are the subspaces of the ω . Thus, c, c0 and ℓ∞ equipped with a vector space structure, from a sequence space. By bs

and cs, we define the spaces of all bounded and convergent series, respectively.

A coordinate space (or K−space) is a vector space of numerical sequences, where addition and scalar multiplication are defined pointwise.

That is, a sequence space X with a linear topology is called a K-space provided each of the maps pi : X → C defined by pi(x) = xi is

continuous for all i ∈ N. A K−space is called an FK−space provided X is a complete linear metric space. An FK−space whose topology is

normable is called a BK− space.

Let X be a BK−space. Then X is said to have monotone norm if ‖x[m]‖ ≥ ‖x[n]‖ for m > n and ‖x‖= sup‖x[m]‖. The spaces c0, c, ℓ∞, cs, bs

have monotone norms.

If a normed sequence space X contains a sequence (bn) with the property that for every x ∈ X there is unique sequence of scalars (αn) such

that

lim
n→∞

‖x− (α0b0 +α1b1 + ...+αnbn)‖= 0

then (bn) is called Schauder basis for X . The series ∑αkbk which has the sum x is then called the expansion of x with respect to (bn), and

written as x = ∑αkbk. An FK−space X is said to have AK property, if φ ⊂ X and {ek} is a basis for X , where ek is a sequence whose only

non-zero term is a 1 in kth place for each k ∈ N and φ = span{ek}, the set of all finitely non-zero sequences. An FK−space X ⊃ φ is said to

have AB, if (x[n]) is a bounded set in X for each x ∈ X .

Let A = (ank) be an infinite matrix of complex numbers ank and x = (xk) ∈ ω , where k,n ∈ N. Then the sequence Ax is called as the

A−transform of x defined by the usual matrix product. Hence, we transform the sequence x into the sequence Ax = {(Ax)n} where

(Ax)n = ∑
k

ankxk (1.1)

Email address: murat.kirisci@istanbul.edu.tr (M. Kirişci)
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Figure 1.1: Flowchart of constructing a new sequence space

for each n ∈ N, provided the series on the right hand side of (1.1) converges for each n ∈ N. Let X and Y be two sequence spaces. If Ax

exists and is in Y for every sequence x = (xk) ∈ X , then we say that A defines a matrix mapping from X into Y , and we denote it by writing

A : X →Y if and only if the series on the right hand side of (1.1) converges for each n ∈N and every x ∈ X , and we have Ax = {(Ax)n}n∈N ∈Y

for all x ∈ X . A sequence x is said to be A-summable to l if Ax converges to l which is called the A-limit of x. Let X be a sequence space and

A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X} (1.2)

is called the domain of A in X which is a sequence space.

The matrix Ω = (ank) defined by ank = k, (1 ≤ k ≤ n) and ank = 0, (k > n), and the matrix Γ = (bnk) defined by by bnk = 1/k, (1 ≤ k ≤ n)
and bnk = 0, (k > n), respectively, i.e.,

ank =















1 0 0 0 · · ·
1 2 0 0 · · ·
1 2 3 0 · · ·
1 2 3 4 · · ·
...

...
...

...
. . .















and bnk =















1 0 0 0 · · ·
1 1/2 0 0 · · ·
1 1/2 1/3 0 · · ·
1 1/2 1/3 1/4 · · ·
...

...
...

...
. . .















We can give the matrices Ω−1 = (cnk) and Γ−1 = (dnk) which are inverse of the above matrices by cnk = 1/n, (n = k), cnk = −1/n,

(n−1 = k), cnk = 0, (other) and dnk = n, (n = k), dnk =−n, (n−1 = k), dnk = 0, (other), respectively, i.e.,

cnk =















1 0 0 0 · · ·
−1/2 1/2 0 0 · · ·

0 −1/3 1/3 0 · · ·
0 0 −1/4 1/4 · · ·
...

...
...

...
. . .















and dnk =















1 0 0 0 · · ·
−2 2 0 0 · · ·
0 −3 3 0 · · ·
0 0 −4 4 · · ·
...

...
...

...
. . .















Now, we show that the matrices Ω and Γ preserve the limits on the set of all convergent sequences.

Theorem 1.1. The matrices Ω and Γ are regular.

Proof. Take a sequence x = (xk). We must show that if for n → ∞ and some L, limn |xk − L| → 0, then, limn |bnkxk − L| → 0, where

bnk is Γ matrix. Suppose that for n → ∞ and some L, limn |xk −L| → 0, and choose ε > 0. Then, there exists a positive integer N such

that limn |xk−L|< ε for n≥N. Then, for n≥N and N ∈N, limn |bnkxk−L|= limn |∑
n
k=1(k

−1xk−L)|< ε . Therefore the matrix Γ is regular.

Similarly, we can show that the matrix Ω is regular.
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The paper is organized into six sections. After the introduction in Section 1, new sequence spaces are constructed in Section 2. Also, some

topological properties of these new spaces are investigated in Section 2 . Section 3 describes and computes the dual spaces. The dual spaces

are very important for matrix transformations. Section 4 is dedicated to characterization of matrix mappings. Examples related to the new

spaces are in Section 5. Finally, Section 6 presents the conclusion(Figure 1.1).

2. New spaces and topological properties

1: Take an infinite matrix A

2: Apply to the sequence space X

3: If the matrix A is a triangle and f : XA → X is bijective, then

4: XA and X are linearly isomorphic

5: Investigate the topological properties of XA

6: If A is triangle, then

7: XA is a BK-space

8: Compute the beta- and gamma-duals

9: do

10: Characterize the matrix mappings

11: while(exist beta- and gamma-duals)

Table 1: Algorithm related to the constructing a new space

Now, we introduce the new sequence spaces derived by the Ω− and Γ− matrices as follows:

ℓ∞(Ω) =
{

x = (xk) ∈ ω : Ωx ∈ ℓ∞}

c(Ω) = {x = (xk) ∈ ω : Ωx ∈ c}

c0(Ω) = {x = (xk) ∈ ω : Ωx ∈ c0}

and

ℓ∞(Γ) = {x = (xk) ∈ ω : Γx ∈ ℓ∞}

c(Γ) = {x = (xk) ∈ ω : Γx ∈ c}

c0(Γ) = {x = (xk) ∈ ω : Γx ∈ c0}

Let us define the sequences u = (un) and v = (vn), as the Ω−transform and Γ−transform of a sequence x = (xk), respectively, that is, for

k,n ∈ N, un = (Ωx)n = ∑
n
k=1 |kxk| and vn = (Γx)n = ∑

n
k=1

∣

∣k−1xk

∣

∣.

Theorem 2.1. The new bounded, convergent and null sequence spaces are norm isomorphic to the classical sets consisting of the bounded,

convergent and null sequences.

Proof. We will show that there is a linear isometry between new bounded, convergent, null sequence spaces and classical bounded, convergent

and null convergent sequence space. We consider the transformation defined Φ, from X(Ω) to X by x 7→ u = Φx = ∑
n
k=1 |kxk|, where

X = {ℓ∞,c,c0}. Then, it is clear that the equality Φ(a+b) = Φ(a)+Φ(b) holds. Choose λ ∈ R. Then,

Φ(λa) = Φ(λak) =
n

∑
k=1

|λkak|= λ
n

∑
k=1

|kak|= λΦa.

Therefore, we can say that Φ is linear.

Choose a sequence y = (yk) in X(Ω) and define the sequence x = (xk) such that x = (cnkyk), where cnk is inverse of Ω = (ank) matrix. Then,

‖x‖ℓ∞(Ω) = sup
k

|ankxk|= sup
k

|ankcnkyk|ℓ∞
= ‖y‖ℓ∞

.

Therefore, we can say that Φ is norm preserving.

Similarly, we can also show that the other spaces are norm isomorphic to classical sequence spaces.

Theorem 2.2. The new bounded, convergent and null sequence spaces are BK−spaces with the norms defined by ‖x‖X(Ω) = ‖Ωx‖ℓ∞
and

‖x‖X(Γ) = ‖Γx‖ℓ∞
, respectively, where X = {ℓ∞,c,c0}.

Proof. Take a sequence x = (xk) in X(Ω), where X = {ℓ∞,c,c0} and define fk(x) = xk for all k ∈ N. Then, we have

‖x‖X(Ω) = sup{1|x1|+2|x2|+3|x3|+ · · ·+ k|xk|+ · · ·}

Therefore, k|xk| ≤ ‖x‖X(Ω) ⇒ |xk| ≤ K‖x‖X(Ω) ⇒ | fk(x)| ≤ K‖x‖X(Ω). From this result, we say that fk is a continuous linear functional for

each k. Then, X(Ω) is a BK−space.

In the same idea, we can prove that the space X(Γ) is a BK−space.
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Remark 2.3. We can give the proof of Theorem 2.2 in a different way: From 4.3.1 of [9], we know that if a sequence space X is BK−space

with respective norm and A is a triangular infinite matrix, then the matrix domain XA is also BK−space with respective norm.

Theorem 2.4. The spaces X(Ω) and X(Γ) have AK−property.

Theorem 2.5. The spaces X(Ω) and X(Γ) have monotone norm.

Theorem 2.4 and 2.5 can be proved as Theorem 2.4., Theorem 2.6. of [5].

Remark 2.6. Any space with a monotone norm has AB(10.3.12 of [9]).

Corollary 2.7. The spaces X(Ω) and X(Γ) have AB.

Theorem 2.8. The following statements hold:

(i) Define a sequence t(k) := {t
(k)
n }n∈N of elements of the space X(Ω) for every fixed k ∈ N by

t
(k)
n =

{

(−1)n−kk−1 , (n−1 ≤ k ≤ n)
0 , (1 ≤ k ≤ n−1) or (k > n)

Then the sequence {t(k)}k∈N is a basis for the space X(Ω) and if we choose Ek = (Ωx)k for all k ∈N, then any x ∈ X(Ω) has a unique

representation of the form

x := ∑
k

Ekt(k).

(ii) Define a sequence s(k) := {s
(k)
n }n∈N of elements of the space X(Γ) for every fixed k ∈ N by

s
(k)
n =

{

(−1)n−kk , (n−1 ≤ k ≤ n)
0 , (1 ≤ k ≤ n−1) or (k > n)

Then the sequence {s(k)}k∈N is a basis for the space X(Γ) and if we choose Fk = (Γx)k for all k ∈ N, then any x ∈ X(Γ) has a unique

representation of the form

x := ∑
k

Fks(k).

Remark 2.9. If a space has a Schauder basis, then it is separable.

Corollary 2.10. The spaces X(Ω) and X(Γ) are separable.

1: Take X
A

2: Define f : XA → X

3: If f is an isomorphic and surjective, then

4: the inverse image of basis of X is the basis of XA

5: If X has a Schauder basis, then

6: XA is separable

Table 2: Algorithm for basis and separability

In this section, we have defined the new spaces derived by infinite matrices and examined some structural and topological properties.

3. Dual spaces

In this section, we compute dual spaces of new defined spaces. The beta-, gamma-duals of new defined spaces will help us in the characteri-

zation of the matrix mappings.

From Lemma 5.3 of [4] and Theorem 3.1 of [1], we will give an algorithm, which provides convenience to compute α−, β− and γ− duals

of these new spaces and characterize some matrix transformations.

Let x and y be sequences, X and Y be subsets of ω and A = (ank)
∞
n,k=0 be an infinite matrix of complex numbers. We write xy = (xkyk)

∞
k=0,

x−1 ∗Y = {a ∈ ω : ax ∈ Y} and M(X ,Y ) =
⋂

x∈X x−1 ∗Y = {a ∈ ω : ax ∈ Y for all x ∈ X} for the multiplier space of X and Y . In the

special cases of Y = {ℓ1,cs,bs}, we write xα = x−1 ∗ ℓ1, xβ = x−1 ∗ cs, xγ = x−1 ∗bs and Xα = M(X , ℓ1), Xβ = M(X ,cs), Xγ = M(X ,bs)
for the α−dual, β−dual, γ−dual of X . By An = (ank)

∞
k=0 we denote the sequence in the n−th row of A, and we write An(x) = ∑

∞
k=0 ankxk

n = (0,1, ...) and A(x) = (An(x))
∞
n=0, provided An ∈ xβ for all n.
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1: Take the sequence spaces X and Y

2: If the spaces X and Y are BK−spaces, then

3: matrix transformations between X and Y are continuous

4: Choose the triangular matrix T and an infinite matrix A

5: do

6: A ∈ (X : YT )
7: while TA(X : Y )
8: Define the matrix B which is inverse of T

9: If the matrix B depending on a sequence (ak) ∈ ω , then

10: β−dual is defined by X
β
T = {a = (ak) ∈ ω : BT ∈ (X : c)} and

11: γ−dual is defined by X
γ
T = {a = (ak) ∈ ω : BT ∈ (X : ℓ∞)}

Table 3: Algorithm for dual spaces and matrix transformations

Now, we list the following useful conditions.

sup
n

∑
k

|ank|< ∞ (3.1)

lim
n→∞

ank −αk = 0 (3.2)

lim
n→∞

∑
k

ank exists (3.3)

lim
n→∞

∑
k

|ank|= ∑
k

∣

∣

∣
lim
n→∞

ank

∣

∣

∣
(3.4)

lim
n

ank = 0 for all k (3.5)

sup
m

∑
k

∣

∣

∣

∣

∣

m

∑
n=0

∣

∣

∣

∣

∣

< ∞ (3.6)

∑
n

ank is convergent for all k (3.7)

∑
n

∑
k

ank is convergent (3.8)

lim
n

ank exists for all k (3.9)

lim
m

∑
k

∣

∣

∣

∣

∞

∑
n=m

ank

∣

∣

∣

∣

= 0 (3.10)

Lemma 3.1. For the characterization of the class (X : Y ) with X = {c0,c, ℓ∞} and Y = {ℓ∞,c,cs,bs}, we can give the necessary and

sufficient conditions from Table 4, where

1. (3.1) 2. (3.1), (3.9) 3. (3.6) 4. (3.6), (3.7)

5. (3.1), (3.9), (3.3) 6. (3.6), (3.7), (3.8) 7. (3.9), (3.4) 8. (3.10)

To → ℓ∞ c bs cs

From ↓

c0 1. 2. 3. 4.

c 1. 5. 3. 6.

ℓ∞ 1. 7. 3. 8.

Table 4

For using in the proof of Theorem 3.2, we define the matrices U = (unk) and V = (vnk) as below:

unk =







ak

k − ak+1

k+1 , (k < n)
an

n , (k = n)
0 , (k > n)

(3.11)

vnk ==







kak − (k+1)ak+1 , (k < n)
nan , (k = n)
0 , (k > n)

(3.12)
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Theorem 3.2. The β− and γ− duals of the new sequence spaces defined by

[c0(Ω)]β = {a = (ak) ∈ ω : U ∈ (c0 : c)}

[c(Ω)]β = {a = (ak) ∈ ω : U ∈ (c : c)}

[ℓ∞(Ω)]β = {a = (ak) ∈ ω : U ∈ (ℓ∞ : c)}

[c0(Ω)]γ = {a = (ak) ∈ ω : U ∈ (c0 : ℓ∞)}

[c(Ω)]γ = {a = (ak) ∈ ω : U ∈ (c : ℓ∞)}

[ℓ∞(Ω)]γ = {a = (ak) ∈ ω : U ∈ (ℓ∞ : ℓ∞)}

Proof. We will only show the β− and γ− duals of the new null convergent sequence spaces. Let a = (ak) ∈ ω . We begin the equality

n

∑
k=1

akxk =
n

∑
k=1

akk−1(yk − yk−1) =
n−1

∑
k=1

(

ak

k
−

ak+1

k+1

)

yk +
an

n
yn = (Uy)n (3.13)

where U = (unk) is defined by (3.11). Using (3.13), we can see that ax = (akxk) ∈ cs or bs whenever x = (xk) ∈ c0(Ω) if and only if Uy ∈ c

or ℓ∞ whenever y = (yk) ∈ c0. Then, from the algorithm in Table 3 , we obtain the result that a = (ak) ∈ (c0(Ω))β or a = (ak) ∈ (c0(Ω))γ if

and only if U ∈ (c0 : c) or U ∈ (c0 : ℓ∞), which is what we wished to prove.

Theorem 3.3. The β− and γ− duals of the new sequence spaces defined by

[c0(Γ)]
β = {a = (ak) ∈ ω : V ∈ (c0 : c)}

[c(Γ)]β = {a = (ak) ∈ ω : V ∈ (c : c)}

[ℓ∞(Γ)]
β = {a = (ak) ∈ ω : V ∈ (ℓ∞ : c)}

[c0(Γ)]
γ = {a = (ak) ∈ ω : V ∈ (c0 : ℓ∞)}

[c(Γ)]γ = {a = (ak) ∈ ω : V ∈ (c : ℓ∞)}

[ℓ∞(Γ)]
γ = {a = (ak) ∈ ω : V ∈ (ℓ∞ : ℓ∞)}

where V = (vnk) is defined by (3.12).

4. Matrix mapping

Let X and Y be arbitrary subsets of ω . We shall show that, the characterizations of the classes (X ,YT ) and (XT ,Y ) can be reduced to that of

(X ,Y ), where T is a triangle.

It is well known that if hc0
(∆(m))∼= c0, then the equivalence

x ∈ hc0
(∆(m))⇔ y ∈ c0

holds. Then, the following theorems will be proved and given some corollaries which can be obtained to that of Theorems 4.1 and 4.2. Then,

using the algorithm in Table 3, we have:

Theorem 4.1. Consider the infinite matrices A = (ank) and D = (dnk). These matrices get associated with each other in the following

relations:

These matr

dnk =
ank

k
−

an,k+1

k+1
(4.1)

for all k,m,n ∈ N. Then, the following statements are true:

i. A ∈ (c0(Ω) : Y ) if and only if {ank}k∈N ∈ [c0(Ω)]β for all n ∈ N and D ∈ (c0 : Y ), where Y is any sequence space.

ii. A ∈ (c(Ω) : Y ) if and only if {ank}k∈N ∈ [c(Ω)]β for all n ∈ N and D ∈ (c : Y ), where Y is any sequence space.

iii. A ∈ (ℓ∞(Ω) : Y ) if and only if {ank}k∈N ∈ [ℓ∞(Ω)]β for all n ∈ N and D ∈ (ℓ∞ : Y ), where Y is any sequence space.

Proof. We assume that the (4.1) holds between the entries of A = (ank) and D = (dnk). Let us remember that from Theorem 2.1, the spaces

c0(Ω) and c0 are linearly isomorphic. Firstly, we choose any y = (yk) ∈ c0 and consider A ∈ (c0(Ω) : Y ). Then, we obtain that DΩ exists

and {ank} ∈ (c0(Ω))β for all k ∈N. Therefore, the necessity of (4.1) yields and {dnk} ∈ c
β
0 for all k,n ∈N. Hence, Dy exists for each y ∈ c0.

Thus, if we take m → ∞ in the equality

m

∑
k=1

ankxk =
m

∑
k=1

ank

(

ank

k
−

an,k+1

k+1

)

yk

for all m,n ∈ N, then, we understand that Dy = Ax. So, we obtain that D ∈ (c0 : Y ).

Now, we consider that {ank}k∈N ∈ (c0(Ω))β for all n ∈ N and D ∈ (c0 : Y ). We take any x = (xk) ∈ c0(Ω). Then, we can see that Ax exists.

Therefore, from the equality
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∑
k

dnkyk = ∑
k

ankxk

for all n ∈ N, we obtain that Ax = Dy. Therefore, this shows that A ∈ (c0(Ω) : Y ).

Theorem 4.2. Consider that the infinite matrices A = (ank) and E = (enk) with

enk :=
∞

∑
k=1

n

∑
j=1

a jk. (4.2)

Then, the following statements are true:

i. A = (ank) ∈ (X : c0(Ω)) if and only if E ∈ (X : c0)
ii. A = (ank) ∈ (X : c(Ω)) if and only if E ∈ (X : c)
iii. A = (ank) ∈ (X : ℓ∞(Ω)) if and only if E ∈ (X : ℓ∞)

Proof. We take any z = (zk) ∈ X . Using the (4.2), we have

m

∑
k=1

enkzk =
m

∑
k=1

(

∞

∑
k=1

m

∑
j=1

jb jk

)

zk (4.3)

for all m,n ∈ N. Then, for m → ∞, equation (4.3) gives us that (Ez)n = {Ω(Az)}n. Therefore, one can immediately observe from this that

Az ∈ c0(Ω) whenever z ∈ X if and only if Ez ∈ c0 whenever z ∈ X . Thus, the proof is completed.

Theorem 4.3. Consider the infinite matrices A = (ank) and F = ( fnk). These matrices get associated with each other in the following

relations:

fnk = kank − (k+1)an,k+1 (4.4)

for all k,m,n ∈ N. Then, the following statements are true:

i. A ∈ (c0(Γ) : Y ) if and only if {ank}k∈N ∈ [c0(Γ)]
β for all n ∈ N and F ∈ (c0 : Y ), where Y is any sequence space.

ii. A ∈ (c(Γ) : Y ) if and only if {ank}k∈N ∈ [c(Γ)]β for all n ∈ N and F ∈ (c : Y ), where Y is any sequence space.

iii. A ∈ (ℓ∞(Γ) : Y ) if and only if {ank}k∈N ∈ [ℓ∞(Γ)]
β for all n ∈ N and F ∈ (ℓ∞ : Y ), where Y is any sequence space.

Theorem 4.4. Consider that the infinite matrices A = (ank) and G = (gnk) with

gnk :=
∞

∑
k=1

n

∑
j=1

j−1a jk (4.5)

Then, the following statements are true:

i. A = (ank) ∈ (X : c0(Γ)) if and only if G ∈ (X : c0)
ii. A = (ank) ∈ (X : c(Γ)) if and only if G ∈ (X : c)
iii. A = (ank) ∈ (X : ℓ∞(Γ)) if and only if G ∈ (X : ℓ∞)

5. Examples

If we choose any sequence spaces X and Y in Theorem 4.1 and 4.2 in previous section, then, we can find several consequences in every

choice. For example, if we take the space ℓ∞ and the spaces which are isomorphic to ℓ∞ instead of Y in Theorem 4.1, we obtain the following

examples:

Example 5.1. The Euler sequence space er
∞ is defined by er

∞ = {x ∈ ω : supn∈N |∑n
k=0

(

n
k

)

(1− r)n−krkxk|< ∞} ([2] and [3]). We consider

the infinite matrix A = (ank) and define the matrix H = (hnk) by

hnk =
n

∑
j=0

(

n

j

)

(1− r)n− jr ja jk (k,n ∈ N).

If we want to get necessary and sufficient conditions for the class (c0(Ω) : er
∞) in Theorem 4.1, then, we replace the entries of the matrix A by

those of the matrix H.

Example 5.2. Let Tn = ∑
n
k=0 tk and A = (ank) be an infinite matrix. We define the matrix P = (pnk) by

pnk =
1

Tn

n

∑
j=0

t ja jk (k,n ∈ N).

Then, the necessary and sufficient conditions in order for A belongs to the class (c0(Ω) : rt
∞) are obtained from in Theorem 4.1 by replacing

the entries of the matrix A by those of the matrix P; where rt
∞ is the space of all sequences whose Rt−transforms is in the space ℓ∞ [7].

Example 5.3. In the space rt
∞, if we take t = e, then, this space become to the Cesaro sequence space of non-absolute type X∞ [8]. As a

special case, Example 5.2 includes the characterization of class ((c0(Ω) : rt
∞).
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Example 5.4. The Taylor sequence space tr
∞ is defined by tr

∞ = {x ∈ ω : supn∈N |∑∞
k=n

(

k
n

)

(1− r)n+1rk−nxk|< ∞} ([6]). We consider the

infinite matrix A = (ank) and define the matrix T = (tnk) by

tnk =
∞

∑
k=n

(

k

n

)

(1− r)n+1rk−na jk (k,n ∈ N).

If we want to get necessary and sufficient conditions for the class (c0(Ω) : tr
∞) in Theorem 4.1, then, we replace the entries of the matrix A by

those of the matrix T .

If we take the spaces c, cs and bs instead of X in Theorem 4.2, or Y in Theorem 4.1 we can write the following examples. Firstly, we give

some conditions and following lemmas:

lim
k

ank = 0 for all n , (5.1)

lim
n→∞

∑
k

ank = 0, (5.2)

lim
n→∞

∑
k

|ank|= 0, (5.3)

lim
n→∞

∑
k

|ank −an,k+1|= 0, (5.4)

sup
n

∑
k

∣

∣ank −an,k+1

∣

∣< ∞ (5.5)

lim
k

(

ank −an,k+1

)

exists for all k (5.6)

lim
n→∞

∑
k

∣

∣ank −an,k+1

∣

∣= ∑
k

∣

∣

∣
lim
n→∞

(ank −an,k+1)
∣

∣

∣
(5.7)

sup
n

∣

∣

∣

∣

lim
k

ank

∣

∣

∣

∣

< ∞ (5.8)

Lemma 5.5. Consider that X ∈ {ℓ∞,c,bs,cs} and Y ∈ {c0}. The necessary and sufficient conditions for A ∈ (X : Y ) can be read from the

Table 5:

9. (5.3) 10. (3.1), (3.5), (5.2) 11. (5.1), (5.4) 12. (3.5), (5.5)

13. (5.1), (5.6), (5.7) 14. (5.5), (3.9) 15. (5.1), (5.5) 16. (5.5), (5.8)

From → ℓ∞ c bs cs

To ↓

c0 9. 10. 11. 12.

c 7. 5. 13. 14.

ℓ∞ 1. 1. 15. 16.

Table 5

Example 5.6. We choose X ∈ {c0(Ω),c(Ω), ℓ∞(Ω)} and Y ∈ {ℓ∞,c,cs,bs, f}. The necessary and sufficient conditions for A ∈ (X : Y ) can

be taken from the Table 6:

1a. (3.1) holds with dnk instead of ank.

2a. (3.1), (3.9) hold with dnk instead of ank.

3a. (3.6) holds with dnk instead of ank.

4a. (3.6), (3.7) hold with dnk instead of ank.

5a. (3.1), (3.9), (3.3) hold with dnk instead of ank.

6a. (3.6), (3.7), (3.8) hold with dnk instead of ank.

7a. (3.9), (3.4) hold with dnk instead of ank.

8a. (3.10) holds with dnk instead of ank.

To → ℓ∞ c bs cs

From ↓

c0(Ω) 1a. 2a. 3a. 4a.

c(Ω) 1a. 5a. 3a. 6a.

ℓ∞(Ω) 1a. 7a. 3a. 8a.

Table 6

Example 5.7. Consider that the X ∈ {ℓ∞,c,bs,cs} and Y ∈ {c0(Ω),c(Ω), ℓ∞(Ω)}. The necessary and sufficient conditions for A ∈ (X : Y )
can be read from the Table 7:
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9a. (5.3) holds with enk instead of ank.

10a. (3.1), (3.5), (5.2) hold with enk instead of ank.

11a. (5.1), (5.4) hold with enk instead of ank.

12a. (3.5), (5.5) hold with enk instead of ank.

13a. (5.1), (5.6), (5.7) hold with enk instead of ank.

14a. (5.5), (3.9) hold with enk instead of ank.

15a. (5.1), (5.5) hold with enk instead of ank.

16a. (5.5), (5.8) hold with enk instead of ank.

From → ℓ∞ c bs cs

To ↓

c0(Ω) 9a. 10a. 11a. 12a.

c(Ω) 7a. 5a. 13a. 14a.

ℓ∞(Ω) 1a. 1a. 15a. 16a.

Table 7

With the same idea of Example 5.6 and Example 5.7, we can write the examples related to the Γ matrix as table form. In examples which are

writing with Γ matrix, we use the fnk and gnk.

6. Conclusion

We know that the most general linear operators between two sequence spaces is given by an infinite matrix. The theory of matrix transforma-

tions deals with establishing necessary and sufficient conditions on the entries of a matrix to map a sequence space X into a sequence space

Y . This is a natural generalization of the problem to characterize all summability methods given by infinite matrices that preserve convergence.

In this work, we construct new sequence spaces by means of the matrix domain with two infinite matrices. We examine some properties such

as isomorphism, BK−space, AK− and AB−properties, monotone norm. Also, we give dual spaces and later the necessary and sufficient

conditions on the matrix transformations of the classes (X :Y ). Afterward, in the last section, we obtain several examples related to new spaces.

In this paper, a flowchart showing the stages of the formation of a new sequence space is designed. Algorithms have been produced to

construction of a new sequence space, base, separability, calculation of dual spaces and matrix characterizations.
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[2] B. Altay, F. Başar, On some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1)(2005), 1–17.
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Abstract

Common Cuckoo is a brood-parasite which lays its egg in the nest of other bird species

and use them to raise its young. We present a Common Cuckoo and a host bird interaction

deterministic model taking into account maternal care of offspring. The model consists

of a coupled system of integro-partial differential equations subject to the conditions of

the integral type. Number of equations in the system depends on a biologically possible

maximal number of eggs of the same clutch laid by a host bird. Separable solutions of this

model are studied.

1. Introduction

Brood parasites are organisms that use of host individuals either of the same or different species to raise the young of the brood-parasite. We

consider the Common Cuckoo (Cuculus canorus), formerly European Cuckoo, and host birds interaction deterministic model. Cuckoo is a

brood-parasite, which lays its eggs in the nests of other bird species, particularly of Dunnocks, Meadow Pipits, and Eurasian Reed Warblers.

The cuckoo egg hatches earlier than eggs of the host bird. Cuckoo chick is much larger than its hosts [1]. It grows faster and monopolizes

food supplied by the host parents [2]. Shortly after hatching it evicts all host eggs and chicks by rolling and pushing the other eggs and

chicks out of the nest [2]. For the sake of simplicity we assume that it evicts all host chicks and eggs immediately after hatching and that the

host bird takes care of only one cuckoo’s chick living in the nest. If the hen cuckoo is out-of-phase with the host eggs, she will eat them all so

that the hosts are forced to start another brood [2, 3].

In this paper, we present a common cuckoo and a host species interaction deterministic model described by a coupled system of integro-PDEs

and prove the existence of its separable solutions. We take into account age of birds and a finite set of eggs in the nest and generalize

a one-sex population model given in [4]. We assume that all individuals have pre-reproductive, reproductive, and post-reproductive age

intervals. Individuals of reproductive age are divided into single and those who care of young offspring. Individuals of pre-reproductive

age are divided into young (under maternal care) and juvenile classes. Juveniles can live without maternal care but cannot produce their

offspring. It is assumed that after the death of mother all her young offspring die.

For the sake of simplicity, we consider (i) the joint parental care period which consists of the incubation and chick feeding periods and (ii)

the same reproductive period for cuckoos and host birds. We also assume that the brood parasite lays his egg before incubation of clutch has

started and do not take into account migration of cuckoos. To the best of our knowledge deterministic differential models have not been used

yet for description of the interaction of cuckoos and host bird species.

The paper is organized as follows. In Section 2 we formulate the problem. In Section 3 we consider separable solutions of the model.

Concluding remarks are given in Section 5.

2. Notation

(0,T ) and (T1,T3) (T < T1 < T3, T < T3 −T1): the child care and reproductive age intervals, respectively, (the same for host birds and

cuckoos),

u(t,τ1): the age density of host birds aged τ1 at time t who are of juvenile (τ1 ∈ (T,T1)), single (τ1 ∈ (T1,T3)), or post-reproductive (τ1 > T3)

age,

uk(t,τ1,τ2): the age density of host birds aged τ1 at time t who take care of their k, 1 ≤ k ≤ n, offspring aged τ2 at the same time,

ν(t,τ1): the natural death rate of host birds aged τ1 > T at time t who are of juvenile or adult age,

Email address: vladas.skakauskas@mif.vu.lt (V. Skakauskas)
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νk(t,τ1,τ2): the natural death rate of host birds aged τ1 at time t who take care of their k offspring aged τ2,

νks(t,τ1,τ2): the natural death rate of k− s host young offspring aged τ2 at time t whose mother is aged τ1 at the same time,

αk(t,τ1)u(t,τ1)dτ1dt, αk(t,τ1)< 1,: the average number of host birds of age from interval [τ1,τ1 +dτ1], τ1 ∈ (T1,T3), at time t who lay k

eggs in their nest in time interval [t, t +dt],

uc(t,τ1,τ2): the age density of host birds aged τ1 at time t who take care of a cuckoo chick aged τ2,

νc(t,τ1,τ2): the natural death rate of host birds aged τ1 at time t who take care of a cuckoo chick aged τ2,

νc0(t,τ1,τ2): the natural death rate of cuckoo chick aged τ2 at time t whose host mother is aged τ1 at the same time,

αck(t,τ1)αk(t,τ1)u(t,τ1)dτ1dt, 0 < αck(t,τ1)< 1,: the average number of nests formed of one Cuckoo’s and k of host bird eggs laid in time

interval [t, t +dt] by host birds of age from interval [τ1,τ1 +dτ1],

f (t,τc): the age density of Cuckoos aged τc at time t who are of juvenile (τc ∈ (T,T1)), reproductive (τc ∈ (T1,T3)), or post-reproductive

(τc > T3) age,

ν f (t,τc): the natural death rate of Cuckoos aged τc at time t,

u0(τ1),uk0(τ1,τ2),uc0(τ1,τ2), f0(τc): the initial age distributions,

T2 = T1 +T : the minimal age of an individual finishing care of offspring of the first generation,

T4 = T3 +T : the maximal age of an individual finishing care of offspring of the last generation,

α = ∑
n
k=1 αk, ν̃k = νk +∑

k−1
s=0 νks,

Q = {(τ1,τ2) : τ1 ∈ (T1 + τ2,T3 + τ2), τ2 ∈ (0,T )}.

3. The model

In this section we present a deterministic model for co-evolution of an age-structured population of host birds and cuckoos taking into

account a finite number of eggs in the nest. We assume that all young offspring become juveniles at age τ1 = T and all juveniles become

adults at the age τ1 = T1. Let n be the biologically possible maximal number of eggs of prey laid in the nest. Denote

L1u = ∂tu+∂τ1
u+νu, (3.1)

L2z = ∂tz+∂τ1
z+∂τ2

z for z = uc, uk. (3.2)

The model is composed of the following coupled system of integro-differential equations:















L2uc +∂τ2
uc +(νc +νc0)uc = 0, (τ1,τ2) ∈ Q, t > 0,

uc

∣

∣

τ2=0
=

n

∑
k=1

αckαku, τ1 ∈ (T1,T3), t ≥ 0,

uc

∣

∣

t=0
= uc0, (τ1,τ2) ∈ Q,

(3.3)



















































L2un +(νn +
n−1

∑
s=0

νns)un = 0, (τ1,τ2) ∈ Q, t > 0,

L2uk +
(

νk +
k−1

∑
s=0

νks

)

uk

=
n

∑
s=k+1

νskus, 1 ≤ k ≤ n−1, (τ1,τ2) ∈ Q, t > 0,

uk

∣

∣

t=0
= uk0, (τ1,τ2) ∈ Q, k = 1, . . . ,n,

uk

∣

∣

τ2=0
= αku(1−αck), τ1 ∈ (T1,T3), t ≥ 0, k = 1, . . . ,n,

(3.4)

L1u =















































































































0, τ1 ∈ (T,T1)∪ (T4,∞), t > 0,

−αu+
τ1−T1
∫

0

(
n

∑
k=1

νk0uk +νc0uc

)

dτ2, τ1 ∈ (T1,T2), t > 0,

−αu+
T
∫

0

(
n

∑
k=1

νk0uk +νc0uc

)

dτ2

+
(

n

∑
k=1

uk +uc

)

|τ2=T , τ1 ∈ (T2,T3), t > 0,

T
∫

τ1−T3

(
n

∑
k=1

νk0uk +νc0uc

)

dτ2

+
(

n

∑
k=1

uk +uc

)

|τ2=T , τ1 ∈ (T3,T4), t > 0,

u
∣

∣

τ1=T
=

T4
∫

T2

n

∑
k=1

kuk

∣

∣

τ2=T
dτ1, t ≥ 0,

u
∣

∣

t=0
= u0, τ1 ∈ [T,∞),

u
∣

∣

τ1=Ti−0
= u

∣

∣

τ1=Ti+0
, i = 1,2,3,4, t ≥ 0,

(3.5)
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

















∂t f +∂τc
f =−ν f f , τc > T, t > 0,

f
∣

∣

τc=T
=

T4
∫

T2

uc

∣

∣

τ2=T
dτ1, t ≥ 0,

f
∣

∣

t=0
= f0, τc ∈ [T,∞).

(3.6)

Here ∂t and ∂τk
signify partial derivatives. We describe fraction αck by the function

αck(t,τ1) =

T3
∫

T1

βk(t,τ1,τc) f (t,τc)dτc

T3
∫

T1

f (t,τc)dτc

. (3.7)

The first term on the right-hand side in Eq. (3.5) is conditioned by individuals who produces offspring, the second and third terms are

conditioned by individuals whose all young offspring die and who finish child care, respectively. The transition term
k−1

∑
s=0

νksuk on the

left-hand side in Eq. (3.4) is conditioned by individuals aged τ1 at time t who take care of k young offspring and whose at least one young

offspring dies. Similarly, the term on the right-hand side in this equation is conditioned by individuals aged τ1 at time t who take care of

more than k,1 ≤ k ≤ n−1, young offspring aged τ2 whose number after the death of the other offspring is equal to k. As follows from the

foregoing, the given functions ν ,νk,νks,νc,νc0,ν f ,αk,αck, u0,uk0,uc0, f0 must be positive supported. Constants T,T1, and T3 are assumed

to be given and positive. The assumptions T < T1, T < T3 −T1 given in Section 2 are natural.

Densities of offspring of hosts and cuckoo we define by formulas

u(t,τ2) =

T3+τ2
∫

T1+τ2

n

∑
k=1

kuk(t,τ1,τ2)dτ1, f (t,τ2) =

T3+τ2
∫

T1+τ2

uc(t,τ1,τ2)dτ1 (3.8)

where τ2 ∈ [0,T ].

4. Separable solutions to problem (1)–(7)

In this section we restrict ourselves to the case where the vital rates ν ,νc,νc0, ν f ,νk,νks, αk, αck and βk do not depend on t. We seek

solutions of the form


















u =Uv(τ1)ρ(t,τ1,λ ), v(T ) = 1,

uk =Uv(τ1 − τ2)vk(τ1,τ2)ρ(t,τ1,λ ),

uc =Uv(τ1 − τ2)vc(τ1,τ2)ρ(t,τ1,λ ),

f =Uw(τc)ρ(t,τc,λ ),

(4.1)



















u0 =Uv(τ1)ρ(0,τ1,λ ),

uk0 =Uv(τ1 − τ2)vk(τ1,τ2)ρ(0,τ1,λ )

uc0 =Uv(τ1 − τ2)vc(τ1,τ2)ρ(0,τ1,λ )

f0 =Uw(τc)ρ(0,τc,λ ),

(4.2)

where ρ(t,τ1,λ ) = exp{λ (t − τ1 +T )}, U > 0 is an arbitrary constant while constant λ and functions v,vk,vc, and w are to be determined.

Obviously, separable solutions are the steady-state solutions if λ = 0, die if λ < 0, and grow if λ > 0.

Theorem 4.1. Letν and ν f , βk, αk, and functions νk, νks, νc, νc0 be positive in domains [T,∞), [T1,T3]× [T1,T3], [T1,T3], and Q, respectively,

and let α < 1 in [T1,T3], βk < 1 in [T1,T3]× [T1,T3].

If βk ∈ C1,0
(

[T1,T3]× [T1,T3]
)

, νk, νks, νc, and νc0 ∈ C0(Q)∩C10(Q), αk ∈ C0([T1,T3]∩C1(T1,T3), ν and ν f ∈ C0[T,∞), then system

(1)–(7) has at least one class of positive separable solutions of type (4.1), (4.2).

If ∂τc
βk = 0 and βk ∈C0([T1,T3]∩C1((T1,T3)), then system (1)–(7) has only one class of positive separable solutions of type (4.1), (4.2).

In both cases of βk, vc and vk ∈C0(Q)∩C1(Q), k = 1, . . . ,n, v ∈C0([T,∞))∩C1
(

(T,∞)\{T1,T2,T3,T4}
)

.

Proof. Inserting Eqs. (4.1), (4.2) into (1)–(7) we derive equations for vc, vk,w,v,







∂τ1
vc +∂τ2

vc +(νc +νc0)vc = 0 in Q,

vc(τ1,0) =
n

∑
k=1

αk(τ1)qk(τ1,λ ), τ1 ∈ (T1,T3),
(4.3)















∂τ1
vn +∂τ2

vn + ν̃nvn = 0 in Q,

∂τ1
vk +∂τ2

vk + ν̃kvk =
n

∑
s=k+1

νskvs, 1 ≤ k ≤ n−1 in Q,

vk(τ1,0) = αk(1−qk(τ1,λ )), k = 1, . . . ,n, τ1 ∈ (T1,T3),

(4.4)
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









w′ =−ν f w in (T,∞)

w(T ) =
T3
∫

T1

v(x)vc(x+T,T )exp{−λx}dx,
(4.5)

v′+νv =































































0 in (T,T1)∪ (T4,∞), v(T ) = 1,

−αv+
τ1
∫

T1

K(τ1,τ1 − x)v(x)dx in (T1,T2),

−αv+
τ1
∫

τ1−T

K(τ1,τ1 − x)v(x)dx+A(τ1)v(τ1 −T )

in (T2,T3),
T3
∫

τ1−T

K(τ1,τ1 − x)v(x)dx+A(τ1)v(τ1 −T ) in (T3,T4),

v(Ti −0) = v(Ti +0), i = 1,2,3,4,

(4.6)

and the characteristic equation for λ ,

T3
∫

T1

exp{−λx}
n

∑
k=1

kvk(x+T,T )v(x)dx = 1 (4.7)

where

qk(τ1,λ ) =
T3
∫

T1

βk(τ1,x)w(x)exp{−λx}dx
( T3
∫

T1

w(x)exp{−λx}dx
)−1

,

K(τ1,τ2,λ ) =
n

∑
k=1

νk0(τ1,τ2)vk(τ1,τ2)+νc0(τ1,τ2)vc(τ1,τ2),

A(τ1,λ ) =
n

∑
k=1

vk(τ1,T )+ vc(τ1,T ).

Here and in what follows the prime indicates differentiation.

We integrate Eq. (4.5) obtaining

w(τc) = w(T )exp
{

−

τc
∫

T

ν f (ξ )dξ
}

. (4.8)

Therefore

qk(τ1,λ ) =

∫ T3

T1
βk(τ1,x)exp{−λx−

∫ x
T ν f (ξ )dξ}dx

∫ T3

T1
exp{−λx−

∫ x
T ν f (ξ )dξ}dx

.

Then integrating Eqs. (4.3) and (4.4) we determine functions vc and vn,

vc(τ1,τ2) =
n

∑
k=1

αk(τ1 − τ2)qk(τ1 − τ2,λ )× exp{−

τ2
∫

0

(νc(x+ τ1 − τ2,x)+νc0(x+ τ1 − τ2,x))dx}, (4.9)

vn(τ1,τ2) = αn(τ1 − τ2)(1−qn(τ1 − τ2,λ ))exp
{

−

τ2
∫

0

ν̃n(x+ τ1 − τ2,x)dx
}

(4.10)

and derive equations for vk, k = 1, ...,n−1,

vk(τ1,τ2) = αk(τ1 − τ2)(1−qk(τ1 − τ2,λ )) (4.11)

× exp{−

τ2
∫

0

ν̃k(x+ τ1 − τ2,x)dx}+

τ2
∫

0

n

∑
s=k+1

(νskvs)(y+ τ1 − τ2,y)exp{−

τ2
∫

y

ν̃k(x+ τ1 − τ2,x)dx}dy

Equation (4.11) can be solved in the recurrent way starting with k = n− 1 and using function (4.10). It is evident that vc and vk ∈
C0(Q)∩C1(Q), k = 1, . . . ,n.

Now we solve Eq. (4.6). From (4.6)1 for τ1 ∈ [T,T1] it follows that
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v(τ1) = exp
{

−

τ1
∫

T

ν(ξ )dξ
}

.

To determine v for τ1 ∈ (T1,T2] we integrate Eq. (4.6)2 together with the initial condition v(T1) = exp{−
∫ T1

T ν(ξ )dξ} getting

v(τ1) = v(T1)exp
{

−

τ1
∫

T1

(ν(ξ )+α(ξ ))dξ
}

v(τ1)+

τ1
∫

T1

exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy

y
∫

T1

K(y,y− x,λ )v(x)dx.

Then changing the order of integration we reduce it to the Volterra type equation














v(τ1) = v(T1)exp{−
τ1
∫

T1

(ν(ξ )+α(ξ ))dξ}

+
τ1
∫

T1

v(x)dx
τ1
∫

x
K(y,y− x,λ )exp{−

τ1
∫

y
(ν(ξ )+α(ξ ))dξ}dy

(4.12)

which has a unique positive solution v for any finite λ .

To determine v in (T2,T3] we have to solve Eq. (4.6)3 with the initial value v(T2) determined by Eq. (4.12). Because of the retarded structure

with delay T we consider this equation going with the step T along the axis τ1. For τ1 ∈ [T2 + sT,min(T2 +(s+1)T,T3)), s = 0,1, ..., we

rewrite it in the form



































v(τ1) = v(T2 + sT )exp{−
τ1
∫

T2+sT

(

ν(ξ )+α(ξ )
)

dξ}

+
τ1
∫

T2+sT

exp{−
τ1
∫

y

(

ν(ξ )+α(ξ )
)

dξ}dy
y
∫

y−T

K(y,y− x,λ )v(x)dx

+
τ1−T
∫

T2+(s−1)T

exp{−
τ1
∫

x+T

(

ν(ξ )+α(ξ )
)

dξ}A(x+T,λ )v(x)dx.

(4.13)

Since {(x,y) : x ∈ [y−T,y], y ∈ [T2 + sT,τ1]}= D1 ∪D2 ∪D3,

where

D1 = {(x,y) : x ∈ [y−T,τ1 −T ], y ∈ [T2 + sT,τ1]}

= {(x,y) : x ∈ [T2 +(s−1)T,τ1 −T ], y ∈ [T2 + sT,x+T ]},

D2 = {(x,y);x ∈ [τ1 −T,T2 + sT ], y ∈ [T2 + sT,τ1]},

D3 = {(x,y) : x ∈ [T2 + sT,y],y ∈ [T2 + sT,τ1]}

= {(x,y) : x ∈ [T2 + sT,τ1], y ∈ [x,τ1]},

the second term in the right-hand side of Eq. (4.13) can be written as follows:

τ1
∫

T2+sT

exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy

y
∫

y−T

K(y,y− x,λ )v(x)dx

=

τ1−T
∫

T2+(s−1)T

v(x)dx

x+T
∫

T2+sT

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy

+

T2+sT
∫

τ1−T

v(x)dx

τ1
∫

T2+sT

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy

+

τ1
∫

T2+sT

v(x)dx

τ1
∫

x

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy.

Denote

gs(τ1,λ ) = v(T2 + sT )exp
{

−

τ1
∫

T2+sT

(ν(ξ )+α(ξ ))dξ
}

+

τ1−T
∫

T2+(s−1)T

A(x+T )v(x)exp
{

−

τ1
∫

x+T

(ν(ξ )+α(ξ ))
}

dξ

+

τ1−T
∫

T2+(s−1)T

v(x)dx

x+T
∫

T2+sT

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy

+

T2+sT
∫

τ1−T

v(x)dx

τ1
∫

T2+sT

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy
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and rewrite Eq. (4.13) in the Volterra form

v(τ1) = gs(τ1,λ )+

τ1
∫

T2+sT

v(x)dx

τ1
∫

x

K(y,y− x,λ )exp
{

−

τ1
∫

y

(ν(ξ )+α(ξ ))dξ
}

dy (4.14)

for τ1 ∈ [T2 + sT,min(T2 +(s+1)T,T3)].

Starting with s = 0 and using the recurrent way we first determine gs(τ1,λ ) and then solve Volterra Eq. (4.14) getting v ∈C0([T2,T3]). It is

evident that v ∈C1(T2 + sT,min(T2 +(s+1)T,T3)) for every fixed s. Direct calculation shows that v′ is continuous at points T2 + sT < T3

with s > 1.

Then we solve Eq. (4.6)4 for τ1 ∈ (T3,T4] with known the right hand side to get

v(τ1) = v(T3)exp
{

−

τ1
∫

T3

ν(ξ )dξ
}

+

τ1
∫

T3

exp
{

−

τ1
∫

y

ν(ξ )dξ
}

dy

T3
∫

y−T

K(y,y− x,λ )v(x)dx

+

τ1−T
∫

T3−T

exp
{

−

τ1
∫

y+T

ν(ξ )dξ
}

A(y+T,λ )v(y)dy.

For τ1 > T4 we solve Eq. (4.6)1 to get v(τ1) = v(T4)exp{−
∫ τ1

T4
ν(ξ )dξ}.

From Eqs. (4.5)2 and (4.9) we get

w(T ) =

T3
∫

T1

v(x)
n

∑
k=1

αk(x)qk(x,λ )exp
{

−λx−

T
∫

0

(νc(ξ ,ξ )+νc0(ξ ,ξ ))dξ
}

dx

where v is determined by Eqs. (4.12) and (4.14). It is evident that

v ∈C0([T,∞))∩C1
(

(T,∞)\{T1,T2,T3,T4}
)

.

At last, inserting vk and v determined above into Eq. (4.7) we derive an equation for λ ,

L(λ ) = 1, L(λ ) :=

T3
∫

T1

e−λx
n

∑
k=1

kvk(x+T,T )v(x)dx. (4.15)

If βk is independent of τc, then qk is independent of λ too. Hence, qk = βk(τ1). Therefore, v, vk, and vc do not depend on λ as well. Because

of the monotonicity in λ and since L → ∞ as λ →−∞ and L → 0 as λ → ∞ Eq. (4.15) has a unique real root λ0 such that λ0 < 0, if L(0)< 1

(in this case cuckoo and host bird populations die), λ0 = 0, if L(0) = 1 (both populations die), and λ0 > 0, if L(0)> 1 (both populations

grow).

In the case where ∂τc
βk 6= 0, we have

0 < βk∗ = min
[T1,T3]×[T1,T3]

βk < qk(τ1,λ )< max
[T1,T3]×[T1,T3]

βk = β ∗
k < 1.

Let v∗c(τ1,τ2) and vc∗(τ1,τ2) be functions defined by Eq. (4.9) with qk replaced by β ∗
k and βk∗, respectively. Let v∗k(τ1,τ2) and vk∗(τ1,τ2), k =

1,2, ...,n, be functions defined by Eqs. (4.10) and (4.11) with qk replaced by βk∗ and β ∗
k , respectively. Then vc∗ < vc < v∗c and vk∗ < vk < v∗k .

Hence,

K∗(τ1,τ2) :=
n

∑
k=1

νk0(τ1,τ2)vk∗(τ1,τ2)+νc0(τ1,τ2)vc∗(τ1,τ2)< K(τ1,τ2,λ )

< K∗(τ1,τ2) :=
n

∑
k=1

νk0(τ1,τ2)vk ∗ (τ1,τ2)+νc0(τ1,τ2)vc ∗ (τ1,τ2),

A∗(τ1) :=
n

∑
k=1

vk∗(τ1,T )+ vc∗(τ1,T )< A(τ1,λ )

< A∗(τ1) :=
n

∑
k=1

vk ∗ (τ1,T )+ vc ∗ (τ1,T ).

Then we solve Eqs. (4.12) and (4.14) with K(τ1,τ2,λ ), A(τ1,λ ) replaced by K∗(τ1,τ2), A∗(τ1) and K∗(τ1,τ2), A∗(τ1) getting v∗ and v∗,

respectively, for τ1 ∈ [T1,T3]. Obviously, v∗ < v < v∗.
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Therefore,

L∗(λ ) :=

T3
∫

T1

e−λx
n

∑
k=1

kvk∗(x+T,T )v∗(x)dx < L(λ )

< L∗(λ ) :=

T3
∫

t1

e−λx
n

∑
k=1

kvk∗(x+T,T )v∗(x)dx.

These equations show that Eq. (4.15) has at least one real root λ . Moreover, λ > 0, if L∗(0) > 1, and λ < 0, if L∗(0) < 1. The proof is

complete.

Knowing v, vc, vk, k = 1, . . . ,n, we determine densities of cuckoo and host chicks of age τ2 ≤ T by formulas (3.8),

f (t,τ2) =U

T3
∫

T1

v(x)vc(x+ τ2,τ2)exp{λ (t − x+T − τ2)}dx,

u(t,τ2) =U

T3
∫

T1

v(x)
n

∑
k=1

kvk(x+ τ2,τ2)exp{λ (t − x+T − τ2)}dx.

5. Conclusions

The rather generic phenomenological model for Common Cuckoo interaction with the other bird species is presented. The model is composed

of a system of integro-partial differential equations. All individuals have pre-reproductive, reproductive, and post-reproductive age intervals.

Individuals of reproductive age are divided into single and those who care of young offspring. Individuals of pre-reproductive age are divided

into young (under maternal care) and juvenile classes. Juveniles can live without maternal care but cannot produce their offspring.

In the case of special initial distributions, the existence of separable solutions of type (4.1) is proved. The conditions for the convergence of

separable solutions to a steady-state solution, populations death and growth are given. The solvability of the model for the initial distributions

of a general type is an open problem.
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Abstract

The insertion of holes into laminates can be done by producing a fiber reinforced compos-

ite plate and, subsequently, drilling the borehole. Alternatively, we can bypass the fibers

around the final hole before injecting the matrix material. In the first case, the spatial

distribution of the axis of anisotropy, and the structural tensor concerned, are spatially con-

stant. In the second case, i.e. the fiber circumplacement around the hole, a space-dependent

anisotropy has to be considered. Instead of the common approach of defining region-wise

constant fiber orientations, we propose a continuous formulation of fiber orientations us-

ing streamlines. To estimate the final stress and strain state for a unidirectional composite

plate, three-dimensional finite element simulations are performed, where spatially constant

transverse isotropy is compared to inhomogeneously distributed fiber orientation around

the hole. It will turn out that the resulting stress states lead to both reduced stress ampli-

tudes in loading direction as well as compressive strains in lateral direction. A detailed

mathematical derivation of the basic equations accompanies the investigations.

1. Introduction

One possibility to produce laminates is to use one fiber direction. In this respect, woven fabrics are out the scope of the subsequent,

first investigations. To compute a homogenized stress distribution, it is convenient to draw on linear elasticity for transverse isotropy for

such kind of unidirectional laminates, see, for example, [1, 2], and, for a brief overview, [3]. These works go back to the fundamental

contribution of [4]. In the field of small deformation, there exist a number of contributions, see, for example, [5, 6, 7, 8, 9]. There is a

new area of applications of transverse isotropy, namely the field of biomechanics, since several soft tissues show this kind of anisotropic

behavior, [10, 11, 12, 13, 14]. For particular descriptions, see [15, 16, 17]. Since there are only a very few analytical solutions (making

sense for code verification purposes), numerical methods have to be chosen. Here, the finite element method is the most common approach.

However, there might be also difficulties for low order elements. Regarding numerical difficulties, such as locking effects due to constraints

in fiber direction under particular loading conditions, see [18, 19] and the literature cited therein. In our contribution fine meshes and

quadratic shape functions are chosen to minimize numerical problems.

Fiber-reinforced plates must be connected to other structural elements, which is sometimes done using skews or rivets. Frequently, holes

are drilled into the final plate so that some fibers are cut. To circumvent this, a suitable possibility is given by bypassing fibers around the

hole in advance, i.e. during the production process.

Different methods have been developed for defining fiber orientation to investigate different issues of plates with a hole. Regarding stiffen-

ing laminates and to achieve variable stiffness in specimens, see [20, 21]. Detailed research is available to optimize the fiber orientation near

a hole, path optimization of laminated composite structures, and to find the optimal fiber angle distribution, see [22, 23, 24, 25]. [26, 27]

study problems in buckling, failure, and vibration in laminates reinforced by curvilinear fibers. For more studies on stress, strain, fracture,

and the influence of the thickness distribution in a ply with variable fiber angles, see [28, 29, 30, 31, 32, 33, 34]. Commonly, the works

treat fiber orientation defined with piece-wise functions, see [24], or by element-wise formulations, see [27, 23].

In this study, fiber orientation is presented by using streamline function in fluid mechanics to obtain continuously distributed fiber orienta-

tions. Thus, we are interested in modeling both approaches using finite elements, where for the bypass approach a fiber orientation model

Email addresses: stefan.hartmann@tu-clausthal.de (S. Hartmann), akh17@tu-clausthal.de (A, K. Marghzar)
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using streamline theory around a circular cylinder is proposed. Finally, the results of the computations with uniform fiber orientation and

the bypass-approach are compared.

The article is structured as follows: first, the constitutive model of transverse isotropy for the small strain case is derived from the large

strain theory by geometrical linearization. Afterwards, we propose the streamline model to describe how fiber directions lie around a

circular hole. Finally, finite element simulations are provided, where the stress and strain states for small strain applications are compared.

The notation in use is defined in the following manner: geometrical vectors are symbolized by ~a, second-order tensors A by bold-faced

Roman letters, and calligraphic letters A define fourth order tensors. Furthermore, we introduce matrices by bold-faced Roman letters A.

2. Constitutive model of transverse isotropy

In the following, we motivate the model of transverse isotropy for linear elasticity and a small strain theory. Afterwards, a model for a fiber

orientation around a hole is proposed, which is based on the theory of streamlines.

2.1. Basic equations

Frequently, constitutive equations for transverse isotropy of an elastic material are modeled using a strain-energy function depending on the

Green strain tensor E = (1/2)(FT F− I), or, alternatively, on the right Cauchy-Green tensor C = FT F, and a structural tensor M containing

the information of the fiber orientation

T̃ = ρR
∂ψ(E,M)

∂E
= 2ρR

∂ψ(C,M)

∂C
. (1)

F(~X , t) = Grad~χR(~X , t) represents the deformation gradient of the motion ~x = ~χR(~X , t), where the material point ~X occupies the spatial

position~x at time t. I = δi j~ei⊗~e j defines the second order identity tensor. In the case of transverse isotropy the structural tensor reads M =

~a⊗~a, where ~a(~X) defines the orientation of the fiber direction with the property ‖~a‖ = 1. T̃ symbolizes the second Piola-Kirchhoff stress

tensor, which is related to the (true) Cauchy stress tensor T by T̃ = (detF)F−1TF−T . ρR represents the density in reference configuration.

The dependence of the strain energy function is not arbitrary but consists of particular number of invariants,

T̃ = ρR
∂ψ̂(IE, IIE, IIIE, IVE,VE)

∂E
= 2ρR

∂ψ̂(IC, IIC, IIIC, IVC,VC)

∂C
, (2)

which are defined by

IE = trE, IIE = trE2, IIIE = trE3, IVE = tr(EM) = E ·M, VE = tr(E2M) = E2 ·M, (3)

IC = trC, IIC = trC2, IIIC = trC3, IVC = tr(CM) = C ·M, VC = tr(C2M) = C2 ·M, (4)

see [4, 35]. The invariants of the Green strain and right Cauchy-Green tensor are related by

IC = 2IE +3, IIC = 4IIE +4IE +3, IIIC = 8IIIE +8IIE +6IE +3, IVC = 2IVE +1, VC = 4VE +4IVE +1

or vice versa

IE =
1

2
(IC−3), IIE =

1

4
(IIC−2IC +3), IIIE =

1

8
(IIIC−2IIC + IC), IVE =

1

2
(IVC−1), VE =

1

4
(VC−2IVC +1).

Since we are interested in formulating a constitutive model for small strains, we draw on the formulation using the Green strain tensor E.

Applying the chain rule on Eq.(2)1 yields

T̃ = ρR

(

∂ψ̂

∂ IE
I+

∂ψ̂

∂ IIE
E+

∂ψ̂

∂ IIIE
E2 +

∂ψ̂

∂ IVE
M+

∂ψ̂

∂VE
(EM+ME)

)

. (5)

To obtain a linear elastic, small strain theory, which is fully appropriate in our application, several assumptions are introduced:

1. First, the Green strain tensor has to be linearized in view of the displacement gradient H = Grad~u(~X , t) with~u(~X , t) = ~χR(~X , t)−~X ,

E =
1

2
(H+HT +HT H) =

1

2
(H+HT )+O(‖H‖2), (6)

i.e. the quadratic term is omitted, see [36, 37].

2. Since we are interested in a theory of small displacements, it is assumed that there is no distinction between the spatial coordinates~x
and the coordinates in the reference configuration ~X . Thus, the linearized Green strain tensor reads

EL(~x, t) =
1

2
(grad~u(~x, t)+gradT ~u(~x, t))≈ E, (7)

implying that we have small displacements and small strains, i.e.~x≈ ~X ,~u(~X , t) =~u(~x, t). There is no distinction of the configurations

and all material properties are assigned to a spatial point~x. In the following, we omit the index L for brevity.

3. If we are interested in a linear theory, i.e. the resulting stress state T depends linearly on the strain state E, and the strain-energy

function (5) must quadratically depend on the strain tensor E. This is given by

ψ(E,M) =
λ

2
I2
E +µT IIE +αIEIVE +2(µL−µT )VE +

β

2
IV2

E. (8)

There cannot be a dependence on the third invariant IIIE, which automatically leads to a non-linear elastic material, see [4, 1, 2].
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4. The stresses have the tendency to become equal for very small strains. Thus, we do not distinct between different stress measures,

T̃→ T. Accordingly, we arrive at the final stress state applying Eq.(2)1

T = ρR ((λ IE +αIVE)I+2µT E+(αIE +β IVE)M+2(µL−µT )(EM+ME)) . (9)

5. Frequently, the product of the density in the reference configuration with the material parameters is omitted so that the density is not

visible in the final expression, i.e. we define

λ ← ρRλ , µT ← ρRµT , µL← ρRµL, α ← ρRα, β ← ρRβ . (10)

Using all these assumptions lead to a particular expression, where elasticity relation (9) can be expressed by a fourth order elasticity tensor

C . To show this, we need the relations

(B ·C)A = (A⊗B)C, ACBT = [A⊗B]T23 C, (11)

see, for example, [38, 39, 35], yielding

T = C E (12)

with

C = λ I⊗ I+2µT I +α[I⊗M+M⊗ I]+βM⊗M+2(µL −µT )[I⊗M+M⊗ I]T23 . (13)

I = [I⊗ I]T23 = δikδ jl~ei⊗~e j⊗~ek⊗~el is the fourth order identity tensor, A = I A. The symbolic A T23 implies the transposition of second

and third index, i.e. for A = ai jkl~ei⊗~e j ⊗~ek⊗~el we obtain A T23 = aik jl~ei⊗~e j ⊗~ek ⊗~el . For ~a =~e1, the Voigt notation of Eq.(13) is

compiled in Appendix B.

2.2. Model of fiber orientation

To obtain a function with continuously distributed fibers, which move around a circular hole in the vicinity of the hole, we lend ideas of

streamlines in Fluid Mechanics. In [40] the streamlines are defined by

ψ =U∞ sinθ

(

r− R2

r

)

−k
logr

R
. (14)

We set k = 0, a = ψ/U∞, x = r cosθ , and y = r sinθ to arrive at

g(x,y,a) = y3−ay2 +(x2−R2)y−ax2 = 0 (15)

representing a cubic polynomial in y. There are three solutions, two conjugate complex and one real. We are only interested in the real

solution yielding

ŷ(x,a) =
1

6

(

22/3 3

√

2a3 +

√

(

2a3 +9aR2 +18ax2
)2−4

(

a2 +3(R−x)(R+x)
)3

+9aR2 +18ax2 +

2
(

a2 +3(R−x)(R+x)
)

3

√

a3 + 1
2

√

(

2a3 +9aR2 +18ax2
)2−4

(

a2 +3(R−x)(R+x)
)3

+ 9aR2

2 +9ax2

+2a









. (16)

In Fig. 1(b) the orientation lines are shown for different a. The arbitrary factor a is adapted in such a manner that it has a geometrical

meaning, which is discussed in the following. The function (16) should have the value ŷ(x∗,a∗) = y∗ ❀ a∗. This constraint is fulfilled for

a∗ =
(x∗2−R2)y∗+y∗3

x∗2 +y∗2
. (17)

This parameter can be inserted into Eq.(15),

f (x,y) := g(x,y,a∗) (18)

which can be evaluated, see Fig. 1(b), with x∗ = x and y∗ = y. Thus, continuously distributed orientations are achieved. To obtain the

tangent vector at the orientation function, we have to differentiate the position vector

~r = x~ex + ŷ(x)~ey, (19)

with respect to the arc-length, which can be chosen in the case of functions equivalent to x. Instead of applying Eq.(16), we apply the chain

rule to Eq.(18),

f (x, ŷ(x)) = 0, f ,x+ f ,y ŷ′(x) = 0 → ŷ′(x) =− f ,x / f ,y , (20)

which is a much simpler expression than using Eq.(16). Here, we draw on the abbreviations f ,x := ∂ f (x,y)/∂x and f ,y := ∂ f (x,y)/∂y. The

tangent vector at the orientation function reads

~t(x) =
∂~r

∂x
=~ex + ŷ′(x)~ey =~ex− f ,x / f ,y~ey. (21)
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(a) Basic sketch of uniformly distributed fibers, where borehole

is applied after production process, and circumplacement of

fibers around the hole during the production process
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(b) Orientation lines using streamline functions

Figure 1: Orientation distribution of fibers

To obtain a unit vector at a point x = x∗ and y = y∗

~a(x∗,y∗) =
~t(x∗)
|~t(x∗)|

∣

∣

∣

∣

x=x∗,y=y∗
, (22)

with

|~t(x)|=
√

1+ f ,2x f ,−2
y =

√

f ,−2
y

√

f ,2x + f ,2y . (23)

Thus, the final unit tangent vector reads

~a =
1

√

f ,2x + f ,2y





√

f ,2y~ex− f ,x

√

f ,2y

f ,y
~ey



 , (24)

which has to be evaluated at point x = x∗ and y = y∗. The superscript ∗ can be omitted leading to the simple expressions

f ,x= 2x(y−a), f ,y= x2−R2−2ay+3y2 (25)

with

a =
(x2−R2)y+y3

x2 +y2
. (26)

3. Finite element studies

In the following, we compare two computations of a plate with a hole having a radius of R= 10mm. The plate is subjected to a displacement

load of u(100,y) = ux = 0.01mm. It is meshed using 20-noded, isoparametric hexahedral elements with (3×3×3) Gauss-points. For the

geometry and the mesh, see Fig. 2. Here, only one-eighth of the plate is discretized due to symmetry conditions, see Fig. 2(b). The material

parameters are lend from [4], λ = 5.64Nmm−2, µT = 2.46Nmm−2, α =−1.27 Nmm−2, β = 227.29 Nmm−2, µL = 5.66Nmm−2. In the

first computation, we choose the spatially constant fiber orientation ~a =~ex (homogeneous distribution of fiber orientation, in the following

called uni-directional). In the second example, the fiber orientation of Eq.(24) is used, which is represented by the tangent vectors to the

coordinate lines shown in Fig. 1(b). This is called bypass. Since this computation has the disadvantage to generate a singularity at point

(x,y,z) = (R,0,z) generating arbitrary stresses close to this point – transition of circle to horizontal line –, we consider an improvement,

see Fig. 3. A polynomial of third order is used to distinct a region, where no fibers are (below this polynomial), and the region using fiber

orientation of Eq.(24). This computation, where the stiffness in y-direction is essentially weaker, is called bypass-reduced. The polynomial

starts at point (x,y) = (3
√

5,5) and ends at point (x,y) = (15,0). Its slopes are the same as of the circle on the left, and zero on the right.

Inside the small region, we take only the isotropic part of the elasticity relation (13) – first two terms of the elasticity tensor.

In the following, we study the stress and strain states in two computations (unidirectional and bypassed-reduced). We evaluate the stresses

σxx at x = 0 and z = 1 (vertical axis), σxx(0,y,1), see Fig. 4(a), and the stresses in vertical direction at the horizontal symmetry plane,

σyy(x,0,1), see Fig. 4(b). The plots are generated using GiD, where interpolation schemes transfer Gauss-point information to nodal
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(a) Geometry of one-eighth of the specimen

xy
z

ux = 0.01mm

ux = 0
uy = 0

uz = 0

(b) Geometry (mesh and boundary conditions)

Figure 2: Geometry, mesh, and boundary conditions

starting point (3
√

5,5,z)

end point (15,0,z)

R = 10mm

x

y

isotropy

inhomogeneous transversely isotropy

Figure 3: Region with purely isotropic material (bypass-reduced)

points. Obviously, the highest horizontal stresses are produced by a pure uniformly distributed fiber directions at point (x,y) = (0,R). Very

promising results are obtained for the “bypass-reduced”-simulation, where the stresses σxx do not show such large amplitudes in this region

(more than three times smaller).

Similar results are obtained for the strains, see Fig. 5. However, we obtain larger compressive strains εyy for the bypass-reduced computation

compared to the purely unidirectional reinforcement. However, negative strains are not so critical as tensile strains. Thus, promising results

are obtained.

In Appendix C the entire stress and strain distributions are assembled.

4. Conclusions

In this paper, we investigate the stress and strain distribution of unidirectional and inhomogeneous fiber directions around a hole, which is

of interest in manufacturing processes. The circumplacement of fibers is modeled using streamline function to obtain the inhomogeneous

fiber direction, which can be evaluated in finite element simulations of transversely isotropic material. The comparison shows a promising

results, namely, that the stresses are essentially reduced around the hole. However, compressive strains, vertical to the loading directions,

increase, which can be seen as not so dramatic then tensile strains. Further investigations and comparisons to experimental data have to be

followed.

A. Voigt-notation of transversal isotropy

In the following, the tensorial notation is transferred into matrix notation so that no unnecessary computation should be performed. This is

connected to the term Voigt-notation. Particularly, this is caused by the property of symmetry of the stress and strain tensor. Additionally,

the scalar product in the principle of virtual displacements leads to a specific representation of the vector containing the independent strain

tensor components leading to a symmetric elasticity matrix.

The (coefficients of the) components of the stress and strain tensor

T =





T11 T12 T31

T22 T23

sym. T33



~ei⊗~e j, E =





E11 E12 E31

E22 E23

sym. E33



~ei⊗~e j

are assembled into column vectors

T
T = {T11 T22 T33 T12 T23 T31} , Ẽ

T
= {E11 E22 E33 E12 E23 E31}
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Figure 4: Stresses σxx and σyy at the vertical and the horizontal symmetry lines

To describe the influence of incorporating the symmetry properties into matrix formulation, we perform to steps: first, the tensorial quanti-

ties are transferred into (9×1) and (9×9)-matrices, respectively. In this context, we treat the product (12) leading to


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


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
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


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




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T13
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

























=

























C1111 C1122 C1133 C1112 C1123 C1131 C1113 C1121 C1132

C2211 C2222 C2233 C2212 C2223 C2231 C2213 C2221 C2232

C3311 C3322 C3333 C3312 C3323 C3331 C3313 C3321 C3332

C1211 C1222 C1233 C1212 C1223 C1231 C1213 C1221 C1232

C2311 C2322 C2333 C2312 C2323 C2331 C2313 C2321 C2332

C3111 C3122 C3133 C3112 C3123 C3131 C3113 C3121 C3132

C1311 C1322 C1333 C1312 C1323 C1331 C1313 C1321 C1332

C2111 C2122 C2133 C2112 C2123 C2131 C2113 C2121 C2132

C3211 C3222 C3233 C3212 C3223 C3231 C3213 C3221 C3232




























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


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











































(27)

The symmetry of the stress tensor implies that the last three equations are the same as equations 4 to 6:








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C3311 C3322 C3333 C3312 C3323 C3331 C3313 C3321 C3332

C1211 C1222 C1233 C1212 C1223 C1231 C1213 C1221 C1232

C2311 C2322 C2333 C2312 C2323 C2331 C2313 C2321 C2332

C3111 C3122 C3133 C3112 C3123 C3131 C3113 C3121 C3132
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(28)

Now, we incorporate the symmetry of the strain tensor, E12 = E21, E23 = E32, E31 = E13,


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=
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C1111 C1122 C1133 C1112 +C1121 C1123 +C1132 C1131 +C1113

C2211 C2222 C2233 C2212 +C2221 C2223 +C2232 C2231 +C2213

C3311 C3322 C3333 C3312 +C3321 C3323 +C3332 C3331 +C3313

C1211 C1222 C1233 C1212 +C1221 C1223 +C1232 C1231 +C1213

C2311 C2322 C2333 C2312 +C2321 C2323 +C2332 C2331 +C2313

C3111 C3122 C3133 C3112 +C3121 C3123 +C3132 C3131 +C3113














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(29)

In other words, we obtain the representation T = C̃Ẽ, with T∈ R
6, Ẽ∈ R

6 and C̃∈ R
6×6. The arrangement of the coefficients of a fourth

order tensor into the matrix C̃ depends on the original calculation. For example, in the elasticity relation (13) we different products. First,

we look at a product C = A⊗B, where A = AT and B = BT are symmetric tensors. The coefficients of C are given by ci jkl = ai jbkl . In

this case, the coefficient matrix (29) has the representation

C =

















a11b11 a11b22 a11b33 2a11b12 2a11b23 2a11b31

a22b11 a22b22 a22b33 2a22b12 2a22b23 2a22b31

a33b11 a33b22 a33b33 2a33b12 2a33b23 2a33b31

a12b11 a12b22 a12b33 2a12b12 2a12b23 2a12b31

a23b11 a23b22 a23b33 2a23b12 2a23b23 2a23b31

a31b11 a31b22 a31b33 2a31b12 2a31b23 2a31b31

















. (30)

A fourth-order tensor having the transposition T23 requires a more detailed consideration. We consider the product Ti j =Cik jlEkl yielding
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Figure 5: Strains εxx and εyy at the vertical and the horizontal symmetry lines

the (9×9)-representation
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C1131 C1232 C1333 C1132 C1233 C1331 C1133 C1231 C1332

C2111 C2212 C2313 C2112 C2213 C2311 C2113 C2211 C2312

C3121 C3222 C3323 C3122 C3223 C3321 C3123 C3221 C3322







































































E11

E22

E33

E12

E23

E31

E13

E21

E32















































. (31)

Obviously, in each column the indices 2 and 3 are exchanged, compared to representation (27). If we have the symmetries T12 = T21,

T23 = T32, and T31 = T13, the last three rows contain the same information as in rows 4 to 6, and, accordingly, can be neglected. For the

symmetries E12 = E21, E23 = E32, and E31 = E13, we obtain

















C1111 C1212 C1313 C1112 +C1211 C1213 +C1312 C1311 +C1113

C2121 C2222 C2323 C2122 +C2221 C2223 +C2322 C2321 +C2123

C3131 C3232 C3333 C3132 +C3231 C3233 +C3332 C3331 +C3133

C1121 C1222 C1323 C1122 +C1221 C1223 +C1322 C1321 +C1123

C2131 C2232 C2333 C2132 +C2231 C2233 +C2332 C2331 +C2133

C3111 C3212 C3313 C3112 +C3211 C3213 +C3312 C3311 +C3113

















. (32)

If we apply these ideas to the tensors I⊗ I, M⊗M, I⊗M+M⊗ I and [I⊗M+M⊗ I]T23 , we obtain the following representations:

I⊗ I−→

















1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

















I = [I⊗ I]T23 −→

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

















(33)

I = [I⊗M+M⊗ I]T23 −→

















2m11 0 0 2m12 0 2m31

0 2m22 0 2m12 2m23 0

0 0 2m33 0 2m23 2m31

m12 m12 0 m11 +m22 m31 m23

0 m23 m23 m31 m22 +m33 m12

m31 0 m31 m23 m12 m11 +m33

















(34)

M⊗M−→

















m2
11 m11m22 m11m33 2m11m12 2m11m23 2m11m31

m11m22 m2
22 m22m33 2m12m22 2m22m23 2m22m31

m11m33 m22m2
33 m33 2m12m33 2m23m33 2m31m33

m11m12 m12m22 m12m33 2m2
12 2m12m23 2m12m31

m11m23 m22m23 m23m33 2m12m23 2m2
23 2m23m31

m11m31 m22m31 m31m33 2m12m31 2m23m31 2m2
31

















(35)
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I⊗M+M⊗ I −→

















2m11 m11 +m22 m11 +m33 2m12 2m23 2m31

m11 +m22 2m22 m22 +m33 2m12 2m23 2m31

m11 +m33 m22 +m33 2m33 2m12 2m23 2m31

m12 m12 m12 0 0 0

m23 m23 m23 0 0 0

m31 m31 m31 0 0 0

















(36)

In finite elements, we have the scalar product of the stress tensor with the strain tensor (or with the virtual strain tensor). Since we would

like to reduce the amount of function evaluations, we consider this scalar product

T ·E = {T11 T22 T33 T12 T23 T31}































E11

E22

E33

E12

E23

E31































+{T12 T23 T31}







E12

E23

E31







= T
T































E11

E22

E33

2E12

2E23

2E31































= T
T

MẼ = T
T

E (37)

with M = diag(1,1,1,2,2,2)∈ R
6×6 and E

T = {E11 E22 E33 2E12 2E23 2E31}, i.e.

E = MẼ =⇒ Ẽ = M
−1

E. (38)

Commonly, the “shear angles” γ12 = 2E12, γ23 = 2E23, γ31 = 2E31 are introduced in Solid Mechanics implying that the product with 2 can

be omitted. If we have the product T = C E, i.e. T = C̃Ẽ = CE, the scalar product (37) reads:

C E ·E = {C̃ Ẽ}T
E =

{

C̃M
−1

E

}T
E = {CE}T

E = E
T

CE. (39)

In other words, the last three columns of the coefficient matrices C̃ must be multiplied with a factor 1/2,

C = C̃M
−1, (40)

yielding the side effect that all matrices (33) - (36) become symmetric.

B. Case~a =~e1

Frequently, transversely isotropy is connected to the Voigt-notation, i.e. the (6×6)-representation. In this case the orientation of the fibers

is connected to one spatial coordinate direction,~a =~e1 leading to the structural tensor M =~a⊗~a =~e1⊗~e1, i.e. there is only the component

m11 = 1. All others are zero. In this case the matrix representation degenerates to































T11

T22

T33

T12

T23

T31































=

















λ +2α +2µT +4(µL−µT )+β λ +α λ +α 0 0 0

λ +α λ +2µT λ 0 0 0

λ +α λ λ +2µT 0 0 0

0 0 0 µL 0 0

0 0 0 0 µT 0

0 0 0 0 0 µL















































E11

E22

E33

γ12

γ23

γ31































. (41)

C. Stress and strain distributions

In the following, we compile the whole stress and strain distributions in Figs. 6 and 7.
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σxx unidirectional

σxx bypass-reduced

(a) σxx in Nmm−2

σyy unidirectional

σyy bypass-reduced

(b) σyy in Nmm−2

Figure 6: Stress distributions
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εxx unidirectional

εxx bypass-reduced

(a) strain εxx

εyy unidirectional

εyy bypass-reduced

(b) strain εyy

Figure 7: Strain distributions
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Abstract

This article presents an algorithm for the generation of S-boxes with the maximum algebraic

immunity and high nonlinearity. The algorithm is founded method of the permutation of

output element of S-box. On basis of the proposed method, S(8×8)-box created, with the

algebraic immunity 3 (441) and nonlinearity 104. The algorithm given in this article can

be used for oscillation of S(8×8))-boxes with the increased resistance to algebraic, linear,

differential and linear and differential methods of a cryptanalysis, for block symmetric

algorithms of encryption.

1. Introduction

It is known that for determining the reliability of (cryptographic stability) encryption algorithms is required to assess their well-known

modern methods of cryptanalysis. This shows that the emergence of a new method of cryptanalysis or development of existing methods of

cryptanalysis can affect the cryptographic stability of the encryption algorithms used in practice. Today, algebraic method of cryptanalysis

based on solving systems of equations over finite fields, is a modern and rapidly developing methods of cryptanalysis for block symmetric

encryption algorithms [4]. As a result of research, experts, it has been proposed option ”algebraic immunity” encryption algorithms that

allows you to determine the stability (instability) it to the algebraic methods of cryptanalysis. Therefore, the use of encryption algorithms

convert with high algebraic immunity, will serve as a basis for ensuring the reliability of its methods to algebraic cryptanalysis. After the

introduction of the parameter has become an urgent task for research aimed at creating change, with the maximum algebraic immunity.

In developing the new block symmetric encryption algorithms take into account the use of these transformations, with the maximum

algebraic immunity, that is, its cryptographic stability to methods of algebraic cryptanalysis. For example, in algorithms of standard STB

34.101.31-2011, GOST R 34.11-2012 and GOST R 34.12-2015 used S-boxes with the maximum algebraic immunity. This article describes

the algorithms for generating S-boxes, the maximum algebraic immunity and high degree of nonlinearity.

2. Generation of S-boxes

It should be noted that as a part of round function the modern block symmetric algorithms of enciphering two following main transformations

are used: substitution (S-box) and permutation (P-box) [3, 5]. The main the purpose of the S-box is “hashing of bits” and their use as the

main non-linear transformation in round function. P-box to serve “a dispelling of bits” and is the linear transformation.

Each S-box transformation is defined over some finite field. S-box represent a S(n×m) wherein the input bit length (n) and output bit length

(m).

Below is a sample S(4×4)-box.

S =







x = { 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15}
l l l l l l l l l l l l l l l l

y = {15 14 13 11 6 12 9 2 5 10 4 8 0 1 3 7}







(2.1)

where: x - the input sequence in S(4×4)-box, y - output sequence with x respectively. For example: S(6) = 9, S(14) = 3.

Email addresses: a bakhtiyor@mail.ru (B. F. Abdurakhimov), asb2602@mail.ru (S. A. Bozorbayevich)
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Determination of [1, 6]. Let the following system of Boolean equations satisfies S(n×m)-box:

G =















g1(x1,x1, ...,xn,y1,y1, ...,ym) = 0;

g2(x1,x1, ...,xn,y1,y1, ...,ym) = 0;

...

gr(x1,x1, ...,xn,y1,y1, ...,ym) = 0.

(2.2)

Minimum degree algebraic equation (deg(g)) in the system (2.2) is called an algebraic immunity S(n×m)-box (AI(S)). That is, it can be

formally written as follows:

AI(S) = min{ deg(g)|g ∈ G} (2.3)

From this it follows that the high value of the parameter AI to S-box provides a high degree algebraic equation system.

After introducing the concept of the AI, it has become an urgent task of evaluating the maximum possible value of this parameter for the

S-box of fixed length and a minimum number (NT S) of possible equations in the system. As a result of investigations for solving this problem

has been created in the following table indicating the maximum value of the AI and the minimum value of the NT S, depending on the size of

S(n×n)-box.

n 3 4 5 6 7 8 9 10 11 12 13 14

AI 2 2 2 2 3 3 3 3 4 4 4 4

NT S 14 21 24 15 342 441 476 327 7061 8855 9710 7774

Table 1: Optimal values of AI and NT S for S(n×n)-box

In general it should be noted that if the values AI S-box is less than the possible maximum value or value NT S is greater than the minimum

possible value, the S-box does not provide maximum resistance to algebraic techniques of cryptanalysis.

It is known that the linear and differential methods of a cryptanalysis are also the modern methods of a cryptanalysis, for block symmetric

algorithms of encryption. For ensuring resistance of an algorithm to the linear cryptanalysis, it is required to use S-boxes with the maximal

value of nonlinearity (N(S)), and for ensuring resistance of algorithms to a differential cryptanalysis, it is required to use S-boxes in which

the maximal value (δ ) in a matrix of differences is less. Therefore, in algorithms of encryption it is necessary to use those S-boxes in which

not only AI value is maximal, but also N(S) value is also maximal, and value δ minimum.

There are several methods of creation of the S-boxes having the maximal value of nonlinearity [2]. However, because of the made experiments

it became of known that AI(S) and N(S) value for S-boxes would not be at the same time maximum (that is maximality of these values is

mutually excluded). This condition demands to solve the following problem:

At what maximal values of the N(S) parameter value of the AI and NT S parameters will be optimum?

Solution of this task nonlinearity demands to construct several S-boxes having some high (that is, smaller maximal) nonlinearity and to

make the corresponding experiments with them. Because of the carried-out analysis, the following statement are more efficient approach for

creation of S-boxes with high values of nonlinearity.

Statement [7]. Let, the following equalities for S1(nxm) and S2(nxm) of boxes are carried out.







S2(p1) = S1(p2), p1 6= p2;

S2(p2) = S1(p1);
S2(x) = S1(x), x 6= p1, p2.

(2.4)

Then truly following expression.

N(S1)−2 ≤ N(S2)≤ N(S1)+2 (2.5)

It means, according to statements, as a result of permutation among themselves of two elements of the S-box of its value of nonlinearity

either decreases on 2 or increases on 2 or does not change. At the same time the statement also follows from this statement the following: if

as a result of permutation between itself two different elements S1-box having general degree nonlinearity N(S1)=a, is present probability

of the creation S2-box with the common degree nonlinearity equal N(S2)=a-2, that as a result of permutation different 4 elements S1-box

created S3-box can have importance with the general degree nonlinearity equal N(S3)=a-4. This statement will be a basis for oscillation of

S-boxes with different values of nonlinearity. That is, increasing quantity of mutually rearranged elements of the S-box it is possible to

reduce value of nonlinearity sequentially. Put into practice experiments with S(8x8)-box it was revealed that at N(S)=104 values, δ=8 the AI

and NT S parameters can have optimum degree.

Generally, the algorithm of creation of the S-boxes having such properties has the following sequence of steps:

Input: Certain S(8×8) max – box having maximal (that is: N(S)=112) nonlinearity.

Output: S(8×8) – box satisfying to values: N(S)=104, δ=8, AI(S)=3 and NT S=441.

1. S(8×8)=S(8×8) max.

2. Permutation mutually 39 elements of the S(8x8)-box.

3. Determine value of the N(S) and δ parameters of the S(8×8)-box, created in 2 step.

4. If N(S)<104 or δ>8 that return to 1 step.

5. Define values of the AI(S) and NT S parameters of the S(8×8)-box, created 2 step.

6. If AI (S) 6=3 or NT S 6=441 that return to 1 step.
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7. Announce S(8×8)-box as output dates.

8. End.

Below the example of model S(8×8)-box created by means of the algorithm developed by the software is given (the output elements of the

S(8×8)-box):

S(8×8) example = {173, 175, 17, 133, 114, 99, 57, 231, 126, 42, 247, 209, 230, 68, 181, 109, 248, 236, 115, 48, 188, 125, 18, 120, 53, 105,

4, 239, 32, 121, 76, 246, 6, 155, 13, 221, 254, 180, 226, 224, 36, 143, 196, 219, 78, 146, 227, 31, 96, 118, 92, 22, 249, 217, 49, 79, 67, 138,

198, 251, 93, 215, 60, 24, 69, 88, 50, 154, 253, 140, 206, 123, 184, 81, 160, 229, 98, 159, 139, 113, 233, 223, 238, 204, 153, 237, 107, 234,

225, 242, 14, 7, 183, 178, 72, 128, 203, 94, 124, 191, 84, 170, 205, 116, 29, 190, 150, 131, 103, 207, 97, 164, 51, 194, 65, 21, 37, 106, 58,

145, 212, 213, 172, 101, 100, 168, 163, 136, 9, 55, 86, 102, 195, 199, 15, 80, 132, 127, 61, 83, 176, 20, 122, 241, 38, 255, 82, 161, 171, 19,

89, 148, 220, 110, 8, 43, 3, 85, 66, 56, 142, 250, 40, 2, 59, 162, 134, 240, 182, 228, 141, 129, 211, 185, 179, 74, 11, 34, 62, 210, 193, 167,

197, 33, 156, 108, 30, 117, 95, 214, 187, 245, 35, 26, 27, 0, 252, 104, 202, 44, 208, 158, 147, 64, 157, 52, 192, 77, 5, 25, 152, 41, 12, 232, 87,

149, 119, 216, 165, 46, 75, 235, 169, 135, 222, 200, 39, 70, 91, 174, 112, 166, 54, 189, 243, 177, 218, 28, 10, 137, 144, 244, 16, 130, 45, 90,

73, 23, 201, 111, 47, 71, 151, 1, 63, 186}.

It is known that today in many algorithms of encryption S(8× 8)-box is used. For comparison of the S(8x8)example-box with some

S(8×8)-boxes, created the table of assessment (Table 2).

Encrypting algorithm N(S) δ AI (NT S) IGS

AES 112 4 2 (39) 0,886285

Camellia 112 4 2 (39) 0,886285

SQUARE 112 4 2 (39) 0,886285

UzDSt 1105:2009 112 4 2 (39) 0,886285

STB 34.101.31-2011 102 8 3 (441) 0,962426

GOST P 34.12-2015 100 8 3 (441) 0,956473

S(8x8)example 104 8 3(441) 0,968378

Table 2: Comparative properties in algorithms of encryption S(8×8)-boxes.

Values of the IGS parameter (the Index of the General Stability, 0≤IGS≤1) specified in this table it is calculated by means of (2.6) formula,

considering an indicator of resistance to the linear, differential and algebraic cryptanalysis of S(8×8)-box.

IGS =

N(S)

112
+

AI

3
+

258−δ

256
3

(2.6)

Follows from this expression that for some S(8× 8)-box there correspond the N(S)=112, δ=2 and AI=3 parameters, IGS values of this

S(8×8)-box it will be maximal, that is IGS=1. Besides, the IGS value of the S(8×8) example-box is higher than other S(8×8)-boxes given

in the table.

In Figure 2.1 the comparative schedule on IGS value of the specified S-boxes is represented.

Figure 2.1: The comparative schedule on IGS value of the specified S-blocks.

3. Conclusions

The proposed method is based method of permutation of output element of S-box. It allows to find S-box with desired properties. Such

S-box can be used in modern symmetric algorithms that demand high level of robustness against various types of attacks.
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Abstract

The objectives of this paper is to investigate some adequate results for the existence of

solution to a ψ-Hilfer fractional derivatives (HFDEs) involving complex order. Appropriate

conditions for the existence of at least one solution are developed by using Schauder

fixed point theorem (SFPT) to the consider problem. Moreover, we also investigate the

Ulam-Hyers stability for the proposed problem.

1. Introduction

Fractional calculus deals with the study of fractional order integral and derivative operators over real or complex domains and some of their

applications are in the area of fluid flow, control theory of dynamical systems, diffusive transport akin to diffusion, electrical networks,

probability and statistics, viscoelasticity, electrochemistry of corrosion, dynamical processes in self-similar and porous structures, optics and

rheology etc. There has been significant development in fractional differential equations in recent year (see [1]-[6])

The generalization of Riemann-Liouville and Caputo fractional derivatives was introduced by R. Hilfer [1] in 1999. A significant development

and interest has been shown by many researchers. Vanterler et al. interpolated HFD and ψ-fractional derivative is called as ψ-HFD [7]. This

fractional derivative is different from the other classical fractional derivative because the kernel is in terms of function. The study on ψ-HFD

with classical properties and interpolation of many fractional derivatives.

Alternatively, the stability problem of functional equations initiated form a question of Ulam, created in 1940, relating to the stability of

group homomorphism. In the next year, Hyers gave a partial affirmative respond to the question of Ulam in the background of Banach spaces

that was the opening momentous breakthrough and a step towards more solutions in this area. In view of the fact that a large number of

papers have been published in connections with various generalizations appeared devoted to the data dependence in the theory of fractional

differential equations [8]-[11].

Inspired by the above discussion, we introduce complex order to ψ-HFD and we establish the existence, uniqueness and stability of solutions.

Consider the differential equations with ψ-HFD with complex order of the form

Dθ1,θ2;ψh(t) = g(t,h(t)), t ∈ J := (a,b], (1.1)

I1−θ ;ψh(t)|t=a = ha,θ = θ1 +θ2 −θ1θ2, (1.2)

where Dθ1,θ2;ψ (θ1,θ2 ∈C) is ψ-HFD of order θ1 =α+ iβ and type θ2 = γ+ iη . Here, 0<ℜ(θ1)< 1 and 0≤ℜ(θ2)≤ 1, with α,β ,γ and η
are constants. Consider a Banach space R and g : J×R → R be a continuous function.

The paper is organised as follows. In Section 2, we give some basic definitions and results concerning with the ψ-HFD. In Section 3, we

present existence results based on SFPT and further stability result is also discussed. Finally, an example is included to check the theoretical

results.

Email addresses: hkkhari1@gmail.com (H. Sugumaran) rabhaibrahim@yahoo.com (R. W. Ibrahim) kanagarajank@gmail.com (K. Kanagarajan)
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2. Preliminaries

For the ease of the readers, we discuss some basic definitions and lemmas. The ideas are adopted from [12, 13]. Next, consider the following

spaces, let C(J) a space of continuous functions from J into R with the norm

‖x‖C = max{|x(t)| : t ∈ J} .

The weighted space C1−ξ ,ψ (J) of functions g on J is defined by

C1−ξ ,ψ (J) =
{

g : J → R : (ψ(t)−ψ(a))1−ξ
g(t) ∈C(J)

}

,0 ≤ ξ (= ℜ(θ))< 1,

with the norm

‖g‖C1−ξ ,ψ
=
∥

∥

∥
(ψ(t)−ψ(a))1−ξ

g(t)
∥

∥

∥

C[a,b]
= max

t∈J

∣

∣

∣
(ψ(t)−ψ(a))1−ξ

g(t)
∣

∣

∣
.

Definition 2.1. The ψ-Riemann Liouville (RL) fractional integral of order θ ∈ C,(ℜ(θ)> 0) of a function g is defined by,

Iθ ;ψg(t) =
1

Γ(θ)

∫ t

0
ψ

′
(s)(ψ(t)−ψ(s))θ−1

g(s)ds, t ≥ 0.

Definition 2.2. The ψ-RL fractional derivative of order θ ∈ C,(ℜ(θ)> 0) of a function g is defined by,

Dθ ;ψg(t) =
1

Γ(n−θ)

(

1

ψ
′
(t)

d

dt

)n ∫ t

0
ψ

′
(s)(ψ(t)−ψ(s))n−θ−1

g(s)ds, t ≥ 0,

where n = [ℜ(θ)]+1.

Definition 2.3. The ψ-Caputo fractional derivative of order θ ∈ C,(ℜ(θ)> 0) of function g is defined by,

Dθ ;ψg(t) = In−θ ;ψ

(

1

ψ
′
(t)

d

dt

)n

g(t) t ≥ 0,

where n = [ℜ(θ)]+1.

Definition 2.4. The ψ-HFD of order 0 < θ1 < 1 and 0 ≤ θ2 ≤ 1 of function g(t) is defined by

Dθ1,θ2;ψg(t) = Iθ2(1−θ1);ψ

(

1

ψ
′
(t)

d

dt

)

I(1−θ2)(1−θ1);ψg(t). (2.1)

The ψ-HFD as above defined, can be written in the following

Dθ1,θ2;ψg(t) = Iθ−θ1;ψDθ ;ψg(t).

Remark 2.5. (a) If θ2 = 0(γ = 0, η = 0), then Dθ1,θ2;ψ =Dθ1,0;ψ is called the RL fractional derivative of complex order.

(b) If θ2 = 1(γ = 1, η = 0), then Dθ1,θ2;ψ = I1−θ1;ψD1;ψ is called the Caputo fractional derivative of complex order.

Definition 2.6. The Stirling asymptotic formula of gamma function for z ∈ C is following

Γ(z) = (2π)1/2zz− 1
2 e−z

[

1+O

(

1

z

)]

(|arg(z)|< π; |z| → ∞),

and its result for |Γ(a+ ib)| , (a,b ∈ R) is

|Γ(a+ ib)|= (2π)1/2 |b|a−
1
2 e−a− π|b|

2

[

1+O

(

1

z

)]

(b → ∞).

Here, we shall give the definitions of Ulam-Hyers(U-H) stability and Ulam-Hyers-Rassias(U-H-R) stability for ψ-HFDEs of complex order.

Let ε > 0 be a positive real number and ϕ : J → R+ be a continuous function. We consider the following inequalities:

∣

∣

∣
Dθ1,θ2;ψv(t)−g(t,v(t))

∣

∣

∣
≤ ε, t ∈ J, (2.2)

∣

∣

∣
Dθ1,θ2;ψv(t)−g(t,v(t))

∣

∣

∣
≤ εϕ(t), t ∈ J, (2.3)

∣

∣

∣
Dθ1,θ2;ψv(t)−g(t,v(t))

∣

∣

∣
≤ ϕ(t), t ∈ J. (2.4)

Definition 2.7. Eq. (1.1) is U-H stable if there exists a real number C f > 0 such that for each ε > 0 and for each solution v ∈C1−ξ ,ψ (J) of

the inequality (2.2) there exists a solution h ∈C1−ξ ,ψ (J) of Eq. (1.1) with

|v(t)−h(t)| ≤C f ε, t ∈ J.
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Definition 2.8. Eq. (1.1) is generalized U-H stable if there exist ϕ ∈C1−ξ ,ψ (J), ϕ f (0) = 0 such that for each solution v ∈C1−ξ ,ψ (J) of the

inequality (2.2) there exists a solution h ∈C1−ξ ,ψ (J) of Eq. (1.1) with

|v(t)−h(t)| ≤ ϕ f ε, t ∈ J.

Definition 2.9. Eq. (1.1) is U-H-R stable with respect to ϕ ∈C1−ξ ,ψ (J) if there exists a real number C f ,ϕ > 0 such that for each ε > 0 and

for each solution v ∈C1−ξ ,ψ (J) of the inequality (2.3) there exists a solution h ∈C1−ξ ,ψ (J) of Eq. (1.1) with

|v(t)−h(t)| ≤C f ,ϕ εϕ(t), t ∈ J.

Definition 2.10. Eq. (1.1) is generalized U-H-R stable with respect to ϕ ∈C1−ξ ,ψ (J) if there exists a real number C f ,ϕ > 0 such that for

each solution v ∈C1−ξ ,ψ (J) of the inequality (2.4) there exists a solution h ∈C1−ξ ,ψ (J) of Eq. (1.1) with

|v(t)−h(t)| ≤C f ,ϕ ϕ(t), t ∈ J.

Remark 2.11. A function v ∈C1−ξ ,ψ (J) is a solution of the inequality

∣

∣

∣
Dθ1,θ2;ψv(t)−g(t,v(t))

∣

∣

∣
≤ ε, t ∈ J,

iff there exist a function g ∈C1−ξ ,ψ (J) such that

(i) |g(t)| ≤ ε, t ∈ J.

(ii) Dθ1,θ2;ψv(t) = g(t,v(t))+g(t), t ∈ J.

(iii) If v is solution of the inequality (2.2), then z is a solution of the following integral inequality

∣

∣

∣

∣

v(t)− va

Γ(θ)
(ψ(t)−ψ(a))θ−1 − 1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,v(s))ds

∣

∣

∣

∣

≤ (ψ(b)−ψ(a))α

α |Γ(θ1)|
ε.

Lemma 2.12. Suppose α(= ℜ(θ)) > 0, a(t) is a nonnegative function locally integrable on a ≤ t < b (some b ≤ ∞), and let g(t) be

a nonnegative, nondecreasing continuous function defined on a ≤ t < b, such that g(t) ≤ K for some constant K. Further let h(t) be a

nonnegative locally integrable on a ≤ t < b function with

|h(t)| ≤ a(t)+g(t)
∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1

h(s)ds, t ∈ J

with some α > 0. Then

|h(t)| ≤ a(t)+
∫ t

a

[

∞

∑
n=1

(g(t)Γ(α))n

Γ(nα)
ψ

′
(s)(ψ(t)−ψ(s))nα−1

]

a(s)ds, a ≤ t < b.

Theorem 2.13. (SFPT) Let E be a Banach space and Q be a nonempty bounded convex and closed subset of E and N : Q → Q is compact,

and continuous map. Then N has at least one fixed point in Q.

Lemma 2.14. A function h is the solution of

{

Dθ1,θ2;ψh(t) = g(t), t ∈ J,

I1−θ ;ψh(t)|t=a = ha, θ = θ1 +θ2 −θ1θ2,
(2.5)

equivalent to the solution of integral equation:

h(t) =
ha

Γ(θ)
(ψ(t)−ψ(a))θ−1 +

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s)ds. (2.6)

3. Main results

Consider the following assumptions in order to solve the problem (1.1)-(1.2).

(H1) Let g : J×R → R be continuous. For h,v ∈ R, there exists a positive constant L > 0 such that

|g(t,h)−g(t,v)| ≤ L |h−v| , t ∈ J.

(H2) The constant

ρ =
L

|Γ(θ1)|
(ψ(b)−ψ(a))α

B(ξ ,α)< 1.

(H3) Let g : J×R → R be continuous. For h ∈ R, there exists M ≥ 0 and N > 0 such that

|g(t,h)| ≤ M |h|+N.

(H4) Suppose that there exists λϕ > 0 such that

Iθ1;ψ ϕ(t)≤ λϕ ϕ(t).

Theorem 3.1. If assumptions (H1) and (H2) are satisfied. Then, the Eq. (1.1)-(1.2) has a unique solution.
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Proof. Consider the operator N : C1−ξ ;ψ (J)→C1−ξ ;ψ (J) given by

(Nh)(t) =
ha

Γ(θ)
(ψ(t)−ψ(a))θ−1 +

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,h(s))ds. (3.1)

Define a ball Br =
{

h ∈C1−ξ ;ψ (J) : ‖h‖ ≤ r
}

. First, we show N(Br)⊂ Br, for h ∈ Br

|(Nh)(t)|=
∣

∣

∣

∣

ha

Γ(θ)
(ψ(t)−ψ(a))θ−1 +

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,h(s))ds

∣

∣

∣

∣

≤ |ha|
|Γ(θ)|

∣

∣

∣
(ψ(t)−ψ(a))θ−1

∣

∣

∣
+

1

|Γ(θ1)|

∫ t

a
ψ

′
(s)

∣

∣

∣
(ψ(t)−ψ(s))θ1−1

∣

∣

∣
|g(s,h(s))|ds

≤ |ha|
|Γ(θ)| (ψ(t)−ψ(a))ξ−1 +

1

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1 |g(s,h(s))−g(s,0)|ds

+
1

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1 |g(s,0)|ds.

Thus,

‖(Nh)(t)‖C1−ξ ;ψ
≤ |ha|

|Γ(θ)| +
(ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1

L |h(s)|ds

+
(ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1 |g̃(s)|ds

≤ |ha|
|Γ(θ)| +

(ψ(b)−ψ(a))α

α |Γ(θ1)|
B(ξ ,α)

(

L‖h‖C1−ξ ;ψ
+‖g̃‖C1−ξ ;ψ

)

:= r.

Let h,v ∈C1−ξ ;ψ (J) and for t ∈ J, we have

∣

∣

∣
((Nh)(t)− (Nv)(t))(ψ(t)−ψ(a))1−ξ

∣

∣

∣

≤ (ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1

L |h(s)−v(s)|ds

≤ L(ψ(t)−ψ(a))1−ξ

|Γ(θ1)|
(ψ(t)−ψ(a))α+ξ−1

B(ξ ,α)‖h−v‖C1−ξ ;ψ

≤ L

|Γ(θ1)|
(ψ(b)−ψ(a))α

B(ξ ,α)‖h−v‖C1−ξ ;ψ

≤ ‖h−v‖C1−ξ ;ψ
.

Theorem 3.2. Assume that [H3] is satisfied. Then, Eq.(1.1)-(1.2) has at least one solution.

Proof. Consider the operator N, we check N(Br)⊂ Br. For h ∈C1−ξ ;ψ (J) and ‖h‖C1−ξ ;ψ
< r

′
. By using assumption [H3], we can obtain

|(Nh)(t)|=
∣

∣

∣

∣

ha

Γ(θ)
(ψ(t)−ψ(a))θ−1 +

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,h(s))ds

∣

∣

∣

∣

≤ |ha|
|Γ(θ)|

∣

∣

∣
(ψ(t)−ψ(a))θ−1

∣

∣

∣
+

1

|Γ(θ1)|

∫ t

a
ψ

′
(s)

∣

∣

∣
(ψ(t)−ψ(s))θ1−1

∣

∣

∣
|g(s,h(s))|ds

≤ |ha|
|Γ(θ)| (ψ(t)−ψ(a))ξ−1 +

1

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1 (M |h|+N)ds

‖(Nh)(t)‖C1−ξ ;ψ
≤ |ha|

|Γ(θ)| +
(ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1

M |h|ds

+
(ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1

Nds

≤ |ha|
|Γ(θ)| +M

(ψ(b)−ψ(a))α

|Γ(θ1)|
B(ξ ,α)‖h‖C1−ξ ;ψ

+N
(ψ(b)−ψ(a))α−ξ+1

α |Γ(θ1)|
:= r

′
.
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Now we show that N : Br → Br is continuous. Let hn be a sequence such that hn → h in Br. Then for each t ∈ J, we have
∣

∣

∣
(Nhn(t)−Nh(t))(ψ(t)−ψ(a))1−ξ

∣

∣

∣

≤ (ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

0
ψ

′
(s)

∣

∣

∣
(ψ(t)−ψ(s))θ1−1

∣

∣

∣
|g(t,hn(t))−g(t,h(t))|ds

≤ (ψ(t)−ψ(a))1−ξ

|Γ(θ1)|

∫ t

0
ψ

′
(s)(ψ(t)−ψ(s))α−1 |g(t,hn(t))−g(t,h(t))|ds

≤ (ψ(t)−ψ(a))1−ξ

|Γ(θ1)|
(ψ(t)−ψ(a))α+ξ−1

B(ξ ,α)‖g(·,hn(·))−g(·,h(·))‖C1−ξ ,ψ

≤ 1

|Γ(θ1)|
(ψ(b)−ψ(a))α

B(ξ ,α)‖g(·,hn(·))−g(·,h(·))‖C1−ξ ,ψ
.

Since g is continuous, then by the Lebesgue dominated convergence theorem which implies

‖(Nhn)(t)− (Nh)(t)‖C1−ξ ,ψ
→ 0 as n → ∞.

Thus N(Br) is uniformly bounded. It is clear that N(Br)⊂ Br is bounded. Next we show that N(Br) is equicontinuous. Let t1, t2 ∈ J, such

that t1 < t2, we get
∣

∣

∣
(ψ(t2)−ψ(a))1−ξ (Nh)(t2)− (ψ(t1)−ψ(a))1−ξ (Nh)(t1)

∣

∣

∣

=

∣

∣

∣

∣

∣

(ψ(t2)−ψ(a))1−ξ

Γ(θ1)

∫ t2

a
ψ

′
(s)(ψ(t2)−ψ(s))θ1−1

g(s,h(s))ds

+
(ψ(t1)−ψ(a))1−ξ

Γ(θ1)

∫ t1

a
ψ

′
(s)(ψ(t1)−ψ(s))θ1−1

g(s,h(s))ds

∣

∣

∣

∣

∣

≤
‖g‖C1−ξ ,ψ

|Γ(θ1)|
B(ξ ,α)

∣

∣(ψ(t2)−ψ(a))α +(ψ(t1)−ψ(a))α
∣

∣ .

Thus from Steps 1 to 3 with the Arzelä-Ascoli theorem, the operator N is continuous and compact. From Theorem 2.13 the operator N has a

fixed point h which is a solution of the problem Eq.(2.5).

Theorem 3.3. The assumptions [H1] and [H4] hold. Then Eq.(1.1)-(1.2) is generalised U-H-R stable.

Proof. Let v be solution of 2.4 and by Theorem 3.1 there h is unique solution of the problem

Dθ1,θ2;ψh(t) = g(t,h(t)),

I1−θ ;ψh(t)|t=a = I1−θ ;ψv(t)|t=a = ha.

Then we have

h(t) =
va

Γ(θ)
(ψ(t)−ψ(a))θ−1 +

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,h(s))ds.

By differentiating inequality (2.4), we have
∣

∣

∣

∣

v(t)− va

Γ(θ)
(ψ(t)−ψ(a))θ−1 − 1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,v(s))ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1 ϕ(s)ds

∣

∣

∣

∣

≤ λϕ ϕ(t).

Hence it follows that,

|v(t)−h(t)|

≤
∣

∣

∣

∣

v(t)− va

Γ(θ)
(ψ(t)−ψ(a))θ−1 − 1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,h(s))ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

v(t)− va

Γ(θ)
(ψ(t)−ψ(a))θ−1 − 1

Γ(θ1)

∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))θ1−1

g(s,v(s))ds

∣

∣

∣

∣

+
∫ t

a
ψ

′
(s)(ψ(t)−ψ(s))α−1 |g(s,v(s))−g(s,h(s))|ds

≤ λϕ ϕ(t)+
L(ψ(b)−ψ(a))α

α |Γ(θ1)|
|v(t)−h(t)|

By Lemma 2.12, there exists a constant K∗ > 0 independent of λϕ ϕ(t) such that

|v(t)−h(t)| ≤ K∗ϕ(t) :=C f ,ϕ ϕ(t).

Thus, Eq.(1.1)-(1.2) is generalized U-H-R stable.
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4. An example

In this section, here we consider the following Cauchy problem in order to verify our results.

{

Dθ1,θ2;ψh(t) = 1
20 (ψ(t)−ψ(a))cos(t)h(t), t ∈ J := (a,b],

I1−θ ;ψh(t)|t=a = ha,θ = θ1 +θ2 −θ1θ2,
(4.1)

By taking ψ(t) = ln t, a = 1, b = e, θ1 = 1
2 + 1

3 i, θ2 = 1
3 + 1

2 i, then we get a particular case of the proposed problem (4.1) using the

Hadamard fractional derivative.

Dθ1,θ2;ln th(t) =
1

20
ln t1/2 cos(t)h(t), t ∈ (1,e], (4.2)

I1−θ ;ln th(1) = 1. (4.3)

Here the function g is continuous. Then, for all h,v ∈ R, and t ∈ (1,e], we have

|g(t,h)−g(t,v)| ≤ 1

20
|h−v|

Thus condition (H2) is satisfied with L = 1
20 . Then, for λϕ = 2√

π
ϕ(t) = ln t1/2, condition (H4) is satisfied. Hence, by Theorem 3.1 and

Theorem 3.3, the problem has a unique solution and it is U-H-R stability.
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Abstract

In this paper, we study the boundary value problem of a class of fractional differential

equations involving the Riemann-Liouville fractional derivative with nonlocal integral

boundary conditions. To establish the existence results for the given problems, we use

the properties of the Green’s function and the monotone iteration technique, one shows

the existence of positive solutions and constructs two successively iterative sequences to

approximate the solutions. The results are illustrated with an example.

1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear fractional differential equation

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1) , (1.1)

subject to the boundary conditions

u(i) (0) = 0, 0 ≤ i ≤ 2, D
β
0+

u(1) = λ I
β
0+

u(η) , (1.2)

where Dα
0+
, D

β
0+

are the standard Riemann-Liouville fractional derivative of order α ∈ (3,4] , β ∈ (0,2], I
β
0+ is the standard Riemann-Liouville

fractional integral of order β ∈ (0,2] and 0 ≤ λΓ(α−β )ηα+β−1

Γ(α+β )
< 1.

The first definition of fractional derivative was introduced at the end of the nineteenth century by Liouville and Riemann, but the concept

of non-integer derivative and integral, as a generalization of the traditional integer order differential and integral calculus, was mentioned

already in 1695 by Leibniz and L’Hospital. In fact, fractional derivatives provide an excellent tool for the description of memory and

hereditary properties of various materials and processes. The mathematical modelling of systems and processes in the fields of physics,

chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory,

electrical circuits, electro-analytical chemistry, biology, control theory, fitting of experimental data, involves derivatives (or q-derivatives) of

fractional order see for example [5, 6]. For more details we refer the reader to [2, 11] and the references cited therein.

Many mathematicians show strong interest in fractional differential equations and many wonderful results have been obtained. The techniques

of nonlinear analysis, as the main method to deal with the problems of nonlinear fractional differential equations, plays an essential role

in the research of this field, such as establishing the existence and the uniqueness or the multiplicity of solutions to nonlinear fractional

differential equations boundary value problems, see [4, 7, 9, 10, 11, 12, 15, 16, 17, 18, 19] and the references therein.

In [3], the authors studied the boundary value problems of the fractional order differential equation:

{

Dα
0+

u(t)+ f (t,u(t)) = 0, t ∈ (0,1) ,

u(0) = 0, D
β
0+

u(1) = aD
β
0+

u(η) ,

Email addresses: bouteraa-27@hotmail.fr (N. Bouteraa),slimanebenaicha@yahoo.fr (S. Benaicha),djourdem.habib7@gmail.com (H. Djourdem)
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where 1 < α ≤ 2, 0 < η < 1, 0 < a, β < 1, f ∈C
(

[0,1]×R
2,R

)

and Dα
0+
, D

β
0+

are the standard Riemann-Liouville fractional derivative

of order α, β respectively. They obtained the multiple positive solutions by the Leray-Schauder nonlinear alternative and the fixed point

theorem on cones.

The monotone iteration scheme is an interesting and effective way to investigate the existence of solutions to nonlinear fractional problem

(see for example [8, 13, 14]). Inspired and motivated by the works mentioned above, we focus on the existence of positive solutions for the

nonlocal boundary value problem (1.1)− (1.2) by using the fixed point theorem for increasing operators on the order intervals, we also

establish two iterative sequences to approximate the solutions. The paper is organized as follows. In Section 2, we recall some preliminary

facts that we need in the sequel, for more details; see [1]. The existence of the positive solutions to the problem (1.1)− (1.2), is proved and

two successively iterative sequences to approximate the solutions are constructed and we give an example to illustrate our results in Section 3.

2. Preliminaries

In this section, we recall some definitions and facts which will be used in the later analysis.

Definition 2.1. Let E be a real Banach space. A nonempty closed set K ⊂ E is said to be a cone provided that

(i) c1u+ c2v ∈ K for all c1 ≥ 0, c2 ≥ 0, and

(ii) u ∈ K, −u ∈ K implies u = 0.

Every cone K induces an ordering in E given by u ≤ v if and only if v−u ∈ K.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,∞)→ R is given by

Iα
0+u(t) =

1

Γ(α)

t
∫

0

(t − s)α−1
u(s)ds, t > 0,

where Γ(·) is the Euler Gamma function, provided that the right side is pointwise defined on (0,∞).

Definition 2.3. [1]. The Riemann-Liouville fractional derivative order α > 0 of a continuous function u : (0,∞)→ R is defined by

Dα
0+u(t) =

1

Γ(n−α)

dn

dtn

t
∫

0

(t − s)n−α−1
u(s)ds, t > 0,

where n = ⌈α⌉+1, ⌈α⌉ denotes the integer part of number α , provided that the right side is pointwise defined on (0,∞).

Lemma 2.4. [1] (i) If u ∈ Lp (0,1) , 1 ≤ p ≤+∞, β > α > 0, then Dα
0+

I
β
0+

u(t) = I
β−α
0+

u(t) , Dα
0+

Iα
0+

u(t) = u(t) , Iα
0+

I
β
0+

u(t) = I
α+β
0+

u(t).

(ii) If β > α > 0, then Dα tβ−1 =
Γ(β )tβ−α−1

Γ(β−α)
.

(iii) If α > 0 and γ ∈ (−1,+∞), then Iα
0+

tγ =
Γ(γ+1)

Γ(α+γ+1)
tα+γ .

Lemma 2.5. [1] Let α > 0 and for any y ∈ L1 (0,1). Then, the general solution of the fractional differential equation Dα
0+

u(t)+ y(t) =
0, 0 < t < 1 is given by

u(t) =− 1

Γ(α)

t
∫

0

(t − s)α−1
y(s)ds+ c1tα−1 + c2tα−2 + · · ·+ cntα−n

,

where c0,c1, ...,cn−1 are real constants and n = ⌈α⌉+1.

Lemma 2.6. Let y ∈C [0,1]. Then the solution of the fractional boundary value problem











Dα
0+

u(t)+ y(t) = 0,

u(i) (0) = 0, 0 ≤ i ≤ 2,

D
β
0+

u(1) = λ I
β
0+

u(η) ,

(2.1)

is given by

u(t) =

1
∫

0

G(t,s)y(s)ds, (2.2)

where

G(t,s) =



























−PΓ(α−β )Γ(α+β )(t−s)α−1+∆

PΓ(α)Γ(α−β )Γ(α+β )
, 0 ≤ s ≤ t ≤ 1, s ≤ η ,

∆

PΓ(α)Γ(α−β )Γ(α+β )
, 0 ≤ t ≤ s ≤ η ≤ 1,

−PΓ(α−β )Γ(α+β )(t−s)α−1+Λ

PΓ(α)Γ(α−β )Γ(α+β )
, 0 ≤ η ≤ s ≤ t ≤ 1,

Γ(α)Γ(α+β )(1−s)α−β−1
tα−1

PΓ(α)Γ(α−β )Γ(α+β )
, 0 ≤ t ≤ s ≤ 1, s ≥ η ,

(2.3)

where ∆ = tα−1
[

Γ(α)Γ(α +β )(1− s)α−β−1 −λΓ(α)Γ(α −β )(η − s)α+β−1
]

,

Λ = Γ(α +β )Γ(α)(1− s)α−β−1
tα−1.

and P =
Γ(α)

Γ(α−β )
− λΓ(α)

Γ(α+β )
ηα+β−1.
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Proof. In view of Lemma 2.5, the general solution for the above equation is

u(t) =− 1

Γ(α)

t
∫

0

(t − s)α−1
y(s)ds+ c1tα−1 + c2tα−2 + c3tα−3 +C4tα−4

,

where c1, c2, c3, c4 ∈ R.

The boundary conditions u(0) = u′ (0) = u′′ (0) = 0, implies that c2 = c3 = c4 = 0. Thus

u(t) =− 1

Γ(α)

t
∫

0

(t − s)α−1
y(s)ds+ c1tα−1

. (2.4)

By (2.4) and Lemma 2.4, we get

D
β
0+

u(t) =
1

Γ(α −β )



c1Γ(α) tα−β−1 −
t

∫

0

(t − s)α−β−1
y(s)ds



 .

In view of boundary condition D
β
0+

u(1) = λ I
β
0+

u(η), we conclude that

c1 =
1

P





1

Γ(α −β )

1
∫

0

(1− s)α−β−1
y(s)ds− λ

Γ(α +β )

η
∫

0

(η − s)α+β−1
y(s)ds



 .

Therefore, the unique solution of the problem (2.1) is given by

u(t) =
tα−1

PΓ(α −β )

1
∫

0

(1− s)α−β−1
y(s)ds− λ tα−1

PΓ(α +β )

η
∫

0

(η − s)α+β−1
y(s)ds

− 1

Γ(α)

t
∫

0

(t − s)α−1
y(s)ds.

For t ≤ η , one has

u(t) =
tα−1

PΓ(α −β )





t
∫

0

(1− s)α−β−1
y(s)ds+

η
∫

t

(1− s)α−β−1
y(s)ds+

1
∫

η

(1− s)α−β−1
y(s)ds





− λ tα−1

PΓ(α +β )





t
∫

0

(η − s)α+β−1
y(s)ds+

η
∫

t

(η − s)α+β−1
y(s)ds



− 1

Γ(α)

t
∫

0

(t − s)α−1
y(s)ds,

=

t
∫

0

−PΓ(α −β )Γ(α +β )(t − s)α−1 +∆

PΓ(α)Γ(α +β )Γ(α −β )
y(s)ds+

η
∫

t

∆

PΓ(α)Γ(α +β )Γ(α −β )
y(s)ds

+

1
∫

η

Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

PΓ(α)Γ(α +β )Γ(α −β )
y(s)ds,

=

1
∫

0

G(t,s)y(s)ds. .

For t ≥ η , one has

u(t) =

η
∫

0

−PΓ(α −β )Γ(α +β )(t − s)α−1 +∆

PΓ(α)Γ(α +1)Γ(α −β )
y(s)ds

+

t
∫

η

−PΓ(α −β )Γ(α +β )(t − s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

PΓ(α)Γ(α +β )Γ(α −β )
y(s)ds

+

1
∫

t

Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

PΓ(α)Γ(α +β )Γ(α −β )
y(s)ds, ..

=

1
∫

0

G(t,s)y(s)ds. .

The proof is complete.
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We need some properties of function G(t,s) to establish the existence of positive solutions.

Lemma 2.7. The Green’s function G(t,s) has the following properties:

(i) The function G(t,s) is continuous and G(t,s)> 0 for all t, s ∈ (0,1).
(ii) For all t, s ∈ (0,1), we have

tα−1w2 (s)≤ G(t,s)≤ tα−1w1 (s) , (2.5)

where

w1 (s) =
ληα+β−1

[

(1− s)α−β−1 − (1− s)α+β−1
]

PΓ(α +β )
,

and

w2 (s) =
(1− s)α−β−1

PΓ(α −β )
.

Proof. It is easy to prove (i). Now, we prove (ii), assume that 0 ≤ λΓ(α−β )ηα+β−1

Γ(α+β )
< 1, then for 0 ≤ s ≤ t ≤ 1, s ≤ η , we get

PΓ(α)Γ(α +β )Γ(α −β )G(t,s) =−PΓ(α −β )Γ(α +β )(t − s)α−β−1

+Γ(α)Γ(α +β )(1− s)α−β−1
tα−1 −λΓ(α)Γ(α −β )(η − s)α+β−1

tα−1
,

= λΓ(α)Γ(α −β )
{

ηα+β−1 (t − s)α−1 − (η − s)α+β−1
tα−1

}

+Γ(α)Γ(α +β )
{

−(t − s)α−1 +(1− s)α−β−1
tα−1

}

,

≥ ληα+β−1
Γ(α)Γ(α −β ) tα−1

[

(1− s)α−β−1 − (1− s)α+β−1
]

,

and

PΓ(α)Γ(α +β )Γ(α −β )G(t,s) = Γ(α)Γ(α +β )(1− s)α−β−1
tα−1 −λΓ(α)Γ(α −β )(η − s)α+β−1

tα−1
,

≤ Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

.

For 0 ≤ η ≤ s ≤ t ≤ 1, we have

PΓ(α)Γ(α +β )Γ(α −β )G(t,s) =−PΓ(α −β )Γ(α +β )(t − s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

,

=−Γ(α)Γ(α +β )(t − s)α−1 +λΓ(α)Γ(α −β )ηα+β−1 (t − s)α−1

+Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

,

≥ λΓ(α)Γ(α −β )ηα+β−1 (t − s)α−1 −Γ(α)Γ(α −β )ηα+β−1 (t − s)α−1

+Γ(α)Γ(α −β )ηα+β−1 (1− s)α−β−1
tα−1

,

≥ λΓ(α)Γ(α −β )ηα−β−1 (1− s)α−β−1
tα−1

≥ λΓ(α)Γ(α −β )ηα+β−1tα−1
[

(1− s)α−β−1 − (1− s)α+β−1
]

,

and

PΓ(α)Γ(α +β )Γ(α −β )G(t,s) =−PΓ(α −β )Γ(α +β )(t − s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

,

=−Γ(α)Γ(α +β )(t − s)α−1
tα−1 +λΓ(α)Γ(α −β )ηα+β−1 (t − s)α−1

+Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

,

≤ Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

.

For 0 ≤ t ≤ s ≤ 1, s ≥ η , we get

PΓ(α)Γ(α +β )Γ(α −β )G(t,s) = Γ(α)Γ(α +β )(1− s)α−β−1
tα−1

,

≥ λΓ(α)Γ(α −β )ηα+β−1tα−1
[

(1− s)α−β−1 − (1− s)α+β−1
]

.
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3. Existence results

We shall consider the Banach space E = C [0,1] equipped with the norm ‖u‖ = max
0≤t≤1

|u(t)| and let a closed cone K ⊂ E by K =

{u ∈ E : u ≥ 0} where 0 is the the zero function. Then K is normal.

Set Ka = {u ∈ E : ‖u‖ ≤ a}. Define the operator T : Ka → E as

(Tu)(t) =

1
∫

0

G(t,s) f (s,u(s))ds, t ∈ [0,1] , (3.1)

where G(t,s) is given by (2.3). It is not hard to see that fixed points of operator T coincide with the solutions to the problem (1.1)− (1.2).

Lemma 3.1. [9] Let E be a Banach space ordered by a normal cone K ⊂ E. Assume that T : [x1,x2]→ E is completely continuous operator

such that x1 ≤ T x2, x2 ≥ T x2. Then T has a minimal fixed point x∗ and a maximal fixed point x∗ such that x1 ≤ x∗ ≤ x∗ ≤ x2. Moreover,

x∗ = lim
n→∞

T nx1, x∗ = T nx2, where {T nx1}∞

n=1 is an increasing sequence and {T nx2}∞

n=1 is a decreasing sequence.

First, for the existence results of problem (1.1)− (1.2), we need the following assumptions.

(A1) f : [0,1]× [0,a]→ [0,∞) is continuous and f (t,0) 6= 0,

(A2) There exists a nonnegative function q ∈C [0,1]⊆ L1 [0,1] such that | f (t,u)| ≤ q(t) , (t,u) ∈ [0,1]× [0,a],
(A3) f (t,u)≤ f (t,u) , t ∈ [0,1] , 0 ≤ u ≤ u ≤ a.

Lemma 3.2. Assume that (A1)− (A3) hold. Then the operator T defined in (3.1) is a completely continuous increasing operator.

Proof. Firstly, the operator T is continuous in view of the continuity of functions f (t,u(t)) and G(t,s). Secondly, we will show that T (Ka)
is bounded. Let

L =

1
∫

0

q(t)dt < ∞.

Then, for any u ∈ Ka, we have

‖(Tu)(t)‖= max
t∈[0,1]

1
∫

0

G(t,s) | f (s,u(s))|ds ≤ L

PΓ(α −β )
, t ∈ [0,1] .

For each u ∈ Ka, one can show that

∣

∣(Tu)′ (t)
∣

∣=

∣

∣

∣

∣

∣

∣

(α −1) tα−2

PΓ(α −β )

1
∫

0

(1− s)α−β−1
f (s,u(s))ds

−λ (α −1) tα−2

PΓ(α +β )

η
∫

0

(η − s)α+β−1
f (s,u(s))ds− α −1

Γ(α)

t
∫

0

(t − s)α−2
f (s,u(s))ds

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

(α −1) tα−2

PΓ(α −β )

1
∫

0

(1− s)α+β−1
f (s,u(s))ds

−λ (α −1) tα−2

PΓ(α +β )

η
∫

0

(η − s)α+β−1
f (s,u(s))ds− 1

Γ(α −1)

t
∫

0

(t − s)α−2
f (s,u(s))ds

∣

∣

∣

∣

∣

∣

,

≤ (α −1) tα−2

PΓ(α −β )

1
∫

0

(1− s)α+β−1 | f (s,u(s))|ds

+
λ (α −1) tα−2

PΓ(α +β )

η
∫

0

(η − s)α+β−1 | f (s,u(s))|ds+
1

Γ(α −1)

t
∫

0

(t − s)α−2 | f (s,u(s))|ds,

≤ (α −1)L

PΓ(α −β )
+

λ (α −1)L

PΓ(α +β )
+

L

Γ(α −1)
= L̄.

Therefore, for any t1, t2 ∈ [t1, t2]≤ L(t2 − t1) . with t1 < t2, we have

|(Tu)(t1)− (Tu)(t2)| ≤
t2
∫

t1

∣

∣(Tu)′ (s)
∣

∣ds ≤ L(t2 − t1)→ 0 as t2 → t1,

The Arzela-Ascoli theorem implies that the operator T : Ka → E is completely continuous. The assumption (A3) provides that the operator

T : Ka → E is an increasing operator. The proof is completed.
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Theorem 3.3. Assume that (A1)− (A3) hold, and

1
∫

0

w1 (s) f (s,0)ds ≥ 0,

1
∫

0

w2 (s) f
(

a,asα−1
)

≤ a, s ∈ [0,1] . (3.2)

Then the problem (1.1)− (1.2) has two positive solutions u∗, v∗ satisfying 0 < u∗ ≤ v∗ ≤ a. Moreover, there exist a non-decreasing iterative

sequence {un}∞

n=0 with

lim
n→∞

un = u∗, u0 = 0, un+1 = Tun, n = 0,1,2, . . . , (3.3)

and a non-decreasing iterative sequence {vn}∞

n=0 with

lim
n→∞

vn = u∗, v0 = atα−1
, vn+1 = T vn, n = 0,1,2, . . . . (3.4)

Proof. We only need to prove that Tu0 ≥ u0 and T v0 ≤ u0.

(Tu0)(t) =

1
∫

0

G(t,s) f (s,u0)ds =

1
∫

0

G(t,s) f (s,0)ds,

≥ tα−1

1
∫

0

w1 (s) f (s,0)ds ≥ 0 = u0, t ∈ [0,1] , (3.5)

this implies u1 ≥ u0, wich combined with (A3) gives

u2 = (Tu1)(t) =

1
∫

0

G(t,s) f (s,u1 (t))ds ≥ u1, t ∈ [0,1]

Similarly, we have

v1 = T v0 =

1
∫

0

G(t,s) f (s,v0)ds,

≤ tα−1

1
∫

0

w2 (s) f
(

s,atα−1
)

ds,

≤ atα−1 = v0, t ∈ [0,1]

(3.6)

Then, by (3.5)− (3.6) and induction, the iterative sequences {un} , {vn} satisfy

u0 (t)≤ u1 (t)≤ . . .≤ un (t)≤ . . .≤ vn (t)≤ . . .≤ v1 (t)≤ v0 (t) , ∀t ∈ [0,1] .

By induction, one can prove that un+1 ≥ un and vn+1 ≤ vn.

Lemma 3.1 shows that the operator T has a minimal fixed point u∗ and a maximal fixed point v∗ satisfying 0 ≤ u∗ ≤ v∗ ≤ a. From (A1) we

find that the zero function is not the solution to the problem (1.1)− (1.2). Thus 0 < u∗ ≤ v∗ ≤ a. The proof is complete.

We construct an example to illustrate the applicability of the results presented.

Example 3.4. Consider the following boundary value problem

D
7
2

0+
u(t)+

1√
t

(

t +u
1
3 (t) tanh(u(t))+u

1
3 (t)

)

= 0, t ∈ (0,1) ,

u(0) = u′ (0) = u′′ (0) = 0, D
5
2 u(1) =

1

2
I

5
2

0+
u

(

1

2

)

,

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 and f (t,u(t)) = 1√
t

(

t +u
1
3 (t) tanh(u(t))+u

1
3 (t)

)

.

We take a = 10. By simple calculation we have

P = 3,3229182, f (t,0) = t√
t

and f
(

t,10t
5
2

)

= 1√
t

(

t +(10)
1
3 t

5
6 + t

5
6

)

.

A simple calculation leads to

1
∫

0

w1 (s) f (s,0)ds ≃ 0,0000239 ≥ 0,

and

1
∫

0

w2 (s) f
(

s,10s
5
2

)

ds ≃ 0,9124781 ≤ 10.

Hence, all the assumptions of Theorem 3.3 are satisfied. Which implies that the boundary value (1.1)− (2.1) has two nontrivial solutions

u∗, v∗ with 0 ≤ u∗ ≤ v∗ ≤ 10, and the two monotone iterative sequences {un}∞

n=1 can be taken as

u0 = 0, un+1 = Tun, v0 = 10tα−1
, vn+1 = T vn, n = 0,1,2, . . . .
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Abstract

We investigate the (p,q)−Fibonacci and Lucas octonion polynomials. The main purpose of

this paper is using of some properties of the (p,q)−Fibonacci and Lucas polynomials. Also

for present some results involving these octonion polynomials, we obtain some interesting

computational formulas.

1. Introduction

Fibonacci, Lucas, Pell and the other special numbers are the special case of the second order linear recurrence R = {Ri}∞
i=0 if the recurrence

relation for i ≥ 2, Ri = PRi−1 −QRi−2 holds for its terms, where P and Q are integers such that D = P2 −4Q 6= 0 (to exclude a degenerate

case) and R0,R1 are fixed integers. Define the sequences

Un = PUn−1 −QUn−2 (1.1)

Vn = PVn−1 −QVn−2

for n ≥ 2. The characteristic equation of them is x2 −Px+Q = 0 and hence the roots of it are α = P+
√

D
2 and β = P−

√
D

2 . So by Binet’s

formula, Un =
αn−β n

α−β
and Vn = αn +β n

. Further the generating function for Un and Vn is

∞

∑
n=0

Unxn =
x

1−Px+Qx2
and

∞

∑
n=0

Vnxn =
2−Px

1−Px+Qx2

[8, 9].

Polynomials can be defined by Fibonacci-like recursion relations are called Fibonacci polynomials. More mathematicians were involved in

the study of Fibonacci polynomials. Let p(x) and q(x) be polynomials with real coefficients. The (p,q)−Fibonacci polynomials are defined

by the recurrence relation

Fp,q,n+1(x) = p(x)Fp,q,n(x)+q(x)Fp,q,n−1(x) (1.2)

with the initial conditions Fp,q,0(x) = 0, Fp,q,1(x) = 1. Also for the p(x) and q(x) polynomials with real coefficients the (p,q)−Lucas

polynomials are defined by the recurrence relation

Lp,q,n+1(x) = p(x)Lp,q,n(x)+q(x)Lp,q,n−1(x)

with the initial conditions Lp,q,0(x) = 2, Lp,q,1(x) = p(x). Let α1(x) =
p(x)+

√
p2(x)+4q(x)
2 and α2(x) =

p(x)−
√

p2(x)+4q(x)
2 denote the roots

of the characteristic equation

Email addresses: arzuozkoc@duzce.edu.tr (A. Özkoç Öztürk), ayhanporsuk@gmail.com (A. Porsuk)
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α2 − p(x)α −q(x) = 0

on the recurrence relation of (1.2). Binet formulas for the (p,q)−Fibonacci polynomials and (p,q)−Lucas polynomials are

Fp,q,n(x) =
αn

1 (x)−αn
2 (x)

α1(x)−α2(x)
and Lp,q,n(x) = αn

1 (x)+αn
2 (x).

[10]

Note that

α1(x)+α2(x) = p(x)

α1(x)−α2(x) =
√

p2(x)+4q(x)

α1(x).α2(x) =−q(x) (1.3)

α1(x)

α2(x)
=

−α2
1 (x)

q(x)
,q(x) 6= 0

α2(x)

α1(x)
=

−α2
2 (x)

q(x)
, q(x) 6= 0.

In [5], they introduce (p,q)−Fibonacci quaternion polynomials that generalize h(x)−Fibonacci quaternion polynomials. Division algebras

are defined on real numbers R, complex numbers C, quaternions H, and octonions Q. There are different types of sequences of quaternions

like Fibonacci Quaternions, Split Fibonacci Quaternions and Complex Fibonacci Quaternions [1].

The octonions in Clifford algebra are a normed division algebra with eight dimensions over the real numbers larger than the quaternions. The

field Q∼= C4 of octonions

α =
7

∑
s=0

αses, αi ∈ R(i = 0,1, · · · ,7)

is an eight-dimensional non-commutative and non-associative R−field generated by eight base elements e0,e1, · · · ,e6 and e7 which satisfy

the non-commutative and non-associative multiplication rules are listed in below Table.

×

e0

e1

e2

e3

e4

e5

e6

e7

e0 e1 e2 e3 e4 e5 e6 e7

e0 e1 e2 e3 e4 e5 e6 e7

e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −e0

The multiplication table for the basis of Q

For n ≥ 0, the Fibonacci octonion numbers that are given for the n− th classic Fibonacci Fn number are defined by the following recurrence

relations:

Qn =
7

∑
s=0

Fn+ses.

Besides h(x) −Fibonacci octonion polynomials can be defined by [6] that generalized both Catalan’s Fibonacci octonion polynomials Ψn(x)
and Byrd’s Fibonacci octonion polynomials and also k− Fibonacci octonion numbers. Moreover in [2] they derived the Binet formula and

generating function of h(x) −Fibonacci octonion polynomial sequence.

Let h(x) be a polynomial with real coefficients. The h(x)−Fibonacci octonion polynomials {Oh,n(x)}∞
n=0 are defined by the recurrence

relation

Oh,n(x) =
7

∑
s=0

Fh,n+s(x)es

where Fh,n(x) is the n−th h(x)−Fibonacci polynomial in [2].
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2. Main theorems of the (p,q)−Fibonacci and Lucas octonion polynomials

In the main section, we introduce the (p,q)−Fibonacci and Lucas octonion polynomials and formulate the Binet-style formula, the generating

function and some identities of the (p,q)−Fibonacci octonion and Lucas octonion polynomial sequence. In [7], the authors obtained similar

results for the (p,q)−Fibonacci and Lucas quaternion polynomials.

For n ≥ 0 the Fibonacci octonion numbers that are given for the n-th classic Fibonacci Fn number are defined in [4]. Also (p,q)−Fibonacci

octonions are investigated by [3].

So (p,q)−Fibonacci octonion polynomials OFp,q,n(x) are defined by the recurrence relation

OFp,q,n(x) =
7

∑
k=0

Fp,q,n+k(x)ek

where Fp,q,n+k(x) is the (n+ k)− th (p,q)−Fibonacci polynomial.

The initial conditions of this sequence are given by

OFp,q,0(x) =
7

∑
k=0

Fp,q,k(x)ek = e1 + p(x)e2 +(p2(x)+q(x))e3 +(p3(x)+2p(x)q(x))e4

+(p4(x)+3p2(x)q(x)+q2(x))e5 +(p5(x)+4p3(x)q(x)+3p(x)q2(x))e6

+(p6(x)+5p4(x)q(x)+6p2(x)q2(x)+q3(x))e7

and

OFp,q,1(x) =
7

∑
k=0

Fp,q,1+k(x)ek = e0 + p(x)e1 +(p2(x)+q(x))e2 +(p3(x)+2p(x)q(x))e3

+(p4(x)+3p2(x)q(x)+q2(x))e4 +(p5(x)+4p3(x)q(x)+3p(x)q2(x))e5

+(p6(x)+5p4(x)q(x)+6p2(x)q2(x)+q3(x))e6

+(p7(x)+6p5(x)q(x)+10p3(x)q2(x)+4p(x)q3(x))e7.

Also OFp,q,n(x) is written by a recurrence relation of order two;

OFp,q,n+1(x) =
7

∑
k=0

Fp,q,n+1+k(x)ek

=
7

∑
k=0

(p(x)Fp,q,n+k(x)+q(x)Fp,q,n−1+k(x))ek

= p(x)
7

∑
k=0

Fp,q,n+k(x)ek +q(x)
7

∑
k=0

Fp,q,n−1+k(x)ek

and thus,

OFp,q,n+1(x) = p(x)OFp,q,n(x)+q(x)OFp,q,n−1(x).

For the n − th (p,q)−Lucas octonion polynomials OLp,q,n(x) = ∑
7
k=0 Lp,q,n+k(x)ek ,where Lp,q,n+k is the (n + k)− th (p,q)−Lucas

polynomial. For n ≥ 1

OLp,q,n+1(x) = p(x)OLp,q,n(x)+q(x)OLp,q,n−1(x)

with the initial conditions.

Theorem 2.1. The generating functions for the (p,q)−Fibonacci octonion polynomials OFp,q,n(x) and the (p,q)−Lucas octonion polyno-

mials OLp,q,n(x) are

gOF (t) =
OFp,q,0(x)+ [OFp,q,1(x)− p(x)OFp,q,0(x)]t

1− p(x)t −q(x)t2

and

gOL(t) =
OLp,q,0(x)+ [OLp,q,1(x)− p(x)OLp,q,0(x)]t

1− p(x)t −q(x)t2
.

respectively.
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Proof. The generating function gOF (t) for OFp,q,n(x) is to be of the form

∞

∑
n=0

OFp,q,n(x)t
n = OFp,q,0(x)+OFp,q,1(x)t +OFp,q,2(x)t

2 + · · ·+OFp,q,n(x)t
n + · · · . (2.1)

The formal power series expansions of gOF (t),−p(x)tgOF (t) and −q(x)t2gOF (t) are

gOF (t) =
∞

∑
n=0

OFp,q,n(x)t
n = OFp,q,0(x)+OFp,q,1(x)t +OFp,q,2(x)t

2

+ · · ·+OFp,q,n(x)t
n + · · ·

−p(x)tgOF (t) =−p(x)OFp,q,0(x)t − p(x)OFp,q,1(x)t
2 − p(x)OFp,q,2(x)t

3

−·· ·− p(x)OFp,q,n(x)t
n+1 −·· ·

−q(x)t2gOF (t) =−q(x)OFp,q,0(x)t
2 −q(x)OFp,q,1(x)t

3 −q(x)OFp,q,2(x)t
4

−·· ·−q(x)OFp,q,n(x)t
n+2 −·· ·

respectively. So the expansion for gOF (t)−gOF (t)p(x)t −gOF (t)q(x)t
2 is

gOF (t)[1− p(x)t −q(x)t2] = OFp,q,0(x)+OFp,q,1(x)t − p(x)OFp,q,0(x)t

+[OFp,q,2(x)− p(x)OFp,q,1(x)−q(x)OFp,q,0(x)]t
2

+[OFp,q,3(x)− p(x)OFp,q,2(x)−q(x)OFp,q,1(x)]t
3

+ ...+[OFp,q,n(x)− p(x)OFp,q,n−1(x)−q(x)OFp,q,n−2(x)]t
n

+ ...

= OFp,q,0(x)+ [OFp,q,1(x)− p(x)OFp,q,0(x)]t.

Hence OFp,q,0(x)+[OFp,q,1(x)− p(x)OFp,q,0(x)]t is a finite series, so we can rewrite [1− p(x)t−q(x)t2]gOF (t) =OFp,q,0(x)+[OFp,q,1(x)−
p(x)OFp,q,0(x)]t and hence

gOF (t) =
OFp,q,0(x)+ [OFp,q,1(x)− p(x)OFp,q,0(x)]t

1− p(x)t −q(x)t2
(2.2)

as we claimed.

Similarly, it can be also proved that gOL(t) =
OLp,q,0(x)+[OLp,q,1(x)−p(x)OLp,q,0(x)]t

1−p(x)t−q(x)t2 .

Lemma 2.2. For the generating function given in Theorem 2.1, we have

gOF (t) =
1

α1(x)−α2(x)

(

OFp,q,1(x)−α2(x)OFp,q,0(x)

1−α1(x)t
− OFp,q,1(x)−α1(x)OFp,q,0(x)

1−α2(x)t

)

gOL(t) =
1

α1(x)−α2(x)

(

OLp,q,1(x)−α2(x)OLp,q,0(x)

1−α1(x)t
− OLp,q,1(x)−α1(x)OLp,q,0(x)

1−α2(x)t

)

.

Proof. Using the expression of gOF (t) in Teorem 2.1 and (1.3) ,we found

OFp,q,0(x)+ [OFp,q,1(x)− p(x)OFp,q,0(x)]t

1− p(x)t −q(x)t2
=

OFp,q,0(x)+ [OFp,q,1(x)− p(x)OFp,q,0(x)]t

(1−α1(x)t)(1−α2(x)t)

=

(

OFp,q,0(x)+ [OFp,q,1(x)− (α1(x)+α2(x))OFp,q,0(x)]t

(1−α1(x)t)(1−α2(x)t)

)

×
(

α1(x)−α2(x)

α1(x)−α2(x)

)

=







α1(x)OFp,q,0(x)+α1(x)OFp,q,1(x)t −α2
1 (x)OFp,q,0(x)t

−α1(x)α2(x)OFp,q,0(x)t −α2(x)OFp,q,0(x)−α2(x)OFp,q,1(x)t
+α1(x)α2(x)OFp,q,0(x)t +α2

2 (x)OFp,q,0(x)t +OFp,q,1(x)−OFp,q,1(x)







(α1(x)−α2(x))(1−α1(x)t)(1−α2(x)t)

=

{

OFp,q,1(x)(1−α2(x)t)+α2(x)OFp,q,0(x)(−1+α2(x)t)
+OFp,q,1(x)(−1+α1(x)t)+α1(x)OFp,q,0(x)(1−α1(x)t)

}

(α1(x)−α2(x))(1−α1(x)t)(1−α2(x)t)

=

{

(1−α2(x)t)(OFp,q,1(x)−α2(x)OFp,q,0(x))
−(1−α1(x)t)(OFp,q,1(x)−α1(x)OFp,q,0(x))

}

(α1(x)−α2(x))(1−α1(x)t)(1−α2(x)t)

=
1

α1(x)−α2(x)

[

OFp,q,1(x)−α2(x)OFp,q,0(x)

1−α1(x)t
− OFp,q,1(x)−α1(x)OFp,q,0(x)

1−α2(x)t

]

.
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Lemma 2.3. Let Fp,q,n(x) and Lp,q,n(x) be the (p,q)−Fibonacci and Lucas polynomials respectively. We have

1.

Fp,q,k+1(x)−α2(x)Fp,q,k(x) = αk
1(x)

Fp,q,k+1(x)−α1(x)Fp,q,k(x) = αk
2(x)

2.

Lp,q,k+1(x)−α2(x)Lp,q,k(x)

α1(x)−α2(x)
= αk

1(x)

α1(x)Lp,q,k(x)−Lp,q,k+1(x)

α1(x)−α2(x)
= αk

2(x).

Proof. 1.We prove it by induction. Let k = 1

Fp,q,2(x)−α2(x)Fp,q,1(x) = p(x)−α2(x) = α1(x).

So the hypothesis is right for k = 1. Let us assume that the equation is Fp,q,n(x)−α2(x)Fp,q,n−1(x) = αn−1
1 (x) for k = n −1. For k = n it

becomes

αn
1 (x) = αn−1

1 (x)α1(x)

= (Fp,q,n(x)−α2(x)Fp,q,n−1(x))α1(x)

= α1(x)Fp,q,n(x)−α1(x)α2(x)Fp,q,n−1(x)

= (p(x)−α2(x))Fp,q,n(x)− (−q(x))Fp,q,n−1(x)

= p(x)Fp,q,n(x)+q(x)Fp,q,n−1(x)−α2(x)Fp,q,n(x)

= Fp,q,n+1(x)−α2(x)Fp,q,n(x).

So we get the desired result for the (p,q)−Fibonacci polynomials. 2. The (p,q)−Lucas polynomials can be proved similarly.

To derive the Binet Formulas for OFp,q,n(x) and OLp,q,n(x), we can give the following theorems.

Theorem 2.4. For n ≥ 0 , the Binet formula for the (p,q)−Fibonacci octonion polynomials OFp,q,n(x) and also OLp,q,n(x) is as follows

OFp,q,n(x) =
α∗

1 (x)α
n
1 (x)−α∗

2 (x)α
n
2 (x)

α1(x)−α2(x)

OLp,q,n(x) = α∗
1 (x)α

n
1 (x)+α∗

2 (x)α
n
2 (x)

where α∗
1 (x) =

7

∑
k=0

αk
1(x)ek and α∗

2 (x) =
7

∑
k=0

αk
2(x)ek.

Proof. From Lemma 2.1, we get

gOF (t) =
1

α1(x)−α2(x)
[(OFp,q,1(x)−α2(x)OFp,q,0(x))

∞

∑
n=0

αn
1 (x)t

n − (OFp,q,1(x)−α1(x)OFp,q,0(x))
∞

∑
n=0

αn
2 (x)t

n]

=
1

α1(x)−α2(x)

{

∑
7
k=0(Fp,q,1+k(x)−α2(x)Fp,q,k(x))ek ∑

∞
n=0 αn

1 (x)t
n

−∑
7
k=0(Fp,q,1+k(x)−α1(x)Fp,q,k(x))ek ∑

∞
n=0 αn

1 (x)t
n

}

=
1

α1(x)−α2(x)

[

7

∑
k=0

αk
1(x)ek

∞

∑
n=0

αn
1 (x)t

n −
7

∑
k=0

αk
2(x)e

k
∞

∑
n=0

αn
2 (x)t

n

]

=
∞

∑
n=0

α∗
1 (x)α

n
1 (x)−α∗

2 (x)α
n
2 (x)

α1(x)−α2(x)
tn
.

Similarly, it can be also proved that OLp,q,n(x) = α∗
1 (x)α

n
1 (x)+α∗

2 (x)α
n
2 (x).

Theorem 2.5. (Catalan identity) Let the (p,q)−Fibonacci and Lucas octonion polynomials OFp,q,n(x) and OLp,q,n(x). For n and α ,

nonnegative integer numbers, such that α ≤ n , we have

OFp,q,n+r(x)OFp,q,n−r(x)−OF2
p,q,n(x) =

(−1)r+n+1α∗
1 (x)α

∗
2 (x)q

n−r(x)(αr
1(x)−αr

2(x))
2

(α1(x)−α2(x))
2

OLp,q,n+r(x)OLp,q,n−r(x)−OL2
p,q,n(x) = (−1)r+nα∗

1 (x)α
∗
2 (x)q

n−r(x)(αr
1(x)−αr

2(x))
2
.
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Proof. Using the identity (1.3), Lemma 2.2 and Theorem 2.2, we have

OFp,q,n+r(x)OFp,q,n−r(x)−OF2
p,q,n(x)

=

(

α∗
1 (x)α

n+r
1 (x)−α∗

2 (x)α
n+r
2 (x)

α1(x)−α2(x)

)(

α∗
1 (x)α

n−r
1 (x)−α∗

2 (x)α
n−r
2 (x)

α1(x)−α2(x)

)

−
(

α∗
1 (x)α

n
1 (x)−α∗

2 (x)α
n
2 (x)

α1(x)−α2(x)

)2

=







−α∗
1 (x)α

∗
2 (x)α

n−r
1 (x)αn+r

2 (x)
−α∗

1 (x)α
∗
2 (x)α

n+r
1 (x)αn−r

2 (x)
+2α∗

1 (x)α
∗
2 (x)α

n
1 (x)α

n
2 (x)







(α1(x)−α2(x))
2

=
−α∗

1 (x)α
∗
2 (x)α

n
1 (x)α

n
2 (x)

[(

−α2
2 (x)

q(x)

)r

+
(

−α2
1 (x)

q(x)

)r

−2
(α1(x)α2(x))

r

qr(x)

]

(α1(x)−α2(x))
2

=
(−1)r+n+1α∗

1 (x)α
∗
2 (x)q

n−r(x)(αr
1(x)−αr

2(x))
2

(α1(x)−α2(x))
2

.

The other case can be proved similarly.

Theorem 2.6. (Cassini identity) For the (p,q)−Fibonacci octonion polynomials OFp,q,n(x) and (p,q)−Lucas octonion polynomials

OLp,q,n(x), we have

OFp,q,n+1(x)OFp,q,n−1(x)−OF2
p,q,n(x) = (−1)nα∗

1 (x)α
∗
2 (x)q

n−1(x)

OLp,q,n+1(x)OLp,q,n−1(x)−OL2
p,q,n(x) = (−1)1+nα∗

1 (x)α
∗
2 (x)q

n−1(x)(α1(x)−α2(x))
2

for any natural number n .

Theorem 2.7. Let OFp,q,n(x) and OLp,q,n(x) be the (p,q)−Fibonacci and Lucas octonion polynomials respectively. Then for n ≥ 0, we

have

1.

q(x)(OFp,q,n(x))
2 +(OFp,q,n+1(x))

2 =
(α∗

1 )
2(x)α2n+1

1 (x)− (α∗
2 )

2(x)α2n+1
2 (x)

α1(x)−α2(x)

q(x)(OLp,q,n(x))
2 +(OLp,q,n+1(x))

2 = (α1(x)−α2(x))(α
∗
1 )

2(x)α2n+1
1 (x)− (α∗

2 )
2(x)α2n+1

2 (x)

2.

OFp,q,1(x)−α1(x)QFp,q,0(x) = α∗
2 (x)

OFp,q,1(x)−α2(x)QFp,q,0(x) = α∗
1 (x)

and

OLp,q,1(x)−α1(x)OLp,q,0(x) = (α1(x)−α2(x))α
∗
2 (x)

OLp,q,1(x)−α2(x)OLp,q,0(x) = (α1(x)−α2(x))α
∗
1 (x).

Proof. Let us prove the identity 1.. From Theorem 2.2

q(x)(OFp,q,n(x))
2 +(OFp,q,n+1(x))

2 = q(x)

(

α∗
1 (x)α

n
1 (x)−α∗

2 (x)α
n
2 (x)

α1(x)−α2(x)

)2

+

(

α∗
1 (x)α

n+1
1 (x)−α∗

2 (x)α
n+1
2 (x)

α1(x)−α2(x)

)2

=







q(x)(α∗
1 )

2(x)α2n
1 (x)−2q(x)α∗

1 (x)α
n
1 (x)α

∗
2 (x)α

n
2 (x)

+q(x)(α∗
2 )

2(x)α2n
2 (x)+(α∗

1 )
2(x)α2n+2

1 (x)

−2α∗
1 (x)α

n+1
1 (x)α∗

2 (x)α
n+1
2 (x)+(α∗

2 )
2(x)α2n+2

2 (x)







(α1(x)−α2(x))2

=
(α∗

1 )
2(x)α2n

1 (x)
(

q(x)−q(x)
α1(x)
α2(x)

)

+(α∗
2 )

2(x)α2n
2 (x)

(

q(x)−q(x)
α2(x)
α1(x)

)

(α1(x)−α2(x))2

=
(α∗

1 )
2(x)α2n+1

1 (x)− (α∗
2 )

2(x)α2n+1
2 (x)

α1(x)−α2(x)
.

Also the proof of the identity 2. is similar to 1..

Theorem 2.8. For the (p,q)−Fibonacci and Lucas octonion polynomials OFp,q,n(x) and OLp,q,n(x), n ≥ 0 we have following binomial

sum formula for odd and even terms,
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1.

OFp,q,2n(x) =
n

∑
m=0

(

n

m

)

q(x)n−m p(x)mOFp,q,m(x)

OFp,q,2n+1(x) =
n

∑
m=0

(

n

m

)

q(x)n−m p(x)mOFp,q,m+1(x)

2.

OLp,q,2n(x) =
n

∑
m=0

(

n

m

)

q(x)n−m p(x)mOLp,q,m(x)

OLp,q,2n+1(x) =
n

∑
m=0

(

n

m

)

q(x)n−m p(x)mOLp,q,m+1(x).

Proof. For 1. from (1.3) and Binet formulas, we get

n

∑
m=0

(

n

m

)

q(x)n−m p(x)mOFp,q,m(x)

=
n

∑
m=0

(

n

m

)

q(x)n−m p(x)m α∗
1 (x)α

m
1 (x)−α∗

2 (x)α
m
2 (x)

α1(x)−α2(x)

=
α∗

1 (x)

α1(x)−α2(x)

n

∑
m=0

(

n

m

)

q(x)n−m(p(x)α1(x))
m

− α∗
2 (x)

α1(x)−α2(x)

n

∑
m=0

(

n

m

)

q(x)n−m(p(x)α2(x))
m

=
α∗

1 (x)

α1(x)−α2(x)
(q(x)+ p(x)α1(x))

n − α∗
2 (x)

α1(x)−α2(x)
(q(x)+ p(x)α2(x))

n

=
α∗

1 (x)α
2n
1 (x)−α∗

2 (x)α
2n
2 (x)

α1(x)−α2(x)

= OFp,q,2n(x).

Also the other cases for OLp,q,n(x) can be done similarly.

Theorem 2.9. The sums of the first n−terms of the sequences OFp,q,n(x) and OLp,q,n(x) are given by

n

∑
m=0

OFp,q,m(x) =
−q(x)OFp,q,n(x)−OFp,q,n+1(x)+OFp,q,0(x)− α∗

1 (x)α2(x)−α∗
2 (x)α1(x)

α1(x)−α2(x)

(α1(x)−1)(α2(x)−1)

and

n

∑
m=0

OLp,q,m(x) =
−q(x)OLp,q,n(x)−OLp,q,n+1(x)+OLp,q,0(x)−

[

α∗
1 (x)α2(x)+α∗

2 (x)α1(x)
]

(α1(x)−1)(α2(x)−1)

respectively.

Proof. Using Binet formulas and the roots α1(x), α2(x), we get

n

∑
m=0

OFp,q,m(x) =
α∗

1 (x)α
m
1 (x)−α∗

2 (x)α
m
2 (x)

α1(x)−α2(x)

=
1

α1(x)−α2(x)

n

∑
m=0

(α∗
1 (x)α

m
1 (x)−α∗

2 (x)α
m
2 (x))

=
1

α1(x)−α2(x)
(α∗

1 (x)
n

∑
m=0

αm
1 (x)−α∗

2 (x)
n

∑
m=0

αm
2 (x))

=
1

α1(x)−α2(x)
(α∗

1 (x)
αn+1

1 (x)−1

α1(x)−1
−α∗

2 (x)
αn+1

2 (x)−1

α2(x)−1
)

=
α∗

1 (x)(α
n+1
1 (x)−1)(α2(x)−1)−α∗

2 (x)(α
n+1
2 (x)−1)(α1(x)−1)

(α1(x)−α2(x))(α1(x)−1)(α2(x)−1)

=

{

(α∗
1 (x)α

n+1
1 (x)α2(x))− (α∗

1 (x)α
n+1
1 (x))− (α∗

1 (x)α2(x))+α∗
1 (x)

−α∗
2 (x)−α∗

2 (x)α
n+1
2 (x)α1(x)+α∗

2 (x)α
n+1
2 (x)+α∗

2 (x)α2(x)

}

(α1(x)−α2(x))(α1(x)−1)(α2(x)−1)

=
−q(x)OFp,q,n(x)−OFp,q,n+1(x)+OFp,q,0(x)− α∗

1 (x)α2(x)−α∗
2 (x)α1(x)

α1(x)−α2(x)

(α1(x)−1)(α2(x)−1)
.

The other cases for OLp,q,n(x) can be done similarly.
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3. Conclusion

Octonions have great importance as they are used in quantum physics, applied mathematics, graph theory. In this work, we introduce the

(p,q)−Fibonacci and Lucas octonion polynomials and formulate the Binet-style formula, the generating function and some identities of the

(p,q)−Fibonacci octonion and Lucas octonion polynomial sequence. Thus, in our future studies we plan to examine different quaternion

and octonion polynomials and their key features.
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Abstract

We show that any quantum family of quantum maps from a noncommutative space to a

compact quantum metric space has a canonical quantum pseudo-metric structure. Here by

a ‘compact quantum metric space’ we mean a unital C*-algebra together with a Lipschitz

seminorm, in the sense of Rieffel, which induces the weak* topology on the state space of

the C*-algebra. Our main result generalizes a classical result to noncommutative world.

1. Introduction

One of the basic ideas of Noncommutative Geometry is that any unital C*-algebra A can be considered as the algebra of continuous functions

on a (symbolic) compact quantum (noncommutative) space QA. From this point of view, any unital *-homomorphism Φ : B → A between

unital C*-algebras can be interpreted as a quantum map QΦ from QA into QB. There are many notions in Topology and Geometry that can

be translate into NC language. The notion of quantum family of (quantum) maps, defined by Woronowicz [16] and Sołtan [15] (see also

[10, 11, 12]), conclude from the following fact: “Every map f from X to the set of all maps from Y to Z (or in other word, any family of

maps from Y to Z parameterized by f with parameters x in X) can be considered as a map f̃ : X ×Y → Z defined by f̃ (x,y) = f (x)(y).” A

translation of this to noncommutative language is as follows.

Definition 1.1. ([10, 11, 12, 15, 16] Let B,C be unital C*-algebras. A quantum family of morphisms from B to C (or, a quantum family of

maps from QC to QB) is a pair (A,Φ) consisting of a unital C*-algebra A and a unital *-homomorphism Φ : B →C⊗A, where ⊗ denotes

the spatial tensor product of C*-algebras.

Another concept that can be translate from Geometry into NC Geometry, is distance or metric. Marc Rieffel, by using the notion of order

unite spaces, has developed the notion of quantum metric space in a series of papers [5, 6, 7, 8, 9]. For two other different notions of quantum

metric see [3, 13, 14]. Here, we deals with special examples of Rieffel’s quantum metric spaces, stated in the C*-algebraic formalism. The

aim of this note is to show that any quantum family of maps from a quantum space to a compact quantum metric space has a canonical

quantum pseudo-metric structure. We are motivated by the following trivial fact: Let (Z,d) be a metric space and f : X ×Y → Z be a family

of maps from Y to Z, then X has a pseudo-metric ρ defined by

ρ(x,x′) = sup
y∈Y

d( f (x,y), f (x′,y)).

In Section 2 we introduce the notion of compact quantum pseudo-metric space. In Section 3 we define a natural compact quantum

pseudo-metric space structure on any quantum family of maps from a quantum space to a compact quantum metric space. In Section 4 we

examine our definition in the classical case.

2. Compact quantum pseudo-metric spaces

By a pseudo-metric d on a set X we mean a positive valued function on X ×X which is symmetric, satisfies triangle inequality, and d(x,x) = 0

for every x ∈ X . For any topological space X with topology τ (resp. pseudo-metric space (X ,d)) C(X ,τ) (resp. C(X ,d)) denotes the

Email address: sadr@iasbs.ac.ir (M. M. Sadr)
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C*-algebra of all continuous bounded complex valued maps on X with the uniform norm. For a pseudo-metric d, τd denotes the topology

induced by d. Let (X ,d) be a pseudo-metric space. For every f ∈ C(X ,d), the Lipschitz semi norm ‖ f‖d is defined by

‖ f‖d = sup{
| f (x)− f (x′)|

d(x,x′)
: x,x′ ∈ X ,d(x,x′) 6= 0}.

Also, the Lipschitz algebra of (X ,d) is defined by,

Lip(X ,d) = { f ∈ C(X ,d) : ‖ f‖d < ∞}.

We need the following simple lemma.

Lemma 2.1. Let (X ,d) be a pseudo-metric space and a be a complex valued map on X. Then a ∈ Lip(X ,d) and ‖a‖d ≤ 1 if and only if

|a(x)−a(x′)| ≤ d(x,x′) for every x,x′ ∈ X. In particular, if b ∈ C(X ,d), then ‖b‖d = 0 if and only if b is a constant map.

Proof. Let a∈Lip(X ,d) and ‖a‖d ≤ 1. Suppose that x,x′ ∈ X . If d(x,x′) = 0, then a(x) = a(x′), since a is continuous with τd . If d(x,x′) 6= 0,

then 1 ≥ ‖a‖d ≥
|a(x)−a(x′)|

d(x,x′)
, and thus |a(x)−a(x′)| ≤ d(x,x′). The other direction is trivial.

For any C*-algebra A, S(A) denotes the state space of A with w* topology. If A is unital, 1A denotes the unit element of A.

Let A be a self adjoint linear subspace of the C*-algebra A, and let L : A → [0,∞) be a semi norm on A . Connes has pointed out [1], [2],

that one can define a pseudo-metric ρL on S(A) by

ρL(µ,ν) = sup{|µ(a)−ν(a)| : a ∈ A ,L(a)≤ 1} (µ,ν ∈ S(A)). (2.1)

Note that ρL can take values +∞ and 0 for different states of A. Conversely, let d be a pseudo-metric on S(A) (such that the topology induced

by d on S(A) is not necessarily w* topology). Define a semi norm Ld : A→ [0,+∞] by

Ld(a) = sup{
|µ(a)−ν(a)|

d(µ,ν)
: µ,ν ∈ S(A),d(µ,ν) 6= 0} (a ∈ A).

Note that Ld(a) = Ld(a
∗) for every a ∈ A.

Let (X ,d) be a compact metric space. Consider the Lipschitz semi norm

‖ · ‖d : Lip(X ,d)⊂ C(X ,d)→ [0,+∞).

Then it is easily checked that the semi norm ρ‖·‖d
on the state space of C(X ,d) is a metric, called Monge-Kantorovich metric [4]. It is well

known that the topology induced by ρ‖·‖d
, is the w* topology, and for every x,y ∈ X , d(x,y) = ρ‖·‖d

(δx,δy), where δ : X → C(X ,d)∗ is the

point mass measure map.

Proposition 2.2. Let (X ,τ) be a compact Hausdorff space and d be a pseudo-metric on X such that the topology induced by d on X is

weaker than τ , i.e. τd ⊂ τ . Consider the Lipschitz semi norm ‖ · ‖d : Lip(X ,d)⊂ C(X ,τ)→ [0,+∞) and let ρ = ρ‖·‖d
. Then the following

are satisfied.

i) d(x,y) = ρ(δx,δy), for every x,y ∈ X.

ii) Lρ = ‖ · ‖d on C(X ,d)⊂ C(X ,τ).
iii) Let a ∈ C(X ,τ), then a ∈ C(X ,d) if and only if the map ν 7−→ ν(a) on S(C(X ,τ)) is continuous with ρ .

iv) the topology induced by ρ on S(C(X ,τ)) is weaker than the w* topology.

Proof. i) Let x,y be in X . Suppose that a ∈ Lip(X ,d) and ‖a‖d ≤ 1. Then by Lemma 2.1, |δx(a)−δy(a)|= |a(x)−a(y)| ≤ d(x,y), and thus

by definition of ρ , we have ρ(δx,δy)≤ d(x,y). Conversely, let ax ∈ C(X ,d) be defined by ax(z) = d(x,z) (z ∈ X); then for every x′,y′ ∈ X ,

|ax(x
′)−ax(y

′)|= |d(x,x′)−d(x,y′)| ≤ d(x′,y′), and thus by lemma 2.1, a ∈ Lip(X ,d) and ‖a‖d ≤ 1. Now, we have

ρ(δx,δy)≥ |δx(ax)−δy(ax)|= |ax(x)−ax(y)|= d(x,y).

ii) By i) and definitions of Lρ and ‖ · ‖d , it is clear that ‖ · ‖d ≤ Lρ on C(X ,τ).
Let a ∈ C(X ,d). If ‖a‖d = 0, then by Lemma 2.1, a is a constant map and thus Lρ (a) = 0. If ‖a‖d = ∞ then Lρ (a) = ∞ since ‖a‖d ≤ Lρ (a).
Thus suppose that 0 < ‖a‖< ∞. Then for every µ,ν ∈ S(C(X ,τ)), we have

ρ(µ,ν)≥ |µ(
a

‖a‖d

)−ν(
a

‖a‖d

)|=
|µ(a)−ν(a)|

‖a‖d

and thus if ρ(µ,ν) 6= 0 then ‖a‖d ≥
|µ(a)−ν(a)|

ρ(µ,ν)
. Therefore,

‖a‖d ≥ sup{
|µ(a)−ν(a)|

ρ(µ,ν)
: µ,ν ∈ S(C(X ,τ)),ρ(µ,ν) 6= 0}= Lρ (a).

iii) The ‘if’ part is an immediate consequence of i). For the other direction, we need some notations: Let ∼ be the equivalence relation on

X defined by x ∼ x′ ⇔ d(x,x′) = 0. Let Y = X/∼ and letˆ: X → Y be the canonical projection. Then d̂, defined by d̂(x̂1, x̂2) = d(x1,x2),
is a well defined metric on Y , andˆis an isometry between (X ,d) and (Y, d̂). Thus the C*-algebras C(X ,d) and C(Y, d̂), and the Lipschitz

algebras (Lip(X ,d),‖ · ‖d) and (Lip(Y, d̂),‖ · ‖
d̂
) are isometric isomorph. In particular, the topology induced by ρ on S(C(X ,d)) is the w*

topology, since as mentioned above the Monge-Kantorovich metric ρ‖·‖d̂
induces the w* topology on S(C(Y, d̂)). Consider the canonical

embedding Φ : C(X ,d)→ C(X ,τ). For every ν ,ν ′ ∈ S(C(X ,τ)), ν ◦Φ and ν ′ ◦Φ are in S(C(X ,d)) and

ρ(ν ,ν ′) = ρ(ν ◦Φ,ν ′ ◦Φ). (2.2)
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Now, let a ∈ C(X ,d) and νi → ν be a convergent net in S(C(X ,τ)) with ρ . Then νi ◦Φ → ν ◦Φ is a convergent net in S(C(X ,d)) with ρ ,

and since the topology induced by ρ agrees with the w* topology on S(C(X ,d)), we have

νi(a) = νi ◦Φ(a)→ ν ◦Φ(a) = ν(a).

Thus we get the desired result.

iv) Let νi → ν be a convergent net in S(C(X ,τ)) with w* topology. Thus as in the proof of iii), νi ◦Φ → ν ◦Φ with ρ , and by (2.2), νi → ν

in S(C(X ,τ)) with the topology induced by ρ . This completes the proof of iv).

Definition 2.3. By a compact quantum pseudo-metric space (QSM space, for short) we mean a triple (A,A ,L), where A is a unital

C*-algebra, A is a self adjoint linear subspace of A with 1A ∈ A , and L : A → [0,+∞) is a semi norm such that

(a) L(a) = L(a∗) for every a ∈ A ,

(b) for every a ∈ A , L(a) = 0 if and only if a ∈ C1A, and

(c) the topology induced by the pseudo-metric ρL on S(A) is weaker than the w* topology.

As an immediate corollary of the definition, for any compact quantum pseudo-metric space (A,A ,L), the topology induced by ρL on S(A)
is compact and in particular the diameter of S(A) under ρL is finite.

Proposition 2.4. Let (A,A ,L) be a QSM space. Then, for every a ∈ A , the map µ 7−→ µ(a) on S(A) is continuous with topology induced

by ρL.

Proof. Straightforward.

Definition 2.5. A QSM space (A,A ,L) is called a compact quantum metric space (QM space, for short) if A is a dense subspace of A.

Let (A,A ,L) be a QM space and µ,ν be two different states of A. Then since A is dense in A, there is a ∈ A such that µ(a) 6= ν(a). Thus

(by (2.1)) ρL is a metric on S(A). It is an elementary result in Topology that any Hausdorff topology τ weaker than a compact Hausdorrf

topology τ ′ on a set X , is equal to the same topology τ ′. Using this, we conclude that the topology induced by ρL on S(A) is the w* topology.

Example 2.6. Let (X ,d) be a compact metric space. Then

(C(X ,d),Lip(X ,d),‖ · ‖d)

is a compact quantum metric space.

Example 2.7. Let (X ,τ) be a compact Hausdorff space and let d be a pseudo-metric on X such that τd ⊂ τ . Then Proposition 2.2 and

Lemma 2.1, show

(C(X ,τ),Lip(X ,d),‖ · ‖d)

is a compact quantum pseudo-metric space.

Remark 2.8. Let (A,A ,L) be a QM space and A ⊂ A be the linear subspace of all self-adjoint elements of A . Then A is an order unite

space and (A,L|A) is a compact quantum metric space in the sense of Rieffel’s definition [7].

Lemma 2.9. Let A be a C*-algebra with the C*-norm ‖ · ‖, A be a self adjoint linear subspace of A containing 1A and L : A → [0,+∞)
be a semi norm such that for every a ∈ A , L(a) = 0 if and only if a ∈ C1A. Let L̃ and ‖ · ‖̃ denote the quotient norm of L and ‖ · ‖ on A

C1A

and A

C1A
, respectively. Suppose that the image of {a ∈ A : L(a)≤ 1} in A

C1A
is totally bounded for ‖ · ‖̃. Then the topology induced by ρL

on S(A) is weaker than the w* topology.

Proof. See Theorem 1.8 of [5].

Example 2.10. Let A be a finite dimensional C*-algebra and N be a Banach space norm on A such that N(a) = N(a∗) for every a ∈ A. Let

the semi norm N0 : A→ [0,∞) be defined by

N0 = inf{N(a+λ1A) : λ ∈ C}.

Since A is finite dimensional, the C*-norm of A and N are equivalent. Thus the image K of {a ∈ A : N0(a)≤ 1} is closed and bounded in
A

C1A
. Again, since A is finite dimensional, K is compact and thus totally bounded for the quotient norm of the C*-norm. Thus by Lemma 2.9,

(A,A,N0) is a QM space.

Example 2.11. Let G be a compact Hausdorff group with identity element e. Let ℓ be a length function on G, i.e. ℓ is a continuous non

negative real valued function on G such that

(i) ℓ(gg′)≤ ℓ(g)+ ℓ(g′), for every g,g′ ∈ G,

(ii) ℓ(g) = ℓ(g−1) for every g ∈ G, and

(iii) ℓ(g) = 0 if and only if g = e.

Let A be a unital C*-algebra with a strongly continuous action · : G×A→ A of G by automorphisms of A, i.e.

(a) for every g ∈ G the map a 7−→ g ·a is a *-automorphism of A,

(b) e ·a = a for every a ∈ A ,

(c) g · (g′ ·a) = (gg′) ·a, for every g,g′ ∈ G,a ∈ A, and

(d) if gi → g is a convergent net in G and a ∈ A, then gi ·a → g ·a with the C*-norm of A.
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Define a semi norm L on A by

L(a) = sup{
‖g ·a−a‖

ℓ(g)
: g ∈ G,g 6= e} (a ∈ A).

Let A = {a ∈ A : L(a) < +∞}. Then by Proposition 2.2 of [5], A is a dense *-subalgebra of A. Now, suppose that the action of G is

ergodic, i.e. if a ∈ A and for every g ∈ G, g ·a = a, then a ∈ C1A. Then it is trivial that L(a) = 0 if and only if a ∈ C1A. Rieffel has proved

[5, Theorem 2.3], that the topology induced by ρL on S(A) agrees with the w* topology. Thus (A,A ,L) is a QM space.

For some other examples that completely match our notion of QM space, see [5]. As we will see in the next section, using quantum family of

morphisms we can construct many QSM spaces from a QSM space.

3. The main definition

We need the following simple topological lemma.

Lemma 3.1. Let Y be a compact space, X be an arbitrary space and (Z,ρ) be a pseudo-metric space. Also, let C(Y,Z) be the space of all

continuous maps from Y to Z, with the pseudo-metric ρ̂ defined by

ρ̂( f ,g) = sup{ρ( f (y),g(y)) : y ∈ Y} ( f ,g ∈ C(Y,Z)).

Suppose that F : Y ×X → Z is a continuous map. Then the map F̃ : X → C(Y,Z), defined by F̃(x)(y) = F(y,x) is continuous.

Proof. Let x0 ∈ X and ε > 0 be arbitrary. Since F is continuous, for every y ∈ Y , there are open sets Uy,Vy in X and Y respectively, such

that (y,x0) ∈ Vy ×Uy and ρ(F(y,x0),F(y′,x)) < ε/2 for every (y′,x) ∈ Vy ×Uy. Since Y is compact, there are y1, · · · ,yn ∈ Y such that

Y = ∪n
i=1Vyi

. Let W be the open set ∩n
i=1Uyi

. Let x ∈W and y ∈ Y be arbitrary. Then for some i (i = 1, · · · ,n), y belongs to Vyi
and we have,

ρ(F(y,x),F(y,x0))≤ ρ(F(y,x),F(yi,x0))+ρ(F(yi,x0),F(y,x0))< ε.

Thus we have ρ̂(F̃(x), F̃(x0))< ε for every x ∈W . The proof is complete.

Let (A,A ,L) be a QSM space, B be a unital C*-algebra, and (C,Φ) be a quantum family of morphisms from A to B, Φ : A→B⊗C.

Let d be a pseudo-metric on S(C), defined by

d(ν ,ν ′) = sup{ρL((µ ⊗ν)Φ,(µ ⊗ν ′)Φ) : µ ∈ S(B)} (ν ,ν ′ ∈ S(C)).

Proposition 3.2. With the above assumptions, let C be the linear space of all c ∈ C such that the map ν 7−→ ν(c) on S(C) is continuous

with the topology induced by d, and Ld(c)< ∞. Then the following are satisfied.

i) C is a self adjoint linear subspace of C and 1C ∈ C .

ii) For every c ∈ C , Ld(c) = 0 if and only if c ∈ C1C.

iii) The topology induced by d on S(C) is weaker than the w* topology.

iv) With the restriction of the domain of Ld to C , ρLd
≤ d.

v) The topology induced by ρLd
on S(C) is weaker than the w* topology.

Proof. i) is easily checked.

ii) Let c be in C and Ld(c) = 0. By Lemma 2.1, the map ν 7−→ ν(c) on S(C) is constant, and thus c ∈ C1C.

iii) Apply Lemma 3.1, with X = S(C), Y = S(B), Z = S(A), ρ = ρL and F : Y ×X → Z defined by

F(µ,ν) = (µ ⊗ν)Φ (µ ∈ Y,ν ∈ X).

We get F̃ : X → C(Y,Z) is continuous with the metric ρ̂ on C(Y,Z). On the other hand, for every ν ,ν ′ we have d(ν ,ν ′) = ρ̂(F̃(ν), F̃(ν ′)).
Thus, if νi → ν is a convergent net in X with w* topology, then

d(νi,ν) = ρ̂(F̃(νi), F̃(ν))→ 0.

This implies that the topology induced by d is weaker than the w* topology.

iv) Let ν ,ν ′ be in S(C). If d(ν ,ν ′) = 0 then for every c ∈ C , ν(c) = ν ′(c) (since the map µ 7−→ µ(c) is continuous with d) and thus by

the definition of ρLd
, ρLd

(ν ,ν ′) = 0. Thus suppose that d(ν ,ν ′) 6= 0. Let c ∈ C with Ld(c)≤ 1. Then 1 ≥ Ld(c)≥
|ν(c)−ν ′(c)|

d(ν ,ν ′)
, and thus

|ν(c)−ν ′(c)| ≤ d(ν ,ν ′). Therefore

ρLd
(ν ,ν ′)≤ d(ν ,ν ′).

v) follows directly from iv) and iii).

Definition 3.3. With the above assumptions, Proposition 3.2, shows that (C,C ,Ld) is a QSM space that is called QSM space induced by the

QSM space (A,A ,L) and quantum family of maps (C,Φ).

Lemma 3.4. With the above assumptions, let a ∈ A and let µ ∈ S(B). Then c = (µ ⊗ idC)Φ(a) is in C , and Ld(c)≤ L(a).
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Proof. We first show that Ld(c)≤ L(a)(< ∞). If L(a) = 0 then a ∈C1A and thus c ∈C1C and Ld(c) = 0. Suppose that L(a) 6= 0. We prove

that for every ν ,ν ′ ∈ S(C) with d(ν ,ν ′) 6= 0,

|ν(c)−ν ′(c)|

d(ν ,ν ′)
≤ L(a). (3.1)

Let ν ,ν ′ ∈ S(C) be such that d(ν ,ν ′) 6= 0. If |ν(c)−ν ′(c)|= 0, then (3.1) is satisfied. Suppose that

|ν(c)−ν ′(c)|= |(µ ⊗ν)Φ(a)− (µ ⊗ν ′)Φ(a)| 6= 0.

By the definition of d, we have d(ν ,ν ′)≥ ρL((µ ⊗ν)Φ,(µ ⊗ν ′)Φ). On the other hand, by the definition of ρL,

ρL((µ ⊗ν)Φ,(µ ⊗ν ′)Φ)≥ |(µ ⊗ν)Φ(
a

L(a)
)− (µ ⊗ν ′)Φ(

a

L(a)
)|

=
|(µ ⊗ν)Φ(a)− (µ ⊗ν ′)Φ(a)|

L(a)
.

Thus, (3.1) is satisfied and Ld(c)≤ L(a).
Now, we show that the map ν 7−→ ν(c) on S(C) is continuous with τd . Let νn → ν be a convergent sequence in S(C) with the metric d.

Thus, by the definition of d, we have

ρL((µ ⊗νn)Φ,(µ ⊗ν)Φ)→ 0.

Therefore, by Proposition 2.4,

νn(c) = (µ ⊗νn)Φ(a)→ (µ ⊗ν)Φ(a) = ν(c).

Proposition 3.5. With the above assumptions, suppose that (A,A ,L) is a QM space and the linear span of

G = {(µ ⊗ idC)Φ(a) : µ ∈ S(B),a ∈ A}

is dense in C (for example Φ is surjective). Then (C,C ,Ld) is a QM space.

Proof. Since A is dense in A and the linear span of G is dense in C, we have

G0 = {(µ ⊗ idC)Φ(a) : µ ∈ S(B),a ∈ A }

is dense in C. On the other hand, by Lemma 3.4, G0 ⊂ C . Thus C is dense in C and (C,C ,Ld) is a QM space.

Example 3.6. Let A and C be unital C*-algebras. Suppose that A⊗C has a QSM structure. Consider *-homomorphisms

id : A⊗C→ A⊗C and F : A⊗C→ C⊗A,

where F is the flip map, i.e. F(a⊗ c) = c⊗a for a ∈ A,c ∈ C. Then

(C, idA⊗C) and (A,F)

are quantum families of morphisms. Thus A and C have naturally QSM structures. Also, by Proposition 3.5, if A⊗C has a QM structure

then so are A and C.

Example 3.7. Let A be a unital C*-algebra and suppose that A has a QSM structure. Let Φ : A→B be a unital *-homomorphism. Then

(B,Φ) can be considered as a quantum family of morphisms from A to C. Thus B naturally has a QSM structure. Also, if Φ is surjective

and A has a QM structure, then by Proposition 3.5, B has a QM structure.

4. The commutative case

In this last section we study induced metric structures on ordinary families of maps.

Lemma 4.1. Let (X ,τ) be a compact Hausdorff space and let d be a pseudo-metric on S(C(X ,τ)) such that τd is weaker than the w*

topology. Let C be the space of all c ∈ C(X ,τ) such that the map ν 7−→ ν(c) is continuous on S(C(X ,τ)) and Ld(c)< ∞. Consider the

semi norm Ld : C → [0,+∞). Then for every x,x′ ∈ X, d(δx,δx′) = ρLd
(δx,δx′).

(We remark that Lemma 4.1 is different from part i) of Proposition 2.2.)

Proof. Let x,x′ be in X . By the definition of ρLd
, we have

ρLd
(δx,δx′) = sup{|a(x)−a(x′)| : a ∈ C ,Ld(a)≤ 1}. (4.1)

Let a ∈ C and Ld(a)≤ 1. If d(δx,δx′) = 0, then a(x) = a(x′) since the map δx 7−→ δx(a) = a(x) is continuous with d, thus (4.1) implies that

ρLd
(δx,δx′) = d(δx,δx′) = 0.

Now, suppose that d(δx,δx′) 6= 0. Since 1 = Ld(a)≥
|a(x)−a(x′)|

d(δx,δx′ )
, we have d(δx,δx′)≥ |a(x)−a(x′)|, thus (4.1) implies that ρLd

(δx,δx′)≤

d(δx,δx′). Now, define a map bx on X by bx(y) = d(δx,δy). Then bx ∈ C and Ld(bx)≤ 1. Thus

ρLd
(δx,δx′)≥ |bx(x)−bx(x

′)|= d(δx,δx′).

This completes the proof.
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Theorem 4.2. Let (X ,τ), (Y,τ ′), (Z,τ ′′) be compact Hausdorff spaces and let d0 be a pseudo-metric on X such that τd0
⊂ τ . Let

F : Y ×Z → X

be a continuous map with τ,τ ′,τ ′′, and define a pseudo-metric d1 on Z by

d1(z,z
′) = sup

y∈Y

d0(F(y,z),F(y,z′)).

With the canonical identification C(Y ×Z,τ ′× τ ′′)∼= C(Y,τ ′)⊗C(Z,τ ′′) let

F̂ : C(X ,τ)→ C(Y,τ ′)⊗C(Z,τ ′′)

be defined by F̂(a) = aF, for a ∈ C(X ,τ). Let

(C(Z,τ ′′),C ,N)

be the QSM space induced by QSM space (C(X ,τ),Lip(X ,d0),‖ · ‖d0
) and quantum family of morphisms (C(Z,τ ′′), F̂). Then the following

are satisfied.

i) d1(z,z
′) = ρN(δz,δz′) for every z,z′ ∈ Z.

ii) C ⊂ Lip(Z,d1).
iii) ‖ · ‖d1

≤ N.

Proof. i) Let L = ‖ · ‖d0
. Let us recall the definition of (C(Z,τ ′′),C ,N). Let d be the pseudo-metric on S(C(Z,τ ′′)) defined by

d(ν ,ν ′) = sup{ρL((µ ⊗ν)F̂ ,(µ ⊗ν ′)F̂) : µ ∈ S(C(Y,τ ′))}.

Then N = Ld and C is the space of all c ∈ C(Z,τ ′′) such that the map ν 7−→ ν(c) on S(C(Z,τ ′′)) is continuous with d and N(c)< ∞. By

Lemma 4.1, we have,

d(δz,δz′) = ρN(δz,δz′), (4.2)

for every z,z′ ∈ Z. Now, we explain the relation between d1 and d.

Let z,z′ ∈ Z and y ∈ Y . Then

(δy ⊗δz)F̂ = δF(y,z) and (δy ⊗δz′)F̂ = δF(y,z′).

On the other hand, by Proposition 2.2, for every x,x′ ∈ X , d0(x,x
′) = ρL(δx,δx′). Thus

ρL((δy ⊗δz)F̂ ,(δy ⊗δz′)F̂) = d0(F(y,z),F(y,z′)).

This formula together with the definitions of d and d1, show that

d1(z,z
′)≤ d(δz,δz′). (4.3)

Let µ ∈ S(C(Y,τ ′)) be arbitrary. We consider µ as a probability Borel regular measure on (Y,τ ′). Then for every a ∈ Lip(X ,d0) with

‖a‖d0
≤ 1, we have,

|(µ ⊗δz)F̂(a)− (µ ⊗δz′)F̂(a)|= |
∫

Y
(aF(y,z)−aF(y,z′))dµ (y)|

≤
∫

Y
|a(F(y,z))−a(F(y,z′))|dµ (y).

(4.4)

For every y ∈ Y , by Lemma 2.1,

|a(F(y,z))−a(F(y,z′))| ≤ d0(F(y,z),F(y,z′)).

Therefore, we have

|a(F(y,z))−a(F(y,z′))| ≤ d1(z,z
′). (4.5)

(4.5) and (4.4) implies that

|(µ ⊗δz)F̂(a)− (µ ⊗δz′)F̂(a)| ≤ d1(z,z
′).

Therefore, by the definition of d,

d(δz,δz′)≤ d1(z,z
′). (4.6)

Now, by (4.6) and (4.3), d(δz,δz′) = d1(z,z
′), and thus by (4.2),

d1(δz,δz′) = ρN(δz,δz′)

for every z,z′ ∈ Z, and i) is satisfied. ii) and iii) are immediate consequence of i) and definitions of C , ‖ · ‖d1
and N.
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5. Conclusion

In this note, we introduced the new concept of compact quantum pseudo-metric space as a generalization of the concept of compact quantum

metric space. The C*-algebraic examples of the latter concept, which has been introduced by Rieffel, are very restricted. But, by using the

concept of quantum family of maps, it was denoted that the source of examples for (C*-algebraic) quantum pseudo-metric spaces are very

wider than those for (C*-algebraic) quantum metric spaces.
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Abstract

In this paper, a system of the differential equations giving geodesics on the momentum

phase space with pseudo Riemann metric Cg of a Hamilton space is found by using the

Euler Lagrange equations. Then, space like geodesics on pseudo hyperbolic 2-space H2
1 are

obtained. Finally, a system of the differential equations giving geodesics on the cotangent

bundle with pseudo Riemann metric Cg of H2
1 is get.

1. Introduction

The geometry of the cotangent bundle is one of the most important subjects attracted the attention of mathematicians as well as physicists.

A Lagrange mechanical system consists of a configuration space which contains the trajectory of each of the moving particles of a system

with n-particles and Lagrangian which gives the difference between the kinetic and potential energy at any stage of the each particle in

system [1].

The position and velocity coordinates depended on time parameter t of the motion of the each particle of a system with n-particles are

represented by the coordinates of any point on the tangent bundle of a (pseudo) Riemann manifold. Lagrangian is defined as a real valuable

and differentiable function on the tangent bundle [7].

The position and velocity coordinates of a moving particle in the system at any instant t are found by the Euler Lagrange equations. The Euler

Lagrange equations are second order ordinary differential equations which depend on position and velocity of each particle in system [7].

Gravitational field is given by a (pseudo) Riemann metric. The movement depended on time t of all particles in system by the only effect of

the gravitational field is described by a (pseudo) Riemann manifold. The trajectory of a moving particle by the effect of the gravitational field

describes a geodesic, the shortest one among the curves passing from one point to another, in a (pseudo) Riemann manifold [8].

In different place of space, the effect of the gravitational field on moving particles is different. As metric is change, (pseudo) Riemann

manifold must change. Moreover, in different (pseudo) Riemann manifold, the trajectory of moving particles by the only effect of the

gravitational field, geodesics, must change. So, we examined geodesics on different space forms such as H1
2, S1

2, S3 and its tangent sphere

bundle from [[2],[3],[4]].

From the references [1], [5], [7], [8], [9] and [10], we searched some concept such as, the movement of particles in the gravitational field,

total energy function in a Hamilton mechanic system, kinetic and potential energies of a moving particle, the conservation of energy and the

conservation of momentum.

Then, we found out that how obtained space like, time like and null geodesics of the unit 2-sphere with index one by using the Euler Lagrange

equations from [6].

Moreover, we analyzed the general equations of geodesics on the cotangent bundle with pseudo Riemann metric Cg which is called as

Riemann extension of the symmetric affine connection [11].

In this paper, we defined Lagrangian on the cotangent bundle and we calculated geodesics on the cotangent bundle with a pseudo Riemann

metric Cg by using the Euler Lagrange equations.

Then, we obtained space-like geodesics on the pseudo hyperbolic 2-space by using the Euler Lagrange equations. Finally, we calculated the

general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space with the pseudo Riemann metric Cg.

Email address: iayhan@pau.edu.tr (İ. Ayhan)
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2. The motion of the particles in the Hamilton Space

In this section, we obtain the geometrical interpretations of some concepts, well known in classic mechanic such as the movement of the

particles by the effect of the gravitational field, the conservation of energy and momentum.

In classical mechanic, the motion of a system with n-particles is described by the position coordinates and the momentum coordinates

of each of the particles in system. The position coordinates of a particle depend on the position vector in three-dimensional space. The

momentum coordinates of a particle depend on a one form associated with the tangent vector of the curve determined by trajectory of the

moving particle [10].

If the configuration space represents by an n=3N dimensional manifold whose the local coordinate functions give the positions coordinates of

each of the particles at any instant t, the phase space of the configuration space can represent by an 2n dimensional manifold whose the local

coordinate functions give the position and the momentum coordinates of each of the particles at any instant t. In other words, the phase space

of the configuration space must represent 2n-dimensional the cotangent bundle as the configuration space of moving particles by the only

effect of the gravitational field represents a n-dimensional differentiable manifold M [10]. The arc length between the position coordinates of

infinitely close two points on the trajectory of a particle in the configuration space is determined by

ds2 = gk j(x)dxkdx j, (2.1)

where gk j(x) is a pseudo Riemann metric on M. The trajectory of a moving particle in M is represented by a curve γ : I ⊂ R → M. For any

time t, the position coordinates of γ is given by xi(t) = xi ◦ γ(t), i = 1, ...,n and the velocity and momentum coordinates of γ are given by

yi = dxi

dt , and pi = gi jy
j, respectively.

The curve γ must be called as the space-like, the time-like or the light-like curve if the value under the pseudo Riemann metric g of the unit

tangent vector v at every point of γ , ds2 = g(v,v) = ε is provided ε = 1, ε =−1 or ε = 0, respectively [3].

The sum of the kinetic and the potential energies of all moving particles in the system are represented by the function H : T ∗M → R in the

phase space and it is called Hamiltonian.

Assuming that all particles in the system act only the effect of the gravitational field. Then the Hamiltonian H equals to the sum of the total

energies of the moving all particles in system and the Hamiltonian H of the test particles i.e. unit mass particles are described by

H(xi, pi) =
1

2
gi j(x)pi p j, (2.2)

where gi j(x) is a metric tensor with type (2,0) given by gikgk j = δ i
j [ 5]. The Hamilton space M consists of n-dimensional differentiable

manifold M and a Hamiltonian H on the cotangent bundle of M. Assuming that η = pidxi is the basic 1-form on T*M. The exterior

differential ϑ =−dη of the basic 1-form η is the 2-form given by ϑ = dxi ∧d pi with respect to the induced local coordinates of T*M.
Since ϑ is closed (i.e. dϑ = 0 ), non degenerate 2-form on T*M, ϑ is called as the canonic symplectic structure on T*M. The cotangent

bundle T*M with the symplectic structure ϑ is called as a symplectic manifold [1]. A vector field XH : T ∗M → T T ∗M is called as Hamilton

vector field if there is a function H : T ∗M → R such that iXH
ϑ = dH. The condition iXH

ϑ = dH is equivalent to ϑ (XH ,Y ) = dH(Y ) for

Y ∈ T T ∗M. The local expression of the Hamilton vector field is

XH =
∂H

∂ pi

∂

∂xi
−

∂H

∂xi

∂

∂ pi
, (2.3)

with respect to the induced coordinates (xi, pi); i = 1, ...,n on T ∗M [1].

The curve φ : t → (xi(t), pi(t)) is called as the integral curve of the Hamilton vector field XH since the equality XH(φ(t)) = φ̇(t) provides.

The condition XH(φ(t)) = φ̇(t) is equivalent to

dxi

dt
=

∂H

∂ pi
,

d pi

dt
=−

∂H

∂xi
. (2.4)

The equations in (2.4) are called as Hamilton equations. The solution curves of these 2n first order differential equations describe a symplectic

transformation called as phase flow in phase space [1]. The Hamilton equations are also obtained by the Legendre transformation of the

Euler Lagrange equations described as follows:

d

dt

(

∂L

∂yi

)

−
∂L

∂xi
= 0, (2.5)

where yi = dxi

dt . Legendre transformation is differentiable transformation from TM to T*M defined by

£ : (xi,yi)→ (xi, pi =
∂L

∂yi
). (2.6)

There is a relation between H and L as follows:

H(xi, pi) = piy
i −L(xi,yi), (2.7)

where L is a differentiable function on TM called as Lagrangian with local expression as follows:

L(xi,yi) =
1

2
gi j(x)y

iy j. (2.8)

The Lagrangian of all particles in the system is equal to the difference between kinetic and potential energies of these particles [1, 7].
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The Hamiltonian H is a differentiable function on T ∗M given in (2.2). Let φ be a curve in T*M. The curve γ is called as the projected curve

of φ by canonic projection π from T ∗M to M i.e. π ◦φ = γ . If the curve φ is an integral curve of the Hamilton vector field XH , the curve γ
must be geodesic [1]. In other words, the particles in the system exposed gravitational field act along geodesic curves in the configuration

space [8].

The sum of kinetic and potential energies of each of the moving particles by the only effect of the gravitational field is equal to Hamiltonian

H which has constant value along the integral curves of the Hamilton vector field. In other words, the Hamiltonian must be constant on every

point of the curve φ as the particles act along the integral curve of the Hamilton vector field. In classical mechanic, this fact is known as the

conservation of energy [1].

Since the Hamiltonian H is constant along the integral curves of the Hamilton vector field, the Lagrangian L to be real valuable a function on

the tangent bundle TM of the configuration space M must be constant along the integral curve of a vector field called as geodesic spray,

which is the horizontal vector field in TTM [1].

The Lagrangian of the system with n-particles acting the only effect of the gravitational field is defined by (2.8). In addition, the momentum

pi = ∂L/dyi of each particle in the system must be constant. In classical mechanic, this fact is known as the conservation of momentum [7].

3. The Euler Lagrange equations on (T*M,Cg)

In this section, the Lagrangian on (T ∗M, Cg) is obtained and the general equations of geodesics of
(

T ∗M, Cg
)

in terms of the Euler Lagrange

equations are found.

Definition 3.1. The disjoint union of each tangent vector space at all point of T ∗M is called as the tangent bundle of T ∗M denoted by

T T ∗M =
⋃

∀(p,ω)∈T ∗M

T(p,ω)T
∗M. (3.1)

Any point on T T ∗M is represented by (p, ω, X̃(p,ω)) where p is any point in a neighborhood U of M, ω is a cotangent vector at a

point p of M and X̃(p,ω) is a tangent vector at a point (p,ω) of T ∗M. τT ∗M : T T ∗M → T ∗M is called as the canonical projection map.

Let ˜̃p = (p, ω, X̃(p,ω)) be a point on (πM ◦ τT ∗M)−1(U) ⊂ T T ∗M. Then
(

x1, ...,xn, p1, ..., pn, ẋ
1, ..., ẋn, ṗ1, ...ṗn

)

is a the induced local

coordinates of a point ˜̃p on T T ∗M where {xi}, i = 1, ...,n is the local components of a point πM ◦ τT ∗M( ˜̃p) = p of M and {pi}, i = 1, ...,n is

the local components of the cotangent vector ω providing pi = ω( ∂
∂xi ). {ẋi}, i = 1, ...,n is the local coordinate function of the tangent vector

X̃(p,ω) providing ẋi = dxi(X̃(p,ω)) = X̃(p,ω)[x
i] and { ṗi}, i = 1, ...,n is the local coordinate functions of the tangent vector X̃(p,ω) providing

ṗi = d pi(X̃(p,ω)) = X̃(p,ω)[pi]. Thus T T ∗M has 4n dimensional manifold structure.

Definition 3.2. The pseudo Riemann metric Cg is a tensor field of type (0, 2) in the cotangent bundle T ∗M, whose components g̃AB are given

by

g̃AB :

(

−2paΓ
a
i j δ

j
i

δ i
j 0

)

2n×2n

, (3.2)

where A, B ∈ {1, ...,2n} and i, j ∈ {1, ...,n}. The line element of a pseudo Riemann metric Cg is given by

Cg =−2paΓ
a
i jdxidx j +2δ

j
i d pidx j, (3.3)

with respect to the induced coordinates (xi, pi) of T ∗M. Cg is called as the Riemann extension of the symmetric affine connection ∇ of M

[11].

Theorem 3.1. The difference between kinetic and potential energies of the moving particles by the only effect of the gravitational field in the

momentum phase space with a pseudo Riemann metric Cg is given as follows:

L̃(xi, pi, ẋ
i, ṗi) =−paΓ

a
i j ẋ

iẋ j + ṗiẋ
i. (3.4)

Proof. The difference between kinetic and potential energy of the moving particles by the only effect of the gravitational field at any stage
(

x̃A, ỹA
)

on T T ∗M, L̃, is calculated by

L̃(x̃A, ỹA) =
1

2
g̃ABỹAỹB;A,B,D = 1, ...2n,

where gik , A = 1, ...,2n corresponds to the local coordinates of a point p̃ = (xi, pi), i = 1, ...,n on T ∗M and ỹA corresponds to the coordinate

components (ẋi, ṗi) of a vector field X̃ : T ∗M → T (T ∗M), X̃ = X̃A ∂
∂ x̃A such that dx̃i[X̃ ] = ẋi, dx̃n+i[X̃ ] = ṗi. The Lagrangian L̃ is a

differentiable function from T T ∗M to IR. The local expression of L̃ is

L̃(xi, pi, ẋ
i, ṗi) =

1

2

(

ẋi

ṗi

)T
(

−2paΓ
a
i j δ

j
i

δ i
j 0

)

(

ẋ j

ṗ j

)

=−paΓ
a
i j ẋ

iẋ j + ṗiẋ
i.

Definition 3.3. The one with minimum arc length of among the curves given by γ̃ : t ∈ [t0, t1]⊂ R →
(

xi(t), pi(t)
)

∈ T ∗M is described by

integral

ϕ(γ̃) =

t1
∫

t0

L̃(xi(t), pi(t), ẋ
i, ṗi)) dt (3.5)

where ϕ(γ̃) is called as functional.
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Theorem 3.2. A curve γ̃ : t →
(

xi(t), pi(t)
)

in (T ∗M, Cg) is geodesic iff γ̃ satisfies the Euler-Lagrange equations given by

d
dt

(

∂ L̃
∂ ẋi

)

− ∂ L̃
∂xi = 0, d

dt

(

∂ L̃
∂ ṗi

)

− ∂ L̃
∂ pi

= 0, (3.6)

where L̃ is defined as (3.4).

Proof. By solving the differential equations in (3.6), we get the general equations of geodesics of T ∗M with the pseudo Riemann metric Cg

as follows:

dẋh

dt
+Γ

h
i j ẋ

iẋ j = 0, (3.7)

d ṗh

dt
+ pa

∂Γ
a
i j

∂xh
ẋiẋ j −2pa

∂Γ
a
h j

∂xi
ẋ j ẋi −2Γ

a
h j ṗaẋ j +2paΓ

a
hkΓ

k
jiẋ

j ẋi = 0, (3.8)

which is also obtained by classical method in Yano and Ishihara’ s book [11].

4. Geodesics on H2
1

In this section, the space-like geodesics on pseudo hyperbolic 2-space are obtained by using the Euler Lagrange differential equations.

Definition 4.1. Non-degenerate, symmetric, bilinear form g is called as a semi Riemann metric in semi-Euclidean space E3
1 and g is defined

by

g(u,v) =−u1v1 +u2v2 +u3v3, (4.1)

for any vectors u,v ∈ E3
1 .

Definition 4.2. H2
1 is a surface in E3

1 given by

H2
1 = {u = (x1,x2,x3) : ‖u‖2 = g(u,u) =−1, u ∈ E3

1}. (4.2)

H2
1 is called as pseudo hyperbolic 2-space. H2

1 may be considered as hyperboloid of two sheet in Euclidean space.

The representation of H2
1 with respect to Cartesian coordinate system is given as follows:

−x2
1 + x2

2 + x2
3 =−1. (4.3)

The parametric representation of H2
1 is given as follows:

x1(a,θ) = cosha,

x2(a,θ) = sinhasinθ ,

x3(a,θ) = sinhacosθ .

(4.4)

Any curve on the surface H2
1 is described by giving the following coordinates as functions of a single parameter t

a = a(t)

θ = θ(t).
(4.5)

Theorem 4.1. The length between infinitely close two points on H2
1 is determined by the following metric:

ds2 = da2 + sinh2adθ 2. (4.6)

Proof. In order to find length of a one parameter curve in H2
1 , we use the covariant differentiations of x1,x2,x3 as follow:

dx1 = sinhada

dx2 = coshasinθda+ sinhacosθdθ

dx3 = coshacosθda− sinhasinθdθ .

(4.7)

The length between infinitely close two points on H2
1 is calculated with

ds2 = g((dx1,dx2,dx3),(dx1,dx2,dx3))

= -dx2
1 +dx2

2 +dx2
3.

(4.8)

By using the covariant differentiations of x1,x2,x3 in (4.4), we get

ds2 = da2 + sinh2adθ 2

and also the matrix representation of this metric is given as follows:

gi j :

(

1 0

0 sinh2a

)

. (4.9)
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Definition 4.3. A differentiable function from T H2
1 to R is defined as follows:

L(a,θ , ȧ, θ̇) =
1

2
(ȧ2 + sinh2aθ̇ 2) (4.10)

where L is called as Lagrangian of H2
1 .

Definition 4.4. The one with minimum arc length of among the curves γ in H2
1 is described by

ϕ(γ) =

t1
∫

t0

L(a,θ , ȧ, θ̇) dt, (4.11)

where ϕ(γ) describes a map from family of curves passing through different two point in H2
1 to real numbers and γ is also a curve such that

ϕ(γ) has minimum arc length on H2
1 . ϕ(γ) is called as functional. To find γ , the Euler-Lagrange equations are used.

Definition 4.5. The trajectories of moving test particles on H2
1 are determined by the following equations:

d

dt

(

∂L

dȧ

)

−
∂L

da
= 0, (4.12)

d

dt

(

∂L

dθ̇

)

−
∂L

dθ
= 0. (4.13)

These equations are called as the Euler Lagrange equations in H2
1 . The particular solution providing the initial value of differential equations

in (4.12) and (4.13) is a geodesic γ passing through initial point (a(t0),θ(t0)) and the end point (a(t1),θ(t1)). The curve γ may be visualized

as the trajectory of moving a test particle by the effect of gravitational field on throat of hyperboloid of two sheets.

Definition 4.6. The line element of H2
1 is given by

ds2 = (ȧ)2 + sinh2a
(

θ̇
)2

= ε. (4.14)

The curve connecting different two point to be infinitely close on H2
1 is called as the space-like curve of H2

1 for ε = 1.

Theorem 4.2. The general equation of geodesics on H2
1 is given by

da

dθ
=

√

εsinh4a− k2
1sinh2a

k1
. (4.15)

Proof. In order to obtain the general equation of geodesics, we should consider the Euler Lagrange equations in (4.12), (4.13) together with

metric on H2
1 . From the solving of the differential equations in (4.13), we obtain

d

dt

(

θ̇sinh2a
)

= 0 ⇒ θ̇ =
k1

sinh2a
, k1 − real constant. (4.16)

If we put the value of θ̇ in (4.16) into at (4.14)

(

da

dt

)2

+ sinh2a

(

dθ

dt

)2

= ε ⇒

(

da

dθ

dθ

dt

)2

+ sinh2a

(

dθ

dt

)2

= ε,

we can obtain the general equation of geodesics on H2
1 as follow:

da

dθ
=

√

εsinh4a− k2
1sinh2a

k1
.

Since the gradient vector field to be normal to tangent vector space at any point of H2
1 is time like, H2

1 must be called as a space like surface.

So, H2
1 has only space like geodesics. The general equation of these geodesics on H2

1 is given by the following theorem.

Theorem 4.3. The space-like geodesics on H2
1 are given by the following equations:

√

1− k2
1 cosech2a

√

k2
1 +1

=
sinθ

k2
,

x2
1

k2
1 +1

−
x2

2

k2
2

= 1

with respect to generalized and cartesian coordinates.

Proof. If we chose ε = 1 in (4.15), we can obtain following surface:

√

1− k2
1 cosech2a

√

k2
1 +1

=
sinθ

k2
,

x2
1

k2
1 +1

−
x2

2

k2
2

= 1

with respect to generalized coordinates (a,θ) and cartesian coordinates.

The space-like geodesic characterized by trajectory of a moving test particle by the effect of gravitational field acts faster than speed of light

on the surface H2
1 . This mechanical interpretation was inspired from [9].
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5. Geodesics on
(

T*H1
2,gC

)

In this section, the general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space with the pseudo Riemann metric Cg

are calculated.

Definition 5.1. Let H2
1 be pseudo hyperbolic 2-space and T ∗H2

1 be its cotangent bundle. As any point q on H2
1 has the generalized

coordinates (a, θ), the point
(

q,ηq

)

on T ∗H2
1 has the local coordinates (a,θ , p1, p2) where p1, p2 are the local coordinate function of

the cotangent vector ηq at q. In addition, the point
(

q,ηq,X(q,ηq)

)

on T T ∗H2
1 has the local coordinates (a,θ , p1, p2, ȧ, θ̇ , ṗ1, ṗ2) and the

point
(

q,ηq,ω(q,ηq)

)

on T ∗T ∗H2
1 has the local coordinates (a,θ , p1, p2,ωa,ωθ ,ωp1

,ωp2
) where ωa,ωθ ,ωp1

,ωp2
are the local coordinate

functions of the cotangent vector at
(

q,ηq

)

i.e. ω(q,ηq) ∈ T ∗
(q,ηq)

T ∗H2
1 .

Theorem 5.1. The general equations of geodesics of H2
1 are represented by the following equations:

ä− coshasinha
(

θ̇
)2

= 0, θ̈ +2cotha ȧ θ̇ = 0.

Proof. To find the general equations of geodesics on H2
1 , we need to the general formula of the geodesic equations on Riemann manifolds

given by

ẍα +Γ
α
γβ ẋγ ẋβ = 0, (5.1)

and the Christoffel symbols given by

Γ
α
βγ =

1

2
gαµ

(

gµγ,β +gβ µ,γ −gβγ,µ

)

, (5.2)

and where gαβ is the components of the matrix representation of the metric tensor of H2
1 and gαβ is inverse of gαβ . The non-zero components

of the Christoffel symbols of H2
1 are obtained as follows:

Γ
1
22 =−sinhacosha, Γ

2
12 = Γ

2
21 = cotha. (5.3)

If we put the non-zero Christoffel symbols in (5.3) into (5.1) , we get the general equations of geodesics on H2
1 as follows:

ä− coshasinha (θ̇)
2
= 0, θ̈ +2cotha ȧ θ̇ = 0. (5.4)

Theorem 5.2. The pseudo Riemann metric Cg on T ∗H2
1 has components

Cg =−4p2 cothadadθ +2p1 sinhacosha(dθ)2 +2dad p1 +2dθd p2. (5.5)

Proof. By using the equations in (3.3) and (5.3), the pseudo Riemann metric Cg on T ∗H2
1 has following component

Cg =
(

−2p1Γ
1
11 −2p2Γ

2
11

)

(da)2 +2
(

−2p1Γ
1
12 −2p2Γ

2
12

)

dadθ +
(

−2p1Γ
1
22 −2p2Γ

2
22

)

(dθ)2 +2dad p1 +2dθd p2.

The matrix representation of Cg is as follows:

gAB :









0 −2p2 cotha 1 0

−2p2 cotha 2p1 sinhacosha 0 1

1 0 0 0

0 1 0 0









,

and the matrix representation of inverse of Cg is as follows:

(

Cg
)−1

:









0 0 1 0

0 0 0 1

1 0 0 2p2 cotha

0 1 2p2 cotha −2p1 sinhacosha









.

Theorem 5.3. The non-zero components of the Christoffel symbols of T ∗H2
1 with the pseudo Riemann metric Cg has the following

components:

Γ
1
22 =−sinhacosha

Γ
2
12 = Γ

2
21 = cotha

Γ
3
12 = Γ

3
21 = 2p2coth2a,Γ3

22 =−p1 cosh2a,Γ3
24 = Γ

3
24 =−cotha

Γ
4
11 = 2p2 cosech2a,Γ4

12 = Γ
4
21 =−p1,Γ

4
22 =−2p2cosh2a,

Γ
4
14 = Γ

4
41 =−cotha,Γ4

23 = Γ
4
32 = sinhacosha.

(5.6)
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Proof. By using the general formula of the Christoffel symbols in (5.2), it is seen to be correct of theorem.

Theorem 5.4. Any curve c̃ : t → c̃(t) = (a,θ , p1, p2) on (T ∗H2
1 ,Cg) is geodesic iff following differential equations system must provide:

ä− sinhacosha
(

θ̇
)2

= 0,

θ̈ +2cotha ȧ θ̇ = 0,

p̈1 +4p2coth2a ȧ θ̇ − p1 cosh2a
(

θ̇
)2

−2cotha θ̇ ṗ2 = 0,

p̈2 +2p2 cosech2a (ȧ)2 −2p1 ȧ θ̇ −2p2cosh2a
(

θ̇
)2

−2cotha ȧ ṗ2 +2sinhacosha θ̇ ṗ2 = 0.

Proof. By using the general formula of the geodesic equation in (5.1) and components of the Christoffel symbol in (5.6), it is seen easily to

be correct of theorem.

Theorem 5.5. The general equations of geodesics of (T ∗H2
1 ,Cg) obtained in Theorem 3.2 by using the Euler Lagrange equations provide

the geodesic equations obtained by classical method at Theorem 5.1.

Proof. If we rewrite with respect to the components of the general equations of geodesics of (T ∗M,Cg) obtained by Theorem 3.2 for

(T ∗H2
1 ,Cg), we get the following equations:

dẋ1

dt
+Γ

1
22ẋ2ẋ2 = 0,

dẋ2

dt
+2Γ

1
12 ẋ1ẋ2 = 0,

d ṗ1

dt
+ p1

∂Γ
1
22

∂x1
ẋ2ẋ2 −2Γ

2
12 ṗ2ẋ2 +2p2Γ

2
12Γ

2
21ẋ1ẋ2 = 0,

d ṗ2

dt
−2p2

∂Γ
2
21

∂x1
ẋ1ẋ1 −2p1

∂Γ
1
22

∂x1
ẋ2ẋ1 +2p1Γ

1
22Γ

2
12ẋ2ẋ1 +2p2Γ

2
21Γ

1
22ẋ2ẋ2 −2Γ

2
21 ṗ2ẋ1 −2Γ

1
22 ṗ1ẋ2 = 0.

When we use the coefficients of the Christoffel symbol in (5.1), it is seen to be the above equations is equal to the geodesic equations

obtained by classical method at Theorem 5.4.

6. Conclusion

This study contains six sections. In the second section, the geometrical interpretation of the mechanic concepts are considered such as the

movement of the particles by the effect of the gravitational field, the conservation of momentum or energy, well known in classic mechanic.

In the third section, the general equations of geodesics on the cotangent bundle
(

T*H1
2,gC

)

are found by using the Euler Lagrange equations.

In the fourth section, the space-like geodesics on pseudo hyperbolic 2-space are obtained by using the Euler Lagrange equations.

Finally, in the fifth section, the general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space
(

T*H1
2,gC

)

are

obtained by using general formula of geodesics on a Riemann manifold and then it is shown that the general equations of geodesics on
(

T*H1
2,gC

)

are equal to the geodesic equations obtained by using the Euler Lagrange equations in the second section.
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Abstract

Using the methods of operator theory all boundedly solvable extensions of the minimal

operator generated by degenerated type differential-operator expression in the weighted

Hilbert space of vector-functions in finite interval in terms of boundary conditions are

described. Later on, the structure of spectrum of these type extensions will be investigated.

1. Introduction

The general information on the degenerate differential equations in Banach spaces can be found in book of A. Favini and A. Yagi [1]. The

fundamental interest to such equations are motivated by applications in different fields of life sciences.

Recall that an operator

A : D(A)⊂ H → H (1.1)

in a Hilbert space H is called boundedly solvable, if A is one-to-one

AD(A) = H and A−1 ∈ L(H). (1.2)

In this work using the methods of operator theory, all boundedly solvable extensions of minimal operator generated by linear degenerate type

differential-operator expression in the weighted Hilbert space of vector-functions in finite interval in terms of boundary conditions have been

defined (see Sec.2). In Section 3 the geometry of spectrum set of these type extensions has been investigated.

Let H be a separable Hilbert space and α : (0,1)→ (0,∞), α ∈C(0,1) and
1∫

0

dt

α(t)
< ∞. In the weighted Hilbert space L2

α (H,(0,1)) of H−

valued vector-functions defined at the interval (0,1) consider the following degenerate type differential expression with operator coefficient

for first order in a form

l(u) = (αu)′(t)+A(t)u(t), (1.3)

where:

(1) operator-function A( . ) : (0,1)→ L(H) is continuous on the uniform operator topology;

(2)
‖A(t)‖

α(t)
∈ L1(0,1).

By the standard way the minimal L0 and maximal L operators corresponding differential expression l( . ) in L2
α (H,(0,1)) can be defined [3].

In this case KerL0 = {0} and Im(L0) 6= L2
α (H,(0,1)) (see Sec.3).

In this work, firstly all boundedly solvable extensions of the minimal operator generated by first order linear degenerate type differential-

operator expression in the weighted Hilbert space of vector-functions in (0,1) in terms of boundary conditions are described. Later on, the

structure of spectrum of these type extensions will be investigated.

Email addresses: ipekpembe@gmail.com (P. İPEK),zameddin.ismailov@gmail.com(Z. İ. İSMAILOV)
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2. Description of boundedly solvable extensions

In this section using the Vishik’s methods all boundedly solvable extensions of the minimal operator generated by linear degenerate type

differential-operator expression l( . ) in weighted Hilbert space L2
α (H,(0,1)) are represented.

Before of all note that using the knowing standard way the minimal M0 and the maximal M operators generated by differential expression

m(v) = (αv)′(t) (2.1)

in Hilbert space L2
α (H,(0,1)) can be defined [3].

Later on, by U(t,s), t,s ∈ [0,1) will be defined the family of evolution operators corresponding to the homogeneous differential-operator

equation

α(t)
∂

∂ t
U(t,s) f +A(t)U(t,s) f = 0, t,s ∈ (0,1) (2.2)

with boundary condition

U(s,s) f = f , f ∈ H. (2.3)

The operator U(t,s), t,s ∈ (0,1) is linear continuous and boundedly solvable in H. And also for any t,s ∈ (0,1) there is the following

equation:

U−1(t,s) =U(s, t) (2.4)

(for detail analysis see [2]).

If introduce the following operator

Uz(t) =U(t,0)z(t),

U : L2
α (H,(0,1))→ L2

α (H,(0,1)),

then it is easily to check that

l(Uz) = (αUz)′ (t)+A(t)Uz(t)

=U(αz)′(t)+U ′
t (αz)(t)+A(t)Uz(t)

=U(αz)′(t)+
[
α(t)U ′

t z(t)+A(t)Uz(t)
]

=U(αz)′(t)

=Um(z).

Therefore it can be obtained

U−1l(Uz) = m(z). (2.5)

Hence it is clear that if L̃ is some extension of the minimal operator L0, that is, L0 ⊂ L̃ ⊂ L, then U−1L0U = M0, M0 ⊂U−1L̃U = M̃ ⊂
M, U−1LU = M.

Now we prove the following assertion.

Theorem 2.1. KerL0 = {0} and Im(L0) 6= L2
α (H,(0,1)).

Proof. Consider the following boundary value problem in L2
α (H,(0,1))

(αu)′(t)+A(t)u(t) = 0, t ∈ (0,1),

(αu)(0) = (αu)(1) = 0. (2.6)

Then the general solution of above differential equation is in form

(αu)(t) = exp


−

t∫

0

A(s)

α(s)
ds


 f0, f0 ∈ H. (2.7)

From (2.7) and boundary condition (2.6) we have following equation

u(t) = 0, t ∈ (0,1). (2.8)

Consequently, following equality Ker(L0) = {0} hold.

On the other hand it is clear that the general solution of following differential equation in L2
α (H,(0,1))

−(αv)′(t)+A∗(t)v(t) = 0 (2.9)

in form

v(t) =
1

α(t)
exp




t∫

0

A∗(s)

α(s)
ds


g, g ∈ H. (2.10)
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This means that

dimKerL∗
0 = ∞. (2.11)

So the following inequality is realized

Im(L0) 6= L2
α (H,(0,1)). (2.12)

Theorem 2.2. Each solvable extension L̃ of the minimal operator L0 in L2
α (H,(0,1)) is generated by the differential-operator expression

l( . ) with boundary condition

(B+E)(αU−1u)(0) = B(αU−1u)(1), (2.13)

where B ∈ L(H), E is a identity operator in H. The operator B is determined uniquely by the extension L̃, i.e L̃ = LB.

On the contrary, the restriction of the maximal operator L to the manifold of vector-functions satisfy the above boundary condition for some

bounded operator B ∈ L(H) is a boundedly solvable extension of the minimal operator L0 in L2
α (H,(0,1)).

Proof. Firstly, all boundedly solvable extensions M̃ of the minimal operator L0 in L2
α (H,(0,1)) in terms of boundary conditions will be

described.

Consider the following so-called Cauchy extension Mc,

Mcu = (αu)′(t),

Mc : D(Mc)⊂ L2
α (H,(0,1))→ L2

α (H,(0,1)),

D(Mc) = {u ∈ D(L) : (αu)(0) = 0}

of the minimal operator M0. It is clear that Mc is a boundedly solvable extension of minimal operator M0 and

M−1
c f (t) =

1

α(t)

t∫

0

f (s)ds, f ∈ L2
α (H,(0,1)),

M−1
c : L2

α (H,(0,1))→ L2
α (H,(0,1)).

Indeed, for any f ∈ L2
α (H,(0,1)) we have

‖
1

α(t)

t∫

0

f (s)ds‖2
L2

α (H,(0,1)) =

1∫

0

α(t)
1

α2(t)
‖

t∫

0

f (s)ds‖2
Hdt

≤

1∫

0

1

α(t)




t∫

0

1√
α(s)

√
α(s)‖ f (s)‖Hds




2

dt

≤

1∫

0

dt

α(t)




1∫

0

ds

α(s)






1∫

0

‖ f (s)‖2
Hα(s)ds




=




1∫

0

dt

α(t)




2

‖ f‖2
L2

α (H,(0,1)).

Now assumed that M̃ is a solvable extension of the minimal operator M0 in L2
α (H,(0,1)). In this case it is known that the domain of M̃ can

be written as a direct sum

D(M̃) = D(M0)⊕
(

M−1
c +K

)
V, (2.14)

where V = KerM∗
0 , K ∈ L(H) (see [4], [5]).

It is easily to see that

KerM∗
0 =

{
1

α(t)
f : f ∈ H

}
. (2.15)

Therefore each function u ∈ D(M̃) can be written in following form

u(t) = u0(t)+M−1
c

(
1

α(t)
f

)
+

1

α(t)
K f , u0 ∈ D(M0), f ∈ H.

And from this we have

(αu)(t) = (αu0)(t)+

t∫

0

ds

α(s)
f +K f , f ∈ H. (2.16)
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Hence, following equalities

(αu)(0) = K f ,

(αu)(1) =




1∫

0

ds

α(s)
+K


 f .

From these relations it is obtained that




1∫

0

ds

α(s)
+K


(αu)(0) = K(αu)(1). (2.17)

Then the last equality can be written in form

(B+E)(αu)(0) = B(αu)(1), (2.18)

where

B =




1∫

0

ds

α(s)




−1

K. (2.19)

On the other hand note that the uniquenses of the operator B ∈ L(H) is clear from [4], [5]. Therefore, M̃ = MB. This completes of necessary

part of assertion.

On the contrary, if MB is a operator generated by m( . ) and boundary condition

(B+E)(αu)(0) = B(αu)(1), (2.20)

then MB is boundedly invertible and

M−1
B : L2

α (H,(0,1))→ L2
α (H,(0,1)),

M−1
B f (t) =

1

α(t)

t∫

0

f (s)ds+B

1∫

0

f (s)ds, f ∈ L2
α (H,(0,1)).

Consequently, assertion of theorem for the boundedly solvable extension of the minimal operator M0 is true.

The extension L̃ of the minimal operator L0 is boundedly solvable in L2
α (H,(0,1)) if and only if the operator M̃ =U−1L̃U is a boundedly

solvable extension of the minimal operator M0 in L2
α (H,(0,1)). Then u ∈ D(L̃) if and only if U−1u ∈ D(M̃).

Since M̃ = MB for some B ∈ L(H), then we have

(B+E)(αU−1u)(0) = B(αU−1u)(1). (2.21)

This completes the proof of theorem.

3. Spectrum of boundedly solvable extensions

In this section the structure of spectrum of boundedly solvable extensions of the minimal operator L0 in L2
α (H,(0,1)) will be investigated.

Firstly, prove the following result.

Theorem 3.1. If LB is a boundedly solvable extension of the minimal operator L0 and MB =U−1LBU corresponding boundedly solvable

extension of the minimal operator M0, then it is true σ(LB) = σ(MB).

Proof. Consider the following problem to spectrum for any boundedly solvable extension LB in L2
α (H,(0,1)), that is

LBu = λu+ f , λ ∈ C, f ∈ L2
α (H,(0,1)). (3.1)

From this it is obtained that

(LB −λE)u = f or (UMBU−1 −λE)u = f . (3.2)

Then we have

U(MB −λ )U−1(u) = f . (3.3)

Therefore, the validity of the theorem is clear.

Now prove the main theorem on the structure of spectrum.
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Theorem 3.2. The spectrum of the boundedly solvable extension LB of the minimal operator L0 in L2
α (H,(0,1)) has the form

σ(LB) =





λ ∈ C : λ =




1∫

0

ds

α(s)




−1(
ln |

µ +1

µ
|+ iarg

(
µ +1

µ

)
+2nπi

)
,

µ ∈ σ(B)\{0,−1}, n ∈ Z} .

Proof. By Theorem 3.1. for this it is sufficiently the investigate the spectrum of the corresponding boundedly solvable extension MB =
U−1LBU of the minimal operator M0 in L2

α (H,(0,1)).
Now consider the following problem to spectrum for the extension MB, that is,

MBu = λu+ f , λ ∈ C, f ∈ L2
α (H,(0,1)). (3.4)

Then

(αu)′(t) = λu(t)+ f (t), t ∈ (0,1) (3.5)

with boundary condition

(B+E)(αu)(0) = B(αu)(1). (3.6)

It is clear that a general solution of the above differential equation has the form

u(t;λ ) =
1

α(t)
exp



λ

t∫

0

ds

α(s)



 f0 +

1

α(t)

t∫

0

exp



λ

t∫

s

dτ

α(τ)



 f (s)ds, f0 ∈ H. (3.7)

From this and boundary condition it is obtained that


E +B


1− exp



λ

1∫

0

ds

α(s)








 f0 = B




1∫

0

exp



λ

1∫

s

dτ

α(τ)



 f (s)ds


 . (3.8)

In case when λm

1∫

0

ds

α(s)
= 2mπi, m ∈ Z, from the last relation it is established that

f
(m)
0 = B




1∫

0

exp



λm

1∫

s

dτ

α(τ)



 f (s)ds


 , m ∈ Z. (3.9)

Consequently, in this case the resolvent operator of MB is in form

Rλm
(MB) f (t) = B


 1

α(t)
exp



λm

t∫

0

ds

α(s)





1∫

0

exp



λm

1∫

s

dτ

α(τ)



 f (s)ds




+
1

α(t)

t∫

0

exp



λm

t∫

s

dτ

α(τ)



 f (s)ds, m ∈ Z.

Now assumed that λ 6= 2mπi, m ∈ Z. Then from the mentioned above equation for f0 ∈ H we have


B−


1− exp



λ

1∫

0

ds

α(s)








−1

E


 f0

=


1− exp



λ

1∫

0

ds

α(s)








−1

B




1∫

0

exp



λ

1∫

0

dτ

α(τ)



 f (s)ds


 ,

f0 ∈ H, f ∈ L2
α (H,(0,1)).

Then λ ∈ σ(MB) if and only if

µ =


1− exp



λ

1∫

0

ds

α(s)








−1

∈ σ(B). (3.10)

In this case since µ 6= 0,

exp



λ

1∫

0

ds

α(s)



=

µ +1

µ
, µ ∈ σ(B), µ 6=−1. (3.11)
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Then

λ =




1∫

0

ds

α(s)




−1(
ln |

µ +1

µ
|+ iarg

(
µ +1

µ

)
+2nπi

)
, n ∈ Z. (3.12)

Example 3.1. All boundedly solvable extensions Lk of the minimal operator L0 in L2
α (0,1), α(t) = t p, p < 1, 0 < t < 1, generated by

differential expression

l(u) = (t pu(t))′+a(t)u(t), p < 1, 0 < t < 1,
a(t)

t p
∈ L1(0,1) (3.13)

are generated by differential expression l( . ) and boundary condition

(k+1)
(

αU−1u
)
(0) = k

(
αU−1u

)
(1), k ∈ C, (3.14)

where U( . , . ) are the corresponding evolution operators. In this case the spectrum σ(Lk) of the extension Lk, k 6= 0,−1 is in form

σ(Lk) =

{
λ ∈ C : λ = (1− p) ln |

k+1

k
|+ iarg

(
k+1

k

)
+2nπi, n ∈ Z

}
.

4. Conclusion

It is known that problem on the solvability of the degenerate differential equations with corresponding boundary conditions in finite and

infinite regions is main subject in mathematical literature always (for detail informations see [1]).

It is noted that the general form of boundedly solvable extensions of some densely defined closed operator in Hilbert space has been found

by M. I. Vishik. In our work using the techniques of mentioned above theory a parametrization of boundedly solvable extensions of the

minimal operator generated by degenerate differential-operator expression for first order in the weighted Hilbert space of vector-functions at

finite interval is investigated. Lastly, the structure of spectrum of these type extensions is given.

Point out that the general form and spectral analysis of subclasses of differential operators in Banach spaces are main research topics in

operator theory.
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