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Praface

Since 2012, series of IECMSA conferences have been held regularly every year and featured many distinguished par-
ticipants from the across the globe. After the following six very successful international conferences; IECMSA-2012
Prishtine-Kosovo, IECMSA-2013 Sarajevo-Bosnia and Herzegovina, IECMSA-2014 Vienna-Austria, IECMSA-2015
Athens-Greece, IECMSA-2016 Belgrade-Serbia, and IECMSA-2017 Budapest-Hungary, we have successfully com-
pleted 7th International Eurasian Conference on Mathematical Sciences and Applications. On the basis of the
impact of these remarkable conferences, IECMSA-2018 Kyiv-Ukraine has witnessed significant growth. The sci-
entific committee of IECMSA-2018 accepted 184 oral (63%) and 16 poster (50%) presentations. The authors of
submitted presentations come from 44 countries. Authors of accepted presentations are from 26 countries. The
scientific program of the conference features invited talks, followed by contributed oral and poster presentations in
parallel sessions.

The main aim of the conference includes almost all active research areas in pure, applied and inter-disciplinary
mathematics reflecting the applications in the areas of sciences and engineering.

This volume contains the proceedings of the selected contributions of the participants of the 7th International
Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2018) scheduled during August 28-31,
2018 in Kyiv, Ukraine.

The selection of papers included in this volume is based on a rigorous peer review process by the committee
of experts in various disciplines. Every submitted paper was first screened by the members of the editorial board
and once it clears the initial screening, it was sent for peer review to at least two potential reviewers in the related
area of expertise from the pool of potential reviewers. The paper is accepted if at least two reviewers recommend it
for acceptance. We thank all the invited speakers and the authors who made their valuable contributions towards
the success of the conference IECMSA-2018. We are very much grateful to the members of the program committee
for their continuous guidance and support which led to the selection of the contributed talks and the papers pub-
lished in this volume.

See you in future conferences,

Prof. Dr. Murat TOSUN

Editor in Chief

IECMSA-2018
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Müjgan Tez
Marmara University,
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TÜRKİYE
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TÜRKİYE
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TÜRKİYE
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Conference Proceedings of Science and Technology, 1(1), 2018, 1–6
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Circling-Point Curve in Minkowski Plane ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Kemal Eren1,∗ Soley Ersoy2

1Fatsa Science High School, Ordu, Turkey, ORCID: 0000-0001-5273-7897
2Department of Mathematics, Faculty of Sciences and Arts, Sakarya University, Sakarya, Turkey, ORCID: 0000-0002-7183-7081

* Corresponding Author E-mail: kemal.eren1@ogr.sakarya.edu.tr

Abstract: The purpose of this paper is to study the circling-point curve and its degenerate cases at the initial position of motion

in Minkowski plane. The first part of the paper is devoted to the determination Bottema’s instantaneous invariants and trajec-

tory of origin with respect to these invariants in Minkowski plane. The intersection points of the circling-point curve and inflection

curve are called Ball points. Here the number and also the geometric location of Ball points in Minkowski plane have been deter-

mined. The fundamental geometric property of a trajectory of each point in a plane is its curvature function κ. Under consideration

κ = κ′ = κ′′ = 0, the existence conditions of Ball points in Minkowski plane have been given.

Keywords: Circling-point curve, Ball point, Instantaneous Invariants, Burmester Theory.

1 Introduction

Oene Bottema (1901-1992), Dutch mathematician devised the method of instantaneous invariants in instantaneous kinematics. Various geomet-
ric and kinematic properties of Euclidean planar and spatial motions are introduced with respect to the instantaneous invariants. The concept
of instantaneous invariants is characterizing the trajectory of any point on a moving rigid body with arbitrary degrees [1–3]. In the meantime,
Veldkamp has called the aforementioned invariants as B-invariants [4] and has handled the application of B-invariants to Burmester theory [4–
6]. Burmester theory deals with the formulation of special locus curves as inflection circle, circling point curve, twice circling curve, and their
intersection points as Ball and Burmester point for planar or spatial motions. Although this analytical method is preferred in a great amount of
study of the kinematics, there have been few investigations on non-Euclidean planar kinematics [7, 8].

In consideration of these studies, we investigate the circling-point curve and its degenerate cases of the motion of Minkowski planes and
give the existence conditions of Ball points in Minkowski plane.

2 Preliminaries

The Minkowski plane L is the plane R2 endowed with the Lorentzian scalar product given by 〈u,w〉 = u1w1 − u2w2, where u = (u1, u2)
and w = (w1, w2). The norm of a vector U is defined by ‖u‖ =

√

|〈u, u〉|. Let Lm and Lf be two coincident Minkowski planes, Lm moving
with respect to Lf . The motion can be represented by

X (ϕ) = x coshϕ+ y sinhϕ+ a (ϕ)
Y (ϕ) = x sinhϕ+ y coshϕ+ b (ϕ)

such that Cartesian frames of reference xoy and XOY are located in Lm and Lf , respectively. The position corresponding to ϕ = 0 of Lm

will be named zero-position. The value for zero-position of the nth (n = 0, 1, 2, . . .) derivative of a function f of ϕ with respect to ϕ will be
denoted by fn.

The derivatives an, bn (n = 0, 1, 2, . . .) are known as Bottema’s instantaneous invariants of the motion [2, 3]. It is well-known that the
canonical relative system can be constructed by choose of

a = b = a1 = b1 = a2 = 0 and b2 = −1.

So, the instantaneous invariants ak (k = 3, 4, . . . , n) , bk (k = 2, 3, . . . , n) completely characterize the infinitesimal properties of motion of
Minkowski planes up to the n− th order as

X = x, X1 = y, X2 = x, X3 = y + a3,
Y = y, Y1 = x, Y2 = y − 1, Y3 = x+ b3,

(1)

at the zero-position [7, 8].
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The non-null trajectory of the points satisfying κ = 0 is the inflection circle where X ′ 6= ±Y ′ in the Minkowski plane. Then the equation
of the inflection circle can be obtained from X ′′ : Y ′′ = X ′ : Y ′ since the curvature function is

κ =
X ′Y ′′ −X ′′Y ′

∣

∣

∣
(X ′)2 − (Y ′)2

∣

∣

∣

3

2

. (2)

If we substitute the equalities of (1) into (2) at zero position we get the equation of the inflection circle during planar motion of Lm with
respect to Lf as follows

x2 − y2 + y = 0. (3)

where (x, y) 6= (0, 0), x 6= ∓y or y 6= 0 [7, 8].

3 The Trajectory of Origin of Minkowski Plane

The trajectory of the point (0, 0) of the Minkowski plane Lm, which is coincident with the pole, can be given by

X =
∞
∑

n=3

an
n!

ϕn, Y =
−1

2
ϕ2 +

∞
∑

n=3

bn
n!

ϕn
(4)

for sufficiently small values of |ϕ| at the zero-position with respect to canonical relative systems.

Case 1. Let a3 6= 0. If ε is a sufficiently small positive number, then the trajectory described through the time interval [−ε, ε] has a cusp at the
pole of zero-position since lim

ϕ→0
|κ| = ∞ and the tangent of the trajectory is pole normal.

Case 2. Let a3 = 0, a4 6= 0. In this case a2b3 − a3b2 = 0 and a2b4 − a4b2 6= 0. So two branches of the trajectory stay at the same side of
the tangent. If ε is a sufficiently small positive number, then the trajectory described through the time interval [−ε, ε] has a ramphoid cusp at
the pole of the zero-position. In this case the curvature is obtained as

κ = a4

3 +
(

5a4b3
12 + a5

8

)

ϕ+
(

−a4 b3
2

8 + a4 b4
6 + 7a5 b3

48 + a6

30

)

ϕ2

+
(

7a4 b5
144 − a4 b3

2

12 − a4 b3 b4
24 + a5 b4

18 − a5 b3
2

16 + 3a6 b3
80 + a7

144

)

ϕ3 + ...

The successive curvatures of the trajectory at the pole are

κ0 = a4

3 , (5)

κ1 =
5a4b3
12

+
a5
8
, (6)

κ2 =
−a4b3

2

4
+

a4b4
3

+
7a5b3
24

+
a6
15

, (7)

κ3 =
7a4b5
24

−
a4b3

2

2
−

a4b3b4
4

+
a5b4
3

−
3a5b3

2

8
+

9a6b3
40

+
a7
24

.

Case 3. Let a3 = a4 = 0. For sufficiently small values of ε, the trajectory described through the time interval [−ε, ε] has cusp or ramphoid
cusp, provided that the smallest value of n, where an 6= 0, is odd or even, respectively. In this case the curvature is given by

κ = 0 + a5

8 ϕ+
(

7a5b3
48 + a6

30

)

ϕ2 +
(

a5b4
18 − a5b3

2

16 + 3a6b3
80 + a7

144

)

ϕ3 + ...

that is, the successive curvatures at pole are

κ0 = 0,

κ1 =
a5
8
,

κ2 =
7a5b3
24

+
a6
15

,

κ3 =
a5b4
3

−
3a5b3

2

8
+

9a6b3
40

+
a7
24

.

4 Circling-Point Curve of Motions in Minkowski Plane

Definition 1. The locus of the points with constant non-null trajectory curvature at the zero-position of the Minkowski plane Lm is called
circling-point curve or cubic of stationary curvatures and denoted by cp.
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This means that the locus of the points satisfying κ′ = 0 where
(

X ′
)2

−
(

Y ′
)2

6= 0 is the circling-point curve in Minkowski plane. The
differentiation of the equation (2) is

κ′ =

(

X ′Y ′′′ −X ′′′Y ′
)

(

(

X ′
)2

−
(

Y ′
)2
)

− 3
(

X ′Y ′′ −X ′′Y ′
) (

X ′X ′′ − Y ′Y ′′
)

∣

∣

∣
(X ′)2 − (Y ′)2

∣

∣

∣

3

2

.

In this regard, if we consider the equations of (1) and the last equation together, one can prove the following theorem.

Theorem 1. In Minkowski plane the equation of the circling-point curve cp of the original motion Lm

/

Lf is

(

x2 − y2
)

(a3x− b3y) + 3x
(

x2 − y2 + y
)

= 0 (8)

where (x, y) 6= (0, 0) or x 6= ∓y.

If we recall the equation (6) for the case of a3 = 0 and a4 6= 0, we can prove the following theorem.

Theorem 2. The trajectory of the points different from the origin is the circling-point curve if and only if is

10a4b3 + 3a5 = 0.

in case of a3 = 0 and a4 6= 0.

The graphics of the circling point curves for special cases in the Minkowski plane are drawn hereinafter and further detailed analysis of the
graphics enables us to compare them with each other.

x

y

Fig. 1: The circling point curve cp for a3 = 2 and b3 = 1.

The circling point curve cp has node point at the pole. At the same time, tangents of the circling point curve cp are pole tangent and pole
normal. Consequently, the cubic curve cp is a strophoid in Minkowski plane. Now let us investigate the degenerate cases of the circling point
curve cp.

i. If a3 6= −3 and b3 = 0 the equation of the circling-point curve cp in Minkowski plane is

x
(

(a3 + 3)
(

x2 − y2
)

+ 3y
)

= 0. (9)

This geometrically means that cp consists of the pole normal and the circle, which is donated by Γ, with the imaginary radius 3i
2(a3+3)

. The

center of Γ is
(

0, 3
2(a3+3)

)

at the pole normal, see Figure 2a.

In addition, if a3 = 0 when b3 = 0, then the equation (9) becomes x2 − y2 + y = 0, that is, the circling point curve cp coincides with the
inflection circle in the case of a3 = 0 and b3 = 0.

ii. If a3 = −3 and b3 6= 0 the equation of the circling-point curve cp in Minkowski plane is

y
(

b3

(

x2 − y2
)

− 3x
)

= 0.

Thus, the circling-point curve cp consists of pole tangent and the circle, which is donated by Γ0, with the real radius 3
2b3

. The center of Γ0

is
(

3
2b3

, 0
)

at the pole tangent, see Figure 2b.

iii. If a3 = −3 and b3 = 0, the equation of the circling-point curve cp is xy = 0. The curve consists of pole tangent and pole normal, see
Figure 2c.

The circles Γ and Γ0 are the circles of curvature of the circling-point curve cp at its node. From here the geometrical interpretation of the
invariants a3 and b3 can be given as in the following theorem.

c© CPOST 2018 3



x

(a) a3 = 2, b3 = 0

x

(b) a3 = −3, b3 = 1

x

y

(c) a3 = −3, b3 = 0

Fig. 2: The circling-point curves in Minkowski plane

Theorem 3. a3 equals 3/2 times the curvature of that branch of cp that touches the pole tangent and similarly b3 equals 3/2 times the
curvature of that branch of cp that touches the pole normal.

The equation of the real asymptote of the circling-point curve cp is obtained as

(

(a3 + 3)2 − b3
2
)

(b3y − (a3 + 3)x) + 3 (a3 + 3) b3 = 0. (10)

The real asymptotes of the circling-point curve cp drawn in the Figure 1 can be seen in the undermentioned figure.

-4 -2 2 4
x

-4

-2

2

4

y

Fig. 3: The real asymptotes of the circling point curve cp for a3 = 2 and b3 = 1.

Furthermore, we can obtain a parametric representation of and irreducible curve cp by putting y = ux. This parametric equation is

x =
3u

(u2 − 1) (−b3u+ a3 + 3)
, y =

3u2

(u2 − 1) (−b3u+ a3 + 3)
. (11)

If we substitute the equation (11) into the equation (10) we find parameter-value u =
(a3+3)

b3
. This parameter-value corresponds to the point of

intersection of cp with its asymptote.
In the case of a3 6= −3 and b3 = 0, the equation (11) takes the form

x =
3u

(u2 − 1) (a3 + 3)
, y =

3u2

(u2 − 1) (a3 + 3)
,

which is the parametric representation of the circle Γ.
In a similar vein, if a3 = −3 and b3 6= 0, under consideration the equation (11)the parametric representation of Γ0 is given by

x =
3

b3 (1− u2)
, y =

3u

b3 (1− u2)
.

4 c© CPOST 2018



5 Ball Points in Minkowski Plane

Definition 2. The intersection points of the circling-point curve and inflection curve are called Ball points and denoted by Bl points.

From this definition and the equations (3) and (8) the coordinates of a Bl point in Minkowski Plane is found as

(

a3b3
a23 − b23

,
a23

a23 − b23

)

. (12)

The pole is not a Bl point if a3 6= 0. Therefore we may draw the conclusion that in the case of a3 6= 0 and a3 6= ±b3 there is only one point
in the zero position given by (12).

From the equation (12), if a3 = 0, b3 6= 0 we cannot directly say that the origin is Bl point. Therefore in the case of a3 = 0, b3 6= 0, if
a4 = a5 = 0 we know that κ0 = κ1 = 0 is satisfied from the equations (5) and (6). From here if a3 = a4 = a5 = 0 the origin is Bl point.
Providing that a3 = 0, b3 6= 0, there is no Bl point if and only if a4 6= 0 or a5 6= 0 (because of κ0 6= 0 or κ1 6= 0 ). Finally, we can say that

there is no Bl point if a3 = 0, b3 6= 0, a24 + a25 6= 0. On the other hand if a3 = b3 = 0 the circling point curve splits up into the inflection

circle and the pole normal. In the case of a24 + a25 6= 0 any point on the inflection circle with the possible exception of the origin is a Bl point
of the zero position, the origin being a Bl point too, if a4 = a5 = 0 at the same time.

The aforementioned analysis of Bl points in Minkowski plane is outlined in the following table.

Conditions Bl point(s)

a3 6= 0, a3 6= ±b3

(

a3b3
a2

3
−b2

3

,
a2

3

a2

3
−b2

3

)

a3 = a4 = a5 = 0, b3 6= 0 the origin

a3 = 0, b3 6= 0, a24 + a25 6= 0 none

a3 = b3 = 0, a24 + a25 6= 0 the points on the inflection circle
with the exception of the origin

a3 = a4 = a5 = b3 = 0 all points of the inflection circle

As a consequence, if a3 6= 0 and a3 6= ±b3 the Bl point of the zero position is in the parametric representation (11) of cp indicated by the
parameter value u = a3/b3.

6 Ball Points with Excess in Minkowski Plane

Definition 3. If we have for a Ball point of a given position

κ = κ′ = ... = κ(r+1) = 0, κ(r+2) 6= 0

this point is called a Ball point with excess r and denoted by Blr point.
In the case of a3 6= 0, the zero position has a Bl point. Under this consideration the following theorem can be given.

Theorem 4. In the case a3 6= 0, the Bl point is a Bl1 point if and only if

a4b3 − a3b4 = a3.

Proof: From the equation (2), κ = κ′ = κ′′ = 0 if and only if X1Y4 −X4Y1 = 0. If we substitute the equation (1) into X1Y4 −X4Y1 = 0
we get

x2 − y2 + a4x− b4y = 0.

If the Bl1 point has the coordinates (x0, y0) this last equation takes form of

x20 − y20 + a4x0 − b4y0 = 0. (13)

In virtue of Bl1 point is also on the inflection circle, the common solution of x20 − y20 + y0 = 0 and the equation (4) gives us

a4x0 + (−b4 − 1) y0 = 0. (14)

Substituting the equation (12) into the equation (14) completes the proof. �

This relation represents a necessary and sufficient condition for the Bl point of the zero position to be a Bl1 point for the case of a3 6= 0.
In the zero position if a3 = a4 = a5 = 0, b3 6= 0 the origin is the only Bl point. From the equation (7) this point is a Bl1 point if and only

if a6 = 0. In the case of a3 = b3 = 0, a24 + a25 6= 0 any point of the inflection circle with the exception of the origin is a Bl point of the zero
position. From the equation (13) and the equation (14) it follows that all these points are Bl1 points if and only if a4 = 0, b4 = −1 whereas in
the case a4 6= 0 the only Bl1 point of the zero position is given by:

(

(b4 + 1) a4

a42 − (b4 + 1)2
,

a4
2

a42 − (b4 + 1)2

)

.

In the case a3 = a4 = a5 = b3 = 0 any point of the inflection circle is a Bl point of the zero point.

c© CPOST 2018 5



If b4 = −1 at the same time, all these points with exception of the origin are Bl1 points, the origin being in this case is a Bl1 point if
moreover a6 = 0. If, however, b4 6= −1 there is no Bl1 point unless a6 = 0 in which case the origin is the only Bl1 point of the zero position.
From here, we give conditions of being a Bl1 point in Minkowski plane in the following table.

Condition(s) Bl1 point(s)

a3 = a4b3 − a3b4 6= 0, a3 6= ±b3

(

a3b3
a2

3
−b2

3

,
a2

3

a2

3
−b2

3

)

a3 = b3 = 0, a4 6= 0
(

a4(b4+1)

a2

4
−(b4+1)2

,
a2

4

a2

4
−(b4+1)2

)

a3 = a4 = a5 = a6 = 0,

a24 − (b4 + 1)2 6= 0
Origin
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Abstract: The purpose of the this study is to introduce the sequence space

ℓp(E,B(r, s)) =

{

x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∑

j∈En

rxj +
∑

j∈En+1

sxj

∣

∣

∣

∣

p

< ∞

}

,

where E = (En) is a partition of finite subsets of the positive integers, r, s ∈ R\{0} and p ≥ 1. The topological and algebraical

properties of this space are examined. Furthermore, we establish some inclusion relations. Finally, the problem of finding the norm

of certain matrix operators such as Copson and Hilbert from ℓp into ℓp(E,B(r, s)) is investigated.

Keywords: Capson operators, Hilbert operators, Matrix domain, Sequence spaces.

1 Introduction

By a sequence space, we understand a linear subspace of ω, the space of all real valued sequences x = (xn). The domain XA of an infinite
matrix A in a sequence space X is defined by

XA = {x = (xk) ∈ ω : Ax ∈ X}, (1)

which is a sequence space. If A is triangle, then one can easily observe that the sequence spaces XA and X are linearly isomorphic, i.e.,
XA

∼= X. In the past, several authors studied matrix transformations on the sequence spaces that are the matrix domains of triangle matrices
in classical spaces ℓp, ℓ∞, c and c0. For instance, some matrix domains of the difference operator were studied in [1–8]. In these studies, the
matrix domains are obtained by triangle matrices, hence these spaces are normed sequence spaces. For more details on the domain of triangle
matrices in some spaces, the reader may refer to Chapter 4 of [9]. The matrix domains given in this paper specify by a certain non-triangle
matrix, so we should not expect that related spaces are normed sequence spaces.

In this study, we define the sequence space ℓp(E,B(r, s)) and investigate some topological and algebraical properties of this space and
derive inclusion relations concerning with its. Moreover, we shall consider the inequality of the form

‖Ax‖p,E,B(r,s) ≤ U‖x‖p ,

for all the sequence x ∈ ℓp. The costant U not depending on x and we seek the smallest possible value of U . In the study, we examine the
problem of finding the upper bound of certain matrix operators from ℓp into ℓp(E,B(r, s)) and we consider certain matrix operators such as
Copson and Hilbert.

Let E = (En) be a partition of finite subsets of the positive integers such that

maxEn < minEn+1, (2)

for n = 1, 2, .... Foroutannia defined the sequence space ℓp(E) by

ℓp(E) =

{

x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

p

< ∞

}

(1 ≤ p < ∞),

with the semi-norm ‖.‖p,E , which is defined in the following way :
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‖x‖p,E =

(

∞
∑

n=1

∣

∣

∣

∣

∣

∑

j∈En

xj

∣

∣

∣

∣

∣

p)1/p

.

It is significant that in the special case En = {n} for n = 1, 2, ..., we have ℓp(E) = ℓp and ‖x‖p,E = ‖x‖p. For more details on the
sequence space ℓp(E), the reader may refer to [10].

2 The Block Sequence Space ℓp(E,B(r, s)) of Non-Absolute Type

Suppose E = (En) is a partition of finite subsets of the positive integers that satisfies the condition (2). We define the sequence space
ℓp(E,B(r, s)) by

ℓp(E,B(r, s)) =







x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

rxj +
∑

j∈En+1

sxj

∣

∣

∣

∣

∣

∣

p

< ∞







,

with the semi-norm
∥

∥.
∥

∥

p,E,B(r,s)
, which is defined in the following way :

∥

∥x
∥

∥

p,E,B(r,s)
=





∞
∑

n=1

∣

∣

∣

∣

∣

∣

∑

j∈En

rxj +
∑

j∈En+1

sxj

∣

∣

∣

∣

∣

∣

p



1/p

. (3)

It should be noted that the function
∥

∥.
∥

∥

p,E,B(r,s)
can not be norm, since x = (xj) = {(−1)j+1}∞j=1 and E = {2n− 1, 2n} for all n ,

then
∥

∥x
∥

∥

p,E,B(r,s)
= 0 while x 6= 0.

It is also significant that in the special case r = 1 and s = −1, we have ℓp(E,B(r, s)) = ℓp(E,∆) [11].
If the infinite matrix A = {ank} is defined by

ank =







r , if k ∈ En

s , if k ∈ En+1
0 , otherwise

with the notation (1), we can redefine the space ℓp(E,B(r, s)) as follows:

ℓp(E,B(r, s)) = (ℓp)A.

Throughout this paper, the cardinal number of the set Ek is denoted by |Ek|.
Now we are beginning with the following theorem which is essential in the study.

Theorem 1. Let p ≥ 1 and E = (En) be a partition of finite subsets of the positive integers that satisfies the condition (2). The set
ℓp(E,B(r, s)) becomes a vector space with coordinatewise addition and scalar multiplication, which is a complete semi-normed space by
∥

∥.
∥

∥

p,E,B(r,s)
defined by (3).

It can easily checked that the absolute property does not hold on the space ℓp(E,B(r, s)), that is ‖x‖p,E,B(r,s) 6= ‖|x|‖p,E,B(r,s) for at

least one sequence in the space ℓp(E,B(r, s)), and this says that ℓp(E,B(r, s)) is a sequence space of nonabsolute type, where |xk| = (|xk|).

Theorem 2. Let p ≥ 1 and E = (En) be a partition of finite subsets of the positive integers that satisfies the condition (2). If

M =

{

x = (xn) :
∑

j∈En

rxj +
∑

j∈En+1

sxj = 0, ∀n

}

,

then we have ℓp(E,B(r, s))/M ≃ ℓp.

Note that the mapping defined in Theorem 2, T is not injective, while ‖Tx‖p = ‖x‖p,E,B(r,s) for all x ∈ ℓp(E,B(r, s)).
Let us derive some inclusion relations concerning with the space ℓp(E,B(r, s)).

Result 1. Let p ≥ 1 and E = (En) be a partition of finite subsets of positive integers that satisfies the condition (2). If supn |En| < ∞, then
ℓp ⊂ ℓp(E). Moreover if |En| > 1 for an infinite number of n, then the inclusion is strict.

Theorem 3. Let p ≥ 1 and E = (En) be a partition of finite subsets of positive integers that satisfies the condition (2). Then ℓp(E) ⊂
ℓp(E,B(r, s)), furthermore the inclusion is strictly holds.

Combining Lemma 1 and Theorem 3, we get the following corollary.

Corollary 1. Let p ≥ 1 and E = (En) be a partition of finite subsets of positive integers that satisfies the condition (2). If supn |En| < ∞,
then ℓp ⊂ ℓp(E,B(r, s)). Moreover if |En| > 1 for an infinite number of n, then the inclusion is strict.

Theorem 4. Let E = (En) be a partition of finite subsets of positive integers that satisfies the condition (2). Except the case p = 2 , the space
ℓp(E,B(r, s)) is not a semi-inner product space.
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Definition 1. Let X be a semi-normed space with a semi-norm g. A sequence (bn) of elements of the semi-normed space X is called a
Schauder basis (or briefly basis) for X iff, for each x ∈ X there exists a unique sequence of scalars (αn) such that

lim
n→∞

g

(

x−
n
∑

k=1

αkbk

)

= 0.

The series
∑n

k=1 αkbk which has the sum x, is then called the expansion of x with respect to (bn) and written as x =
∑n

k=1 αkbk. In the
following, we give a sequence of points of the space ℓp(E,B(r, s)) which forms a basis for the space ℓpE,B(r, s).

Theorem 5. Let p ≥ 1 and E = (En) be a partition of finite subsets of the positive integers that satisfies the condition (2). If the sequence

b(k)(r, s) = {bj
(k)(r, s)}j∈N is defined such that

∑

j∈En

bj
(k)(r, s) =

{

0 , if n < k
1
r (−

s
r )

n , if n ≥ k

and the remaining elements are zero, for k = 1, 2, .... Then, the sequence
{

b(k)(r, s)
}

k∈N
is a basis for the space ℓp(E,B(r, s)) and any

x ∈ ℓp(E,B(r, s)) has a unique representation of the form

x =
∑

k

αkb
(k)(r, s) ,

where αk =
∑

j∈Ek
xj for k = 1, 2, ....

3 The Norm of Matrix Operators from ℓp into ℓp(E,B(r, s))

In this section, the problem of finding the norm of certain matrix operators such as Copson and Hilbert from ℓp into ℓp(E,B(r, s)) is considered,
where p ≥ 1.

Theorem 6. Let A = (an,k) be a matrix operator and E = (En) be a partition that satisfies condition (2). If

M = sup
k

∞
∑

n=1

∣

∣

∣

∣

∑

i∈En

rai,k +
∑

i∈En+1

sai,k

∣

∣

∣

∣

< ∞,

then A is a bounded operator from ℓ1 into ℓ1(E,B(r, s)) and ‖A‖1,E,B(r,s) = M.

In particular if
∑

i∈En

rai,k +
∑

i∈En+1

sai,k ≥ 0

and r + s = 0 for all n, k, then

‖A‖1,E,B(r,s) = sup
k

∑

i∈E1

rai,k

The Copson operator C is defined by y = Cx, where

yn =

∞
∑

k=n

xk
k
, (∀n).

It is given by the Copson matrix:

cn,k =

{

1

k
, if n ≤ k

0 , if n > k.

Corollary 2. Let C be the Copson operator and E = (En) be a partition that satisfies condition (2). If

∑

i∈En

rci,k +
∑

i∈En+1

sci,k ≥ 0

for all n, k and r + s = 0, then C is a bounded operator from ℓ1 into ℓ1(E,B(r, s)) and ‖C‖1,E,B(r,s) = r.

Corollary 3. Suppose that C is the Copson operator, rcn,k + scn+1,k ≥ 0 for all n, k, r + s = 0 and E = {n} for all n. Then C is a bounded
operator from ℓ1 into ℓ1(B(r, s)) and ‖C‖1,B(r,s) = r.

Recall that the Hilbert operator H defined by the matrix:
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hn,k =
1

n+ k
, (n, k = 1, 2, ...).

Corollary 4. Let H be the Hilbert operator and E = (En) be a partition that satisfies the condition (2). If

∑

i∈En

rhi,k +
∑

i∈En+1

shi,k ≥ 0

for all n, k and r + s = 0, then H is a bounded operator from ℓ1 into ℓ1(E,B(r, s)) and

‖H‖1,E,B(r,s) = r

(

1

2
+ ...+

1

maxE1 + 1

)

.

Corollary 5. If H is the Hilbert operator, rhn,k + shn+1,k ≥ 0 for all n, k and r + s = 0, then H is a bounded operator from ℓ1 into
ℓ1(E,B(r, s)) and ‖H‖1,B(r,s) =

r
2 .

Theorem 7. ([12], Theorem 275) Let p > 1 and B = (bn,k) be a matrix operator with bn,k ≥ 0 for all n, k. Suppose that K and R are two
strictly positive numbers such that

∞
∑

n=1

bn,k ≤ K, for all k,
∞
∑

k=1

bn,k ≤ R for all n,

(bounds for column and row sums respectively). Then

‖B‖p ≤ R(p−1)/p . K1/p.

Result 2. If A = (an,k) and B = (bn,k) are two matrix operators such that

bn,k =
∑

i∈En

rai,k +
∑

i∈En+1

sai,k,

then

‖A‖p,E,B(r,s) = ‖B‖p.

Hence, if B is a bounded operator on ℓp, then A will be a bounded operator from ℓp into ℓp(E,B(r, s)).

Theorem 8. Let C is the Copson matrix operator p > 1 , r > 0 and r + s = 0. If N is a positive integer and En = {nN −N + 1, nN −
N + 2, ..., nN} for all n, then C is a bounded operator from ℓp into ℓp(E,B(r, s)) and

‖C‖p,E,B(r,s) ≤ r

(

N +
N − 1

N + 1
+

N − 2

N + 2
+ ...+

1

2N − 1

)

(p−1)
p

.

Theorem 9. Suppose that p > 1 , r > 0, r + s = 0, N is a positive integer and En = {nN −N + 1, nN −N + 2, ..., nN} for all n. If H
is the Hilbert matrix operator, then it is a bounded operator from ℓp into ℓp(E,B(r, s)) and

‖H‖p,E,B(r,s) ≤ r

(

1

2
+

2

3
+ ...+

N

N + 1
+ ...+

1

2N

)

(p−1)
p
(

1

2
+

1

3
+ ...+

1

2N

)
1
p

.
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1 Introduction

By ω, we denote the space of all real sequences. Any subset of ω is called a sequence space. Let Ψ, ℓ∞, c and c0 denote the sets of all finite,
bounded, convergent and null sequences, respectively and ℓp = {u = (un) ∈ ω :

∑

n |un|
p <∞} for 1 ≤ p <∞. Throughout the study, we

assume that p, q ≥ 1 and 1
p + 1

q = 1.

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals πk, πk(u) = uk, are continuous
is called a K-space. A BK-space is defined as a K-space which is also a B-space, that is, a BK-space is a Banach space with continuous

coordinates. A BK-space λ ⊃ ψ is said to have AK if every sequence u = (uk) ∈ λ has a unique representation u =
∑

k uke
(k), where e(k)

is the sequence whose only non-zero term is 1 in the nth place for each k ∈ N. For example, the space ℓp (1 ≤ p <∞) is a BK-space with the

norm ‖u‖p = (
∑

k |uk|
p)1/p and c0 and ℓ∞ is a BK-space with the norm ‖u‖∞ = supk |uk|. Also, the BK-spaces c0 and ℓp have AK but c

and ℓ∞ do not have AK.
The β-dual of a sequence space λ is defined by

λ
β = {z = (zk) ∈ ω : zu = (zkuk) ∈ cs for all u = (uk) ∈ λ}.

Let A be the sequence of nth row of an infinite matrix A = (ank) with real numbers ank for each n ∈ N. For a sequence u = (uk) ∈ ω,
the A-transform of u is the sequence Au = (An(u)), where

An(u) =

∞
∑

n=0

ankuk

provided that the series is convergent for each n ∈ N.
(λ, µ) stands for the class of all infinite matrices from a sequence space λ into another sequence space µ. Hence, A ∈ (λ, µ) if and only if

An ∈ λβ for all n ∈ N.
Let λ be a normed space and Sλ be the unit sphere in λ. For a BK-space λ ⊃ ψ and z = (zk) ∈ ω, we use the notation

‖z‖∗λ = sup
u∈Sλ

∣

∣

∣

∣

∣

∑

k

zkuk

∣

∣

∣

∣

∣

under the assumption that the supremum is finite. In this case observe that z ∈ λβ .

Lemma 1. [1, Theorem 1.29] ℓ
β
1 = ℓ∞, ℓ

β
p = ℓq and ℓ

β
∞ = ℓ1, where 1 < p <∞. If λ ∈ {ℓ1, ℓp, ℓ∞}, then ‖z‖∗λ = ‖z‖λβ holds for all

z ∈ λβ , where ‖.‖λβ is the natural norm on λβ .

By B(λ, µ), we denote the set of all bounded (continuous) linear operators from λ to µ.

Lemma 2. [1, Theorem 1.23 (a)] Let λ and µ be BK-spaces. Then, for every A ∈ (λ, µ), there exists a linear operator LA ∈ B(λ, µ) such
that LA(u) = Au for all u ∈ λ.
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Lemma 3. [1] Let λ ⊃ ψ be a BK-space and µ ∈ {c0, c, ℓ∞}. If A ∈ (λ, µ), then

‖LA‖ = ‖A‖(λ,µ) = sup
n

‖An‖
∗
λ <∞.

The Hausdorff measure of noncompactness of a bounded set Q in a metric space λ is defined by

χ(Q) = inf{ε > 0 : Q ⊂ ∪n
i=1B(xi, ri), xi ∈ λ, ri < ε, n ∈ N},

where B(xi, ri) is the open ball centered at xi and radius ε for each i = 1, 2, ..., n.
The following theorem is useful to compute the Hausdorff measure of non-compactness in ℓp for 1 ≤ p <∞.

Theorem 1. [2] Let Q be a bounded subset in ℓp for 1 ≤ p <∞ and Pr : ℓp → ℓp be the operator defined by Pr(u) =
(u0, u1, u2, ..., ur, 0, 0, ...) for all u = (uk) ∈ ℓp and each r ∈ N. Then, we have

χ(Q) = lim
r

(

sup
u∈Q

‖(I − Pr)(u)‖ℓp

)

,

where I is the identity operator on ℓp.

Let λ and µ be Banach spaces. Then, a linear operator L : λ→ µ is is said to be compact if the domain of L is all of λ and L(Q) is a totally
bounded subset of µ for every bounded subset Q in λ. Equivalently, we say that L is compact if its domain is all of λ and for every bounded
sequence u = (un) in λ, the sequence (L(un)) has a convergent subsequence in µ.

The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of non-compactness. For L ∈ B(λ, µ),
the Hausdorff measure of non-compactness of L denoted by ‖L‖χ is given by

‖L‖χ = χ(L(Sλ))

and we have

L is compact if and only if ‖L‖χ = 0.

Several authors have studied compact operators on the sequence spaces and given very important results related to the Hausdorff measure of
non-compactness of a linear operator. For example [3]-[9].

The main purpose of this study is to obtain necessary and sufficient conditions for some matrix operators to be compact. For this purpose,
we use the Banach spaces ℓp(T ) and ℓ∞(T ) introduced in [10] as

ℓp(T ) =

{

u = (un) ∈ ω :
∑

n

∣

∣

∣

∣

tnun −
1

tn
un−1

∣

∣

∣

∣

p

<∞

}

(1 ≤ p <∞)

and

ℓ∞(T ) =

{

u = (un) ∈ ω : sup
n

∣

∣

∣

∣

tnun −
1

tn
un−1

∣

∣

∣

∣

<∞

}

.

Here, the difference matrix matrix T = (tnk) is defined by

tnk =







tn , k = n

− 1
tn

, k = n− 1
0 , k > n or 0 ≤ k < n− 1,

where tn > 0 for all n ∈ N and t = (tn) ∈ c\c0.
Note that we use the sequence v = (vn) for the T -transform of a sequence u = (un), that is,

vn = Tn(u) =

{

t0u0 , n = 0
tnun − 1

tn
un−1 , n ≥ 1

(n ∈ N).

2 Compact Operators on the Spaces ℓp(T ) and ℓ
∞
(T )

For a sequence a = (ak) ∈ ω, we define a sequence ã = (ãk) as ãk =
∑∞

j=k tk
∏j

i=k
1
t2
i

aj for all k ∈ N.

We need the following results in the sequel.

Lemma 4. Let a = (ak) ∈ (ℓp(T ))
β , where 1 ≤ p ≤ ∞. Then ã = (ãk) ∈ ℓq and

∑

k

akuk =
∑

k

ãkvk (1)

for all u = (uk) ∈ ℓp(T ).

Lemma 5. The following statements hold.
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(a) ‖a‖∗ℓ1(T ) = supk |ãk| <∞ for all a = (ak) ∈ (ℓ1(T ))
β .

(b) ‖a‖∗ℓp(T ) =
(
∑

k |ãk|
q)1/q <∞ for all a = (ak) ∈ (ℓp(T ))

β , where 1 ≤ p ≤ ∞.

(c) ‖a‖∗ℓ∞(T ) =
∑

k |ãk| <∞ for all a = (ak) ∈ (ℓ∞(T ))β .

Proof: We only prove part (a) and the others can be proved analogously. Choose a = (ak) ∈ (ℓ1(T ))
β . Then, by Lemma 4, we have ã =

(ãk) ∈ ℓ∞ and (1) holds. Since ‖u‖ℓ1(T ) = ‖v‖ℓ1 holds, we obtain that u ∈ Sℓ1(T ) if and only if v ∈ Sℓ1 . Hence, we deduce that ‖a‖∗ℓ1(T ) =

supu∈Sℓ1(T )
|
∑

k akuk| = supv∈Sℓ1
|
∑

k ãkvk| = ‖ã‖∗ℓ1 . From Lemma 1, it follows that ‖a‖∗ℓ1(T ) = ‖ã‖∗ℓ1 = ‖ã‖ℓ∞ = supk |ãk|. �

Throughout this section, we use the matrix Ã = (ãnk) defined by an infinite matrix A = (ank) via

ãnk =

∞
∑

j=k

tk

j
∏

i=k

1

t2i
anj

for all n, k ∈ N under the assumption that the series is convergent.

Lemma 6. Let λ be a sequence space. If A ∈ (ℓp(T ), λ), then Ã ∈ (ℓp, λ) and Au = Ãv for all u ∈ ℓp(T ), where 1 ≤ p ≤ ∞.

Lemma 7. If A ∈ (ℓ1(T ), ℓp), then we have

‖LA‖ = ‖A‖(ℓ1(T ),ℓp) = sup
k

(

∑

n

|ãnk|
p

)1/p

<∞,

where 1 ≤ p ≤ ∞.

Lemma 8. [11, Theorem 3.7] Let λ ⊃ ψ be a BK-space. Then, the following statements hold.
(a) A ∈ (λ, ℓ∞), then 0 ≤ ‖LA‖χ ≤ lim supn ‖An‖

∗
λ.

(b) A ∈ (λ, c0), then ‖AS‖χ ≤ lim supn ‖An‖
∗
λ.

(c) If λ has AK or λ = ℓ∞ and A ∈ (λ, c), then

1

2
lim sup

n
‖An − α‖∗λ ≤ ‖LA‖χ ≤ lim sup

n
‖An − α‖∗λ,

where α = (αk) and αk = limn ank for all k ∈ N.

Theorem 2.

1. For A ∈ (ℓ1(T ), ℓ∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

(

sup
k

|ãnk|

)

holds.
2. For A ∈ (ℓ1(T ), c),

1

2
lim sup

n

(

sup
k

|ãnk − α̃k|

)

≤ ‖LA‖χ ≤ lim sup
n

(

sup
k

|ãnk − α̃k|

)

holds.
3. For A ∈ (ℓ1(T ), c0),

‖LA‖χ = lim sup
n

(

sup
k

|ãnk|

)

holds.
4. For A ∈ (ℓ1(T ), ℓ1),

‖LA‖χ = lim
m

(

sup
k

∞
∑

n=m

|ãnk|

)

holds.

Corollary 1.

1. LA is compact for A ∈ (ℓ1(T ), ℓ∞) if

lim
n

(

sup
k

|ãnk|

)

= 0.

2. LA is compact for A ∈ (ℓ1(T ), c), if and only if

lim
n

(

sup
k

|ãnk − α̃k|

)

= 0.
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3. LA is compact for A ∈ (ℓ1(T ), c0) if and only if

lim
n

(

sup
k

|ãnk|

)

= 0.

4. LA is compact for A ∈ (ℓ1(T ), ℓ1) if and only if

lim
m

(

sup
k

∞
∑

n=m

|ãnk|

)

= 0.

Lemma 9. Let λ ⊃ ψ be a BK-space. If A ∈ (λ, ℓ1), then

lim
r



 sup
N∈Kr

∥

∥

∥

∥

∥

∥

∑

n∈N

An

∥

∥

∥

∥

∥

∥

∗

λ



 ≤ ‖LA‖χ ≤ 4 lim
r



 sup
N∈Kr

∥

∥

∥

∥

∥

∥

∑

n∈N

An

∥

∥

∥

∥

∥

∥

∗

λ





and LA is compact if and only if limr
(

supN∈Kr
‖
∑

n∈N An‖
∗
λ

)

= 0, where Kr is the subcollection of K consisting of subsets of N with
elements that are greater than r.

Theorem 3. Let 1 < p <∞.

1. For A ∈ (ℓp(T ), ℓ∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

(

∑

k

|ãnk|
q

)1/q

holds.
2. For A ∈ (ℓp(T ), c),

1

2
lim sup

n

(

∑

k

|ãnk − α̃k|
q

)1/q

≤ ‖LA‖χ ≤ lim sup
n

(

∑

k

|ãnk − α̃k|
q

)1/q

holds.
3. For A ∈ (ℓp(T ), c0),

‖LA‖χ = lim sup
n

(

∑

k

|ãnk|
q

)1/q

holds.
4. For A ∈ (ℓp(T ), ℓ1),

lim
m

‖A‖
(m)
(ℓp(T ),ℓ1)

≤ ‖LA‖χ ≤ 4 lim
m

‖A‖
(m)
(ℓp(T ),ℓ1)

holds, where ‖A‖
(m)
(ℓp(T ),ℓ1)

= supN∈Km

(
∑

k |
∑

n∈N ãnk|
q)1/q .

Corollary 2. Let 1 < p <∞.

1. LA is compact for A ∈ (ℓp(T ), ℓ∞) if

lim
n

(

∑

k

|ãnk|
q

)1/q

= 0.

2. LA is compact for A ∈ (ℓp(T ), c) if and only if

lim
n

(

∑

k

|ãnk − α̃k|
q

)1/q

= 0.

3. LA is compact for A ∈ (ℓp(T ), c0) if and only if

lim
n

(

∑

k

|ãnk|
q

)1/q

= 0.

4. LA is compact for A ∈ (ℓp(T ), ℓ1) if and only if

lim
m

‖A‖
(m)
(ℓp(T ),ℓ1)

= 0,

where ‖A‖
(m)
(ℓp(T ),ℓ1)

= supN∈Km

(
∑

k |
∑

n∈N ãnk|
q)1/q .

Theorem 4.
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1. For A ∈ (ℓ∞(T ), ℓ∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

∑

k

|ãnk|

holds.
2. For A ∈ (ℓ∞(T ), c),

1

2
lim sup

n

∑

k

|ãnk − α̃k| ≤ ‖LA‖χ ≤ lim sup
n

∑

k

|ãnk − α̃k|

holds.
3. For A ∈ (ℓ∞(T ), c0),

‖LA‖χ = lim sup
n

∑

k

|ãnk|

holds.

Corollary 3.

1. LA is compact for A ∈ (ℓ∞(T ), ℓ∞) if

lim
n

∑

k

|ãnk| = 0.

2. LA is compact for A ∈ (ℓ∞(T ), c), if and only if

lim
n

∑

k

|ãnk − α̃k| = 0.

3. LA is compact for A ∈ (ℓ∞(T ), c0) if and only if

lim
n

∑

k

|ãnk| = 0.
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Abstract: In this paper, we study the prescribed curvature problem in manifold with density. We consider the Minkowski 3-space

with a positive density function. For a given plane curve and an axis in the plane in Minkowski 3-space, a helicoidal surface can

be constructed by the plane curve under helicoidal motions around the axis. Also we give examples of helicoidal surface with

weighted Gaussian curvature.

Keywords: Helicoidal, Manifold with density, Minkowski space, Weighted curvature.

1 Introduction

Helicoidal surface is a natural generalization of a rotation surface. A few works have been done with helicoidal surafaces under some given
certain conditions [1–4]. Recently, the popular question is whether a helicoidal surface can be constructed when its curvatures are prescribed.
Several researchers worked on this problem and obtained useful results. Firstly, Baikoussis et. al have studied helicoidal surfaces with prescribed
mean and Gaussian curvature in R

3 [5]. Then, Beneki et. al [6] and Ji et. al [7] have studied the similar work in R
3
1. This problem is extended

to manifolds with density. Helicoidal surfaces with prescribed mean and Gaussian curvature in R
3 with density have been studied by Dae Won

Yoon et. al [8]. Furthermore, Yıldız et. al have constructed the type I+ helicoidal surfaces with prescribed weighted curvatures in R
3
1 with

density [9].
A manifold with a positive density function ψ used to weight the volume and the hypersurface area. In terms of the underlying Riemannian

volume dV0 and area dA0, the new, weighted volume and area are given by dV = ψdV0 and dA = ψdA0, respectively. One of the most
important examples of manifolds with density, with applications to probability and statistics, is Gauss space with density ψ = ea(−x2

−y2
−z2)

for a ∈ R, (x, y, z) ∈ R
3 [10]. For more details on manifolds with density, see [10–16].

In the Minkowski 3−space with density eϕ, the weighted Gaussian curvature is given with

Gϕ = G−△ϕ

where G is the Gaussian curvature of the surface and △ is the Laplacian operator [17].
In this paper, we study helicoidal surfaces which have the timelike axis in the Minkowski 3−space R3

1 with density eϕ, where ϕ = x2.
Firstly, we construct a helicodial surface with prescribed weighted Gaussian curvature. Finally, we give examples to illustrate.

2 Preliminaries

The Minkowski 3−space R
3
1 is the real vector space R

3 provided with the standart flat metric given by

ds
2 = −dx2 + dy

2 + dz
2

where (x, y, z) is a rectangular coordinate system of R3
1.

For a given plane curve and an axis in the plane in R
3
1, a helicoidal surface can be constructed by the plane curve under helicoidal motions gt :

R
3
1 → R

3
1, t ∈ R around the axis. So, a helicoidal surface is non-degenerate and invariant under gt, t ∈ R for which one parameter subgroup

of rigid motions is in R
3
1. There exist four kinds of helicoidal surfaces in R

3
1 which are defined by Beneki et. al [6] and these are called type I ,

type II , type III , type IV . In this study, type III+ is considered which has the timelike axis of revolution and the profile curve in xy−plane.
In addition, the helicoidal surface is called type III+ since the discriminant of the first fundamental form u2

(

1− g′2
)

− c2 is positive [6].
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Let γ be a C2−curve on xy−plane of type γ (u) = (g (u) , u, 0) where u ∈ I for an open interval I ⊂ R− {0} . By using helicoidal
motion on γ, we can obtain the helicoidal as

X (u, v) =





1 0 0
0 cos v − sin v
0 sin v cos v









g (u)
u
0



+





cv
0
0





with x−axis and a pitch c ∈ R. So the parametric equation can be given in the form

X (u, v) = (g (u) + cv, u cos v, u sin v) .

It is straightforward to see that the Gaussian curvature G is

G =
u3g′g′′ − c2

[u2 (1− g′2)− c2]
2

where u2
(

1− g′2
)

− c2 > 0 [6]. We assume that M is the surface in R
3
1 with density eϕ, where ϕ = x2. By considering density function,

we can calculate the weighted Gaussian curvature Gϕ as

Gϕ =
u3g′g′′ − c2

(u2 (1− g′2)− c2)
2
− 2. (1)

3 Helicoidal Surfaces with Prescribed Gaussian Curvature

Let’s solve the ordinary differential equation (1), which is second-order nonlinear ordinary differantial equation. If we take

Ψ =
−u2g′

2

− c2

(u2 (1− g′2)− c2)
(2)

then we obtain

Gϕ = − 1

2u
Ψ′ − 2

equivalently,

Ψ′ = −2uGϕ − 4u. (3)

The general solution of the equation (3) becomes

Ψ = −2u2 − 2

∫
uGϕdu+ c1 (4)

where c1 ∈ R. Combining the equation (2) and the equation (4), we get

u2

(

−1− 2u2 − 2

∫
uGϕdu+ c1

)

g′
2

(u) =
(

u2 − c2
)

(

−2u2 − 2

∫
uGϕdu+ c1

)

+ c2.

It follows that

g (u) = ∓
∫
1

u





(

u2 − c2
)(

−2u2 − 2
∫
uGϕdu+ c1

)

+ c2

−1− 2u2 − 2
∫
uGϕdu+ c1





1
2

du+ c2 (5)

where c2 ∈ R.
Conversely, for a given c ∈ R and a smooth function Gϕ (u) defined on an open interval I ⊂ R

+ and an arbitrary u0 ∈ I , there exists an
open subinterval I ′ ⊂ I containing u0 and an open interval J ⊂ R containing

ĉ1 =

(

2 + 2u2 + 2

∫
uGϕdu

)

(u0)

such that

F (u, c1) = −1− 2u2 − 2

∫
uGϕdu > 0

is defined on I ′ × J and it is easily seen F is positive. Thus, two-parameter family of the curves can be given as

γ (u,Gϕ(u), c, c1, c2) =



∓

∫
1

u

[
(

u2 − c2
) (

−2u2 − 2
∫
uGϕdu+ c1

)

+ c2

−1− 2u2 − 2
∫
uGϕdu+ c1

] 1
2

du+ c2, u, 0





where (u, c1) ∈ I ′ × J ; c2 ∈ R, c ∈ R and Gϕ is smooth function.
Therefore, we have proved the following theorem.
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Theorem 1. Let γ (u) be a profile curve of the helicoidal surface given with X (u, v) = (g (u) + cv, u cos v, u sin v) in R
3
1 with density ex

2

and Gϕ(u) be the weighted Gaussian curvature at (g (u) , u, 0). Then, there exists two-parameter family of the helicoidal surface given by the

curves

γ (u,Gϕ(u), c, c1, c2) =



∓

∫
1

u

[

(

u2 − c2
) (

4u2 − 2
∫
uGϕdu+ c1

)

+ c2

−1 + 4u2 − 2
∫
uGϕdu+ c1

] 1
2

du+ c2, u, 0





here, c1 and c2 are constants. Conversely, for a given smooth function Gϕ(u), one can obtain the two-parameter family of curves
γ (u,Gϕ(u), c, c1, c2) being the two-parameter family of helicoidal surfaces, accepting Gϕ(u) as the weighted Gaussian curvature c as a
pitch.

Example Consider a helicoidal surface with the weighted Gaussian curvature

Gϕ(u) = − 8

15
− u2

3
+

arctan
(√

15u
)

30
√
15u

in R3
1 with density ex

2

. By using the equation (5), we obtain

g (u) = 4u

for c = 1, c1 = 0, c2 = 0 and the parametrization of the surface as follows

X (u, v) = (4u+ v, u cos v, u sin v) .

The figure of the surface of the domain
{

2 < u < 5
−10 < v < 10

is given in Figure 1.

Fig. 1: The helicoidal surface with the weighted Gaussian curvature
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Abstract: In this study, we show that the elliptic biquaternion algebra is algebraically isomorphic to the 2× 2 total elliptic matrix

algebra and so, we get a faithful 2× 2 elliptic matrix representation of an elliptic biquaternion. Also, we investigate the similarity

and the Moore-Penrose inverses of elliptic biquaternions by means of these matrix representations. Moreover, we establish uni-

versal similarity factorization equality (USFE) over the elliptic biquaternion algebra which reveals a deeper relationship between

an elliptic biquaternion and its elliptic matrix representation. This equality and these representations can serve as useful tools for

discussing many problems concerned with the elliptic biquaternions, especially for solving various elliptic biquaternion equations.

Keywords: Elliptic biquaternion, Generalized inverse, matrix representation, Universal similarity factorization equality.

1 Introduction

Sir W. R. Hamilton introduced the set of quaternions in 1843 [1], that was one of the his best contribution made to mathematical science. The
set of quaternions can be represented as

H = {q = q0 + q1i+ q2j+ q3k : q0, q1, q2, q3 ∈ R}

where the quaternion bases 1, i, j and k satisfy the multiplication laws

i
2 = j

2 = k
2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

W.R. Hamilton introduced complex quaternion algebra ten years later from discovery of quaternions, in 1853 [2]. The set of complex
quaternions is defined by

HC = {Q = Q0 +Q1i+Q2j+Q3k : Q0, Q1, Q2, Q3 ∈ C}

where 1, i, j and k are exactly the same in quaternions. There can be found some studies related to quaternions in [3–10].
A fundamental fact (see e.g., [3–6]) is that complex quaternion algebra is isomorphic to the 2× 2 total complex matrix algebra M2 (C) by

means of the isomorphism

ψ : HC →M2 (C) , ψ (ao + a1i+ a2j+ a3k) =

[

ao + a1i −a2 − a3i
a2 − a3i ao − a1i

]

.

Based on this isomorphism, any complex quaternion x ∈ HC has a faithful complex matrix representation ψ (x) ∈M2 (C).
USFE over an algebra can serve as a precious material for investigating various problems concerned with this algebra and their applications.

There can be found some studies which include USFE over various algebras in [11–15].
Recently, we have introduced the set of elliptic biquaternions and presented various studies related to elliptic biquaternions. We refer the

readers to [16–20].
This article is organized as follows. In section 2, we recall the fundamental concepts of elliptic matrices and review the elliptic biquaternions

and their matrices to disambiguate the ensuing sections. In section 3, 2× 2 elliptic matrix representations of elliptic biquaternions are intro-
duced. In section 4, the similarity of elliptic biquaternions is investigated and USFE for elliptic biquaternions is established. In section 5, the
Moore-Penrose inverses of elliptic biquaternions are discussed with the aid of their aforementioned matrix representations.

Throughout this paper, the following notations are used. C, Cp, HCp, Mm×n (C), Mm×n (Cp) and Mm×n (HCp) denote the complex
number field, the elliptic number field, the elliptic biquaternion algebra, the set of all m× n complex matrices, the set of all m× n elliptic
matrices and the set of all m× n elliptic biquaternion matrices, respectively. For convenience, the set of all square matrices on Cp is denoted
by Mn (Cp).
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2 Preliminaries

In this section, we recall some necessary properties of elliptic matrices. Also, we give some notions about elliptic biquaternions and their
matrices. For more details see [16, 20, 21].

In the set of elliptic matrices Mm×n (Cp) including m× n matrices with elliptic number entries, the scalar multiplication is defined as

λA = λ
[

aij
]

=
[

λaij
]

∈Mm×n (Cp)

where λ ∈ Cp and A =
[

aij
]

∈Mm×n (Cp). Also, the ordinary matrix addition and multiplication are defined in this set. Let an elliptic
matrix A =

[

aij
]

∈Mm×n (Cp) be given. In that case, the complex conjugate of A is defined as A =
[

a∗ij
]

∈Mm×n (Cp) where a∗ij is the

usual complex conjugation of aij ∈ Cp. Also, the conjugate transpose of A is defined as A∗ =
(

A
)T ∈Mn×m (Cp).

On the other hand, the square elliptic matrices A and B with the same dimension over Cp are said to be similar, if there exists an invertible
elliptic matrix P satisfying P−1AP = B, [21].

The set of elliptic biquaternions is represented as

HCp = {Q = A0 +A1i+A2j+A3k : A0, A1, A2, A3 ∈ Cp}

where i, j and k are the quaternionic units which satisfy

i
2 = j

2 = k
2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The operations of addition, multiplication and scalar multiplication are given as

Q+R = (A0 +B0) + (A1 +B1) i + (A2 +B2) j + (A3 +B3) k

QR = [(A0B0)− (A1B1)− (A2B2)− (A3B3)]

+ [(A0B1) + (A1B0) + (A2B3)− (A3B2)] i

+ [(A0B2)− (A1B3) + (A2B0) + (A3B1)] j

+ [(A0B3) + (A1B2)− (A2B1) + (A3B0)] k

λQ = (λA0) + (λA1) i+ (λA2) j+ (λA3)k

where λ ∈ Cp and Q = A0 +A1i+A2j+A3k, R = B0 +B1i+B2j+B3k ∈ HCp. Also, the following equations

Q∗ = A0
∗ +A1

∗
i+A2

∗
j+A3

∗
k

Q = A0 −A1i−A2j−A3k

Q† =
(

Q
)∗

= A0
∗ −A1

∗
i−A2

∗
j−A3

∗
k

state the complex conjugate, quaternion conjugate and Hermitian conjugate of Q, respectively. Here the stars given as superscript on
A0, A1, A2 and A3 indicate the usual complex conjugation. If Q† = Q, Q is said to be Hermitian, [16].

As can be seen easily, the meanings of the symbols; star and dagger given as superscript and over bar vary according to terms which they
are applied to. We need to warn the readers about these cases for the rest of the paper.

Another thing that can be of importance is the inner product of two elliptic biquaternions. The inner product of Q and R is defined in the
following way:

〈Q,R〉 = 1

2

(

QR+RQ
)

=
1

2

(

QR+RQ
)

= A0B0 +A1B1 +A2B2 +A3B3.

On the other hand, the semi-norm of Q is expressed as follows:

NQ = 〈Q,Q〉 = A0
2 +A1

2 +A2
2 +A3

2 = QQ = QQ ∈ Cp.

When NQ 6= 0, Q has a multiplicative inverse such that Q−1 = Q/NQ, [16].
The set of all m× n type matrices with elliptic biquaternion entries is denoted by Mm×n (HCp). The ordinary matrix addition and

multiplication are defined in this matrix set. Also, the scalar multiplication is expressed as in the following:

QA = Q
[

aij
]

=
[

Qaij
]

∈Mm×n (HCp)

where Q ∈ HCp and A =
[

aij
]

∈Mm×n (HCp). For A =
[

aij
]

∈Mm×n (HCp), the Hermitian conjugate of A is defined as A† =
[

aji
†
]

∈Mn×m (HCp) where aji
† is the Hermitian conjugate of aji ∈ HCp, [20].
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3 Elliptic Matrix Representations of Elliptic Biquaternions

In this section, we get 2× 2 elliptic matrix representations of elliptic biquaternions and give some properties which are satisfied by these
representations and elliptic biquaternions.

Let us consider the matrix set M2 (Cp) which can be represented as

M2 (Cp) =

{[

x y
z t

]

: x, y, z, t ∈ Cp

}

.

In the following lemma, we show that this matrix set can be represented as in a somewhat different form which are used to define the required
isomorphism.

Result 1. The set of 2× 2 elliptic matrices can be represented as

M2 (Cp) =











X0 + 1√
|p|
IX1 −X2 − 1√

|p|
IX3

X2 − 1√
|p|
IX3 X0 − 1√

|p|
IX1



 : Xi = xi + Ixi
′ ∈ Cp, 0 ≤ i ≤ 3







. (1)

Proof: Let A =

[

z1 + Iz1
# z2 + Iz2

#

z3 + Iz3
# z4 + Iz4

#

]

be an arbitrary 2× 2 elliptic matrix where z1, z1
#, z2, z2

#, z3, z3
#, z4 and z4

# are real

numbers. Then, we can write

A =









(

x0 −
√

|p|x1′
)

+ I

(

x0
′ + x1√

|p|

)

(

−x2 +
√

|p|x3′
)

+ I

(

−x2′ − x3√
|p|

)

(

x2 +
√

|p|x3′
)

+ I

(

x2
′ − x3√

|p|

)

(

x0 +
√

|p|x1′
)

+ I

(

x0
′ − x1√

|p|

)









(2)

such that

x0 =
z1 + z4

2
, x0

′ =
z1

# + z4
#

2
, x1 =

√

|p|
(

z1
# − z4

#
)

2
, x1

′ =
z4 − z1

2
√

|p|
∈ R

x2 =
z3 − z2

2
, x2

′ =
z3

# − z2
#

2
, x3 = −

√

|p|
(

z2
# + z3

#
)

2
, x3

′ =
z2 + z3

2
√

|p|
∈ R.

It can be easily seen that the arbitrary 2× 2 elliptic matrix in (2) is equal to the matrix





X0 + 1√
|p|
IX1 −X2 − 1√

|p|
IX3

X2 − 1√
|p|
IX3 X0 − 1√

|p|
IX1





where Xi = xi + Ixi
′ ∈ Cp, 0 ≤ i ≤ 3.

Conversely, it is clear that the matrix given in (1) is a 2× 2 elliptic matrix. �

Let us take into account the function

σ : HCp → M2 (Cp)

Q = A0 +A1i+A2j+A3k → σ (Q) =





A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1



 .

The function σ comprises the properties

σ (Q+R) = σ (Q) + σ (R) , σ (QR) = σ (Q)σ (R)

where Q and R are any elliptic biquaternions. Also it is bijection. So, σ is a linear isomorphism.

Corollary 1. For an arbitrary 2× 2 elliptic matrix A, Q ∈ HCp satisfying the equality σ (Q) = A is existence and uniqueness.

Proof: The proof is obvious from the linear isomorphism σ and Lemma 1. �

Definition 1. Let Q = A0 +A1i+A2j+A3k ∈ HCp be an arbitrary elliptic biquaternion where A0, A1, A2, A3 ∈ Cp, in that case the
elliptic matrix

σ (Q) =





A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1





which corresponds to Q is called 2× 2 elliptic matrix representation of Q.
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Next two theorems include some properties which are satisfied by elliptic biquaternions and their 2× 2 elliptic matrix representations.

Theorem 1. Let Q = A0 +A1i+A2j+A3k , R = B0 +B1i+B2j+B3k ∈ HCp and λ ∈ Cp be given. In this case

1. det (σ (Q)) = NQ = A0
2 +A1

2 +A2
2 +A3

2,

2. Q is invertible if and only if σ (Q) is invertible, then σ
(

Q−1
)

= (σ (Q))−1
and Q−1 = 1

4E2(σ (Q))−1E2
†,

3. Q = R ⇔ σ (Q) = σ (R) ,
4. σ (Q+R) = σ (Q) + σ (R) , σ (QR) = σ (Q)σ (R) , σ (λQ) = σ (Qλ) = λσ (Q) , σ (1) = I2 ,
5. Q = 1

4E2σ (Q)E2
†,

where E2 =
[

1− 1√
|p|
Ii j+ 1√

|p|
Ik
]

∈M1×2 (HCp).

Proof: The proof of 3 and 4 are obvious due to the aforementioned linear isomorphism σ. On the other hand, the proof of 5 can be completed
by direct calculation. Now, we will prove 1 and 2.

1. We know that σ (Q) =





A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1



. Then we obtain

det (σ (Q)) = A0
2 −A1

2 I
2

|p| +A2
2 −A3

2 I
2

|p|

= A0
2 −A1

2 p

(−p) +A2
2 −A3

2 p

(−p)
= A0

2 +A1
2 +A2

2 +A3
2.

2. For an elliptic biquaternionQ, we know thatQ is invertible if and only ifNQ 6= 0. Therefore, by means of the first property in this theorem,
we can write

Qis invertible⇔ NQ 6= 0 ⇔ det (σ (Q)) 6= 0 ⇔ σ (Q) is invertible.

Suppose that Q and σ (Q) are invertible. In this case, from the inverse property, the equality

QQ−1 = Q−1Q = 1

is satisfied. Then, by means of the third and fourth properties in this theorem, the equalities

σ (Q)σ
(

Q−1
)

= σ
(

QQ−1
)

= σ (1) = I2

and

σ
(

Q−1
)

σ (Q) = σ
(

Q−1Q
)

= σ (1) = I2

are obtained. It means that (σ (Q))−1 = σ
(

Q−1
)

. Therefore, by considering the fifth property in this theorem, we obtain Q−1 =
1
4E2(σ (Q))−1E2

†. �

Theorem 2. Let Q = A0 +A1i+A2j+A3k ∈ HCp be given. In this case

1. σ
(

Q
)

=

[

0 1
−1 0

]

(σ (Q))T
[

0 −1
1 0

]

where Q is the quaternion conjugate of Q,

2. σ (Q∗) =

[

0 1
−1 0

]

σ (Q)

[

0 −1
1 0

]

where Q∗ is the complex conjugate of Q,

3. σ
(

Q†
)

=
(

σ (Q)
)T

= (σ (Q))∗ where Q† is the Hermitian conjugate of Q.

Proof: 2 and 3 can be easily shown, Now, we will prove 1.
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1. For Q = A0 +A1i+A2j+A3k, we can write Q = A0 −A1i−A2j−A3k. In this case, we get

σ
(

Q
)

=





A0 − 1√
|p|
IA1 A2 + 1√

|p|
IA3

−A2 + 1√
|p|
IA3 A0 + 1√

|p|
IA1



 .

On the other hand, it is clear that

(σ (Q))T =





A0 + 1√
|p|
IA1 A2 − 1√

|p|
IA3

−A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1



 .

Then, by directly multiplying we obtain

[

0 1
−1 0

]

(σ (Q))T
[

0 −1
1 0

]

=





A0 − 1√
|p|
IA1 A2 + 1√

|p|
IA3

−A2 + 1√
|p|
IA3 A0 + 1√

|p|
IA1



 = σ
(

Q
)

.

�

4 Similarity of Elliptic Biquaternions and USFE for Elliptic Biquaternions

In this section, we investigate the similarity of elliptic biquaternions with the aid of their elliptic matrix representations and establish universal
similarity factorization equality for elliptic biquaternions.

4.1 Similarity of elliptic biquaternions

One of the natural questions concerned with elliptic biquaternions is the similarity of two elliptic biquaternions. By analogy with the classic
quaternion case, the next definition is given.

Definition 2. For Q,R ∈ HCp, if there exists an invertible elliptic biquaternion X such that X−1QX = R, Q and R are called similar
elliptic biquaternions. This case is denoted by Q ∼ R.

By considering Definition 2, a simple result, which characterizes the similarity of two elliptic biquaternions, can be given as follows.

Theorem 3. Let Q,R ∈ HCp be given. In this case,

Q ∼ R ⇔ σ (Q) ∼ σ (R) . (3)

Proof: Q ∼ R if and only if there is an invertible elliptic biquaternion X such that X−1QX = R. Then, we have

Q ∼ R ⇔ σ
(

X−1QX
)

= σ (R)

⇔ σ
(

X−1
)

σ (Q)σ (X) = σ (R)

⇔ (σ (X))−1σ (Q)σ (X) = σ (R)

⇔ σ (Q) ∼ σ (R)

from Theorem 1 (2), (3) and (4). �

As a consequence of Theorem 3, we can give the following theorem.

Theorem 4. Let Q = A0 +A1i+A2j+A3k ∈ HCp be given where Q /∈ Cp.

1. If A1
2 +A2

2 +A3
2 6= 0, in that case Q ∼ A0 + γ (Q) i where γ (Q) is an elliptic number satisfying the equality γ2 (Q) = A1

2 +
A2

2 +A3
2.

2. If A1
2 +A2

2 +A3
2 = 0, in that case Q ∼ A0 − 1

2 j+
1

2
√

|p|
Ik.

24 c© CPOST 2018



Proof: For a given elliptic biquaternion Q = A0 +A1i+A2j+A3k ∈ HCp, we have its 2× 2 elliptic matrix representation σ (Q). We can
calculate its characteristic polynomial as follows:

|λI2 − σ (Q)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ−A0 − I
√

|p|
A1 A2 +

I
√

|p|
A3

−A2 +
I
√

|p|
A3 λ−A0 +

I
√

|p|
A1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (λ−A0)
2 +A1

2 +A2
2 +A3

2.

For A1
2 +A2

2 +A3
2 6= 0, we can get the roots of the above characteristic polynomial as λ1,2 = A0 ± 1√

|p|
Iγ (Q). Thus, we

immediately have

σ (Q) ∼





A0 + 1√
|p|
Iγ (Q) 0

0 A0 − 1√
|p|
Iγ (Q)



 = σ (A0 + γ (Q) i) . (4)

For A1
2 +A2

2 +A3
2 = 0, we can get the roots of the characteristic polynomial of σ (Q) as λ1,2 = A0. Then, considering the Jordan

canonical form of σ (Q), we can write the following

σ (Q) ∼
[

A0 1
0 A0

]

= σ

(

A0 − 1

2
j+

1

2
√

|p|
Ik

)

. (5)

If we apply Theorem 3 to (4) and (5), we can easily prove the first part and second part of this theorem, respectively. �

4.2 USFE for elliptic biquaternions

There is a deeper relationship between an elliptic biquaternion Q and its elliptic matrix representation σ (Q) which appears with USFE over
the elliptic biquaternion algebra.

In [11], Tian presents a general result on the universal similarity factorization of elements over any algebra as follows:
Let A be an algebra over an arbitrary field F and Mn(A) be the matrix algebra which includes all n× n matrices with elements in A. Also,
let
{

τij
}

be the basis of A that satisfies the following rules

τi jτs t =

{

τi t j = s

0 j 6= s
, i, j, s, t = 1, ..., n. (6)

In this case, any Q =
n
∑

i,j=1

ai jτi j ∈ A
(

ai j ∈ F
)

satisfies the following USFE

P









Q
Q

. . .
Q









P−1 =









a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann









(7)

where P has the following independent form

P = P−1 =









τ11 τ21 · · · τn1
τ12 τ22 · · · τn2

...
...

...
...

τ1n τ2n · · · τnn









. (8)

By basing on the general result indicated above, we establish USFE for elliptic biquaternions as follows.

Theorem 5. LetQ = A0 +A1i+A2j+A3k ∈ HCp be given. In this case, the elliptic biquaternion matrix

[

Q 0
0 Q

]

satisfies the following

USFE

P

[

Q 0
0 Q

]

P−1 =





A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1



 = σ (Q) ∈M2 (Cp) (9)

where P is in the following independent form:

P = P−1 =
1

2





1− 1√
|p|
Ii j+ 1√

|p|
Ik

−j+ 1√
|p|
Ik 1 + 1√

|p|
Ii



 ∈M2 (HCp) . (10)
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Proof: Let Q = A0 +A1i+A2j+A3k ∈ HCp be an arbitrary elliptic biquaternion and let us consider the elliptic biquaternions

τ11 =
1

2
− I

2
√

|p|
i, τ12 = −1

2
j+

I

2
√

|p|
k, τ21 =

1

2
j+

I

2
√

|p|
k, τ22 =

1

2
+

I

2
√

|p|
i. (11)

It is clear that the system {τ11, τ12, τ21, τ22} is a base of elliptic biquaternion algebra from the equalities

〈τst , τpq〉 =











1 , ( s = p) ∧ (t = q) , s, t, p, q = 1, 2

0 , (s 6= p) ∨ (t 6= q) , s, t, p, q = 1, 2

and

Q =

(

A0 +
A1I
√

|p|

)

τ11 +

(

−A2 − A3I
√

|p|

)

τ12 +

(

A2 − A3I
√

|p|

)

τ21 +

(

A0 − A1I
√

|p|

)

τ22.

For the case n = 2, it is easy to verify that these new bases in (11) satisfy the multiplication rules in (6). Then, if we consider the last equality
above and (11) in (7) and in (8) by keeping the case n = 2 in mind, we get (9) and (10). �

If Lemma 1 is considered, by means of USFE for elliptic biquaternions, it can be said that every 2× 2 elliptic matrix is uniformly similar to
the diagonal matrix diag (Q,Q) where Q is the elliptic biquaternion which corresponds to this 2× 2 elliptic matrix.

5 Moore-Penrose Inverses of Elliptic Biquaternions

In this section, we define the Moore-Penrose inverse of any elliptic matrix and show that it always exists uniquely. Afterwards, we give the
similar definition for elliptic biquaternions as well. Then, the existence and uniqueness of the Moore Penrose inverse for an elliptic biquaternion
Q are determined by the matrix σ (Q) ∈M2 (Cp).

Definition 3. Let an arbitrary elliptic matrix A ∈Mm×n (Cp) be given. If the equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA (12)

have a common solution X ∈Mn×m (Cp), in this case this solution is called Moore-Penrose inverse of A. It is showed with X = A+.

Theorem 6. Let A ∈Mm×n (Cp) be given. In this case the Moore-Penrose inverse of A is existence and uniqueness.

Proof: We define a function between the space of m× n elliptic matrices and the space of m× n complex matrices as follows:

δ :Mm×n (Cp) →Mm×n (C)







a11 + Ib11 . . . a1n + Ib1n
...

. . .
...

am1 + Ibm1 · · · amn + Ibmn






→











a11 + i
(

b11
√

|p|
)

. . . a1n + i
(

b1n
√

|p|
)

...
. . .

...

am1 + i
(

bm1

√

|p|
)

· · · amn + i
(

bmn

√

|p|
)











.

As can be seen easily, the function δ is bijection and so we can write

A = B ⇔ δ (A) = δ (B) (13)

for A, B ∈Mm×n (Cp). Also, it comprises the following properties

δ (A+B) = δ (A) + δ (B) , δ (AB) = δ (A) δ (B) (14)

and

δ
(

A∗) = (δ (A))∗ (15)

whereA∗ is the conjugate transpose ofA ∈Mm×n (Cp) and (δ (A))∗ is the conjugate transpose of δ (A) ∈Mm×n (C) . From (13) and (14),
it is clear that δ is an isomorphism.

Thanks to (13), (14) and (15), the elliptic matrix equation system (12) is equivalent to the following complex matrix equation system:

δ (A) δ (X) δ (A) = δ (A) , δ (X) δ (A) δ (X) = δ (X) ,

(δ (A) δ (X))∗ = δ (A) δ (X) , (δ (X) δ (A))∗ = δ (X) δ (A) .
(16)

According to the complex matrix theory (see [22] for more details) the four equations

δ (A)Y δ (A) = δ (A) , Y δ (A)Y = Y, (δ (A)Y )∗ = δ (A)Y, (Y δ (A))∗ = Y δ (A)

have a unique common solution Y = (δ (A))+ which is called the Moore-Penrose inverse of δ (A). Thus, if we take into account the system
(16) we can immediately obtain δ (X) = (δ (A))+. From the definition of isomorphism δ, it is clear that the matrix X ∈Mm×n (Cp) which
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satisfies δ (X) = (δ (A))+ is existence and uniqueness. In this case, with the aid of the equalities (13), (14) and (15), we conclude that the
elliptic matrix X , which is indicated above, is the unique solution of the elliptic matrix equation system (12). �

Definition 4. Let an elliptic biquaternion Q ∈ HCp be given. If the equations

QXQ = Q, XQX = X, (QX)† = QX, (XQ)† = XQ (17)

have a common solution X ∈ HCp, in this case this solution is called Moore-Penrose inverse of Q. It is showed with X = Q+.

Theorem 7. LetQ ∈ HCp. In that case, its Moore-Penrose inverseQ+ is existence and uniqueness. AlsoQ+ satisfies the following equalities

σ
(

Q+
)

= (σ (Q))+, Q+ =
1

4
E2(σ (Q))+E2

†

where E2 =
[

1− 1√
|p|
Ii j+ 1√

|p|
Ik
]

∈M1×2 (HCp).

Proof: If we consider Theorem 1 (3), (4) and Theorem 2 (3), we can easily see that the elliptic biquaternion equation system (17) is equivalent
to the following elliptic matrix equation system:

σ (Q)σ (X)σ (Q) = σ (Q) , σ (X)σ (Q)σ (X) = σ (X) ,

(σ (Q)σ (X)) ∗ = σ (Q)σ (X) , (σ (X)σ (Q)) ∗ = σ (X)σ (Q) .
(18)

According to Definition 3 and Theorem 6, the four equations

σ (Q)Y σ (Q) = σ (Q) , Y σ (Q)Y = Y,

(σ (Q)Y ) ∗ = σ (Q)Y, (Y σ (Q)) ∗ = Y σ (Q)

have a unique common solution Y = (σ (Q))+ ∈M2 (Cp) which is called the Moore-Penrose inverse of σ (Q). Thus, if we take into account
the system (18) we can write σ (X) = (σ (Q))+. From Corollary 1, we know that the elliptic biquaternionX ∈ HCp which satisfies σ (X) =
(σ (Q))+ is existence and uniqueness. In this case, with the aid of Theorem 1 (3), (4) and Theorem 2 (3), we conclude that the elliptic
biquaternion X , which is indicated above, is the unique solution of the system (17). According to Definition 4, we denote this X by X = Q+.
Thus, it is clear that σ

(

Q+
)

= (σ (Q))+. From this last equality and Theorem 1 (5), Q+ = 1
4E2(σ (Q))+E2

† can be easily obtained. �
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1 Introduction

Motion is mathematically described as a change in the position of an object or a point with respect to time. The rate of motion in a specific
direction gives us velocity. The velocities of the planar motion is always measured with respect to a coordinate systems (frames of reference).
Although spherical motions are of great interest to researchers, planar motion has an important place in kinematics. Because many objects in
engineering are relatively flat and thin or symmetrical. That is, the motion of these objects is considered to be approximately planar motion.
Müller initially studied one parameter planar motions and obtained the relationships between absolute, relative and sliding velocities and
accelerations in the Euclidean plane E2. Moreover, he gave the Euler-Savary formula which gives the relationship between the curvatures of
the trajectory curves [1].
Blaschke and Müller have introduced one parameter planar motions in terms of complex numbers [2]. In [3], it was demonstrated that the
relation between complex velocities and pole points can be obtained with the help of moving coordinate system for the one paremeter motion
in the complex plane.
Pereira and Ersoy have introduced elliptical harmonic motion by using elliptical numbers. Also, they have found the relationships between the
absolute, the relative and the sliding velocities and accelerations for this motion. Furthermore, the canonical relative system of the motion has
been deïňĄned and EulerâĂŞSavary formula has been obtained [4].
Özdemir has given the generation of elliptical rotations by the help of the elliptic scalar product and elliptic vector product for a given ellipsoid.
For this purpose, an elliptical ortogonal matrix and an elliptical skew symmetric matrix have been defined for this elliptic inner product.
Thereby, he has examined the motion of a point on the ellipsoid using elliptical rotation matrices [5].
This paper is organized as follows. In the ïňĄrst part, basic concepts have been represented as if elliptic inner product, elliptical norm of a
vector, elliptical rotation matrix etc. In the second part, one parameter elliptical planar motion has been introduced by the help of the elliptically
orthogonal systems of {O;~e1, ~e2} and

{

O′;~e′1, ~e
′
2

}

. These orthogonal systems represent the moving elliptical plane E and the ïňĄxed elliptical

plane E′, respectively. Furthermore, an elliptically orthogonal, relative system
{

B;
−→
h1,

−→
h2

}

has been considered. Thus, the theorems and results
have been given regarding to the velocities and pole points of this motion.

2 Basic Concepts

Let us consider a for an ellipse in the form

(E) : a1x
2 + a2y

2 = 1,
x2

a2
+

y2

b2
= 1

where a1 = 1
a2 , a2 = 1

b2
and a, b ∈ R (see [5]). The elliptic inner product or B-inner product for the vectors ~u = (u1, u2), ~w = (w1, w2) ∈

R2

B (~u, ~w) = a1u1w1 + a2u2w2

where a1, a2 ∈ R+. This scalar product is positive definite and also can be written as B (~u, ~w) = utΩw where the associated matrix Ω is
defined as follows

Ω =

[

a1 0
0 a2

]

.
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Thus, the real vector space R2 equipped with the elliptic inner product will be denoted by R2
a1,a2

and the number ∆ =
√
detΩ will be called

"constant of the scalar product" [5].
The elliptical norm of a vector ~u ∈ R2 is defined to be ‖~u‖B =

√

B (~u, ~u). Moreover, two vectors ~u and ~w are called B-orthogonal or
elliptically orthogonal vectors if B (~u, ~w) = 0. In addition to that if their norms become 1, then these vectors are called elliptically orthonormal
or B-orthonormal. The cosine of the angle between two vectors ~u and ~w is defined as,

cos θ =
B (~u, ~w)

‖~u‖B‖~w‖B

where θ is compatible with the parameters of the angular parametric equations of ellipse [5]. Let T be a B-skew symmetric matrix. Then, an
elliptical rotation matrix in the space R2

a1,a2
is defined by

R
B
θ =





cos θ
√
a2√
a1

sin θ

−
√
a1√
a2

sin θ cos θ



 .

3 One Parameter Planar Elliptical Motion

Let E1 and E be moving and E′ be fixed elliptical planes and
{

B;
−→
h1,

−→
h2

}

, {O;~e1, ~e2},
{

O′;~e′1, ~e
′
2

}

represent their orthogonal coordinate
systems, respectively.
Therefore, the following scalar products can be written for the vectors

B
(

~ei, ~ej
)

=

{

ai, if i = j
0, if i 6= j

and

B
(

~e
′
i, ~e

′
j

)

=

{

ai, if i = j
0, if i 6= j

The motion of the moving relative plane E1 with respect to other moving plane E is given by the following relation

−→
h1 = cos θ−→e1 +

√
a2√
a1

sin θ−→e2
−→
h2 = −

√
a1√
a2

sin θ−→e1 + cos θ−→e2
(1)

and

−−→
OB =

−→
b = b1

−→
h1 + b2

−→
h2 (2)

Here θ is elliptical rotation angle and
−−→
OB represents the vector from the origin of the moving coordinate system to the origin of other moving

relative coordinate system.
Similarly, the motion of the moving relative plane E1 with respect to fixed plane E′ is given by

−→
h1 = cos θ

−→
e1

′ +
√
a2√
a1

sin θ
−→
e2

′

−→
h2 = −

√
a1√
a2

sin θ
−→
e1

′ + cos θ
−→
e2

′
(3)

and

−−→
O

′
B =

−→
b
′ = b1

′−→
h1 + b2

′−→
h2 (4)

Here θ′ is elliptical rotation angle and
−−→
O′B represents the vector from the origin of the fixed coordinate system to the origin of moving relative

coordinate system.
Taking the differentials of the equations (1) and (2) and rearranging for the motion of E1/E, we obtain

d
−→
h1 =

√
a2√
a1

dθ
−→
h2

d
−→
h2 = −

√
a1√
a2

dθ
−→
h1

d
−→
b =

(

db1 −
√
a1√
a2

b2 dθ
)−→
h1 +

(

db2 +
√
a2√
a1

b1dθ
)−→
h2.

Similarly, taking the differentials of the equations (3), (4) and rearranging for the motion of E1/E
′, we find
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d′
−→
h1 =

√
a2√
a1

dθ′
−→
h2

d′
−→
h2 = −

√
a1√
a2

dθ′
−→
h1

d′
−→
b =

(

db1
′ −

√
a1√
a2

b2
′dθ′

)−→
h1 +

(

db2
′ +

√
a2√
a1

b1
′dθ′

)−→
h2.

For the sake of shortness let us use

λ = dθ, σ1 = db1 −
√
a1√
a2

b2 dθ, σ2 = db2 +
√
a2√
a1

b1dθ

λ′ = dθ′, σ1
′ = db1

′ −
√
a1√
a2

b2
′dθ′, σ2

′ = db2
′ +

√
a2√
a1

b1
′dθ′

The derivative equations of the motion E1/E become

d
−→
h1 =

√
a2√
a1

λ
−→
h2

d
−→
h2 = −

√
a1√
a2

λ
−→
h1

d
−→
b = σ1

−→
h1 + σ2

−→
h2.

Similarly, the derivative equations of the motion E1/E
′ become

d′
−→
h1 =

√
a2√
a1

λ′
−→
h2

d′
−→
h2 = −

√
a1√
a2

λ′
−→
h1

d′
−→
b = σ1

′−→h1 + σ2
′−→h2.

Here σ1, σ2, σ1
′, σ2

′ are Pfaffian forms of the motion.
Let we us a point X = (x1, x2) according to the relative moving coordinate system to analyze the elliptical motions on the elliptical plane.
Since the vector equations

−−→
OB =

−→
b = b1

−→
h1 + b2

−→
h2−−→

BX =
−→̃
x = x1

−→
h1 + x2

−→
h2

and −−→
OX =

−−→
OB +

−−→
BX

can be written as above, we have
−→x = (b1 + x1)

−→
h1 + (b2 + x2)

−→
h2.

So differential of X with respect to E is

−−→
OB =

−→
b = b1

−→
h1 + b2

−→
h2 (5)

Therefore the relative velocity vector of X with respect to E is

−→
Vr =

d−→x
dt

.

and also differential of X with respect to E′ is

d
′−→x =

(

dx1 + σ1
′ −

√
a1√
a2

x2 λ
′
)−→
h1 +

(

dx2 + σ2
′ +

√
a2√
a1

x1 λ
′
)−→
h2. (6)

Thus, the absolute velocity vector of X with respect to E′ is

−→
Va =

d′−→x
dt

.

If
−→
Vr = 0 or

−→
Va = 0 then the point X is fixed in the planes E and E′, respectively. Thus, the conditions that the points to be fixed in elliptical

planes E and E′ become

dx1 = −σ1 +

√
a1√
a2

x2 λ, dx2 = −σ2 −
√
a2√
a1

x1 λ (7)

and

dx1 = −σ1
′ +

√
a1√
a2

x2 λ
′
, dx2 = −σ2

′ −
√
a2√
a1

x1 λ
′
.
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respectively. Substituting equation (7) into equation (6) and considering that the sliding velocity of the point X is
−→
Vf =

df
−→x

dt
, we have

df
−→x =

[

(

σ1
′ − σ1

)

− x2

√
a1√
a2

(

λ
′ − λ

)

]−→
h1 +

[

(

σ2
′ − σ2

)

+ x1

√
a2√
a1

(

λ
′ − λ

)

]−→
h2. (8)

Thus, the following theorem can be given.

Theorem 1. Let X be a moving point on the plane E1 and
−→
Vr,

−→
Va,

−→
Vf be the relative, absolute and sliding velocities of X under the

one-parameter planar motions, respectively. Then, the relation between the velocities is given as below:

−→
Va =

−→
Vr +

−→
Vf .

Proof: The proof can be easily seen by considering the equations (5), (6) and (8). �

Result 1. In the case of a1 = 1, a2 = 1, the relative, absolute and sliding velocities are found as

d~x = (dx1 + σ1 − x2λ)
−→
h1 + (dx2 + σ2 + x1λ)

−→
h2

d′−→x =
(

x1 + dx1 + σ1
′ − x2 λ

′)−→h1 +
(

x2 + dx2 + σ2
′ + x1 λ′

)−→
h2

df
−→x =

[(

σ1
′ − σ1

)

− x2
(

λ′ − λ
)]−→

h1 +
[(

σ2
′ − σ2

)

+ x1
(

λ′ − λ
)]−→

h2

respectively [1].

Theorem 2. The pole point P of the one parameter elliptical planar motion E
/

E′ is obtained by

p1 = −
√
a1√
a2

.

(

σ2
′ − σ2

)

(λ′ − λ)
, p2 =

√
a2√
a1

·
(

σ1
′ − σ1

)

(λ′ − λ)

where
−−→
BP = −→p = p1

−→
h1 + p2

−→
h2.

Proof: In a one parameter elliptical motion, pole points of the motion are characterized for cases that the sliding velocity vector becomes zero.
Namely, df

−→x = 0. It will be taken into account θ 6= 0 and θ′ 6= 0 in order to avoid the pure rotation motion. Then, considering that the equality
of (8) equals zero

[

(

σ1
′ − σ1

)

− x2

√
a1√
a2

(

λ
′ − λ

)

]−→
h1 +

[

(

σ2
′ − σ2

)

+ x1

√
a2√
a1

(

λ
′ − λ

)

]−→
h2 = 0

is found. From this last equation, coordinates of the pole point P for the one parameter elliptical motion E
/

E′ are obtained by

x1 = p1 = −
√
a1√
a2

.
(σ2

′−σ2)
(λ′−λ)

,

x2 = p2 =
√
a2√
a1

· (σ1
′−σ1)

(λ′−λ)
.

�

Result 2. In the case of a1 = 1, a2 = 1, pole points of the one parameter elliptical planar motion E
/

E′ correspond to pole points of the one
parameter planar motion on the Euclidean plane [1].
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1 Introduction

In mathematics, the Fibonacci numbers are the numbers in the following integer sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

The sequence (fn) of Fibonacci numbers is given by the linear recurrence relations

f0 = 0, f1 = 1 and fn = fn−1 + fn−2, n ≥ 2.

This sequence has many interesting properties and applications in arts, sciences and architecture. For example, the ratio sequence of
Fibonacci numbers converges to the golden ratio which is important in sciences and arts.

Similar to the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a
Fibonacci integer sequence. The first two Lucas numbers are L0 = 2 and L1 = 1 as opposed to the first two Fibonacci numbers f0 = 0 and
f1 = 1. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties. The Lucas numbers may thus be defined
as follows:

Ln =






2 , n = 0,
1 , n = 1,
Ln−1 + Ln−2 , n > 1.

The sequence of Lucas number is:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ....

The ratio of the successive both Fibonacci and Lucas numbers is as known golden ratio. There are many applications of golden ratio in many
places of mathematics and physics, in general theory of high energy particle theory [1]. Also, some basic properties of Lucas numbers [1] are
given as follows:

Ln =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

(Binet’s formula for Lucas numbers)

L
2
n − Ln−1Ln+1 = 5(−1)n and

n∑

k=1

L
2
k = LnLn+1 − 2 (Additional identities)

lim
n→∞

Ln

Ln−1
=

1 +
√
5

2
= ϕ (Golden ratio)
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Lucas numbers was first used by Karakaş and Karabudak [2] in the theory of summability. Let Ln be the nth Lucas number for every n ∈ N.

Then, the infinite Lucas matrix L̂ = (L̂nk) is defined by

L̂nk =






L2
k−1

Ln · Ln−1 + 2
, 1 ≤ k ≤ n,

0 , k > n

where n, k ∈ N [2]. Recently, a lot of papers have been studying by many researchers on Lucas and Fibonacci sequences. For instance, see
[3–12].

Assume here and after that (pk) be a bounded sequences of strictly positive real numbers with sup pk = H and L = max{1, H} and by F
and Nk, we shall denote the collection of all finite subsets of N and the set of all n ∈ N such that n ≥ k, respectively. Then, the paranormed
sequence spaces ℓ∞(p), c(p), c0(p) and ℓ(p) were defined by Maddox [13] (see also Maddox [14] and Nakano [15]) as follows:

ℓ∞(p) = {x = (xk) ∈ w : sup
k∈N

|xk|pk < ∞},

c(p) = {x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some l ∈ R},

c0(p) = {x = (xk) ∈ w : lim
k→∞

|xk|pk = 0},

ℓ(p) =

{

x = (xk) ∈ w :
∑

k

|xk|pk < ∞
}

,

which are the complete spaces paranormed by

g1(x) = sup
k∈N

|xk|pk/L ⇐⇒ inf pk > 0 and g2(x) =

(
∑

k

|xk|pk

)1/L

,

respectively. We shall assume throughout that p−1
k + (p

′

k)
−1 = 1 provided 1 < inf pk < H < ∞.

It is well known that paranormed spaces have more general properties than normed spaces. Recently, there have been many studies on both
normed and paranormed sequence spaces. The reader can look at the articles on this subject [16–20, 22–32].

In this work, we generalize the normed sequence spaces defined by Karakaş and Karabudak [2] to paranormed spaces. Let µ denote any of

the spaces c0, c, ℓ∞ and ℓp. We prove that µ(L̂, p) is linearly paranorm isomorphic to µ(p) and determine the α−, β− and γ−duals of the

µ(L̂, p). Furthermore, Lucas core of a complex-valued sequence has been introduced, and we prove some inclusion theorems related to this
new type of core.

2 The Paranormed Sequence Spaces c0(L̂, p), c(L̂, p), ℓ∞(L̂, p) and ℓ(L̂, p)

In this section, we define the new sequence spaces c0(L̂, p), c(L̂, p), ℓ∞(L̂, p) and ℓ(L̂, p) by using the sequences of Lucas numbers, and
prove that these sequence spaces are the complete paranormed linear metric spaces and compute their α−, β− and γ− duals.

We define the sequence spaces c0(L̂, p), c(L̂, p), ℓ∞(L̂, p) and ℓ(L̂, p) by

c0(L̂, p) =

{

x = (xk) ∈ w : lim
n→∞

∣∣∣∣
1

LnLn+1 + 2

n∑

i=1

L
2
i−1xi

∣∣∣∣
pn

= 0

}

,

c(L̂, p) =

{

x = (xk) ∈ w : ∃l ∈ C ∋ lim
n→∞

∣∣∣∣
1

LnLn+1 + 2

n∑

i=1

L
2
i−1xi − l

∣∣∣∣
pn

= 0

}

,

ℓ∞(L̂, p) =

{

x = (xk) ∈ w : sup
n∈N

∣∣∣∣
1

LnLn+1 + 2

n∑

i=1

L
2
i−1xi

∣∣∣∣
pn

< ∞
}

,

ℓ(L̂, p) =

{

x = (xk) ∈ w :
∑

n

∣∣∣∣
1

LnLn+1 + 2

n∑

i=1

L
2
i−1xi

∣∣∣∣
pn

< ∞
}

.

In the case (pn) = e = (1, 1, 1, ...), the sequence spaces c0(L̂, p), c(L̂, p), ℓ∞(L̂, p) and ℓ(L̂, p) are, respectively, reduced to the sequence

spaces c0(L̂), c(L̂), ℓ∞(L̂) and ℓ(L̂) which are introduced by Karakaş and Karabudak [2].

Define the sequence y = (yk), which will be frequently used as the L̂−transform of a sequence x = (xk), i.e.,

yk = L̂k(x) =
1

Lk.Lk−1 + 2

k∑

i=1

L
2
i−1.xi ; (k ∈ N0).

Theorem 1. The following statements hold:
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(i) The sequence spaces c0(L̂, p), c(L̂, p) and ℓ∞(L̂, p) are the complete linear metric spaces paranormed by g, defined by

g(x) = sup
k∈N

∣∣∣∣
1

Lk.Lk−1 + 2

k∑

i=1

L
2
i−1.xi

∣∣∣∣
pk/L

.

(ii) ℓ(L̂, p) is a complete linear metric space paranormed by

g
∗(x) =

(∑

k

∣∣∣∣
1

Lk.Lk−1 + 2

k∑

i=1

L
2
i−1.xi

∣∣∣∣
pk
)1/L

.

Therefore, one can easily check that the absolute property does not hold on the spaces c0(L̂, p), c(L̂, p) , ℓ∞(L̂, p) and ℓ(L̂, p) that is

h(x) 6= h(|x|) for at least one sequence in those spaces, and this says that c0(L̂, p), c(L̂, p), ℓ∞(L̂, p) and ℓ(L̂, p) are the sequence spaces of
non-absolute type; where |x| = (|xk|).

Theorem 2. The sequence spaces c0(L̂, p), c(L̂, p) ,ℓ∞(L̂, p) and ℓ(L̂, p) are linearly isomorphic to the spaces c0(p), c(p), ℓ∞(p) and ℓ(p),
respectively, where 0 < pk ≤ H < ∞.

Theorem 3. The matrix D = (dnk) is defined by

dnk =






∆̃

[
ak

L2
k−1

]

(LkLk−1 + 2) , (0 ≤ k ≤ n− 1)

LnLn−1 + 2

L2
n−1

an , (k = n)

0 , (k > n)

for all k, n ∈ N and M ∈ N2. Let K∗ = {k ∈ N : 0 ≤ k ≤ n} ∩K for K ∈ F and M ∈ N2. Define the sets L̂6(p), L̂7, L̂8(p), L̂9, L̂10(p),
L̂11(p), L̂12(p), L̂13(p) as follows:

L̂6(p) =
⋃

M>1

{

a = (ak) ∈ w : sup
n∈N

n∑

k=0

|dnk|M−1/pk < ∞
}

,

L̂7 =
{
a = (ak) ∈ w : lim

n→∞
|dnk| exists for each k ∈ N

}
,

L̂8(p) =
⋃

M>1

{

a = (ak) ∈ w : ∃(αk) ∈ R ∋ sup
n∈N

n∑

k=0

|dnk − αk|M−1/pk < ∞
}

,

L̂9 =

{

a = (ak) ∈ w : ∃α ∈ R ∋ lim
n→∞

∣∣∣∣∣

n∑

k=0

dnk − α

∣∣∣∣∣ = 0

}

,

L̂10(p) =
⋂

M>1

{

a = (ak) ∈ w : sup
n∈N

n∑

k=0

|dnk|M−1/pk < ∞
}

,

L̂11(p) =
⋂

M>1

{

a = (ak) ∈ w : ∃(αk) ∈ R ∋ lim
n→∞

n∑

k=0

|dnk − αk|M1/pk = 0

}

,

L̂12(p) =
⋃

M>1

{
a = (ak) ∈ w : sup

n
sup

k∈K∗

|dnkM−1|pk < ∞
}
,

L̂13(p) =
⋃

M>1




a = (ak) ∈ w : sup
n

∑

k∈K∗

|dnkM−1|p
′

k < ∞




 .

Then,

(i) {c0(L̂, p)}β = L̂6(p) ∩ L̂7 ∩ L̂8(p),

(ii) {c(L̂, p}β = {c0(L̂, p)}β ∩ L̂9,

(iii) {ℓ∞(L̂, p)}β = L̂10(p) ∩ L̂11(p),

(iv) {ℓ(L̂, p)}β = L̂12(p) ∩ L̂13(p).
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3 Lucas Core

Following Knopp, a core theorem is characterized a class of matrices for which the core of the transformed sequence is included by the core of
the original sequence. For example Knopp Core Theorem [[33], p.138] states that K − core(Ax) ⊆ K − core(x) for all real valued sequences
x whenever A is a positive matrix in the class (c : c)reg .

Now, let us write

yn(x) = L̂n(x) =
1

LnLn−1 + 2

n∑

k=1

L
2
k−1xk; (k ∈ N0).

Then we can define L̂− core of a complex sequence as follows:

Let Hn be the least closed convex hull containing yn(x), yn+1(x), , . . .. Then, L̂− core of x is the intersection of all Hn, i.e.,

L̂− core(x) =

∞⋂

n=1

Hn.

Now, we may give some inclusion theorems. For brevity, in what follows we write ẽnk in place of

1

LnLn−1 + 2

n∑

k=1

L
2
k−1xk.

Theorem 4. Let B ∈ (c : c(L̂))reg . Then, L̂− core(Bx) ⊆ K − core(x) for all x ∈ ℓ∞ if and only if

lim
n

∑

k

|ẽnk| = 1. (1)

Theorem 5. Let B ∈ (st ∩ ℓ∞ : c(L̂))reg . Then, L̂− core(Bx) ⊆ st− core(x) for all x ∈ ℓ∞ if and only if (1) holds.
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[20] M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2(2) (2011), 116-131.

[21] H. Bilgin Ellidokuzog̃lu, S. Demiriz, A. Köseog̃lu, On the paranormed binomial sequence spaces, Univers. J. Math. Appl., 1(3) (2018), 137-147.

[22] M. Candan, Some new sequence spaces defined by a modulus function and an infinite matrix in a seminormed space, J. Math. Anal., 3(2) (2012), 1-9.

[23] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 2012 (2012), 15 pages, doi.org/10.1186/1029-242X-2012-281.

[24] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2) (2014), 354-366.

[25] M. Candan, A new sequence space isomorphic to the space ℓ(p) and compact operators, J. Math. Comput. Sci., 4(2) (2014), 306-334.

[26] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Edu., 2014 (2014), 18 pages, doi.org/10.1186/1687-

1847-2014-163.
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1 Introduction and Preliminaries

The well-known concept of the real quaternion was first introduced by Hamilton in 1843 [1]. It has four components, i.e.

q = qr + qii+ qjj + qkk

where qr, qi, qj , qk ∈ R and i, j and k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, ik = −ki = −j, jk = −kj = i.

The real quaternion algebra plays an important role in matrix analysis, quantum physics, kinematics, differential geometry, game development,
image and signal processing etc. Thus, there are number of studies associated with real quaternions [2, 3]. Since the multiplication of real
quaternions is non-commutative, all results about the complex numbers cannot be generalized in real quaternions. This problem restricts the
applications of real quaternions. In addition, this can increase the complexity of many processes.

The concept of commutative quaternions was first introduced by Schütte and Wenzel [4]. The major difference between commutative quater-
nions and real quaternions is commutativeness of the multiplication, which are commutative for commutative quaternions. There are many
studies on commutative quaternions in literature. Catoni et al. studied the functions of commutative quaternions variable and obtained general-
ized Cauchy-Riemann conditions [5]. Pei et. al introduced digital signal and image processing using commutative quaternions. For color image
processing, they defined a simplified polar form of commutative quaternions to represent the color image and showed that this representation is
useful to process color images in the brightness-hue-saturation color space [4]. In [6], Isokawa et al. investigated two types of multistate Hop-
field neural networks based on commutative quaternions. Moreover, Kosal and Tosun investigated some algebraic properties of commutative
quaternion matrices by means of complex representation of commutative quaternion matrices [7]. In [8], Kosal et al. constructed some explicit
expression of the solution of the Kalman-Yakubovich-conjugate commutative quaternion matrix equations, by means of real representation of
a commutative quaternion matrices. In [9], Kosal and Tosun studied some equivalence relations and related to results over the commutative
quaternions and their matrices. In this sense, they defined consimilarity, semisimilarity and consemisimilarity over the commutative quaternions
algebra and their matrix algebra and determined the equalities of these equivalence relations. In [10], Kosal and Tosun established universal
similarity factorization equalities over the commutative quaternions and their matrices. Based on these equalities, real matrix representations of
commutative quaternions and their matrices have been derived, and their algebraic properties and fundamental equations have been determined.

In this study, the existence of solution to the elliptic quaternion matrix equations AX = B is characterized and solutions of this matrix equation
are derived by means of real representations. Elliptic quaternions are generalized form of commutative quaternions and so complex numbers
[5]. Thus, the obtained results extend, generalize and complement some known commutative quaternions matrices and complex matrices results
from the literature.

A set of elliptic quaternions is denoted by [5]

Hp = {a = a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R, i, j, k /∈ R}

where

i2 = k2 = α, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = αj, α < 0.

There are three types of conjugate of a = a0 + a1i+ a2j + a3k ∈ Hp. They are
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1ā = a0 − a1i+ a2j − a3k,

2ā = a0 + a1i− a2j − a3k,

3ā = a0 − a1i− a2j + a3k

.

and norm of a is defined

‖a‖ = 4
√

|a (1ā) (2ā) (3ā)|

= 4

√

[

(a0 + a2)
2 − α(a1 + a3)

2
] [

(a0 − a2)
2 − α(a1 − a3)

2
]

.

Addition, multiplication and scalar multiplication of the elliptic quaternions a = a0 + a1i+ a2j + a3k, b = b0 + b1i+ b2j + b3k ∈ Hp and
λ ∈ R are defined by

a+ b = (a0 + b0) + (a1 + b1) i+ (a2 + b2) j + (a3 + b3) k,

pq = (a0b0 + αa1b1 + a2b2 + αa3b3) + (a1b0 + a0b1 + a3b2 + a2b3) i
+ (a0b2 + a2b0 + αa1b3 + αa3b1) j + (a3b0 + a0b3 + a1b2 + a2b1) k,

and

λa = λ (a0 + a1i+ a2j + a3k) = λa0 + λa1i+ λa2j + λa3k

respectively.
If a = a0 + a1i+ a2j + a3k ∈ Hp and ‖a‖ 6= 0 then a has multiplicative inverses. Multiplicative inverse of a is given by

a−1 =

(

1ā
)(

2ā
)(

3ā
)

‖a‖4
.

2 Elliptic Quaternion Matrices

The set of Hm×n
p denotes all m× n type matrices with elliptic quaternion entries. For A =

(

aij
)

, B =
(

bij
)

∈ Hm×n
p , C =

(

cjk
)

∈

Hn×l
p and λ ∈ R, the ordinary matrix addition, scalar multiplication and multiplication are defined by

A+B =
(

aij
)

+
(

bij
)

=
(

aij + bij
)

∈ Hm×n
p ,

λA = λ
(

aij
)

=
(

λaij
)

∈ Hm×n
p

and

AC =





n
∑

j=1

aijcjk



 ∈ Hm×l
p

respectively.
There are three types’ of conjugate of A =

(

aij
)

∈ Hm×n
p . They are

1Ā =
(

1aij

)

∈ Hm×n
p , 2Ā =

(

2aij

)

∈ Hm×n
p and 3Ā =

(

3aij

)

∈ Hm×n
p .

A matrix AT ∈ Hn×m
p is transpose of A ∈ Hm×n

p . Also A∗s =
(

sA
)T

∈ Hm×n
p , s = 1, 2, 3, is called conjugate transpose according to

the sth conjugate of A ∈ Hm×n
p .

Theorem 1. Let A and B be elliptic quaternion matrices of appropriate sizes. Then followings are satisfied:

1.
(

sĀ
)T

=s
(

AT
)

,
2. (AB)∗s = B∗sA∗s ,

3. (AB)T = BTAT ,
4. s(AB) =

(

sĀ
) (

sB̄
)

,

5. If A−1 and B−1 exist then (AB)−1 = B−1A−1 ,

6. If A−1 exists (A∗s)
−1

=
(

A−1

)

∗s

,

7.
(

sĀ
)

−1
=s(A−1).

This theorem can also be easily proved by direct calculation.
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3 Real Representation of Elliptic Quaternion Matrices

Let A = A0 +A1i+A2j +A3k ∈ Hm×n
p where A0, A1, A2, A3 ∈ Rm×n. For X ∈ Hn×n

p , we will define the linear transformations

ηA (X) = AX.

Then, we get real representations of elliptic quaternion matrix A = A0 +A1i+A2j +A3k ∈ Hm×n
p

ηp (A) =







A0 αA1 A2 αA3

A1 A0 A3 A2

A2 αA3 A0 αA1

A3 A2 A1 A0






∈ R4m×4n.

Theorem 2. Let A, B ∈ Hm×n
p , C ∈ Hn×p

p and λ ∈ R. Then following identities are satisfied:

1. A = B ⇔ ηp (A) = ηp (B), ηp (A+B) = ηp (A) + ηp (B),
2. ηp (AC) = ηp (A) ηp (C), ηp (λA) = ηp (Aλ) = ληp (A),
3. A = 1

2−2αE4mηp (A)E∗1

4n where E4t =
(

It iIt jIt kIt
)

∈ Ht×4t,

4. If A is a nonsingular matrix of size m then

ηp
(

A−1
)

= η−1
p (A) , A−1 =

1

2− 2α
E4mη−1

p (A)E∗1

4m,

5. ηp (A) = R−1

4mηp (A)R4n, ηp (A) = S−1

4mηp (A)S4n and ηp (A) = T−1

4mηp (A)T4n where

Q4t =







0 αIt 0 0
It 0 0 0
0 0 0 αIt
0 0 It 0






, S4t =







0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0






, T4t =







0 0 0 αIt
0 0 It 0
0 αIt 0 0
It 0 0 0






.

4 On Solutions to the Elliptic Quaternion Matrix Equation AX = B

Now, we consider the solution of the

AX = B (1)

by means of the real representation, where A ∈ Hm×n
p , B ∈ Hm×p

p . We define the real representation of the matrix equation (1) by

ηp (A)Y = ηp (B) . (2)

Proposition 1. The equation (1) has a solution X if and only if the equation (2) has a solution Y = ηp (X).

Theorem 3. The equation (2) has a solution Y ∈ R4n×4p if and only if the equation (1) has a solution X ∈ Hn×p
p . In that case, if Y ∈

R4n×4p is a solution of (2), then the matrix

X =
1

8− 8α
(Im iIm jIm kIm)

(

Y +Q−1

4mY Q4p + S−1

4mY S4p + T−1

4mY T4p

)







Ip
−iIp
jIp
−kIp






(3)

is a solution of (1).

Proof:
We show that if the real matrix

Y =







Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44






, Yuv ∈ Rn×p, u, v = 1, 2, 3, 4 (4)

is a solution to (2), then the matrix given in (3) is a solution to (1). Since Q−1
m Y Qn = Y, R−1

m Y Rn = Y, S−1
m Y Sn = Y, we have

ηp (A)Q−1

4mY Q4p = ηp (B) , ηp (A)R−1

4mY R4p = ηp (B) , ηp (A)S−1

4mY S4p = ηp (B) .

This equation shows that if Y is a solution to (2), then Q−1

4mY Q4p, R−1

4mY R4p and S−1

4mY S4p are also solutions to (2). Thus the following
real matrix:

Y ′ =
1

4

(

Y +Q−1

4mY Q4p +R−1

4mY R4p + S−1

4mY S4p

)

(5)

is a solution to (2). Now substituting (4) in (5) and the simplifying the expression, we easily get
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Y ′ =







Z0 αZ1 Z2 αZ3

Z1 Z0 Z3 Z2

Z2 αZ3 Z0 αZ1

Z3 Z2 Z1 Z0






,

where

Z0 = 1

4
(Y11 + Y22 + Y33 + Y44) , Z1 = 1

4

(

Y12

α + Y21 + Y34

α + Y43

)

,

Z2 = 1

4
(Y13 + Y24 + Y31 + Y42) , Z3 = 1

4

(

Y14

α + Y23 + Y32

α + Y41

)

.

Thus we obtain

X = Z1 + Z2i+ Z3j + Z4k =
1

8− 8α
(Im iIm jIm kIm)

(

Y +Q−1

4mY Q4p + S−1

4mY S4p + T−1

4mY T4p

)







Ip
−iIp
jIp
−kIp






.

�

5 Numerical Algorithms

Based on the discussions in the previous section, in this section we provide numerical algorithms for solving elliptic quaternion matrix equation
AX = B.

1. Input A0, A1, A2, A3 and B0, B1, B2, B3.
2. Form ηp (A) and ηp (B).

3. Compute Y and Y ′ = 1

4

(

Y +Q−1

4mY Q4p +R−1

4mY R4p + S−1

4mY S4p

)

.

4. Calculate

X =
1

8− 8α
(Im iIm jIm kIm)

(

Y +Q−1

4mY Q4p + S−1

4mY S4p + T−1

4mY T4p

)







Ip
−iIp
jIp
−kIp






.

6 Numerical Examples

Let us for solve the elliptic quaternion matrix equation

(

1 1 + i
j k

)

X =

(

1 + 2i+ j 2 + j + k
−1 + j + 2k − 1 + i+ 2j

)

.

Under consideration of the Theorem 3, real representation of given matrix equation is





















1 1 0 α 0 0 0 0
0 0 0 0 1 0 0 α
0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 α
1 0 0 α 0 0 0 0
0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0





















Y =





















1 2 2α 0 1 1 0 α
−1 −1 0 α 1 2 2α 0
2 0 1 2 0 1 1 1
0 1 −1 −1 2 0 1 2
1 1 0 α 1 2 2α 0
1 2 2α 0 −1 −1 0 α
0 1 1 1 2 0 1 2
2 0 1 2 0 1 −1 −1





















If we solve this equation, we have

Y =





















1 2 2α 0 −1 −1 −2α −α
0 0 0 0 2 2 0 0
2 0 1 2 −2 −1 −1 −1
0 0 0 0 0 0 2 2
−1 −1 −2α −α 1 2 2α 0
2 2 0 0 0 0 0 0
−2 −1 −1 −1 2 0 1 2
0 0 2 2 0 0 0 0





















.

Finally, we obtain

X = 1

8−8α (Im iIm jIm kIm)
(

Y +Q−1

4mY Q4p + S−1

4mY S4p + T−1

4mY T4p

)







Ip
−iIp
jIp
−kIp







=

(

1 + 2i− j − 2k 2− j − k
2j 2j

)

.
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Abstract: In this study, we evaluate the relationship between anxiety and success regarding math classes by measuring, through

Mathematics Anxiety Scale, the anxiety levels of first, second, and third grade public high schoolers for math classes. This study

has been applied to the students of 9-A, 10-B, 11-A classes in the 75th Year Anatolian High School and the students of FL9-C,

FL10-F, FL11-A classes in the Ayseabla College Science High School. During the collection of data, the scale that has been used

to measure the anxiety of students is Erol’s "Mathematics Anxiety Scale", [1]. The collected data has been inspected by t-testing,

analysis of variance and especially correlation analysis. The purpose of the analysis is a contrast and comparison of the math

anxiety and the success of the students based on their grade levels. The sample of the research consists of 30 female and 33 male

students of 9-C, 10-F, 11-A classes in 75th Year Anatolian High School and 31 female and 27 male students of FL-9A, FL-10B,

FL-11A in Ayseabla College Science High School. As a consequence, the sample consists of 121 students. The Math Anxiety

Scale has been implemented to 121 of these students. The Math Anxiety scale, which has been implemented during this study,

has a Cronbach Alpha coefficient of 0.91, [2]. The scale consists of 4 questions; each question has 4 Likert type answers. The

highest attainable score is 180 whereas the lowest attainable score is 45. According to this standard, the scores between 45-68 is

considered to be low, 69-109 is normal, 109-128 is anxious, and 129-180 is very anxious [3]. The results of this study show that

there is not a noticeable difference between the grade type and the anxiety levels. However, a correlation has been discovered

between the anxiety levels and success rates of the students in general. Consequently, as a result of the conclusions that have

been reached through the evaluation of this correlation, certain proposals have been developed.

Keywords: Math anxiety scale, Interest in Math.

1 Introduction

In the realization of learning, besides individual characteristics such as age, intelligence, motivation, past experiences, internal communication,
the state of anxiety is one of the most important factors affecting learning. Learner [4] concluded that, as a result of his research on mathematics,
the fear and anxiety of mathematics makes the child think clearly, make an organization among the information and make relationships difficult
and hamper. The state of anxiety at the intellectual, behavioral and physiological levels will decrease the attention of the students on the course
and this will make learning difficult. In order for learning to take place, a permanent and effective communication between the billions of cells
in the brain is needed. Anxiety prevents the establishment of this communication within the brain and adversely affects the mental activities
of reasoning and abstract thinking. Anxiety level may affect the concentration and interest of the student who is constantly working in the
classroom because of the fear of being successful in the exam and cannot provide the concentration of the student who is tired of studying,
and cannot spend the duration of the study effectively [5]. Thus, various sizes of anxiety; future concerns, reading anxiety, test anxiety, math
anxiety, and so on occurs. Mathematics Anxiety, the main theme of this study, is an important sensory factor that affects students negatively and
causes negative attitudes towards mathematics [6]. Attitude refers to a person’s positive or negative feelings about showing certain behavior.
According to Tavşancıl [7], the tendency to react positively or negatively on learned against certain objects, situations, institutions, concepts
or other people is called attitude. The information learned on any subject, even if they have fallen over time, is easily unforgettable [8].
Cognitive factors causing math anxiety through affective factors are related to lack of knowledge of teachers and authoritarian instructors, lack
of mathematical background of students, necessity of memorizing of formulas, the prevalence of non-real-life problem applications, strict,
difficult and time-bound examinations of concrete materials mathematics, normative books and the difficulty of some subjects [9]. Affective
factors are related to personality types, mathematics avoidance, negative attitudes towards mathematics, lack of trust, level of mathematics
achievement, negative school experiences, gender bias, family and teacher behaviors [10].

Mathematics-related researches have also shown that people are associated with negative experiences and training experienced in educational
life. Teachers’ negative attitudes and unrealistic lesson practices, time-limited mathematics testing, fear of doing something wrong in the
classroom, asking teachers something, inadequate group work and the chance to work, material and manipulation can be important reasons for
increasing math anxiety.

The methods used in mathematics education and the structure of mathematical concepts can be defined as situational reasons. Important
reasons for creating mathematics anxiety are the teaching strategies used by mathematics teachers and teachers [11]. The behaviors of an
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authoritarian mathematics teacher may have negative effects such as failure, inadequacy and inadequate feeling on the students [12]. Math-
ematical concepts that have no connection in real life and therefore abstract content can increase anxiety [11]. The negative effects of math
anxiety on mathematics learning may cause the individual to fail to escape mathematics naturally [13], [14]. While the negative effects of math
anxiety on mathematics learning are so important, it is possible to cope with math anxiety by knowing and eliminating the causes. In this study,
the differences and relation between Mathematical Anxiety Levels and Mathematics Achievements will be evaluated according to the grade
levels of high school students from two different school types.

1.1 Scope and importance of the research

This research aims to determine the anxiety and mathematics achievement levels of high school students who have an important place in the
education system of our country. In order to achieve this basic goal, the following questions are sought:

• What are the math anxiety levels and mathematics achievements of the students in private and public high schools in Turkey?
• Are there any differences between math anxiety levels and mathematics achievement of the students in terms the type of high schools they
are enrolled in Turkey?

This research is important in terms of the effect of factors such as the type of school, gender, which affect the formation of anxiety in
mathematics anxiety and mathematics achievement levels of high school students and thus guidance on reducing or completely eliminating the
anxiety which may negatively affect mathematics achievement.

1.2 Counting and limitations of research

It was accepted that the students studying in the state and private schools participating in the research reflect their true feelings and thoughts
while answering the questions in the measurement tools. This research is limited to data on the 2017-2018 academic year.

2 Method

In this part of the research; research model, sample and data collection tool, and analysis are emphasized.

2.1 Research model

In this study; State Anatolian High School and Private High School1, High SchooL2 and High School3. "Mathematics Anxiety" emotions and
thoughts of the class students have been tried to be measured. In this context, research is a survey model research.

2.2 Data collection tool

In order to determine the anxiety levels of mathematics students of 75th Year Anatolian high school (State Anatolian High School) and Ayseabla
College(Private), who are the sample of the research, Mathematics Anxiety Scale which was developed by Richardson and Suinn (1972) (Scale
named as Math Anxiety Rating Scale-MARS-A) and adapted to Turkish culture by Erol [1], was used. Math anxiety scale which is a 4-item
Likert-type scale of 45 items and the validity and reliability study was conducted, the Cronbach Alpha coefficient was determined as 0.91 for
this study and it was accepted that the scale was reliable [15].

The highest score is 180 and the lowest score is 45. 45-68 Low, 69-108 Normal, 109-128 anxiety, 129-180 High anxiety was determined
according to the scores obtained from this scale [3]. Student success grades; at the end of the semester the teacher was taken. No measurements
have been made.

2.3 Sampling, data collection

A sample of 121 students, of which 58 students in the Ayseabla College and a total of 63 students in the 75th Year Anatolian High School,
were selected. Mathematical Anxiety Scale was applied to the general mathematics course before applying; In the analysis of the data, it was
examined whether the levels of math anxiety and success differed by using frequency distribution and variance analysis. Then the t-test was
used to evaluate the relationship between gender and the difference between anxiety and success.

2.4 Analysis process

The data were entered into the SPSS program and the frequency and percentiles of the question items of the scale were used according to
the school type variable levels, and the variance analysis (ANOVA) was used for the difference between the school type grade level anxiety
scores and the spring year math achievement scores, and the correlation between the math anxiety scores and the math achievement scores were
examined. Then the t-test was used to evaluate the relationship between gender and the difference between anxiety and success.

3 Results and Findings

In this section, the findings and comments are determined in accordance with the purpose of the research. The distribution of the school type,
the grade level and the characteristics of the students are shown in Table 1.
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Table 1 Sampling Characteristics

School 9th grade 10th grade 11th grade
75th Year Anatolian High School 12 Females 10 Females 8 Females

9 Males 12 Males 12 Males
Ayse Abla College 9 Females 12 Females 10 Females

13 Females 5 Females 9 Females

3.1 Differences between school types

75th Year Anatolian High School has been investigated by analyzing the ANOVA test in which the grade level math anxiety scores of high
school students have been differentiated and the results are presented in Table 2. (9A;N=21,Mean=103,1905),(10B;N=22,Mean=95,8182)
((11A;N=20,Mean=90.6500)

Table 2 75th Year Anatolian High School, Class Level Mathematics Anxiety Score ANOVA Analysis Results

ANOVA
Anxiety Score Sum of

Squares
df Mean Square F Sig.

Between Groups 446,685 2 223,343 ,499 ,610
Between Groups 26869,061 60 447,818
Total 27315,746 62

75th Year Anatolian High School 9-C, 10-F, 11-A students’ Anxiety Points in the analysis of the difference between the average; Firstly, the
homogeneity of the variance of the groups was analyzed and the result; Test of Homogeneity of Variances was found to be p > α0, 875 > 0, 05
and variance, homogeneity was observed. The above findings were obtained. According to the findings; 0, 610 > 0.05, p > α, Red hypothesis
(Ho), hypothesis (Ho). In the evaluation, there was no difference between the 75th year Anatolian High School Grade Anxiety Grade scores.
High school students’ private high school Ayseabla College Science High School grade level math anxiety scores were analyzed by ANOVA
test and the results are shown in Table 3. (FL9A;N=21,Mean=81.5714),(FL10A;N=19,Mean=78.1579)
(FL11A;N=18,Mean=65.1111)

Table 3 Ayseabla College Grade Level Math Anxiety Score ANOVA Analysis Results

ANOVA
Anxiety Score Sum of

Squares
df Mean Square F Sig.

Between Groups 1153,947 2 576,974 0,868 ,426
Between Groups 22376,122 56 406,839
Total 23530,069 58

Ayseabla college class levels (Science High School 9-A, Science High School 10-B, Science High School 11-A class) and the Mathematics
Anxiety Score Scale that were obtained according to the results of Mathematics Anxiety Score Scale were used. First of all, the homogeneity
of the variance of the groups was analyzed and the results of the Test of Homogeneity of Variances were found to be p > α 0, 129 > 0, 05, and
when the homogeneity of variance was observed, ANOVA was applied. 0, 426 > 0.05, p > α, Reject Alternate Hypothesis (Ha), Accept Null
hypothesis (Ho). Assessment: There is no statistical difference among Ayseabla College Class Levels Anxiety Points.

3.2 Differences between genders

The t-test results of the 75th year Anatolian High School students’ mathematics anxiety levels were investigated in Table 4.

Table 4 t-Test Results of the Differences between the Gender Groups of the 75th Year Anatolian High School

Math
Anxiety

Gender N Mean Std. Devia-
tion

Std. Error
Mean

t Sig(p)

Females 26 93,2692 15,69855 3,07874 -1,532 0,196
Males 37 100,6216 20,61870 3,38969

According to Table 4, there is no difference between the gender groups in the 75th year Anatolian high school in terms of math anxiety
(0, 196 > 0, 05; p > α).

3.3 t-Test Results of Math Anxiety Differences between Gender Groups

The t-test results of Ayseabla College Science High School students’ mathematics anxiety levels were investigated in Table 5.

Table 5 Ayseabla College t-Test Results Related to Differences between Gender Groups

Gender N Mean Std. Deviation Std. Error Mean t
Math Anxiety Females 29 82,8276 19,72864 3,66352 -2,469

Males 29 96,0000 20,88232 3,87775
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Table 8 Ayseabla College Science High School Mathematics Achievement Turkey (LSD) multiple comparison tests

Multiple Comparisons
Tukey HSD

(I)Grade Level (J)Grade Level Mean Difference(I-J) Std. Error Sig.
95% Confidence Interval
Lower Bound Upper Bound

FL9A
FL10A 3,41353 6,69124 ,867 -12,7040 19,5311
FL11A 16,46032* 6,78812 ,048 ,1094 32,8112

FL10B
FL9A -3,41353 6,69124 ,867 -19,5311 12,7040
FL11A 13,04678 6,95106 ,155 -3,6966 29,7902

FL11A
FL9C -16,46032* 6,78812 ,048 -32,8112 -,1094
FL10F -13,04678 6,95106 ,155 -29,7902 3,6966

*The mean difference is significant at the 0.05 level

According to Table 5, there is no difference in terms of math anxiety among the gender groups of the 75th year Anatolian high schools
(0, 198 > 0, 05; p > α).

3.3 Differences between school type mathematics achievement grade levels

The variance analysis and the levels of the differences in the mathematics achievement level of the students who make up the school type
sample according to the grade level they have studied are also investigated by Turkey (LSD) multiple comparison tests and the results are given.
The Mathematics Achievement Score of 75th Year Anatolian High School students sample was analyzed by ANOVA test, and the results are
presented in Table 6. Student success grades; At the end of the semester the math teacher evaluated. Evaluation was used. No measurements.

Table 6 Results of Analysis of Variance Related to Differences between Mathematics Achievement Points

ANOVA Sum of Squares df Mean Square F Sig.

Between Groups 2642,141 2 1321,071 2,965 ,069
Within Groups 28072,359 3 445,593
Total 30714,500 5

9C, 10F, 11A CLASSES

In the sample, the homogeneity of the variance of the groups was analyzed and the result; Test of Homogeneity of Variances was found to
be p > α 0, 254 > 0, 05 and variance, homogeneity was observed.

The above findings were obtained. According to Table 6, there is no difference in terms of the 75th year Anatolian High School Grade Math
Levels. (0.069 > 0.05 i.e. p > α, Reject Ha, Accept H0.

The mathematics achievement scores of the students in Ayseabla College of Science High School which the grade level achievement scores
were taken from the course lecturer were analyzed through ANOVA test whether the scores were differentiated or not and the results were
presented in Table 7.

Table 7 Results of analysis of variance related to differences between mathematics achievement points.

ANOVA
Sum of Squares df Mean Square

Between Groups 2849,656 2 1424,828
Within Groups 24563,447 55 446,608
Total 27413,103 57

FL 9A, FL 10B, FL 11A CLASSES

In the sample, the homogeneity of the variance of the groups was analyzed and the result; Test of Homogeneity of Variances was found to be
p > α 0, 473 > 0, 05 and variance, homogeneity was observed. The above findings were obtained. According to Table 6, there is a difference
in Ayseabla College Mathematics Achievement Points. (0.049 < 0.05, p < α, Ha Accept, H0 Reject). The levels of the differences were
investigated with the help of Turkey (LSD) multiple comparison test and the results are given in Table ??.

According to Table ??; FL9A-FL11A (p < α, 0, 048 < 0, 05) and FL11A-FL9C (p < α, 0, 048 < 0, 05) There is a difference in success.

3.4 The relationship between math anxiety scores and mathematics achievement at the school level

A relationship between the grade level mathematics anxiety scores and mathematics achievement in both School types is analyzed by Correla-
tion Analysis and explained in Table 9.

According to Table 8, there was no correlation between 75th year Anatolian High School and Ayseabla College Class Levels Mathematics
Anxiety Scores and Mathematics Achievement Score (0, 379 > 0, 05, 0, 375 > 0, 05, 0.86 > 0, 05, 0, 902 > 0, 05, 0, 847 > 0, 05, 0, 243 >
0.05)
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Table 9 School type Math anxiety and mathematics achievement Correlation scores table

75thYear Anatolian High School Ayseabla College

AL9C AL10F AL11A FL9A FL10B FL11B

Per Cor (Rxy) 0,208 -0,210 0,034 -0,028 0,046 0,0281
Sig.(2 Tailed) (p) 0,379 0,375 0,886 0,902 0,847 0,243

0, 379 > 0, 05 0, 375 > 0, 05 0, 886 > 0, 05 0, 902 > 0, 05 0, 847 > 0, 05 0, 243 > 0, 05

3.5 Type of school mathematics anxiety status evaluation table

In the evaluation of the Mathematical Anxiety Scale m, the highest score is 180 and the lowest score is 45. 45-68 Low, 69-108 Normal, 109-128
anxiety, 129-180 High anxiety was determined according to the scores obtained from this scale (Erktin, Donmez, Ozel, 2006). The evaluation
of the school type sample is explained in Table 10.

Table 10 School type Math Anxiety Scale evaluation table

75thYear Anatolian High School Ayseabla College

ANXIETY SITUATION AL9C AL10F AL11A FL9A FL10B FL11B

45-68 Low 1 - 3 2 6 -
69-108 Normal 12 16 14 13 8 18

109-128 With Anxiety 6 6 2 3 3 2
129-180 High Concerned Anxiety 2 - 1 4 - 1

Total 21 22 20 22 17 19

In the descriptive evaluation of the Mathematics Anxiety Scale scores; It is seen that the next grade level in which the anxiety exists in the
first grade level of both school types is decreasing.

4 Conclusion, Discussion

According to the research results; 75th Year Anatolian High School and Ayseabla colleges Science High School Grade High School students
did not differ in terms of math anxiety levels (F (3) = 0, 4999, 0, 610 > 0.05, p > α). There is no statistically significant difference between
the scores of mathematics grades of high school students according to their grade level. So, students’ concerns about mathematics do not change
significantly according to the level of the class they study; normal, 109-128 anxious, 129-180 high concerned; Anxious and High Anxiety Rate:
It is seen in Table 11 that students’ prejudices towards mathematics are broken as the grade level increases, and this result is seen in Table 11.

Table 11 Anxious and High Anxious

75thYear Anatolian High School Ayseabla College

AL9C AL10F AL11A FL9A FL10B FL11B

%38 %27 %15 %31 %18 %5

Another result obtained from the study; the mathematics achievement level of the sample which applied both types of mathematics Mathe-
matical Anxiety Scale was not significant in the 75th Year Anatolian High School while there was a significant difference between the grade
levels of Ayseabla Science High School.

The difference from the FL11A subgroup was verified in the Tukey result. This can be interpreted as the increase in the level of mathematics
achievement as the class level increases In both types of schools, Scale could not be applied because senior students were reported in the prepa-
ration of university exam. It may be thought that the inclusion of this sample will change the outcome of the data. Another finding found in
the study was that there was no statistically significant difference between the levels of anxiety related to mathematics according to the gender
variable (t− 2, 469, 0, 198 > 0, 05, so p > α).

This finding showed that the gender variable had a significant effect on students’ math anxiety. However, the mean score of the female
students about mathematics (= 82.8) was higher than that of male students (= 96). From here, it can be said that male students are slightly
more anxious than female students.

Another finding reached in the study is; Correlation analysis between school type grade level anxiety score and mathematics achievement
was not found to be significant. Correlation analysis rates are; 75thYear Anatolian High School (9C; 0, 379 > 0, 05 −10F ; 0, 375 > 0, 05
−11A; 0.86 > 0, 05), Ayseabla College Science High School (FL9A;, 0, 902 > 0, 05 −FL10B, 0, 847 > 0, 05 −FL11A 0, 243 > 0, 05)
The relationship of anxiety and success is not the case in two school types. This is an important finding for the purpose of the study. In the
frequency analysis of the sample; with a high frequency (Question19; 55%). The most important cause of the students to worry about the
mathematics exams were determined as unannounced. In this case, it is emphasized that the anxiety against the course increases in making an
unannounced examination.

Another question item with high frequency is question 15, its frequency is 80%. In simple mathematical operations, he was asked if he
doesn’t sound like he couldn’t calculate money, for example. This situation can be defined as a lack of self-confidence in the use and imple-
mentation of mathematics in daily life. Another question is; Question12 is the percentage and the frequency percentage is 65%. I’m afraid to
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explain even the problems I can solve. This situation can be defined as lack of self-confidence against mathematics.

4.1 Suggestions

The student fails when he/she is worried, and when he/she fails, the student is afraid of the lesson and the failure is realized. The students
studying in the small class are found to be more anxious than the students in the higher level.

This situation was determined in the research findings that these students may cause a new school, new friends and different teachers to have
a new system in their transition from primary to secondary education and this may cause anxiety.

The best constructive recommendation for this situation; It can be suggested to plan and implement adaptation programs, especially the
9th-grade students, general contents of the courses, the introduction of teachers, the school environment and the school life, the examination
system and reducing anxiety. Orientation programs can be prepared. In addition, as the grade level increases, the increase in mathematics
achievement can be interpreted as the focus on the lessons as a channel to the preparation of the university exam. In item frequency evaluation
of the scale; the most common cause of the students to worry about the mathematics exams were determined unquestionably (Question19;
55%). For this situation that causes the student to be taken into consideration, before the examination of the students’ readiness to take into
account, if necessary, determining the dates of the exam with the students, will be shown to have a positive effect on the reduction of anxiety.
The problem of simple mathematical operations, for example, not to deduct from the money to calculate the top of the sound (Question15;
80%), the suggestion of the student is not kept away from simple mathematical calculations in daily life and the practical calculation of the
acquisition of the family to be sent to shopping, for example.

The percentage frequency of Question 12 in scale is 65%. It is stated that I am afraid to explain even the problems I can solve. For this
situation, the lack of self-esteem for mathematics operations is the fact that it was proposed to be introduced in the previous years in the family
and that it should be started from the pre-school.
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