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Çankaya University,
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Abstract

From elementary exponential functions which depend on several parameters, we construct

multi-parametric solutions to the Boussinesq equation. When we perform a passage to the

limit when one of these parameters goes to 0, we get rational solutions as a quotient of a

polynomial of degree N(N +1)−2 in x and t, by a polynomial of degree N(N +1) in x and

t for each positive integer N depending on 3N real parameters. We restrict ourself to give

the explicit expressions of these rational solutions for N = 1 until N = 3 to shortened the

paper.

We easily deduce the corresponding explicit rational solutions to the Kadomtsev Petviashvili

equation for the same orders from 1 to 3.

1. Introduction

The Boussinesq equation in the following normalization is considered

utt −uxx +(u2)xx +
1

3
uxxxx = 0. (1.1)

The subscripts x and t denote as usual partial derivatives.

This equation (1.1) is an equation solvable [3, 4] by inverse scattering. It was introduced for the first time by Boussinesq [1, 2] in 1871.

This equation appears in a wide range of physical problems dealing with propagation of nonlinear waves; for example, in one-dimensional

nonlinear lattice-waves [5], vibrations in a nonlinear string [6], ion sound waves in a plasma [7],...

The first solutions were constructed by Hirota [8] in 1977 with Bäcklund transformations. Non singular rational solutions were constructed by

Ablowitz and Satsuma by using the Hirota bilinear method [9] in 1978. Freemann and Nimmo [10] gave in 1983 wronskians representations

of the solutions. Other approaches were used; in particular, an algebro-geometrical method was given by Matveev et al. [11] in 1987;

Darboux transformations [12] was used by Matveev; the ∂ dressing method [13] was considered by Bogdanov.

Clarkson obtained solutions in terms of particular polynomials in a series of papers [14, 15] and recently, in 2017 gives new solutions [16] as

second derivatives of polynomials.

Solutions to the Boussinesq equation and the Kadomtsev Petviashvili equation are considered in this paper. We give solutions from

elementary exponential functions depending on several parameters. Then we construct rational solution in performing a passage to the limit

when one of these parameters goes to 0. We obtain rational solutions as a quotient of a polynomial of degree N(N +1)−2 in x and t by a

polynomial of degree N(N +1) in x and t, depending on 2N parameters. We give explicit solutions in the simplest cases where N = 1, 2, 3.

We deduce and give explicit expressions of rational solutions to the Kadomtsev-Petviashvili (KP) equation for the cases of orders from 1 to 3.

Email address and ORCID number: pierre.gaillard@u-bourgogne.fr, https://orcid.org/0000-0002-7073-8284 (P. Gaillard)
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2. Solutions to the Boussinesq equation

2.1. Solutions to the Boussinesq equation in terms of elementary exponentials

We consider the Boussinesq equation

utt −uxx +(u2)xx +
1

3
uxxxx = 0.

We define the following notations.

We consider e, a j, c j, d j, 1 ≤ j ≤ N, arbitrary real numbers, and α j , β j the numbers defined by

α j =
3

2
a je+

1

2

√

1−3a2
j e

2 (2.1)

and

β j =−
3

2
a je+

1

2

√

1−3a2
j e

2
. (2.2)

We consider the following elementary functions

fi j(x, t) = α i−1
j exp(α jx−α2

j t + c je
2N−1)−β i−1

j exp(β jx−β 2
j t +d je

2N−1), (2.3)

for 1 ≤ i ≤ N .

Then, we have the following statement:

Theorem 2.1. The function v defined by

v(x, t) = 2∂ 2
x ln(det( fi j)(i, j)∈[1,N]) (2.4)

is a solution to the Boussinesq equation (1.1) with e, a j, c j and d j, 1 ≤ j ≤ N arbitrarily real parameters.

Proof. The corresponding Lax pair to the Boussinesq equation (1.1) is

{

φxxx +
3

2
uφx −

3

4
φx +uφ = λφ ,

φt =−φxx −uφ .
(2.5)

The compatibility condition of the preceding system can be written as [12]











wx =
3

4
uxx −

3

4
ut ,

wt =
1

4
uxxx +

3

4
(u2)x −

3

4
ux +

3

4
uxt .

(2.6)

The Boussinesq equation is obtained by excluding w from the above equations.

This system is covariant by the Darboux transformation. If φ1, . . . ,φN are solutions of the system (2.6), then φ [N] defined by φ [N] =
W (φ1, . . . ,φN ,φ)

W (φ1, . . . ,φN)
is another solution of this system (2.6) where u is replaced by u[N] = u+2(lnW (φ1, . . . ,φN)xx [12].

We choose u = 0. Then the functions φ j = f1 j verify the following system

{

φxxx −
3

4
φx = λφ ,

φt =−φxx.

(2.7)

Then the solution of (1.1) can be written as v(x, t) = 2(lnW (φ1, . . . ,φN)xxwhich is nothing else that (2.4) v(x, t) = 2∂ 2
x ln(det( fi j)(i, j)∈[1,N]).

2.2. Rational solutions to the Boussinesq equation

To obtain rational solutions to the Boussinesq equation, we are going to perform a limit when the parameter e tends to 0.

2.2.1. Rational solutions as a limit case

We get the following result :

Theorem 2.2. The function v defined by

v(x, t) = lim
e→0

2∂ 2
x ln(det( fi j)(i, j)∈[1,N]) (2.8)

is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters a j , c j and d j , 1 ≤ j ≤ N; the numerator is a polynomial

of degree N(N +1)−2 in x and t, the denominator a polynomial of degree N(N +1) in x and t.

Proof. It is a consequence of the previous result.
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2.2.2. Degenerate rational solutions

A more precise result can be formulated in the following way.

We consider e, a j, c j, d j, 1 ≤ j ≤ N, arbitrary real numbers, and γ j , δ j the numbers defined by

γ j =
3

2

(

N

∑
k=1

ak( je)2k−1

)

+
1

2

√

√

√

√

1−3

(

N

∑
k=1

ak( je)2k−1

)2

,

δ j =−
3

2

(

N

∑
k=1

ak( je)2k−1

)

+
1

2

√

√

√

√

1−3

(

N

∑
k=1

ak( je)2k−1

)2

(2.9)

We consider the following elementary functions

gi j(x, t,e) = γ i−1
j exp

(

γ jx− γ2
j t +

N

∑
k=1

ck( je)2k−1

)

−δ i−1
j exp

(

δ jx−δ 2
j t +

N

∑
k=1

dk( je)2k−1)

)

, (2.10)

ϕi j(x, t) =
∂ jgi1(x, t,0)

∂e j
, for 1 ≤ i ≤ N, 1 ≤ j ≤ N. (2.11)

Then get the following result :

Theorem 2.3. The function v defined by

v(x, t) = 2∂ 2
x ln(det(ϕi j)(i, j)∈[1,N] (2.12)

is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters a j , c j and d j , 1 ≤ j ≤ N; the numerator is a polynomial

of degree N(N +1)−2 in x and t, the denominator a polynomial of degree N(N +1) in x and t.

Proof. In the coefficients α j and β j defined in (2.1,2.2), we replace a j by ∑
N
k=1 ak( je)2k−1, and in the functions fi j defined in (2.3), c j by

∑
N
k=1 ck( je)2k−1 and d j by ∑

N
k=1 dk( je)2k−1; this gives functions gi j defined by (2.10). Then, it is sufficient to combine the columns of the

determinant obtained from this defined by (2.8) by replacing fi j by gi j and to take a passage to the limit when e tends to 0. So we get the

solution v given by (2.12).

So we obtain an infinite hierarchy of rational solutions to the Boussinesq equation depending on the integer N.

In the following we give some examples of rational solutions.

These results are consequences of the previous result (2.12).
But, it is also to possible to prove it directly in replacing the expressions of each of the solutions given in the corresponding equation and

check that the relation is verified.

2.3. First order rational solutions

We have the following result at order N = 1 :

Theorem 2.4. The function v defined by

v(x, t) =
−18a1

2

(−3a1x− c1 +3 ta1 +d1)2
, (2.13)

is a solution to the Boussinesq equation (1.1) with a1, c1, d1 arbitrarily real parameters.

Remark 2.5. If a1 = 0, then the solution is the trivial solution 0.

Remark 2.6. The solution (2.13) can be simplified and be rewritten as a solution depending on one parameter C1.

v(x, t) =
−18

(−3x+3t +C1)2
. (2.14)
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Figure 2.1: Solution of order 1 to (1.1), on the left a1 = 1013, c1 = 1, c1 = 0; on the right a1 = 1, c1 = 102, d1 = 0.

Remark 2.7. The case where a1 = 1, c1 = 0, d1 = 102 gives the same figure as the case a1 = 1, c1 = 102, d1 = 0.

The roles played by the parameters c and d being the same, we only give the figures with parameters d equal to 0.

2.4. Second order rational solutions

Theorem 2.8. The function v defined by

v(x, t) =−2
n(x, t)

d(x, t)2
, (2.15)

with

n(x, t) = 9a1a2(27a1
5a2 +243a2

5a1 −162a2
3a1

3)x4 +9a1a2(−972a2
5ta1 −324a2

5a1 +216a2
3a1

3 +648a2
3a1

3t −36a1
5a2 −108a1

5ta2)x
3

+9a1a2(972a2
5ta1−648a2

3a1
3t−108a2

3a1
3−972a2

3a1
3t2+162a1

5t2a2+162a2
5a1+18a1

5a2+108a1
5ta2+1458a2

5t2a1)x
2+9a1a2(−108a1

5t3a2+

216a2
2c2a1+72d2a1

3−432a2
3a1

3t+648a2
3a1

3t3−24a1
2d1a2+648a2

3a1
3t2+648a2

5ta1−72a1
3c2+72d1a2

3+24a1
2c1a2−972a2

5a1t3−72a2
3c1−

972a2
5t2a1+72a1

5ta2−216a2
2d2a1−108a1

5t2a2)x+9a1a2(24a2
3c1+24a1

3c2+324a2
5a1t3+540a2

3a1
3t2+216a2

3a1
3t−216a2

3a1
3t3+8a1

2d1a2−

90a1
5t2a2−36a1

5ta2+36a1
5t3a2+243 t4a2

5a1−162 t4a2
3a1

3+27a1
5t4a2+72a2

2d2a1−810a2
5t2a1−324a2

5ta1−72 ta2
3d1−72a1

3td2+216 ta2
2d2a1+

24a1
2td1a2 −216 ta2

2c2a1 −24a1
2tc1a2 −24d2a1

3 −24d1a2
3 −8a1

2c1a2 +72 ta2
3c1 +72a1

3tc2 −72a2
2c2a1),

and

d(x, t) = (−9a1
3a2 + 27a1a2

3)x3 + (27 ta1
3a2 − 81 ta1a2

3 + 9a1
3a2 − 27a1a2

3)x2 + (−27 t2a1
3a2 + 81 t2a1a2

3 − 18 ta1
3a2 + 54 ta1a2

3)x + 9 t3a1
3a2 −

27 t3a1a2
3 +9 t2a1

3a2 −27 t2a1a2
3 +18 ta1

3a2 −54 ta1a2
3 −12a1c2 +12a1d2 +4a2c1 −4a2d1,

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 4 in x and t, denominator of

degree 6 in x and t.

Figure 2.2: Solution of order 2 to (1.1); on the left, a1 = 107, a2 = 1, c1 = 1, c2 = 1, d1 = 0, d2 = 0; on the right, a1 = 1, a2 = 107, c1 = 1, c2 = 1, d1 = 0,
d2 = 0.
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Figure 2.3: Solution of order 2 to (1.1); on the left, a1 = 1, a2 = 1, c1 = 107, c2 = 0, d1 = 1, d2 = 1; on the right, a1 = 1, a2 = 1, c1 = 0, c2 = 107, d1 = 0,
d2 = 0.

2.5. Rational solutions of order three

We get the following rational solutions given by :

Theorem 2.9. The function v defined by

v(x, t) =−2
n(x, t)

d(x, t)2
, (2.16)

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 10 in x and t, denominator of

degree 12 in x and t.

Because of the length of the solution, we give it only in the appendix.

Remark 2.10. If c1 = c2 = c3 = d1 = d2 = d3 = 0, then the determinant in the formula (2.12) can be simplified by
(177147

80 a1a2a3
3(−80a4

2 +

360a2
3a2

2 +a4
1 −30a2

3a2
1) and the solution to the Boussinseq equation depends no longer on any parameter.

If one of the parameters a1, a2 or a3 is equal to 0 then the solution of the Boussinesq equation is the trivial solution (equal to 0).

Figure 2.4: Solution of order 3 to (1.1); on the left, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0,c3 = 107, d1 = 0, d2 = 0, d3 = 0; in the center, a1 = 1, a2 = 1,
a3 = 1, c1 = 0, c2 = 107,c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right, a1 = 1, a2 = 1, a3 = 107, c1 = 1, c2 = 1,c3 = 1, d1 = 0, d2 = 0, d3 = 0.

Figure 2.5: Solution of order 3 to (1.1)on the left, a1 = 1, a2 = 107, a3 = 1, c1 = 1, c2 = 1,c3 = 107, d1 = 0, d2 = 0, d3 = 0; in the center, a1 = 107, a2 = 1,

a3 = 1, c1 = 1, c2 = 107,c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right, a1 = 1, a2 = 1, a3 = 107, c1 = 105, c2 = 1,c3 = 1, d1 = 0, d2 = 0, d3 = 0.



Universal Journal of Mathematics and Applications 49

3. Solutions to the Kadomtsev Petviashvili equation

We consider the Kadomtsev Petviashvili equation (KP) which can be written in the form

(4uT −6uuX +uXXX )X −3uYY = 0, (3.1)

where subscripts X , Y and T denote as usual partial derivatives.

From the previous study, we can deduce easily solutions to the KP equation. It is sufficient for this, to use the following transformations

x = ıX +
3ıT

4
, t = ıY from the solutions to the Boussinesq equation to obtain solutions to the KP equation.

3.1. Solutions to the KP equation

3.2. First order rational solutions

We have the following result at order N = 1 :

Theorem 3.1. The function v defined by

v(X .Y,T ) =
−288a1

2

(12 ia1X +9 ia1T +4c1 −12 iYa1 −4d1)2
, (3.2)

is a solution to the KP equation (3.1).

Remark 3.2. The solution (3.2) can be simplified and be rewritten as depending on one parameter v(X .Y,T )=
−288

(12 iX +9 iT +4C1 −12 iY )2

Figure 3.1: Solution of order 1 to (3.1), on the left T = 10, a1 = 106, c1 = 1, d1 = 1; on the right T = 10, a1 = 1, c1 = 103, d1 = 1.

Remark 3.3. The case where T = 10, a1 = 1, c1 = 1, d1 = 103 gives the same figure as the case T = 10, a1 = 1, c1 = 103, d1 = 1.

3.3. Second order rational solutions

We obtain the following solutions :

Theorem 3.4. The function v defined by

v(X .Y,T ) =−2
n(X .Y,T )

d(X .Y,T )2
, (3.3)

with

n(X .Y,T ) = 144a1a2(−41472a2
3a1

3 +62208a2
5a1 +6912a1

5a2)X
4 +144a1a2(−124416a2

3a1
3T −27648a1

5Ya2 +165888a2
3a1

3Y +9216 ia1
5a2

−55296 ia2
3a1

3 +186624a2
5a1T +82944 ia2

5a1 +20736a1
5a2T −248832a2

5Ya1)X
3 +144a1a2(−248832a2

3a1
3Y 2 −27648 ia1

5Ya2 +23328a1
5a2T 2 +

373248a2
3a1

3Y T +165888 ia2
3a1

3Y −124416 ia2
3a1

3T +41472a1
5Y 2a2−62208a1

5Ya2T −559872a2
5Ya1T −139968a2

3a1
3T 2−41472a2

5a1+27648a2
3a1

3+

209952a2
5a1T 2+186624 ia2

5a1T +373248a2
5Y 2a1−248832 ia2

5Ya1+20736 ia1
5a2T −4608a1

5a2)X
2+144a1a2(−419904a2

5Ya1T 2+279936a2
3a1

3Y T 2−

46656a1
5Ya2T 2 +62208a1

5Y 2a2T +559872a2
5Y 2a1T −373248a2

3a1
3Y 2T −373248 ia2

5Ya1T +248832 ia2
3a1

3Y T −41472 ia1
5Ya2T −18432 ia2

3c1 +

41472a2
3a1

3T − 6912a1
5a2T − 62208a2

5a1T + 18432 id2a1
3 − 18432 ia1

3c2 + 18432 id1a2
3 + 139968 ia2

5a1T 2 − 93312 ia2
3a1

3T 2 + 15552 ia1
5a2T 2 +

27648 ia1
5Y 2a2+248832 ia2

5Y 2a1−165888 ia2
3a1

3Y 2−55296 ia2
2d2a1−6144 ia1

2d1a2+55296 ia2
2c2a1+6144 ia1

2c1a2−69984a2
3a1

3T 3+11664a1
5a2T 3+

104976a2
5a1T 3 − 248832a2

5a1Y 3 + 110592a2
3a1

3Y + 165888a2
3a1

3Y 3 − 18432a1
5Ya2 − 27648a1

5Y 3a2 − 165888a2
5Ya1)X + 144a1a2(6144a2

3c1 +

6144a1
3c2 +41472 ia2

2c2a1T +4608 ia1
2c1a2T −104976a2

5Ya1T 3 +69984a2
3a1

3Y T 3 −11664a1
5Ya2T 3 +55296 iY a2

2d2a1 +6144 ia1
2Y d1a2

−55296 iY a2
2c2a1−6144 ia1

2Y c1a2−139968 ia2
5Ya1T 2+93312 ia2

3a1
3Y T 2−15552 ia1

5Ya2T 2+20736 ia1
5Y 2a2T +186624 ia2

5Y 2a1T −124416 ia2
3a1

3Y 2T −

41472 ia2
2d2a1T −4608 ia1

2d1a2T −13122a2
3a1

3T 4+19683a2
5a1T 4+2187a1

5a2T 4+13824 id2a1
3T −13824 ia1

3c2T +13824 id1a2
3T −23328 ia2

3a1
3T 3+

3888 ia1
5a2T 3 −82944 ia2

5a1Y 3 +55296 ia2
3a1

3Y +55296 ia2
3a1

3Y 3 −9216 ia1
5Ya2 −9216 ia1

5Y 3a2 −82944 ia2
5Ya1 −18432 iY a2

3d1 −18432 ia1
3Y d2 +

18432 iY a2
3c1+18432 ia1

3Y c2+34992 ia2
5a1T 3−13824 ia2

3c1T −124416a2
5Ya1T +82944a2

3a1
3Y T −186624a2

5a1Y 3T +124416a2
3a1

3Y 3T −13824a1
5Ya2T
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− 20736a1
5Y 3a2T + 209952a2

5Y 2a1T 2 − 139968a2
3a1

3Y 2T 2 + 23328a1
5Y 2a2T 2 + 62208Y 4a2

5a1 − 41472Y 4a2
3a1

3 + 6912a1
5Y 4a2 + 2048a1

2d1a2 +

18432a2
2d2a1 − 6144d2a1

3 − 6144d1a2
3 + 15552a2

3a1
3T 2 − 2592a1

5a2T 2 − 23328a2
5a1T 2 − 138240a2

3a1
3Y 2 + 207360a2

5Y 2a1 + 23040a1
5Y 2a2 −

2048a1
2c1a2 −18432a2

2c2a1),

and

d(X .Y,T ) = −1728 ia1a2
3X3 + 576 ia1

3a2X3 + 1728a1a2
3X2 − 576a1

3a2X2 − 3888 ia1a2
3X2T + 5184 iYa1a2

3X2 − 1728 iY a1
3a2X2 + 1296 ia1

3a2T X2 +

7776 iYa1a2
3T X+972 ia1

3a2T 2X−2916 ia1a2
3XT 2−5184 iY 2a1a2

3X+1728 iY 2a1
3a2X−2592 iY a1

3a2XT −864a1
3a2T X−3456Ya1a2

3X+2592a1a2
3T X+

1152Y a1
3a2X−768a1c2−256a2d1−3888 iY 2a1a2

3T +2916 iYa1a2
3T 2+1728 iY 3a1a2

3−576 iY 3a1
3a2−3456 iYa1a2

3+1152 iY a1
3a2−972 iY a1

3a2T 2−

729 ia1a2
3T 3+256a2c1+243 ia1

3a2T 3+768a1d2+1296 iY 2a1
3a2T +972a1a2

3T 2−2592Ya1a2
3T −324a1

3a2T 2+864Y a1
3a2T +1728Y 2a1a2

3−576Y 2a1
3a2,

is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 4 in x, y and t and denominator of

degree 6 in x, y and t.

Figure 3.2: Solution of order 2 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, c1 = 0, c2 = 0, d1 = 0, d2 = 0; in the center T = 0,1, a1 = 1, a2 = 1, c1 = 0,
c2 = 108, d1 = 0, d2 = 0; on the right T = 0,1, a1 = 1, a1 = 109, c1 = 1, c2 = 1, d1 = 0, d2 = 0.

Figure 3.3: Solution of order 2 to (3.1); on the left T = 0,1, a1 = 106, a2 = 1, c1 = 1, c2 = 1, d1 = 0, d2 = 0; in the center T = 0,1, a1 = 1, a2 = 1, c1 = 106,
c2 = 0, d1 = 0, d2 = 0; on the right T = 10, a1 = 1, a2 = 1, c1 = 1, c2 = 107, d1 = 0, d2 = 0.

Figure 3.4: Solution of order 2 to (3.1); on the left T = 10, a1 = 1, a2 = 109, c1 = 1, c2 = 1, d1 = 0, d2 = 0; in the center T = 10, a1 = 1010, a2 = 1, c1 = 1,

c2 = 1, d1 = 0, d2 = 0; on the right T = 10, a1 = 1, a2 = 1, c1 = 1, c2 = 106, d1 = 0, d2 = 0.
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3.4. Rational solutions of order 3

We get the non singular rational solutions given by :

Theorem 3.5. The function v defined by

v(X .Y,T ) =−2
n(X .Y,T )

d(X .Y,T )2
, (3.4)

is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 10 in X, Y , T and denominator of

degree 12 in X, Y and T .

Because of the length of the solution, we only give it in the appendix.

Figure 3.5: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0 c3 = 0, d1 = 0, d2 = 0, d3 = 0; in the center T = 0,1,

a1 = 1, a2 = 1, a3 = 1, c1 = 1, c2 = 0, c3 = 106, d1 = 0, d2 = 0, d3 = 0; on the right T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 106, c3 = 1, d1 = 0,
d2 = 0, d3 = 0.

Figure 3.6: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1024, c1 = 1, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 0,1,
a1 = 1, a2 = 104, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right T = 0,1, a1 = 10, a2 = 1, a3 = 1, c1 = 1, c2 = 10, c3 = 1, d1 = 0,
d2 = 0, d3 = 0.

Figure 3.7: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 106, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 1,

a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0, c3 = 0, d1 = 0, d2 = 0, d3 = 0; on the right T = 1, a1 = 106, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0,
d3 = 0.
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Figure 3.8: Solution of order 3 to (3.1); on the left T = 1, a1 = 1, a2 = 1, a3 = 1, c1 = 106, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 10,

a1 = 106, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right T = 10, a1 = 1, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 107, d1 = 0, d2 = 0,
d3 = 0.

4. Conclusion

We have given three types of representations of solutions to the Boussinesq equation. First, solutions in terms of elementary exponential

functions have been constructed. In particular, performing a passage to the limit when one parameter goes to 0 we get rational solutions to

the Boussinesq equation. We give an other representation in terms of determinants without the presence of a limit. So we obtain an infinite

hierarchy of multiparametric families of rational solutions to the Boussinesq equation as a quotient of a polynomial of degree N(N +1)−2

in x, t by a polynomial of degree N(N +1) in x, t depending on 3N real parameters.

As a byproduct, we get easily similar rational solutions to the Kadomtsev Petviashvili equation as the quotient of determinants of polynomials,

where the numerator is a polynomial of degree N(N +1)−2 in X , Y , T and the denominator is a polynomial of degree N(N +1) in X , Y , T .

In particular, we construct explicit rational solutions to the Boussinesq equation of order 1, 2, 3.

Unlike other equations such as NLS, there are no specific structures that emerge as a function of the parameters.
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57, (1977), 797-807
[9] M.J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19, (1978), 2180-2186

[10] J.J.C. Nimmo, N.C. Freemann, A method of obtaining the N soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett., 95, N. 1,
(1983), 4-6

[11] V.B. Matveev, A.O. Smirnov, On the Riemann theta function of a trigonal curve and solutions of the Boussinesq anf KP equations, L.M.P., 14, (1987),
25-31

[12] V.B. Matveev and M.A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991
[13] L.V. Bogdanov, V.E. Zakharov, The Boussinesq equation revisited, Phys. D, 165, (2002), 137-162
[14] P.A. Clarkson, Rational solutions of the Boussinesq equation, Anal. Appl., 6, (2006), 349-369
[15] P.A. Clarkson, Rational solutions of the classical Boussinesq system, Nonlin. Anal. : Real World Appl., 10, (2010), 3361-3371
[16] P.A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. of Math. and its Appl., 1, (2017), 1-26



Universal Journal of Mathematics and Applications, 3 (2) (2020) 53-60

Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653

DOI: https://doi.org/10.32323/ujma.597667

Faster Convergent Modified Lindstedt-Poincare Solution of

Nonlinear Oscillators

Nazmul Sharif1*, M. S. Alam1 and I. A. Yeasmin1

1Department of Mathematics, Rajshahi University of Engineering & Technology (RUET), Kazla, Rajshahi, Bangladesh
*Corresponding author

Article Info

Keywords: Modified Lindstedt-

Poincare method, Nonlinear oscillation,

Perturbation method

2010 AMS: 34A34, 34B15, 34C15

Received: 28 July 2019

Accepted: 25 March 2020

Available online: 22 June 2020

Abstract

The modified Lindstedt-Poincare method has been extended to obtain a faster convergent

solution of nonlinear oscillators. First of all a classical type Lindstedt-Poincare solution has

been determined and then a conversion formula has been used to find the desired solution.

The solution has been compared and justified by corresponding numerical solution.

1. Introduction

Poincare [19] developed different methods to solve differential equations. Poincare and Lindstedt developed Lindstedt-Poincare method [1,2].

The Lindstedt-Poincare method [1, 2] was originally developed for handling a weak nonlinear oscillator

ẍ+ω2
0 x+ ε f (x, ẋ, ẍ) = 0, (1.1)

where ε is a small parameter, ω0 is a constant, over dots denote differentiation with respect to t and x(0) = a0, ẋ(0) = 0 are the given

initial conditions. Then Krylov-Bogoliubov’s [3] and multiple time scale [1] methods were presented to investigate Eq. (1.1). The classical

perturbation methods agree with numerical solutions (e. g. Runge-Kutta 4th order method [19], finite elements method [5], etc.) when ε is

very close to zero.

Several authors [4]- [6], [16] extended the Lindstedt-Poincare method to solve stronger nonlinear problems. Jones [4] presented an

approximate technique by introducing a new parameter, α(ε) rather than the small parameter, ε . Such approximate solution is valid even for

large value of ε . Burton [5] presented a modified version of the Lindstedt-Poincare method. Cheung et al. [6] further modified this method.

However, all the approximate solutions obtained by approaches of [4]- [6] are effective for Duffing oscillator with cubical nonlinearity.

The aim of this article is to present a new form of the modified Lindstedt-Poincare method of Cheung et al. [6] based on the conversion

formula presented by Alam et al. [14] by introducing a parameter k. The solutions obtained for various nonlinear oscillators nicely agree

with corresponding numerical solutions and provide better results than other existing solutions.

Besides the classical perturbation methods, many approximate techniques have been presented for solving the stronger nonlinear oscillators.

Among them the asymptotic expansions [15, 18], the homotopy perturbation [7], harmonic balance [8, 9], energy balance [10] and iteration

methods [11] are widely used. Singular differential equations are also solved using optimal successive complementary expansion method by

F. Say [17].

2. The Lindstedt-Poincare method

Introducing a new variable, τ = ωt, t can be replaced and Eq. (1.1) is written as

ω2x′′+ω2
0 x+ ε f (x,ωx′,ω2x′′) = 0. (2.1)

Email addresses and ORCID numbers: nazmul06024160@yahoo.com, https://orcid.org/0000-0003-4234-6651 (Nazmul Sharif), msalam1964@yahoo.com,
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Here ω is known as the frequency of the oscillator and the primes denote differentiation with respect to τ . According to Lindstedt-Poincare

method [1, 2], x and ω can be expanded in powers of ε as

x =
∞

∑
n=0

xnεn
, (2.2)

and

ω2 = ω2
0 +

∞

∑
n=1

ωnεn
. (2.3)

Earlier it was chosen that ω = ω0 + εω1 + ε2ω2 +O(ε3). But Veronis [12] and Burton [5] and Burton et al. [13] used series Eq. (2.3). In

this article we have used the series in Eq. 2.3 for faster convergent solution.

By substituting x and ω into Eq. (2.1) and equating the coefficients of like powers of ε , we obtain the following equations:

ω2
0 x′′0 +ω2

0 x0 = 0, (2.4)

ω2
0 x′′1 +ω2

0 x1 =−2ω0ω1x′′0 − f (x0,x
′
0,x

′′
0), (2.5)

ω2
0 x′′2 +ω2

0 x2 =−2
(

ω0ω1 +ω2
1

)

x′′0 −2ω0ω1x′′1 − x1

∂ f (x0,x
′
0,x

′′
0)

∂x

−

(

ω0x′1 +
ω1x′0
2ω0

)

∂ f (x0,x
′
0,x

′′
0)

∂x′
−
(

ω2
0 x′′1 +ω1x′′0

) ∂ f (x0,x
′
0,x

′′
0)

∂x′′
. (2.6)

The initial conditions are usually replaced by x0(0) = a0, x′0(0) = 0, x1(0) = x′1(0) = x2(0) = 0 · · · , and x0,x1 and ω1,x2 and ω2 etc. are

determined sequentially. In this article we only follow the initial conditions of x′0(0) = x′1(0) = · · ·= 0, and

a0 = x0(0)+ εx1(0)+ ε2x2(0)+O(ε3). (2.7)

This assumption was introduced in [9] following [3].

3. Conversion formulae

Recently a conversion formula [14] has been presented to the modified Lindstedt-Poincare solution [6] from its classical version. This

conversion formula can be used to obtain a faster convergent solution (concern of this article). Cheung et al. [6] reconsidered Eq. (2.3) to the

following form

ω2 =
(

ω2
0 + εω1

)

(

1+
ε2ω2

ω2
0 + εω1

+
ε3ω3

ω2
0 + εω1

+O(ε4)

)

. (3.1)

Then a new parameter α is chosen such as

α(ε) =
εω1

ω2
0 + εω1

. (3.2)

Thus Eq. (3.1) can be rewritten in a series of α ,

ω2 =
ω2

0

(1−α)

(

1+
∞

∑
n=2

δnαn

)

. (3.3)

Substituting the value of α from Eq. (3.2) into Eq. (3.3), we obtain a power series of ε ,

ω2 = ω2
0 + εω1 +

ε2ω2
1 δ2

ω2
0

+
ε3ω3

1 (−δ2 +δ3)

ω4
0

+
ε4ω4

1 (δ2 −2δ3 +δ4)

ω6
0

+O(ε5). (3.4)

Now Eq. (2.3) and Eq. (3.4) are identical. Therefore, we obtain

ω2
1 δ2

ω2
0

= ω2,
ω3

1 (−δ2 +δ3)

ω4
0

= ω3,
ω4

1 (δ2 −2δ3 +δ4)

ω6
0

= ω4, · · · , (3.5)
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or,

δ2 =
ω2ω2

0

ω2
1

, δ3 =
ω2

0 ω1ω2 +ω4
0 ω3

ω3
1

, δ4 =
ω2

0 ω2
1 ω2 +2ω4

0 ω1ω3 +ω6
0 ω4

ω4
1

, · · · . (3.6)

The above relations measures the unknown coefficients δ2,δ3, · · · etc., where ω0,ω1,ω2, · · · etc. are calculated by classical Lindstedt-

Poincare method [1, 2]. Thus we can convert the frequency obtained by classical Lindstedt-Poincare method [1, 2] to its modified form

presented by Cheung et al. [6]. On the other hand transformation Eq. (3.2) makes Eq. (2.2) to the form

x = x0 +α x̃1 +α2x̃2 +O(α3). (3.7)

The unknown coefficients x̃1, x̃2, · · · etc. still to be determined. We can substitute the value of α from Eq. (3.2) into Eq. (3.7) and obtain a

series of ε ,

x = x0 +
εω1x̃1

ω2
0

+
ε2ω2

1 (−x̃1 + x̃2)

ω4
0

+
ε3ω3

1 (x̃1 −2x̃2 + x̃3)

ω6
0

+O(ε4). (3.8)

Clearly that Eq. (2.2) is identical to Eq. (3.8). So, comparing equal powers of ε , we obtain the following algebraic equations:

ω1x̃1

ω2
0

= x1,
ω2

1 (−x̃1 + x̃2)

ω4
0

= x2,
ω3

1 (x̃1 −2x̃2 + x̃3)

ω6
0

= x3, · · · , (3.9)

or,

x̃1 =
ω2

0 x1

ω1
, x̃2 =

ω2
0 ω1x1 +ω4

0 x2

ω2
1

, x̃3 =
ω2

0 ω2
1 x1 +2ω4

0 ω1x2 +ω6
0 x3

ω3
1

, · · · . (3.10)

When x1,x2, · · · together with ω0,ω1,ω2, · · · are known, x̃1, x̃2, · · · are found by Eq. (3.10).

4. Example

Let us consider Duffing oscillator (cubical) ẍ+x+εx3 = 0. For this problem, ω0 = 1 and f (x, ẋ, ẍ) = x3. Therefore, Eqs. (2.4)-(2.6) becomes

x′′0 + x0 = 0, (4.1)

x′′1 + x1 =−ω1x′′0 − x3
0, (4.2)

x′′2 + x2 =−3x2
0x1 − x′′1ω1 − x′′0ω2. (4.3)

The solution of Eq. (4.1) is

x0 = acosτ. (4.4)

Substituting this value of x0 in Eq. (4.2) and simplifying we obtain

x′′1 + x1 = ω1acosτ −
3

4
a3 (3cosτ + cos3τ) . (4.5)

It is noted that x1,x2, · · · do not contain the fundamental term to avoid secular terms. Therefore, the coefficient of cosτ of Eq. (4.5) vanishes.

Thus we obtain

ω1 =
3a2

4
. (4.6)

The particular solution of Eq. (4.5) is

x1 =
a3 cos3τ

32
. (4.7)

According to Lindstedt-Poincare method, x1(0) = x′1(0) = 0. Therefore, the solution of Eq. (4.5) becomes

x1 =
a3 (−cosτ + cos3τ)

32
. (4.8)

It has already been mentioned that we do strictly follow this rule. We may consider

x1 =
a3 (−k cosτ + cos3τ)

32
, (4.9)
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where k is a constant.

Alam et al. [9] was chosen a periodic solution of ẍ+ω2
0 x = ε f (x), x(0) = a0, ẋ(0) = 0, as

x = acosϕ +a3C3(a)cos3ϕ +a5C5(a)cos5ϕ +O(a7),

where a and ϕ̇ are constants. Alam et al. [9] considered above solution by choosing k = 0.

k = 1 is strictly followed by Cheung et al. [6] and various methods of perturbation for solving nonlinear oscillators. Thus the value of k can

be considered as parameter. This will give us additional variation to find more accurate solutions of nonlinear oscillators. Determination of

higher order solution will increase accuracy of the solution. But choosing k as a parameter we have found faster convergent solutions without

finding higher order approximations. By finding a proper value of k, solution can be made more accurate with first few approximations. We

have introduced k in the first approximate solution and consequently k appear in the second, third and fourth approximations.

Choosing a suitable value of k, we can find a series of ω which converge faster than that of obtained by Cheung et al. [6] and Alam et al. [14].

Carrying on a similar process, we have solved the higher order equations (e.g., Eq. (4.3),· · · ) and obtained the following results:

ω2 =−
3

128
a4 (−1+2k) , ω3 =

3a6
(

−19+36k+7k2
)

4096
, ω4 =−

3a8
(

−335+556k+342k2 +30k3
)

131072
, (4.10)

and

x2 =C2,1 cosτ +C2,3 cos3τ +C2,5 cos5τ,

x3 =C3,1 cosτ +C3,3 cos3τ +C3,5 cos5τ +C3,7 cos7τ,

x4 =C4,1 cosτ +C4,3 cos3τ +C4,5 cos5τ +C4,7 cos7τ +C4,9 cos9τ, (4.11)

where

C2,1 =
a5
(

20k+3k2
)

1024
, C2,3 =

−a5 (21+3k)

1024
, C2,5 =

a5

1024
, C3,1 =−

a7k
(

375+160k+12k2
)

32768
,

C3,3 =
3a7
(

139+55k+4k2
)

32768
, C3,5 =−

a7 (43+5k)

32768
, C3,7 =

a7

32768
, C4,1 =

a9k
(

6521+5750k+1100k2 +55k3
)

1048576
,

C4,3 =−
a9
(

7797+6144k+1125k2 +55k3
)

1048576
, C4,5 =

a9
(

1340+401k+25k2
)

1048576
, C4,7 =−

a9(65+7k)

1048576
, C4,9 =

a9

1048576
. (4.12)

Now utilizing the transformation formulae Eq. (3.6) and Eq. (3.10), we obtain respectively

δ2 =
1

24
(1−2k) ,δ3 =

1

576

(

5−12k+7k2
)

,δ4 =
−1+20k−6k2 −30k3

13824
, (4.13)

and

x̃1 = C̃1,1 cosτ +C̃1,3 cos3τ,

x̃2 = C̃2,1 cosτ +C̃2,3 cos3τ +C̃2,5 cos5τ,

x̃3 = C̃3,1 cosτ +C̃3,3 cos3τ +C̃3,5 cos5τ +C̃3,7 cos7τ,

x̃4 = C̃4,1 cosτ +C̃4,3 cos3τ +C̃4,5 cos5τ +C̃4,7 cos7τ +C̃4,9 cos9τ, (4.14)

where

C̃1,1 =−
ak

24
, C̃1,3 =

a

24
, C̃2,1 =

ak (−4+3k)

576
, C̃2,3 =

a(1− k)

192
, C̃2,5 =

a

576
, C̃3,1 =−

ak
(

−9+16k+12k2
)

13824
,

C̃3,3 =
a
(

−5+7k+4k2
)

4608
, C̃3,5 =−

5a(−1+ k)

13824
, C̃3,7 =

a

13824
, C̃4,1 =

ak
(

257−586k+236k2 +55k3
)

331776
,

C̃4,3 =−
a
(

237−552k+261k2 +55k3
)

331776
, C̃4,5 =

a
(

−28+41k+25k2
)

331776
, C̃4,7 =−

7a(−1+ k)

331776
, C̃4,9 =

a

331776
. (4.15)

For the initial conditions, we obtain
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x̃1(0) =
a(1− k)

24
, x̃2(0) =

a
(

4−7k+3k2
)

576
, x̃3(0) =

a
(

−9+25k−4k2 −12k3
)

13824
,

x̃4(0) =
a
(

−257+843k−822k2 +181k3 +55k4
)

331776
. (4.16)

It is clear that x̃1 (0) = x̃2(0) = x̃3(0) = x̃4(0) = 0 when k = 1 and x(0) = a0 = a. When k 6= 1, we obtain the following nonlinear algebraic

equation

a0 = a

(

1+
a(1− k)α

24
+

a
(

4−7k+3k2
)

α2

576
+

a
(

−9+25k−4k2 −12k3
)

α3

13824
+

a
(

−257+843k−822k2 +181k3 +55k4
)

α4

331776

)

,

(4.17)

where α =
3a2

4

1+ 3a2

4

. In general a0 is given; so that a would be found solving Eq. (4.17) by an iteration method (numerical). It is noted that the

higher order terms of α are small whatever the values of a and ε if we chose a suitable value of k. Therefore it requires one or two iterations

to obtain a desired result.

5. Results and discussion

A faster convergent modified Lindstedt-Poincare solution has been determined. The solution is identical to that of Cheung et al. [6] and

Alam et al. [14] for k = 1. When k = 1, then from Eq. (4.13) we get,

δ2 =−
1

24
,δ3 = 0,δ4 =−

17

13824
.

The above results are same as obtained by Cheung et al. [6] and Alam et al. [14]. When k = 5
7 , we obtain

δ2 =−
1

56
,δ3 = 0,δ4 =−

9

175616
.

Figure 5.1: Variation of δ2,δ3,δ4 with k for duffing oscillator to determine small value of δ2,δ3,δ4.

It is clear that the α-series (Eq. (3.3)) converges faster when coefficients |δi|, i = 2,3, · · · etc. become small. We have plotted δ2,δ3,δ4

against k in the Fig. 5.1 for Duffing oscillator. We have found that δ2,δ3,δ4 all are small in the region 0.4 < k < 1. The series (Eq. (3.3)) of

frequency for the Duffing oscillator converges faster when k = 5
7 . For several values of a0, the frequency ω have been calculated for both

k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 5
7 , and presented in Table 1 together with numerical results obtained by Runge-Kutta

4th order method.

It is hard to say what would be the suitable value of k for other nonlinear oscillators. We have plotted δ2,δ3,δ4 against k in the Fig. 5.2 for

the quintic oscillator. We find from Fig. 5.2 that δ2,δ3,δ4 all are small in the region 0 < k < 1. For the cubic Duffing oscillator, we see that

δ3 vanishes for both k = 1 and k = 5
7 . But for the quintic oscillator (i.e., ẍ+ x+ εx5 = 0) δ3 never vanishes. For this oscillator, we have

obtained

δ2 =
1

120
(19−32k) , δ3 =

1

14400

(

1009−254k+1664k2
)

,

δ4 =
1

1728000

(

14441−65806k+140552k2 −104448k3
)

.

We see from Fig. 5.2 that the values of these coefficients are opposite in sign when 19
32 < k. But all are positive when k ≤ 19

32 and δ2 vanishes

when k = 19
32 . Thus for k = 1 and k = 19

32 , we have obtained respectively
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a0 ω(k = 1) ω(k = 5
7 ) ωnu

Er(%) Er(%)

1 1.31778 1.31778 1.31778

0.00000 0.00000

10 8.53390 8.53351 8.53359

0.003633 0.000937

100 84.7309 84.7266 84.7275

0.004013 0.001062

1000 847.248 847.205 847.214

0.004013 0.001062

Table 1: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the Duffing oscillator (where Er(%) denotes absolute percentage error).

Figure 5.2: Variation of δ2,δ3,δ4 with k for quintic oscillator to determine small value of δ2,δ3,δ4.

δ2 =−
13

120
, δ3 =

2

225
, δ4 =−

5087

576000
,

and

δ2 = 0, δ3 =
541

92160
, δ4 =

391129

221184000
.

Comparing these results, we easily expect that α-series (Eq. (3.3)) converges faster for k = 19
32 . To verify this matter, we have calculated

some results choosing k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 19
32 and presented in Table 2 together with corresponding

numerical results.

a0 ω(k = 1) ω(k = 19
32 ) ωnu

Er(%) Er(%)

1 1.26470 1.26471 1.26471

0.000791 0.000000

10 74.6618 74.6768 74.6909

0.038961 0.018878

100 7465.44 7466.93 7468.34

0.038831 0.018880

1000 746531.22 746701.04 746834.20

0.040569 0.0178304

Table 2: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the quintic oscillator (where Er(%) denotes absolute percentage error).

For the nonlinear oscillator ẍ+ x+ ε ẋ2x = 0 we have obtained

δ2 =
1

8
(3+2k) , δ3 =

1

192

(

63+76k+21k2
)

,

δ4 =
1

1563

(

407+668k+426k2 +90k3
)

.

Thus for k = 1 and k = 2
5 , we have obtained respectively

δ2 =
5

8
, δ3 =

5

6
, δ4 =

1591

1536
,
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and

δ2 =
19

40
, δ3 =

2419

4800
, δ4 =

18703

38400
.

We have calculated some results choosing k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 2
5 and presented in Table 3 together with

corresponding numerical results. From Fig. 5.3 we see that δ2,δ3,δ4 are small near k = −3
2 but for k = 2

5 obtained results are better for

larger values of a0.

a0 ω(k = 1) ω(k = −3
2 ) ω(k = 2

5 ) ωnu

Er(%) Er(%) Er(%)

0.01 1.00001 1.00001 1.00001 1.00001

0.000000 0.000000 0.000000

0.1 1.00125 1.00125 1.00125 1.00125

0.000000 0.000000 0.000000

1 1.13651 1.13682 1.13666 1.13678

0.023713 0.0035187 0.0105561

10 9.12723 10.3405 9.95623 9.92913

8.07624 4.14306 0.272934

100 93.4396 104.866 101.947 99.9931

6.55395 4.87324 1.95403

Table 3: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the oscillator ẍ+ x+ ε ẋ2x = 0 (where Er(%) denotes absolute percentage error).

Figure 5.3: Variation of δ2,δ3,δ4 with k for the oscillator ẍ+ x+ ε ẋ2x = 0 to determine small value of δ2,δ3,δ4.

For the nonlinear oscillator ẍ+ x+ ε ẍx2 = 0, we have obtained

δ2 =
1

72
(−11+6k) , δ3 =

1

1728

(

−17−36k+21k2
)

,

δ4 =
1

124416

(

−3359+2812k−1242k2 +270k3
)

.

Thus for k = 1, we have obtained

δ2 =
−5

72
, δ3 =

−1

54
, δ4 =

1519

124416
,

and which are same as obtained in Alam et al. [14].

For different values of the unknown constant k we have calculated some results and presented in Table 4 together with corresponding

numerical results and other existing frequencies (Alam et al. [14] and Cheung et al. [6], k = 1). From Table 4 it is clear that frequency of the

oscillator depends on the parameter k and comparing various results suitable value of k can be determined. From Fig 5.4 we see the variation

of δ2,δ3,δ4 with the unknown constant k, shows the region of convergence.

6. Conclusion

The modified Lindstedt-Poincare method of Cheung et al. [6] based on Alam et al. [14] has been presented in a new form introducing

an unknown constant, k. All the coefficients related to the solution depend on this constant. When k = 1, the solution is identical to that

of Cheung et al. [6] and Alam et al. [14]. But a better result would be found for a particular value of k. Comparing various results of

the unknown coefficients, |δi(k)|, i = 2,3, · · · , the suitable value of k can be determined. The method is applied to obtain the approximate

solution of Duffing oscillator, quintic oscillator and another two nonlinear equations whose nonlinear response is significant. All the solutions

show a good agreement with numerical solutions obtained by Runge-Kutta 4th order method and provide better results than other existing

solutions. The results may be useful to the researches in the field of nonlinear mechanics for investigating periodic solution of some higher

order nonlinear problems.
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a0 ω(k = 1) ω(k = 2) ω(k = 3) ω(k = 5) ωnu

Er(%) Er(%) Er(%) Er(%)

0.01 0.999963 0.999963 0.999963 0.999963 0.999963

0.000000 0.000000 0.000000 0.000000

0.1 0.996273 0.996273 0.996273 0.996273 0.996273

0.000000 0.000000 0.000000 0.000000

1 0.761518 0.761545 0.761568 0.761712 0.761579

0.00800967 0.00446441 0.00144438 0.0174637

10 0.120712 0.121174 0.121670 0.124195 0.123323

2.11720 1.74258 1.34038 0.707086

100 0.0121717 0.0122225 0.0122776 0.0125643 0.0125256

2.83240 2.42686 1.98699 0.30176

1000 0.00121728 0.00122235 0.00122788 0.00125658 0.00125328

2.87246 2.46792 2.02668 0.263309

10000 0.000121728 0.000122235 0.000122788 0.000125658 0.000125331

2.87479 2.47026 2.02903 0.260909

Table 4: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the oscillator ẍ+ x+ ε ẍx2 = 0 (where Er(%) denotes absolute percentage error).

Figure 5.4: Variation of δ2,δ3,δ4 with k for the oscillator ẍ+ x+ ε ẍx2 = 0 to determine small value of δ2,δ3,δ4.
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Abstract

In this paper, we propose the approximate analytical solutions of conformable time frac-

tional Clannish Random Walker’s Parabolic(CRWP) equation and Modified Benjamin-Bona-

Mahony(BBM) equation with the aid of generalized homotopy analysis method (q-HAM).

The h curves of approximate solutions for both equations are illustrated by graphics to deter-

mine the convergence interval. h values obtained from these graphics are used to compare

approximate solutions with the analytical solutions. The results show that approximate

solutions are consistent with the analytical solutions. Also it is understood that the method

is reliable, applicable and efficient technique to get the exact solutions of fractional partial

differential equations.

1. Introduction

Fractional derivative and fractional integration are challenging works in applied mathematics. They can also be used in different branches

of science and engineering. Thus, there are many approaches in literature to define fractional derivative and integration. Among them,

Riemann-Lioville definition and Caputo definition are the most used ones [1–3]. However, these definitions have some drawbacks in the

following cases:

1. The Riemann-Lioville derivative does not satisfy Dα
a 1 = 0 (Liouville-Caputo derivative satisfies), if α is not a natural number.

2. All fractional derivatives do not satisfy the known formula of the derivative of the product of two functions.

Dα
a ( f g) = gDα

a ( f )+ f Dα
a (g)

3. All fractional derivatives do not satisfy the known formula of the derivative of the quotient of two functions.

Dα
a

(

f

g

)

=
f Dα

a ( f )−gDα
a (g)

g2

4. All fractional derivatives do not satisfy the chain rule.

Dα
a ( f og)(t) = f α (g(t))gα (t)

5. All fractional derivatives do not satisfy Dα Dβ = Dα+β in general.

6. The Caputo definition assumes that the function f is differentiable.

Email addresses and ORCID numbers: emrahatilgan@mku.edu.tr (E. Atilgan), otasbozan@mku.edu.tr (O .Tasbozan),pau.dr.alikurt@gmail.com, akurt@pau.edu.tr (A.

Kurt), syedtauseefs@hotmail.com (S. T. Mohyud-Din)
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Because of these drawbacks of the existing definitions, researchers have been working on a better definition so that all the cases can be

satisfied. In recent years, a new simple definition was introduced by Khalil et.al [4] called conformable fractional derivative. For the function

f : [0,∞)→ R, the fractional derivative of f was defined by

Tα ( f )(t) = lim
ε→0

f (t + εt1−α )− f (t)

ε

where t > 0 and α ∈ (0,1).
If f is α-differentiable in some (0,a),a > 0 and lim

t→0+
f (α)(t) exists then define f (α)(0) = lim

t→0+
f (α)(t). The ”conformable fractional

integral” of a function f starting from a ≥ 0 is defined as:

Ia
α ( f )(t) =

t
ˆ

a

f (x)

x1−α
dx

where the integral is the usual Riemann improper integral, and α ∈ (0,1]. The following properties of conformable fractional derivative are

given in [4].

Theorem 1.1. Let α ∈ (0,1] and suppose f ,g are α-differentiable at point t > 0. Then

1. Tα (c f +dg) = cTα ( f )+ cTα (g) for all a,b ∈ R.

2. Tα (t
p) = pt p−α for all p ∈ R.

3. Tα (λ ) = 0 for all constant functions f (t) = λ .
4. Tα ( f g) = f Tα (g)+gTα ( f ).

5. Tα

(

f
g

)

=
gTα ( f )− f Tα (g)

g2 .

6. If , in addition f is differentiable, then Tα ( f )(t) = t1−α d f
dt .

Recently, Abdeljawad applied Khalil’s definition on some fractional calculus functions, such as fractional versions of chain rule, exponential

functions, Laplace transforms and so on [5]. Due to the simplicity and usefulness of this conformable version of fractional calculus, many

researches applied this method in their field. Chung [6] applied conformable fractional derivatives on Newton’s mechanics and constructed

the fractional Euler-Lagrange equation. Neirameh [7] applied this method on a fractional order of extended biological population model.

Benkhettou et al. [8] extended Khalil’s definition to an arbitrary time scale. Similarly, Zhao and Li [9] introduced the conformable delta

fractional derivative and delta fractional integral on time series with respect to Khalil’s definition. Eslami and Rezazadeh [10] studied the

first integral method for Wu-Zhang system with conformable time fractional derivative.

The q-Homotopy Analysis Method (q-HAM) was introduced by El-Tawil and Huseen [11] to solve non-linear differential equations. This is

a more general method of Homotopy Analysis Method [17–20] (HAM) developed by Liao [12] and has one more parameter n. With the aid

of this additional parameter, q-HAM provides more flexibility than HAM in controlling and adjusting the convergence region. q-HAM have

been used to solve many mathematical problems in recent years. Iyiola et.al. [13] investigated an analytical solution of the time-fractional

foam drainage equation using the advantages of q-HAM. In another study, q-HAM was used to find approximate series solutions of a

fractional diffusion equation model [14].

The CRWP equation determines the behavior of two species A and B of random walkers who execute a concurrent one-dimensional random

walk characterized by an intensification of the clannishness of the members of one species as the density of the other increases and the

Benjamin-Bona-Mahony(BBM) equation is used for the analysis of the surface waves of long wavelength in liquids, hydromagnetic waves in

cold plasma.

2. Description of q-Homotopy Analysis Method

We give an overview of the q-homotopy analysis method in this section and show how it is used in fractional differential equations.

Consider the differential equation below,

N [Dα
t u(x, t)]−g(x, t) = 0 (2.1)

where N is non-linear operator, Dα
t is the conformable fractional operator, g is the given function and u(x, t) is the function which will be

obtained after this solution procedure. The zeroth-order deformation equation for q-HAM is given as follows:

(1−nq)L (ϕ(x, t;q)−u0(x, t)) = qhH(x, t)(N [Dα
t ϕ(x, t;q)]−g(x, t)) , (2.2)

where n > 1, q ∈
[

0, 1
n

]

is the embedded parameter, h 6= 0 is an auxiliary parameter and L is an auxiliary linear operator. H(x, t) is a non-zero

auxiliary function.

When q = 0 and q = 1
n , which are the boundary values, we have equation (2.2) to become

ϕ(x, t;0) = u0(x, t) and ϕ

(

x, t;
1

n

)

= u(x, t) (2.3)

respectively. When we increment q from 0 to 1
n , the solution ϕ(x, t;q) changes from the initial guess u0(x, t) to the solution u(x, t).

If u0(x, t), L , h, H(x, t) are chosen properly, then there always exists a solution ϕ(x, t;q) of equation (2.2) for q ∈
[

0, 1
n

]

.

The Taylor series expansion of ϕ(x, t;q) is

ϕ(x, t;q) = u0(x, t)+
∞

∑
m=1

um(x, t)q
m. (2.4)
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where

um(x, t) =
1

m!

∂ mϕ(x, t;q)

∂qm

∣

∣

∣

∣

q=0

. (2.5)

If the auxiliary linear operator L, the initial guess u0, the auxiliary parameter h and H(x, t) are properly chosen, then the Taylor series

expansion of ϕ(x, t;q) (2.4) converges at q = 1
n . Hence, we have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t)

(

1

n

)m

. (2.6)

Let the vector~un is defined as follows:

~un = {u0(x, t),u1(x, t), · · · ,un(x, t)} . (2.7)

First, the equation (2.2) is differentiated m-times with respect to the embedding parameter q. Then, q = 0 is taken and placed in the

differentiated equation. Finally, the whole equation is divided by m!, and the mth-order deformation equation is obtained as follows:

L [um(x, t)−χ∗
mum−1(x, t)] = hH(x, t)Rm (~um−1) . (2.8)

with initial conditions

u
(k)
m (x,0) = 0, k = 0,1,2, ...,m−1. (2.9)

where

Rm (~um−1) =
1

(m−1)!

∂ m−1 (N [Duα
t ϕ(x, t;q)]−g(x, t))

∂qm−1

∣

∣

∣

∣

q=0

(2.10)

and

χ∗
m =







0 m 6 1

n otherwise.

(2.11)

3. Applications of the Method

3.1. Conformable Time-Fractional Clannish Random Walker’s Parabolic(CRWP) Equation

Considering the conformable time-fractional CRWP equation as:

Dα
t v+ pvx + svvx + rvxx = 0 (3.1)

and initial condition

v(x,0) =
r ln(A)+

√

r2(ln(A))2 −2sK

s
− 2r ln(A)

s(1+dAx)
(3.2)

where α ∈ (0,1). The exact solution of CRWP was provided from ref. [15] as:

v(x, t) =
r ln(A)+

√

r2(ln(A))2 −2sK

s
− 2r ln(A)

s(1+dAx−(
√

r2(ln(A))2−2sK+p) tα

α )
(3.3)

This analytical solution is used to compare with the numerical solutions obtained in this study. To obtain the approximate solution of Eq.

(3.1) with initial condition (3.3), we can choose the linear operator is as

L [ϕ(x, t;q)] = Dα
t ϕ(x, t;q)

which satisfies the property

L [m] = 0

where m is a constant. From Eq. (3.1), we define the nonlinear operator as follow:

N [ϕ(x, t;q)] =
∂ α ϕ(x, t;q)

∂ tα
+ p

∂ϕ(x, t;q)

∂x
+ sϕ(x, t;q)

∂ϕ(x, t;q)

∂x
+ r

∂ 2ϕ(x, t;q)

∂x2
.

From Theorem 1, the nonlinear operator can be re-written as follows:

N [ϕ(x, t;q)] = t1−α ∂ϕ(x, t;q)

∂ t
+ p

∂ϕ(x, t;q)

∂x
+ sϕ(x, t;q)

∂ϕ(x, t;q)

∂x
+ r

∂ 2ϕ(x, t;q)

∂x2
.
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The zeroth-order deformation equation is designed as:

(1−nq)L [ϕ(x, t;q)− v0(x, t)] = qhN [ϕ(x, t;q)] .

Considering H(x, t) = 1, the mth-order deformation equation

L [vm(x, t)−χ∗
mvm−1(x, t)] = hRm (vm−1) (3.4)

where

Rm (vm−1) = t1−α ∂vm−1(x, t)

∂ t
+ s

m−1

∑
n=0

vn(x, t)
∂vm−1−n(x, t)

∂x
+ p

∂vm−1(x, t)

∂x
+ r

∂ 2vm−1(x, t)

∂x2
.

The solutions of the mth-order deformation Eq. (3.4) for m ≥ 1 is below

vm(x, t) = χ∗
mvm−1(x, t)+hL

−1 [Rm (vm−1)] . (3.5)

By using Eq.(3.5) with initial condition given by (3.3) we calculated vm(x, t) for m = 0,1 respectively.

v0(x, t) =
r ln(A)+

√

r2(ln(A))2 −2sK

s
− 2r ln(A)

s(1+dAx)
,

v1(x, t) =
2tα Axdhr(ln(A))2(p+

√

−2ks+ r2(ln(A))2)

(1+Axd)2sα
.

One can obtain vm(x, t) for m = 2,3, · · · , following the same procedure using computer software such as Mathematica.

Finally, the series solution of equation (3.1) by applying q-HAM can be written in the form

v(x, t,n,h) = v0(x, t)+
∞

∑
n=1

vi(x, t;n;h)

(

1

n

)i

. (3.6)

Equation (3.6) is an approximate solution to the problem (3.1) in terms of convergence parameter h and n. We take the parameters p = 2,

q = 2, r = 2, d = 2, A = 2 and k = 2 are used for all calculations by 4th-order q-HAM solution. Any other solutions can be calculated for

different parameters.

The h-curves of the conformable time-fractional CRWP equation for n = 2 and for α = 0.8 and α = 0.9 are given in Fig. 1. For h =−1.11,

t = 0.001 (fixed) and α = 0.8, α = 0.9, the approximate solution and the exact solution for the conformable time-fractional CRWP equation

are compared in Fig. 2.
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Figure 3.1: The h-curves of the conformable time-fractional CRWP equation for n = 2 and different values of α .
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Figure 3.2: Comparison of the approximate solutions obtained for h = −1.11, n = 2, t = 0.001 and different values of α by the q-HAM with the exact
solution for the conformable time-fractional CRWP equation

For h = −1.11 value which is selected from these graphics for both α values, the surfaces of the approximate solutions and the exact

solutions are drawn in Fig. 3. As seen in Figure 3, the surfaces of the approximate solutions and the analytical solutions are so similar that

cannot be distinguished.
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(a) Approximate solution for α = 0.8
(b) Exact solution for α = 0.8

(c) Approximate solution for α = 0.9 (d) Exact solution for α = 0.9

Figure 3.3: Comparison of the approximate solutions obtained for h =−1.11, n = 2 and different values of α by the q-HAM with the exact solution for the
conformable time-fractional CRWP equation

3.2. Conformable Time-Fractional Modified Benjamin-Bona-Mahony(BBM) Equation

As the second application of q-HAM, we discuss the approximate solutions for BBM. The conformable time-fractional BBM equation is

given as:

Dα
t u+ux −νu2ux +uxxx = 0 (3.7)

and initial condition

u(x,0) =

√
3

x+1
(3.8)

where α ∈ (0,1). The exact solution was taken from [16]

u(x, t) =

√
6k√

ν(kx− k tα

α +C)
(3.9)

and k = 1, C = 1, ν = 2 are chosen for all calculations by 4th-order q-HAM solution. To find the series approximate solution of Eq. (3.7)

with the initial condition (3.9), the linear operator is picked as

L [ϕ(x, t;q)] = Dα
t ϕ(x, t;q)

with the property

L [m] = 0

where m is a constant. From Eq. (3.7), the nonlinear operator can be designed as following,

N [ϕ(x, t;q)] =
∂ α ϕ(x, t;q)

∂ tα
+

∂ϕ(x, t;q)

∂x
−νϕ(x, t;q)2 ∂ϕ(x, t;q)

∂x
+

∂ 3ϕ(x, t;q)

∂x3
.

Using the property of the conformable fractional derivative, the nonlinear operator can be re-written as follows,

N [ϕ(x, t;q)] = t1−α ∂ϕ(x, t;q)

∂ t
+

∂ϕ(x, t;q)

∂x
−νϕ(x, t;q)2 ∂ϕ(x, t;q)

∂x
+

∂ 3ϕ(x, t;q)

∂x3
.
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Hence, the zeroth-order deformation equation can be constructed as:

(1−nq)L [ϕ(x, t;q)−u0(x, t)] = qhN [ϕ(x, t;q)] .

For H(x, t) = 1, the mth-order deformation equation turns into

L [um(x, t)−χ∗
mum−1(x, t)] = hRm (um−1) (3.10)

where

Rm (um−1) = t1−α ∂um−1(x, t)

∂ t
+

∂um−1(x, t)

∂x
+

∂ 3um−1(x, t)

∂x3
−ν

m−1

∑
n=0

(

n

∑
k=0

uk(x, t)un−k(x, t)

)

∂um−1−n(x, t)

∂x
.

The solutions of the mth-order deformation Eq. (3.10) for m ≥ 1 is obtained as

vm(x, t) = χ∗
mvm−1(x, t)+hL

−1 [Rm (vm−1)] . (3.11)

With the aid of Eq.(3.11) and the initial condition (3.9) we get the approximate solutions of um(x, t) for m = 0,1 as follows:

u0(x, t) =

√
3

x+1
,

u1(x, t) =

√
3htα (5x2 +10x−1)

(x+1)4α
.

The series solution of (3.7) for m = 0,1, · · · expression by q-HAM can be expressed as:

u(x, t,n,h) =

√
3

x+1
+

∞

∑
n=1

ui(x, t;n;h)

(

1

n

)i

. (3.12)

The h-curves of the conformable time-fractional BBM equation for n = 2 and for α = 0.8 and α = 0.9 are given in Fig. 4. In Fig. 5, the

approximate solution and the exact solution for the conformable time-fractional BBM equation are compared, where h =−2.787, t = 0.001

(fixed) and α = 0.8, α = 0.9. In Fig. 6, for h =−2.787 value which is chosen from these graphics for both α values, the surfaces of the

approximate solutions and the exact solutions are illustrated.
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Figure 3.4: The h-curves of the conformable time-fractional BBM equation for n = 2 and different values of α .
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Figure 3.5: Approximate solutions obtained for h =−2.787, n = 2, t = 0.001 and different values of α by the q-HAM in comparison with exact solution for
the conformable time-fractional BBM equation
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(a) Approximate solution for α = 0.8
(b) Exact solution for α = 0.8

(c) Approximate solution for α = 0.9

(d) Exact solution for α = 0.9

Figure 3.6: Approximate solutions obtained for h = −2.787, n = 2 and different values of α by the q-HAM in comparison with exact solution for the
conformable time-fractional BBM equation

4. Conclusions

In this paper we employ the q-Ham to obtain approximate analytical solutions of Modified Benjamin-Bona-Mahony(BBM) and Clannish

Random Walker’s Parabolic(CRWP) equations. q-HAM contains the parameter h which is used for adjusting the suitable convergence

interval. The results show that the obtained approximate solutions are compatible with the exact solutions. As a result, q-HAM is an efficient

and reliable technique to obtain the approximate analytical solutions of nonlinear conformable fractional partial differential equations. When

µ = 1 is chosen, it is seen that the solutions are the same of the non-fractional cases. In fact, this is the nature of fractional calculus. When

fractional operations are converted to integer order operations, the results are consistent.
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Abstract

In this paper, a new identity for functions defined on an open invex subset of set of real

numbers is established, and by using this identity and the Hölder and Power mean integral

inequalities we present new integral inequalities for functions whose powers of derivatives

in absolute value are preinvex and prequasiinvex. We should especially mention that the

results obtained in special cases coincide with the well-known results in the literature.

1. Introduction

Definition 1.1. A function f : I ⊆R→R is said to be convex if the inequality f (tx+(1− t)y)≤ t f (x)+(1− t) f (y) is valid for all x,y ∈ I

and t ∈ [0,1]. If this inequality reverses, then f is said to be concave on interval I 6=∅.

This definition is well known in the literature. Convexity theory has appeared as a powerful technique to study a wide class of unrelated

problems in pure and applied sciences.

Let f : I ⊆ R→ R be a convex function on the interval I of real numbers and a,b ∈ I with a < b. The celebrated double inequality

f

(

a+b

2

)

≤
1

b−a

b
∫

a

f (x)dx ≤
f (a)+ f (b)

2
,

is well known in the literature as Hermite-Hadamard’s integral inequality for convex functions [22]. Both inequalities hold in the reserved

direction if the function f is concave. The classical Hermite-Hadamard integral inequality provides estimates of the mean value of a

continuous convex or concave function. Hadamard’s integral inequality for convex or concave functions has received renewed attention

in recent years and a remarkable variety of refinements and generalizations have been found; for example see [4, 9, 10, 18, 21, 22, 24].

Hermite-Hadamard (H-H) integral inequality (see [5]) has been considered the most useful inequality in mathematical analysis. Some of the

classical inequalities for means can be derived from the above H-H inequality for particular choices of the function f .

Definition 1.2. A function f : I ⊆ R→ R is said to be quasi-convex if the inequality f (tx+(1− t)y) ≤ max{ f (x) , f (y)} holds for all

x,y ∈ I and t ∈ [0,1]. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not

convex [6].

Let us recall the notions of preinvexity and prequasiinvexity which are signicant generalizations of the notions of convexity and quasi-

convexity respectively, and some related results.

Definition 1.3 ( [25]). Let K be a non-empty subset in R
n and η : K×K →R

n. Let x ∈ K, then the set K is said to be invex at x with respect

to η (·, ·), if x+ tη (y,x) ∈ K, ∀x,y ∈ K t ∈ [0,1] .K is said to be an invex set with respect to η if K is invex at each x ∈ K. The invex set K

is also called η-connected set.

This definition essentially says that there is a path starting from a point x which is contained in K. We do not require that the point y should

be one of the end points of the path. This observation plays an important role in our analysis. Note that, if we demand that y should be an

end point of the path for every pair of points x,y ∈ K, then η (y,x) = y− x, and consequently invexity reduces to convexity [1]. Thus, it is

true that every convex set is also an invex set with respect to η (y,x) = y− x, but the converse is not necessarily true, see [14, 26] and the

references therein. For the sake of simplicity, we always assume that K = [x,x+ tη (y,x)], unless otherwise specified.

Email address and ORCID number: huriyekadakal@hotmail.com, https://orcid.org/0000-0002-0304-7192, (H. Kadakal)
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Definition 1.4 ( [25]). A function f : K → R on an invex set K ⊆ R is said to be preinvex with respect to η , if

f (u+ tη(v,u))≤ (1− t) f (u)+ t f (v), ∀u,v ∈ K, t ∈ [0,1]

The function f is said to be preconcave if and only if − f is preinvex.

It is to be noted that every convex function is preinvex with respect to the map η (y,x) = x− y but the converse is not true see for instance.

Definition 1.5 ( [2]). A function f : K → R on an invex set K ⊆ R is said to be prequasiinvex with respect to η , if

f (u+ tη(v,u))≤ max{ f (u), f (v)} , ∀u,v ∈ K, t ∈ [0,1] .

Also every quasi-convex function is a prequasiinvex with respect to the map η(v,u) = v− u but the converse does not hold, see for

example [2].

Mohan and Neogy [14] introduced Condition C as follows:

Definition 1.6 ( [14]). Let S ⊆ R be an open invex subset with respect to the map η : S×S → R. We say that the function η satisfies the

Condition C if, for any x,y ∈ S and any t ∈ [0,1],

η (y,y+ tη (x,y)) =−tη (x,y) (1.1)

η (x,y+ tη (x,y)) = (1− t)η (x,y) . (1.2)

Note that, from the Condition C, we have

η (y+ t2η (x,y) ,y+ t1η (x,y)) = (t2 − t1)η (x,y)

for any x,y ∈ S and any t1, t2 ∈ [0,1].

In recent years, many mathematicians have been studying about preinvexity and types of preinvexity. These studies include, among others,

the work of Ben-Israel and Mond [7], Pini [23], Noor [16, 17], Yang and Li [27] and Weir and Mond [25]. Ben-Israel and Mond , Weir

and Mond and Noor have studied the basic properties of the preinvex functions and their role in optimization, variational inequalities and

equilibrium problems.

In a recent paper, Noor [15] has obtained the following Hermite-Hadamard type integral inequalities for the preinvex functions.

Theorem 1.7 ( [15]). Let f : [a,a+η(b,a)]→ (0,∞) be a preinvex function on the interval of the real numbers K◦ (the interior of K) and

a,b ∈ K◦ with η(b,a)> 0. Then the following inequalities hold

f

(

2a+η(b,a)

2

)

≤
1

η(b,a)

∫ a+η(b,a)

a
f (x)dx ≤

f (a)+ f (b)

2
(1.3)

For several recent results on inequalities for preinvex and prequasiinvex functions which are connected to (1.3), we refer the interested reader

to [3, 11, 13, 19, 20] and the references therein.

Let 0 < a < b, throughout this paper we will use

A(a,b) =
a+b

2

Lp (a,b) =

(

bp+1 −ap+1

(p+1)(b−a)

)

1
p

, a 6= b, p ∈ R, p 6=−1,0

for the arithmetic and generalized logarithmic means, respectively.

2. Main results

In this section, using a general integral identity for a differentiable functions, we establish some new integral inequalities for mappings whose

derivative in absolute value at certain powers are preinvex and prequasiinvex. We will use the following Lemma to prove our main results.

Lemma 2.1. Let K ⊆ R be an open invex subset with respect to mapping η (·, ·) : K ×K → R
n and a,b ∈ K with η(b,a)> 0. Suppose that

f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . Then the following identity holds:

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx = η(b,a)

∫ 1

0
(a+ tη(b,a)) f ′(a+ tη(b,a))dt.

Proof. By changing the variable and integrating by parts, we have

η(b,a)
∫ 1

0
(a+ tη(b,a)) f ′(a+ tη(b,a))dt =

∫ a+η(b,a)

a
x f ′(x)dx

= f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx.

This completes the proof of lemma.
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Theorem 2.2. Let K ⊆R be an open invex subset with respect to mapping η (·, ·) : K×K →R
n and a,b ∈ K with η(b,a)> 0. Suppose that

f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is preinvex on K for q > 1, then the following inequality

holds:
∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1/q(b,a)C

1
p

η (p,a,b)A
1
q
(∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q)
. (2.1)

where,

Cη (p,a,b) :=











η(b,a)L
p
p [a+η(b,a),a] , a > 0, a+η(b,a)> 0,

2
p+1 A

(

(a+η(b,a))p+1 ,(−a)p+1
)

, a < 0, a+η(b,a)> 0,

η(b,a)L
p
p [−a,−(a+η(b,a))] , a < 0, a+η(b,a)< 0.

Proof. If | f ′|q is preinvex on [a,a+η(b,a)] for q> 1, using Lemma 2.1, the Hölder integral inequality and the inequality | f ′(a+ tη(b,a))|q ≤
t | f ′(b)|q +(1− t) | f ′(a)|q ,we have

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)
∫ 1

0
|(a+ tη(b,a))|

∣

∣ f ′(a+ tη(b,a))
∣

∣dt

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|p dt

)
1
p
(

∫ 1

0

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dt

)
1
q

≤ η
1
q (b,a)

(

∫ a+η(b,a)

a
|x|p dx

)

1
p
(

| f ′(a)|q + | f ′(b)|q

2

)
1
q

= η
1
q (b,a)C

1
p

η (p,a,b)A
1
q
(∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q)
.

This completes the proof of theorem.

Corollary 2.3. Suppose that all the assumptions of Theorem 2.2 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is convex on K

for q > 1 we have

∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)
1
q
−1

C
1
p (p,a,b)A

1
q
(∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q)
.

where,

C (p,a,b) =











(b−a)L
p
p(a,b), a > 0,b > 0

2
p+1 A

(

bp+1,(−a)p+1
)

, a < 0, b > 0,

(b−a)L
p
p(−a,−b), a < 0, b < 0.

We note that this result coincides with Corollary 2.3. in the special case a,b > 0 [12].

Remark 2.4. If the mapping η satisfies condition C then by using of the preinvexity of | f ′|q we get

∣

∣ f ′ (a+ tη(b,a))
∣

∣

q
=
∣

∣ f ′ (a+η(b,a)+(1− t)η(a,a+η(b,a)))
∣

∣

q
≤ t

∣

∣ f ′ (a+η(b,a))
∣

∣

q
+(1− t)

∣

∣ f ′(a)
∣

∣

q
. (2.2)

for every t ∈ [0,1] .
If we use the inequality (2.2) in the proof of Theorem 2.2, then the inequality (2.1) becomes to the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1
q (b,a)C

1
p

η (p,a,b)A
1
q
(∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(a+η(b,a))
∣

∣

q)
. (2.3)

We note that by using of the preinvexity of | f ′|q we have | f ′(a+η(b,a))|q ≤ | f ′(b)|q .Therefore, the inequality (2.3) is better than the

inequality (2.1).

Theorem 2.5. Let K ⊆R be an open invex subset with respect to mapping η (·, ·) : K×K →R
n and a,b ∈ K with η(b,a)> 0. Suppose that

f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is preinvex on K for q ≥ 1, then the following inequality

holds:
∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
− 1

q (b,a)D
1− 1

q

1,η (a,b)
[∣

∣ f ′(b)
∣

∣

q
D2,η (a,b)+

∣

∣ f ′(a)
∣

∣

q
D3,η (a,b)

]
1
q

(2.4)

where

D1,η (a,b) :=











η(b,a)A(a,a+η(b,a)) , a > 0, a+η(b,a)> 0

A
(

a2, [a+η(b,a)]2
)

, a < 0, a+η(b,a)> 0

−η(b,a)A(a,a+η(b,a)) , a < 0, a+η(b,a)< 0

,

D2,η (a,b) :=















η(b,a)
6

[

(2a+η(b,a))(2η(b,a)−a)+2a2
]

, a > 0, a+η(b,a)> 0
1
6

[

(a+η(b,a))2 (2η(b,a)−a)−a3
]

, a < 0, a+η(b,a)> 0

−
η2(b,a)

6 (3a+2η(b,a)) , a < 0, a+η(b,a)< 0
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and

D3,η (a,b) :=















η(b,a)
6

[

(a+η(b,a))(2a+η(b,a))−2a2
]

, a > 0, a+η(b,a)> 0
1
6

[

(a+η(b,a))3 +a2 (a+3η(b,a))
]

, a < 0, a+η(b,a)> 0

−
η2(b,a)

6 (3a+η(b,a)) , a < 0, a+η(b,a)< 0.

Proof. From Lemma 2.1 and Power-mean integral inequality, we obtain

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)
∫ 1

0
|(a+ tη(b,a))|

∣

∣ f ′(a+ tη(b,a))
∣

∣dt

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|dt

)1− 1
q

×

(

∫ 1

0
|a+ tη(b,a)|

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dt

)
1
q

≤ η
1
q (b,a)

(

∫ a+η(b,a)

a
|x|dx

)1− 1
q

×

(

∫ 1

0
|a+ tη(b,a)|

[

t
∣

∣ f ′(b)
∣

∣

q
+(1− t)

∣

∣ f ′(a)
∣

∣

q]
dt

)
1
q

= η
− 1

q (b,a)

(

∫ a+η(b,a)

a
|x|dx

)1− 1
q
(

∣

∣ f ′(b)
∣

∣

q
∫ a+η(b,a)

a
(x−a) |x|dx +

∣

∣ f ′(a)
∣

∣

q
∫ a+η(b,a)

a
[η(b,a)− (x−a)] |x|dx

)

1
q

= η
− 1

q (b,a)D
1− 1

q

1,η (a,b)
[∣

∣ f ′(b)
∣

∣

q
D2,η (a,b)+

∣

∣ f ′(a)
∣

∣

q
D3,η (a,b)

]
1
q .

This completes the proof of theorem.

Corollary 2.6. Suppose that all the assumptions of Theorem 2.5 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is convex on K

for q ≥ 1 we have

∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)−1− 1
q D

1− 1
q

1 (a,b)
[∣

∣ f ′(b)
∣

∣

q
D2 (a,b)+

∣

∣ f ′(a)
∣

∣

q
D3 (a,b)

]
1
q ,

where

D1(a,b) =







(b−a)A(a,b) , a > 0, b > 0

A
(

a2,b2
)

, a < 0, b > 0

−(b−a)A(a,b) , a < 0, b < 0

,

D2(a,b) =







1
6 (b−a)2(2b+a), a > 0, b > 0
1
6

[

b2 (2b−3a)−a3
]

, a < 0, b > 0

− 1
6 (b−a)2 (a+2b) , a < 0, b < 0

and

D3(a,b) =







1
6 (b−a)2(b+2a), a > 0, b > 0

1
6

[

b3 +a2 (3b−2a)
]

, a < 0, b > 0

− 1
6 (b−a)2 (b+2a) , a < 0, b < 0.

We note that this result coincides with Corollary 2.6 in the special case a,b > 0 [12].

Remark 2.7. If the mapping η satisfies condition C then using the inequality (2.2) in the proof of Theorem 2.5, the inequality (2.4) becomes

to the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
− 1

q (b,a)D
1− 1

q

1 (a,b)
[∣

∣ f ′(a+η(b,a))
∣

∣

q
D2 (a,b)+

∣

∣ f ′(a)
∣

∣

q
D3 (a,b)

]
1
q . (2.5)

We note that by using of the preinvexity of | f ′|q we have | f ′(a+η(b,a))|q ≤ | f ′(b)|q .Therefore, the inequality (2.5) is better than the

inequality (2.4).

Corollary 2.8. If we take q = 1 in Theorem 3, then we have the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤
1

η(b,a)

[∣

∣ f ′(b)
∣

∣D2,η (a,b)+
∣

∣ f ′(a)
∣

∣D3,η (a,b)
]

Theorem 2.9. Let K ⊆R be an open invex subset with respect to mapping η (·, ·) : K×K →R
n and a,b ∈ K with η(b,a)> 0. Suppose that

f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is preinvex on K for q > 1, then the following inequality

holds:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1− 2

q (b,a)
[∣

∣ f ′(b)
∣

∣

q
E1,η (q,a,b)+

∣

∣ f ′(a)
∣

∣

q
E2,η (q,a,b)

]
1
q (2.6)
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where

E1,η (q,a,b) :=















η(b,a)L
q+1
q+1 (a+η(b,a),a)−aη(b,a)L

q
q (a+η(b,a),a) , a > 0,a+η(b,a)> 0

η(b,a)L
q+1
q+1 (a+η(b,a),−a)− 2a

q+1 A
(

(a+η(b,a))q+1 ,(−a)q+1
)

, a < 0, a+η(b,a)> 0

η(b,a)L
q+1
q+1 [−(a+η(b,a)) ,−a]+ 2a

q+1 A
(

[−(a+η(b,a))]q+1 ,(−a)q+1
)

, a < 0, a+η(b,a)< 0

and

E2,η (q,a,b) :=















−η(b,a)L
q+1
q+1 (a+η(b,a),a)+η(b,a) [η(b,a)−a]L

q
q (a+η(b,a),a) , a > 0, a+η(b,a)> 0

−η(b,a)L
q+1
q+1 (a+η(b,a),−a)+ 2a

q+1 [η(b,a)+a]A
[

(a+η(b,a))q+1 ,(−a)q+1
]

, a < 0,a+η(b,a)> 0

−η(b,a)L
q+1
q+1 [−(a+η(b,a)) ,−a]−η(b,a) [η(b,a)+a]L

q
q (−(a+η(b,a)) ,−a) , a < 0, a+η(b,a)< 0.

Proof. Since| f ′|q is preinvex on [a,a+η(b,a)] for q > 1, using Lemma 2.1 and the Hölder integral inequality, we have the following

inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)

(

∫ 1

0
1pdx

)
1
p
(

∫ 1

0
|a+ tη(b,a)|q

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dx

)
1
q

= η(b,a)

(

∫ 1

0
|a+ tη(b,a)|q

[

t
∣

∣ f ′(b)
∣

∣

q
+(1− t)

∣

∣ f ′(a)
∣

∣

q]
dx

)
1
q

= η
1− 2

q (b,a)

(

∣

∣ f ′(b)
∣

∣

q
∫ a+η(b,a)

a
(x−a) |x|q dx +

∣

∣ f ′(a)
∣

∣

q
∫ a+η(b,a)

a
[η(b,a)− x+a] |x|q dx

)

1
q

= η
1− 2

q (b,a)
[∣

∣ f ′(b)
∣

∣

q
E1,η (q,a,b)+

∣

∣ f ′(a)
∣

∣

q
E2,η (q,a,b)

]
1
q .

This completes the proof of theorem.

Corollary 2.10. Suppose that all the assumptions of Theorem 2.9 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is convex on K

for q > 1 we have
∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)−
2
q
[∣

∣ f ′(b)
∣

∣

q
E1 (q,a,b)+

∣

∣ f ′(a)
∣

∣

q
E2 (q,a,b)

]
1
q ,

where

E1 (q,a,b) =















(b−a)L
q+1
q+1 (b,a)−a(b−a)L

q
q (b,a) , a > 0, b > 0

(b−a)L
q+1
q+1 (b,−a)− 2a

q+1 A
(

bq+1,(−a)q+1
)

, a < 0, b > 0

(b−a)L
q+1
q+1 (−b,−a)+ 2a

q+1 A
(

[−(b)]q+1 ,(−a)q+1
)

,a < 0, b < 0

and

E2 (q,a,b) =















−(b−a)
[

L
q+1
q+1 (b,a)−bL

q
q (b,a)

]

, a > 0, b > 0

−(b−a)L
q+1
q+1 (b,−a)+ 2ab

q+1 A
(

bq+1,(−a)q+1
)

, a < 0, b > 0

−(b−a)
[

L
q+1
q+1 (−b,−a)+bL

q
q (−b,−a)

]

, a < 0, b < 0

We note that this result coincides with Corollary 2.13 in the special case a,b > 0 [12].

Remark 2.11. If the mapping η satisfies condition C then using the inequality (2.2) in the proof of Theorem 2.9, then the inequality (2.6)

becomes to the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1− 2

q (b,a)
[∣

∣ f ′((a+η(b,a))
∣

∣

q
E1 (q,a,b)+

∣

∣ f ′(a)
∣

∣

q
E2 (q,a,b)

]
1
q .

(2.7)

Note that the inequality (2.7) is better than the inequality (2.6).

Theorem 2.12. Let K ⊆ R be an open invex subset with respect to mapping η (·, ·) : K ×K → R
n and a,b ∈ K with η(b,a)> 0. Suppose

that f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is preconcave on K for q > 1, then the following

inequality holds:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)F
1
p

η (p,a,b)

∣

∣

∣

∣

f ′
(

2a+η(b,a)

2

)∣

∣

∣

∣

where

Fη (p,a,b) :=











L
p
p [a+η(b,a),a] , a > 0, a+η(b,a)> 0,

2A((a+η(b,a))p+1,(−a)p+1)
(p+1)η(b,a)

, a < 0, a+η(b,a)> 0,

L
p
p [−a,−(a+η(b,a))] , a < 0, a+η(b,a)< 0.
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Proof. Since | f ′|q is preconcave on [a,a+η(b,a)] for q > 1, with respect to Hermite-Hadamard inequality we get
b
∫

a
| f ′(x)|q dx ≤

η(b,a)
∣

∣

∣
f ′
(

2a+η(b,a)
2

)∣

∣

∣

q
. Using Lemma 2.1 and the Hölder integral inequality we have

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤
∫ a+η(b,a)

a
|x|

∣

∣ f ′(x)
∣

∣dx

≤

(

∫ a+η(b,a)

a
|x|p dx

)

1
p
(

∫ a+η(b,a)

a

∣

∣ f ′(x)
∣

∣

q
dx

)

1
q

= η(b,a)

(

1

η(b,a)

∫ a+η(b,a)

a
|x|p dx

)

1
p
∣

∣

∣

∣

f ′
(

2a+η(b,a)

2

)∣

∣

∣

∣

= η(b,a)F
1
p

η (p,a,b)

∣

∣

∣

∣

f ′
(

2a+η(b,a)

2

)∣

∣

∣

∣

.

This completes the proof of theorem.

Corollary 2.13. Suppose that all the assumptions of Theorem 2.12 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is preconcave

on K for q > 1 we have

∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ F
1
p (p,a,b)

∣

∣

∣

∣

f ′
(

a+b

2

)∣

∣

∣

∣

where

F (p,a,b) =











L
p
p (b,a) , a > 0, b > 0,

2A(bp+1,(−a)p+1)
(p+1)η(b,a)

, a < 0, b > 0,

L
p
p (−a,−b) , a < 0, b < 0.

We note that this result coincides with Corollary 2.17 in the special case a,b > 0 [12].

Now we will give new results for prequasiinvex functions by using Lemma 2.1.

Theorem 2.14. Let K ⊆ R be an open invex subset with respect to mapping η (·, ·) : K ×K → R
n and a,b ∈ K with η(b,a)> 0. Suppose

that f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is prequasiinvex on K for q > 1, then the following

inequality holds:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)Cη (p,a,b)
(

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}) 1
q (2.8)

where

Cη (p,a,b) :=











L
p
p [a+η(b,a),a] , a > 0, a+η(b,a)> 0,

2A[(a+η(b,a))p+1,(−a)p+1]
(p+1)η(b,a)

, a < 0, a+η(b,a)> 0,

L
p
p [−a,−(a+η(b,a))] , a < 0, a+η(b,a)< 0.

Proof. If | f ′|q is prequasiinvex on [a,a+η(b,a)] for q> 1, using Lemma 2.1, the Hölder integral inequality and the inequality | f ′(a+ tη(b,a))|q ≤
max

{

| f ′(a)|q , | f ′(b)|q
}

we have

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)
∫ 1

0
|(a+ tη(b,a))|

∣

∣ f ′(a+ tη(b,a))
∣

∣dt

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|p dt

)
1
p
(

∫ 1

0

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dt

)
1
q

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|p dt

)
1
p
(

∫ 1

0
max

{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}
dt

)
1
q

= η(b,a)

(

1

η(b,a)

∫ a+η(b,a)

a
|x|p dx

)

1
p
(

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}) 1
q

= η(b,a)Cη (p,a,b)
(

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}) 1
q ,

This completes the proof of theorem.

Corollary 2.15. Suppose that all the assumptions of Theorem 2.14 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is prequasiinvex

on K for q > 1 we have

∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤C (p,a,b)
(

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}) 1
q
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where

C (p,a,b) =











L
p
p (b,a) , a > 0, b > 0,

2A(bp+1,(−a)p+1)
(p+1)(b−a)

, a < 0, b > 0,

L
p
p (−a,−b) , a < 0, b < 0.

We note that this result coincides with Corollary 2.1 in the special case a,b > 0 [8].

Remark 2.16. If the mapping η satisfies condition C then by use of the prequasiinvexity of | f ′|q we get

∣

∣ f ′ (a+ tη(b,a))
∣

∣

q
=
∣

∣ f ′ (a+η(b,a)+(1− t)η(a,a+η(b,a)))
∣

∣

q

≤ max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′ (a+η(b,a))
∣

∣

q}
(2.9)

for every t ∈ [0,1] .
If we use the inequality (2.9) in the proof of Theorem 2.14, then the inequality (2.8) becomes to the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)Cη (p,a,b)
(

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(a+η(b,a))
∣

∣

q}) 1
q (2.10)

We note that by use of the prequasiinvexity of | f ′|q we have | f ′(a+η(b,a))|q ≤ max
{

| f ′(a)|q , | f ′(b)|q
}

. Therefore, the inequality (2.10) is

better than the inequality (2.8).

Theorem 2.17. Let K ⊆ R be an open invex subset with respect to mapping η (·, ·) : K ×K → R
n and a,b ∈ K with η(b,a)> 0. Suppose

that f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is prequasiinvex on K for q ≥ 1, then the following

inequality holds:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q D1,η (a,b) (2.11)

where

D1,η (a,b) :=











η(b,a)A(a,a+η(b,a)) , a > 0, a+η(b,a)> 0

A
(

a2, [a+η(b,a)]2
)

, a < 0, a+η(b,a)> 0

−η(b,a)A(a,a+η(b,a)) , a < 0, a+η(b,a)< 0

.

Proof. From Lemma 2.1 and Power-mean integral inequality, we obtain

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)
∫ 1

0
|(a+ tη(b,a))|

∣

∣ f ′(a+ tη(b,a))
∣

∣dt

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|dt

)1− 1
q
(

∫ 1

0
|a+ tη(b,a)|

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dt

)
1
q

≤ η
1
q (b,a)

(

∫ a+η(b,a)

a
|x|dx

)1− 1
q

×

(

∫ 1

0
|a+ tη(b,a)|

[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}]
dt

)
1
q

=
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q

∫ a+η(b,a)

a
|x|dx

=
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q D1,η (a,b).

This completes the proof of theorem.

Corollary 2.18. Suppose that all the assumptions of Theorem 2.17 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is prequasiinvex

on K for q ≥ 1 we have
∣

∣

∣

∣

∣

f (b)b− f (a)a−
∫ b

a f (x)dx

b−a

∣

∣

∣

∣

∣

≤
D1(a,b)

b−a

[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q

where

D1(a,b) =







(b−a)A(a,b) , a > 0, b > 0

A
(

a2,b2
)

, a < 0, b > 0

−(b−a)A(a,b) , a < 0, b < 0

.

We note that this result coincides with Corollary 6 in the special case a,b > 0 [8].

Remark 2.19. If we use the inequality (2.9) in the proof of Theorem 2.17, then the inequality (2.11) becomes the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(a+η(b,a))
∣

∣

q}] 1
q D1,η (a,b)

This inequality is better than the inequality (2.11).
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Corollary 2.20. If we take q = 1 in Theorem 7, then we have the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ max
{∣

∣ f ′(a)
∣

∣ ,
∣

∣ f ′(b)
∣

∣

}

D1(a,b)

Theorem 2.21. Let K ⊆ R be an open invex subset with respect to mapping η (·, ·) : K ×K → R
n and a,b ∈ K with η(b,a)> 0. Suppose

that f : K → R is a differentiable function on K such that f ′ ∈ L [a,a+η(b,a)] . If | f ′|q is prequasiinvex on K for q > 1, then the following

inequality holds:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1− 1

q (b,a)
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q F

1
q

1,η (q,a,b) (2.12)

where

F1,η (p,a,b) :=











η(b,a)L
q
q [a+η(b,a),a] , a > 0, a+η(b,a)> 0,

2
q+1 A

(

(a+η(b,a))p+1 ,(−a)p+1
)

, a < 0, a+η(b,a)> 0,

η(b,a)L
q
q [−a,−(a+η(b,a))] , a < 0, a+η(b,a)< 0.

Proof. Since| f ′|q for q > 1 is prequasiinvex on [a,b], using Lemma 2.1 and the Hölder integral inequality, we have the following inequality,

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η(b,a)

(

∫ 1

0
1pdx

)
1
p
(

∫ 1

0
|a+ tη(b,a)|q

∣

∣ f ′(a+ tη(b,a))
∣

∣

q
dx

)
1
q

≤ η(b,a)

(

∫ 1

0
|a+ tη(b,a)|q

[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}]
dx

)
1
q

= η(b,a)
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q

(

∫ 1

0
|a+ tη(b,a)|q dx

)
1
q

= η
1− 1

q (b,a)
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q

(

∫ a+η(b,a)

a
|x|q dt

)

1
q

= η
1− 1

q (b,a)
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q F

1
q

1,η (q,a,b) ,

This completes the proof of theorem.

Corollary 2.22. Suppose that all the assumptions of Theorem 2.21 are satisfied. If we choose η(b,a) = b−a then when | f ′|q is prequasiinvex

on K for q > 1 we have

∣

∣

∣

∣

f (b)b− f (a)a

b−a
−

1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)−
1
q
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(b)
∣

∣

q}] 1
q F

1
q

1 (q,a,b)

where

F1 (p,a,b) =











(b−a)L
q
q (b,a) , a > 0, b > 0,

2
q+1 A

(

bp+1,(−a)p+1
)

, a < 0, b > 0,

(b−a)L
q
q (−a,−b) , a < 0, b < 0.

We note that this result coincides with Corollary 5 in the special case a,b > 0 [8].

Remark 2.23. If we use the inequality (2.9) in the proof of Theorem 2.21, then the inequality (2.12) becomes the following inequality:

∣

∣

∣

∣

f (a+η(b,a)) [a+η(b,a)]− f (a)a−
∫ a+η(b,a)

a
f (x)dx

∣

∣

∣

∣

≤ η
1− 1

q (b,a)
[

max
{∣

∣ f ′(a)
∣

∣

q
,
∣

∣ f ′(a+η(b,a))
∣

∣

q}] 1
q F

1
q

1,η (q,a,b)

This inequality is better than the inequality (2.12).

References

[1] T. Antczak, Mean value in invexity analysis, Nonl. Anal. 60(2005), 1473-1484.
[2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequasiinvex functions, RGMIA Research Report Collection,

14(2011), Article 48, 7 pp.
[3] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal.

Appl. 2012, 2012:247.
[4] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University,

2000.
[5] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893),

171–215.
[6] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser.

Volume 34, 2007, Pages 82–87.
[7] A. B. Israel and B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B 28(1), 1-9 (1986).
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[10] H. Kadakal, M. Kadakal and İ. İşcan, Some New Integral Inequalities for n-Times Differentiable r-Convex and r-Concave Functions, Miskolc
Mathematical Notes, 20(2) (2019), 997-1011.

[11] M. A. Latif and S. S. Dragomir, Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the
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[19] S. Özcan, On Refinements of Some Integral Inequalities for Differentiable Prequasiinvex Functions, Filomat, 33(14), (2019), 4377-4385.
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Abstract

The aim of the present paper is to study the properties of Riemannian manifolds equipped

with a projective semi-symmetric connection.

1. Introduction

At the foundation of Riemannian geometry there are three ideas. The first of these is the realization of the fact that a non-Euclidean geometry

exists (N. I. Lobachevskii). The second is the concept of the interior geometry of surfaces by C. F. Gauss and third is the concept of an

n-dimensional space by B. Riemann. Our present paper belongs to the study of third case. The idea of Riemannian geometry played an

important role in the formulation of the general theory of relativity by A. Einstein. A non-flat n-dimensional Riemannian manifold (Mn,g),
(n > 2), is said to be quasi Einstein manifold if its Ricci tensor S of type (0,2) is not identically zero and satisfies the tensorial expression

S(X ,Y ) = ag(X ,Y )+bπ(X)π(Y ), X ,Y ∈ T M

for smooth functions a and b(6= 0), where π is a non-zero 1-form associated with the Riemannian metric g and the associated unit vector

field ξ [14]. The unit vector field ξ is called the generator and the 1-form π is called the associated 1-form of the manifold. It is observed

that a collection of non-interacting pressure less perfect fluid of general relativity is a four dimensional semi-Riemannian quasi Einstein

manifold whose associated scalars are r
2 and κρ , where κ is the gravitational constant, ρ and r are the energy density and scalar curvature,

the generator of the manifold being the time like velocity vector field of the perfect fluid. If the generator of a quasi Einstein manifold is

parallel vector field, then the manifold is locally a product manifold of one-dimensional distribution U and (n−1) dimensional distribution

U⊥, where U⊥ is involutive and integrable [23]. In an n-dimensional quasi Einstein manifold the Ricci tensor has precisely two distinct

eigen values a and a+b, where the multiplicity of a is n−1 and a+b is simple [14]. A proper η-Einstein contact metric manifold is a

natural example of a quasi Einstein manifold ( [7], [15]). Some of the physical and geometrical properties of quasi Einstein manifolds have

been noticed in ( [1], [16], [28], [45]- [47]).

The k-nullity distribution N(k) of a Riemannian manifold Mn is defined by

N(k) : p−→Np(k) =
{

Z ∈ TpM : R(X ,Y )Z = k [g(Y,Z)X −g(X ,Z)Y ]
}

for arbitrary vector fields X , Y and Z, where R represents the Riemannian curvature tensor and k is a smooth function on Mn [41]. The quasi

Einstein manifold is called an N(k)-quasi Einstein manifold if the generator ξ of the manifold Mn belongs to k-nullity distribution [17].

Email addresses and ORCID numbers: sk22 math@yahoo.co.in (S. K. Chaubey), pankaj.fellow@yahoo.co.in, https://orcid.org/0000-0002-3313-6006 (P. R. B. Kanaujla),

prof sky16@yahoo.com (K. Yadav)
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A space with constant curvature plays a central role in the development of differential geometry, Mathematical Physics and mechanics.

Cartan ( [8], [9]) developed the idea of a locally symmetric Riemannian manifold in 1926, which is a natural generalization of manifolds of

constant curvature. The condition of local symmetry is equivalent to the fact that at every point x ∈ M, the local geodesic symmetry F(x) is

an isometry [6]. The idea of locally φ -symmetric Sasakian manifold was introduced by Takahashi [44] in 1977. Since then, the properties of

such manifolds have been studied by several geometers on different spaces.

The notion of a semi-symmetric linear connection on a differentiable manifold has been introduced by Friedmann and Schouten [2] in

1924. Hayden [10] in 1932, introduced and studied the idea of semi-symmetric linear connection with torsion on a Riemannian manifold.

After a long interval, Yano [13] started the systematic study of semi-symmetric metric connection on a Riemannian manifold in 1970. In

this connection, the properties of semi-symmetric metric connection are studied in ( [5], [19], [25], [27], [30], [36], [40], [42], [43], [48])

and others. P. Zhao and H. Song [21] defined and studied a projective semi-symmetric connection on Riemannian manifold in 2001. The

properties of this connection has been studied by Zhao [22], Pal, Pandey and Singh [29] and others.

Motivated from the above studies, we start the study of Riemannian manifolds equipped with a projective semi-symmetric connection. The

present paper is organized as follows: After introductory section, we brief the projective semi-symmetric connection in Section 2. It is

proved that the curvature tensor with respect to projective semi-symmetric connection ∇̃ coincide with the projective curvature tensor of the

Levi-Civita connection ∇. We also prove that the manifold (Mn,g) endowed with ∇̃ is a certain class of quasi Einstein manifold and the

characteristic vector field ξ belongs to λ -nullity distribution with respect to the connection ∇̃. Section 3 deals with the study of projective

curvature tensor endowed with projective semi-symmetric connection ∇̃ and prove that the projective curvature tensors with respect to

connections ∇̃ and ∇ coincide. The properties of semi-symmetric Riemannian manifold admitting a projective semi-symmetric connection ∇̃

are given in Section 4. It is proved that the manifold is semi-symmetric for ∇̃ if and only if it is flat. In Section 5, we study Riemannian

manifold endowed with a projective semi-symmetric connection satisfying R̃ · P̃ = 0 and prove some interesting results. In the last section,

we construct an example which support the existence of such connection ∇̃ and verify some results.

2. Projective semi-symmetric connection

Let Mn be an n-dimensional Riemannian manifold equipped with the Riemannian metric g and ∇ denotes the Levi-Civita connection on

(Mn,g) and satisfy

π(X) = g(X ,ξ ) and g(ξ ,ξ ) = 1 (2.1)

for arbitrary vector field X , where π is the first form associated with Riemannian metric g and ξ is a unit vector field of (Mn,g). A linear

connection ∇̃ defined on (Mn,g) is said to be semi-symmetric if the torsion tensor T̃ of the connection ∇̃ defined as

T̃ (X ,Y ) = ∇̃XY − ∇̃Y X − [X ,Y ]

and satisfies

T̃ (X ,Y ) = π(Y )X −π(X)Y,

i.e. T̃ 6= 0 for arbitrary vector fields X and Y , otherwise it is symmetric. Also, a linear connection ∇̃ on (Mn,g) is said to be metric if ∇̃g = 0,

otherwise non-metric. If the geodesics with respect to the linear connection ∇̃ are consistent with those of Levi-Civita connection ∇, then

∇̃ is called the projective equivalent connection with ∇. If we consider the linear connection ∇̃ is semi-symmetric as well as projective

equivalent, then it is called projective semi-symmetric connection [21]. The tensorial relation between projective semi-symmetric and

Levi-Civita connections on Riemannian manifold (Mn,g) is given by

∇̃XY = ∇XY +ψ(Y )X +ψ(X)Y +φ(Y )X −φ(X)Y (2.2)

for arbitrary vector fields X and Y ; where the 1-form φ and ψ are defined as

φ(X) =
1

2
π(X) and ψ(X) =

n−1

2(n+1)
π(X) (2.3)

for arbitrary vector fields X and Y [22]. From (2.1), (2.2) and (2.3), we have

(∇̃X g)(Y,Z) =
1

n+1
[2π(X)g(Y,Z)−nπ(Y )g(X ,Z)−nπ(Z)g(X ,Y )] (2.4)

for arbitrary vector fields X , Y and Z. Thus, the projective semi-symmetric connection ∇̃ is non-metric. The properties of semi-symmetric

non-metric connections have been noticed in ( [3], [4], [18], [24], [26], [31]- [34], [37]- [39]) and many others. It can be easily seen from [22]

that

R̃(X ,Y )Z = R(X ,Y )Z +β (X ,Y )Z +θ(X ,Z)Y −θ(Y,Z)X , (2.5)

where R̃ and R denote the curvature tensors with respect to the connections ∇̃ and ∇, respectively and θ , β are (0,2) type tensors satisfying

the following relations

θ(X ,Y ) = (∇X φ)(Y )+(∇X ψ)(Y )−ψ(X)ψ(Y )−φ(X)φ(Y )−ψ(X)φ(Y )−φ(X)ψ(Y ), (2.6)

β (X ,Y ) = (∇X ψ)(Y )− (∇Y ψ)(X)+(∇X φ)(Y )− (∇Y φ)(X) (2.7)
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for arbitrary vector fields X , Y and Z. Let us suppose that the characteristic vector field ξ is a parallel unit vector field with respect to the

Levi-Civita connection, i.e., ∇ξ = 0 and ||ξ ||= 1. This expression is equivalent to

(∇X π)(Y ) = ∇X π(Y )−π(∇XY ) = 0 (2.8)

and therefore (2.2) and (2.3) assert that

∇̃X ξ =
1

n+1
{nX −π(X)ξ}. (2.9)

In consequence of (2.1), (2.3) and (2.8), equations (2.6) and (2.7) become

β (X ,Y ) = 0 and θ(X ,Y ) = λπ(X)π(Y ), (2.10)

where λ =− n2

(n+1)2 . It can be easily observe from (2.5) and (2.10) that

R̃(X ,Y )Z = R(X ,Y )Z +λ{π(X)π(Z)Y −π(Y )π(Z)X}. (2.11)

Contracting (2.11) along X and then using (2.1), we have

S̃(Y,Z) = S(Y,Z)−λ (n−1)π(Y )π(Z), (2.12)

which gives

r̃ = r−λ (n−1).

Here S̃ and S; r̃ and r denote the Ricci tensors and scalar curvatures corresponding to the connections ∇̃ and ∇, respectively.

Theorem 2.1. An n-dimensional Riemannian manifold (Mn,g) equipped with a projective semi-symmetric connection ∇̃ satisfying (2.8)

holds the following curvature conditions:

(i) ′R̃(X ,Y,Z,U) =−′R̃(Y,X ,Z,U),
(ii) ′R̃(X ,Y,Z,U) 6=−′R̃(X ,Y,U,Z),

(iii) ′R̃(X ,Y,Z,U) 6=′ R̃(Z,U,X ,Y ),
(iv) R̃(X ,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y = 0,

(v) (∇̃X R̃)(Y,Z)U +(∇̃Y R̃)(Z,X)U +(∇̃Z R̃)(X ,Y )U = 2[π(X)R(Y,Z)U +π(Y )R(Z,X)U +π(Z)R(X ,Y )U ].

Proof. From (2.11), we have

′R̃(X ,Y,Z,U) =′ R(X ,Y,Z,U)+λ{π(X)π(Z)g(Y,U)−π(Y )π(Z)g(X ,U)} (2.13)

for all vector fields X ,Y,Z,U ∈ T (M), where ′R̃(X ,Y,Z,U) = g(R̃(X ,Y )Z,U) and ′R(X ,Y,Z,U) = g(R(X ,Y )Z,U). By considering (2.13)

and curvature properties of R, we can easily verify the results (i), (ii) and (iii). With the help of (2.11) and Bianchi’s first identity, we get

R̃(X ,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y = 0,

which shows that the Riemann curvature tensor with respect to the projective semi-symmetric connection ∇̃ satisfies the Bianchi’s first

identity. Covariant derivative of (2.11) with respect to ∇̃ gives

(∇̃X R̃)(Y,Z)U = (∇̃X R)(Y,Z)U +λ{π(U)(∇̃X π)(Y )Z +π(Y )(∇̃X π)(U)Z −π(U)(∇̃X π)(Z)Y −π(Z)(∇̃X π)(U)Y}. (2.14)

Also equations (2.1), (2.2), (2.3), (2.4), (2.8) and (2.9) yield

(∇̃X π)(Y ) =−
n−1

n+1
π(X)π(Y ) (2.15)

and

(∇̃X R)(Y,Z)U = (∇X R)(Y,Z)U +
2

n+1
π(X)R(Y,Z)U −

n

n+1
{π(Y )R(X ,Z)U +π(Z)R(Y,X)U +π(U)R(Y,Z)X}. (2.16)

In view of (2.15) and (2.16), (2.14) assumes the form

(∇̃X R̃)(Y,Z)U =(∇X R)(Y,Z)U +
2

n+1
π(X)R(Y,Z)U −

n

n+1
{π(Y )R(X ,Z)U +π(Z)R(Y,X)U +π(U)R(Y,Z)X}

−
2λ (n−1)

n+1
{π(X)π(U)π(Y )Z −π(X)π(Z)π(U)Y}.

(2.17)

The cyclic sum of (2.17) for vector fields X , Y , Z and use of Bianchi’s second identity for ∇ gives

(∇̃X R̃)(Y,Z)U +(∇̃Y R̃)(Z,X)U +(∇̃Z R̃)(X ,Y )U = 2[π(X)R(Y,Z)U +π(Y )R(Z,X)U +π(Z)R(X ,Y )U ].

This shows that a Riemannian manifold (Mn,g) endowed with a projective semi-symmetric connection ∇̃ satisfies the relation

(∇̃X R̃)(Y,Z)U +(∇̃Y R̃)(Z,X)U +(∇̃Z R̃)(X ,Y )U = 0

if and only if

π(X)R(Y,Z)U +π(Y )R(Z,X)U +π(Z)R(X ,Y )U = 0.
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Let us suppose that the manifold (Mn,g) is Ricci flat with respect to the projective semi-symmetric connection ∇̃, i.e., S̃ = 0 and therefore

equation (2.12) gives

S(Y,Z) = λ (n−1)π(Y )π(Z), (2.18)

which shows that the manifold (Mn,g), (n> 2), is a certain class of quasi Einstein manifold with the associated scalars a= 0 and b= λ (n−1).
In consequence of (2.18), (2.11) assumes the form

R̃(X ,Y )Z = P(X ,Y )Z, (2.19)

where P denotes the Weyl projective curvature tensor with respect to the Levi-Civita connection ∇ and is given as

P(X ,Y )Z = R(X ,Y )Z −
1

n−1
{S(Y,Z)X −S(X ,Z)Y} (2.20)

for all vector fields X ,Y,Z ∈ T (M). Thus we can conclude the results in the form of theorems as:

Theorem 2.2. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold equipped with a projective semi-symmetric connection ∇̃

and the characteristic vector field ξ of the manifold is a parallel unit vector field. If (Mn,g) is Ricci flat with respect to the connection ∇̃,

then the projective curvature with respect to Levi-Civita connection ∇ coincide with the curvature tensor of ∇̃.

Theorem 2.3. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold endowed with a projective semi-symmetric connection ∇̃ and

ξ is a parallel unit vector field with respect to the Levi-Civita connection. If (Mn,g) is Ricci flat with respect to ∇̃, then it is a certain class of

quasi Einstein manifold.

By our assumption, the characteristic vector field ξ is parallel unit vector field corresponding the Levi-Civita connection ∇ and therefore by

equation (2.8) we can easily calculate that R(X ,Y )ξ = 0. After considering this fact and (2.1), equation (2.11) assumes the form

R̃(X ,Y )ξ = λ{π(X)Y −π(Y )X}. (2.21)

This shows that the characteristic vector field ξ belongs to the λ -nullity distribution with respect to the projective semi-symmetric connection

∇̃. Thus we can state the following theorem:

Theorem 2.4. If (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection ∇̃ and ξ is

a parallel unit vector field with respect to ∇. Then the characteristic vector field of the manifold equipped with the projective semi-symmetric

connection ∇̃ belongs to λ -nullity distribution.

In view of (2.1), (2.8), (2.11), (2.21) and symmetric and skew-symmetric properties of curvature tensor, we can state:

Lemma 2.5. If an n-dimensional Riemannian manifold (Mn,g), (n > 2), admitting a projective semi-symmetric connection ∇̃ and the

characteristic vector field ξ is a parallel unit vector field, then the following relations satisfy

(i) R̃(ξ ,X)Y = λ{π(Y )X −π(X)π(Y )ξ},

(ii) R̃(X ,ξ )Y = λπ(Y ){π(X)ξ −X},

(iii) π(R̃(X ,Y )Z) = 0 for all vector fields X ,Y,Z ∈ χ(M).

Proof is obvious by straight forward calculations.

In view of (2.1), (2.8) and (2.12), we can compute that

(∇̃X S̃)(Y,Z) = (∇X S)(Y,Z). (2.22)

Hence we can state the theorem:

Theorem 2.6. If (Mn,g), (n > 2), be an n-dimensional Riemannian manifold equipped with a projective semi-symmetric connection ∇̃ and

ξ is a parallel unit vector field. Then the manifold is Ricci-symmetric with respect to the projective semi-symmetric connection ∇̃ if and only

if it is Ricci-symmetric with respect to the Levi-Civita connection ∇.

From equation (2.22), we can also observe that

(∇̃X S̃)(Y,Z)− (∇̃Y S̃)(X ,Z) = (∇X S)(Y,Z)− (∇Y S)(X ,Z)

and

(∇̃X S̃)(Y,Z)+(∇̃Y S̃)(Z,X)+(∇̃Z S̃)(X ,Y ) = (∇X S)(Y,Z)+(∇Y S)(Z,X)+(∇ZS)(X ,Y )

and hence the following lemma:

Lemma 2.7. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold endowed with a projective semi-symmetric connection ∇̃ and ξ
is a parallel unit vector field. Then the Ricci tensor is of Codazzi type as well as cyclic parallel with respect to the projective semi-symmetric

connection ∇̃ if and only if it is Codazzi type as well cyclic parallel with respect to Levi-Civita connection ∇.
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3. Projective curvature tensor equipped with projective semi-symmetric connection

If P̃ denotes the Weyl projective curvature tensor with respect to the connection ∇̃, then

′P̃(X ,Y,Z,U) =′ R̃(X ,Y,Z,U)−
1

n−1
{S̃(Y,Z)g(X ,U)− S̃(X ,Z)g(Y,U)} (3.1)

holds for arbitrary vector fields X , Y , Z and U , where ′P̃(X ,Y,Z,U) = g(P̃(X ,Y )Z,U). In consequence of (2.11) and (2.12), above equation

becomes

′P̃(X ,Y,Z,U) =′ P(X ,Y,Z,U),

where P is the Weyl projective curvature tensor with respect to the Levi-Civita connection ∇ given in (2.20) and ′P(X ,Y,Z,U) =
g(P(X ,Y )Z,U). From the above discussions, we can conclude the result in the form of theorem as:

Theorem 3.1. If (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection ∇̃ and ξ is

a parallel unit vector field, then the projective curvature tensors with respect to projective semi-symmetric and Levi-Civita connections

coincide.

Remark 3.2. Zhao [22] considered the special projective semi-symmetric connection and proved that the Weyl projective curvature tensors

are invariant with respect to the special projective semi-symmetric and Levi-Civita connections.

From Theorems 2.2 and 3.1, we conclude the following:

Theorem 3.3. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection ∇̃ and ξ
is a parallel unit vector field. If the Ricci tensor with respect to ∇̃ is flat, then R̃ = P̃ = P.

The Klein model of the Lobachevskii space and the central projection of a hemisphere on tangent space shows that the spaces of constant

curvature are projectively flat and vice versa. Thus with the help of Theorem 3.1 and the above discussions, we can state:

Theorem 3.4. If (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection and ξ is

a parallel unit vector field, then (Mn,g) is projectively flat with respect to the projective semi-symmetric connection if and only if it is of

constant curvature.

Now, we consider that the Riemannian manifold is flat with respect to the projective semi-symmetric connection, i.e., R̃ = 0, then in

consequence of Theorem 2.2 and equation (2.19), we obtain P = 0. Therefore we can state the theorem:

Theorem 3.5. If an n-dimensional Riemannian manifold (Mn,g), (n > 2), equipped with a projective semi-symmetric connection ∇̃ and a

parallel unit vector field ξ is flat with respect to ∇̃, then it is a manifold of constant curvature although the converse part is also true.

Remark 3.6. The idea of constant curvature is playing a central role in the theory of relativity and cosmology. The simplest cosmological

model can be constructed by assuming that the universe is isotropic and homogeneous. This is known as cosmological principle. When we

translated this principle to Riemannian geometry, professes that the three dimensional position space is a space of maximal symmetry [11],

i.e., a space of constant curvature whose curvature depends upon time. The cosmological solutions of Einstein field equations which contain

a three dimensional space like surfaces of a constant curvature are the Robertson-Walker metric, while four dimensional space of constant

curvature is the de Sitler model of the universe ( [11], [12]).

4. Semi-symmetric Riemannian manifold admitting projective semi-symmetric connection

A Riemannian manifold (Mn,g) is said to be semi-symmetric ( [49], [50]) with respect to the Levi-Civita connection ∇ if its non-flat

curvature tensor R satisfies the condition R ·R = 0 . Analogous to this, we can define:

Definition 4.1. A non-flat Riemannian manifold (Mn,g), (n > 2), is said to be semi-symmetric with respect to the projective semi-symmetric

connection ∇̃ if R̃ · R̃ = 0.

It is obvious that

(R̃(ξ ,X) · R̃)(Y,Z)U = R̃(ξ ,X)R̃(Y,Z)U − R̃(R̃(ξ ,X)Y,Z)U − R̃(Y, R̃(ξ ,X)Z)U − R̃(Y,Z)R̃(ξ ,X)U.

In view of (2.1), (2.21) and Lemma 2.5, the last equation becomes

(R̃(ξ ,X) · R̃)(Y,Z)U =−λ{π(Y )R̃(X ,Z)U +π(Z)R̃(Y,X)U +π(U)R̃(Y,Z)X}+2λ 2{π(Y )Z −π(Z)Y}π(X)π(U). (4.1)

Let us suppose that R̃ · R̃= 0, then equation (4.1) reflects that either λ = 0 or π(Y )R̃(X ,Z)U+π(Z)R̃(Y,X)U+π(U)R̃(Y,Z)X = 2λ{π(Y )Z−
π(Z)Y}π(X)π(U). Since λ 6= 0, therefore

π(Y )R̃(X ,Z)U +π(Z)R̃(Y,X)U +π(U)R̃(Y,Z)X = 2λ{π(Y )Z −π(Z)Y}π(X)π(U).

Putting U = ξ in last expression and then using (2.1) and (2.21), we find

R̃(Y,Z)X = λπ(X){π(Y )Z −π(Z)Y}, (4.2)

which is equivalent to R(Y,Z)X = 0. Thus the manifold (Mn,g), (n > 2), equipped with a projective semi-symmetric connection ∇̃ satisfying

R̃ · R̃ = 0 is flat for Levi-Civita connection ∇. Conversely, if the manifold is flat, i.e., R = 0, then equation (2.11) assumes the form (4.2).

With the help of (2.1), (2.21) and (4.2), (4.1) shows that R̃ · R̃ = 0. Hence we state the above result in the form of theorem as:
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Theorem 4.2. Let (Mn,g), (n> 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection ∇̃ satisfying

(2.8). Then the necessary and sufficient condition for a manifold (Mn,g) to be semi-symmetric with respect to the connection ∇̃ is that the

manifold is flat with respect to Levi-Civita connection ∇.

In consequence of (2.11), (2.17), λ =− n2

(n+1)2 and Theorem 4.2, we find

(∇̃X R̃)(Y,Z)U = ρ(X)R̃(Y,Z)U,

where ρ(X) =−
2(n−1)

n+1 π(X). Thus we can state:

Corollary 4.3. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admitting a projective semi-symmetric connection ∇̃ and

satisfies (2.8). If (Mn,g) is semi-symmetric with respect to the projective semi-symmetric connection ∇̃, then it is recurrent.

From Theorem 4.2, we can also conclude the following corollary:

Corollary 4.4. A semi-symmetric Riemannian manifold (Mn,g), (n > 2), endowed with a projective semi-symmetric connection ∇̃ is

projectively, conformally, concircularly, conharmonicaly, quasi-conformally and m-projectively flat for Levi-Civita connection ∇.

In view of Theorem 3.1 and Corollary 4.4, we have

Corollary 4.5. Every semi-symmetric Riemannian manifold (Mn,g), (n > 2), equipped with a projective semi-symmetric connection ∇̃ is

projectively flat for ∇̃.

5. Riemannian manifold with a projective semi-symmetric connection satisfying R̃ · P̃ = 0

We have

(R̃(X ,Y ) · P̃)(Z,U)V = R̃(X ,Y )P̃(Z,U)V − P̃(R̃(X ,Y )Z,U)V − P̃(Z, R̃(X ,Y )U)V − P̃(Z,U)R̃(X ,Y )V.

Replacing X by ξ in above equation and then using equation (2.1) and Lemma (2.5), we have

(R̃(ξ ,Y ) · P̃)(Z,U)V =λ [π(P̃(Z,U)V )Y −π(P̃(Z,U)V )π(Y )ξ −π(Z)P̃(Y,U)V −π(U)P̃(Z,Y )V

−π(V )P̃(Z,U)Y +π(Y )π(Z)P̃(ξ ,U)V +π(U)π(Y )P̃(Z,ξ )V +π(Y )π(V )P̃(Z,U)ξ ].
(5.1)

Let us suppose that R̃ · P̃ = 0, then we have from (5.1) (λ 6= 0)

π(Z)P̃(Y,U)V +π(U)P̃(Z,Y )V +π(V )P̃(Z,U)Y =π(P̃(Z,U)V )Y −π(P̃(Z,U)V )π(Y )ξ

+π(Y )π(Z)P̃(ξ ,U)V +π(U)π(Y )P̃(Z,ξ )V +π(Y )π(V )P̃(Z,U)ξ .

Setting Z by ξ in the above equation and using (2.1), we get

P̃(Y,U)V +π(U)P̃(ξ ,Y )V +π(V )P̃(ξ ,U)Y =π(P̃(ξ ,U)V )Y −π(P̃(ξ ,U)V )π(Y )ξ

+π(Y )P̃(ξ ,U)V +π(U)π(Y )P̃(ξ ,ξ )V +π(Y )π(V )P̃(ξ ,U)ξ .
(5.2)

In consequence of (2.1), (2.12), Lemma 2.5 and (3.1), we find that

(i) P̃(ξ ,X)Y =
1

n−1
{S(ξ ,Y )X −S(X ,Y )ξ},

(ii) π(P̃(X ,Y )Z) =
1

n−1
{π(Y )S(X ,Z)−π(X)S(Y,Z)}.

(5.3)

In view of (5.2), (5.3) turns into the form

P̃(Y,U)V =
1

n−1
{π(U)S(V,Y )ξ −π(V )S(ξ ,Y )U +π(V )S(U,Y )ξ −π(U)π(Y )S(ξ ,V )ξ −S(U,V )Y

+π(Y )S(ξ ,V )U +π(Y )π(V )S(ξ ,ξ )U −π(Y )π(V )S(U,ξ )ξ},

(5.4)

which gives

π(P̃(Y,U)V ) =
1

n−1
{π(U)S(V,Y )−π(V )S(ξ ,Y )π(U)+π(V )S(U,Y )−π(U)π(Y )S(ξ ,V )−S(U,V )π(Y )

+π(Y )S(ξ ,V )π(U)+π(Y )π(V )S(ξ ,ξ )π(U)−π(Y )π(V )S(U,ξ )}.

(5.5)

Using (5.3) (ii) in (5.5), we obtain

π(V )S(U,Y ) = π(U)π(V )S(ξ ,Y )+π(U)π(Y )S(ξ ,V )−π(U)π(Y )S(ξ ,V )−π(Y )π(V )π(U)S(ξ ,ξ )+π(Y )π(V )S(U,ξ ).

Setting V = ξ in above equation and use of (2.1) gives

S(U,Y ) = π(U)S(ξ ,Y )+π(Y )S(U,ξ )−π(U)π(Y )S(ξ ,ξ ). (5.6)

Using (2.1), (5.6) in (5.4), we find

′P̃(Y,U,V,X) =
1

n−1
{2π(U)π(X)π(V )S(ξ ,Y )−2π(X)π(U)π(V )π(Y )S(ξ ,ξ )−π(V )S(ξ ,Y )g(U,X)−π(U)S(ξ ,V )g(Y,X)

−π(V )S(U,ξ )g(X ,Y )+π(U)π(V )g(X ,Y )S(ξ ,ξ )+π(Y )S(ξ ,V )g(U,X)+π(Y )π(V )S(ξ ,ξ )g(U,X)}.
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(5.7)

Let {ei, i = 1,2, ...,n} be an orthonormal basis of the tangent space at any point of the manifold (Mn,g). Then putting X = Y = ei in (5.7)

and taking summation over i, 1 ≤ i ≤ n, we get

π(U)S(ξ ,V ) =
n+1

n−1
{π(U)π(V )S(ξ ,ξ )−π(V )S(U,ξ )}. (5.8)

after considering equations (2.1), (3.1) and ∑
n
i=1

′P̃(ei,U,V,ei) = 0. Replacing the vector field U with ξ in (5.8) and use of (2.1) gives

S(ξ ,V ) = 0 and therefore equation (5.6) gives S(U,Y ) = 0 for arbitrary vector fields U and Y . This equation shows that (Mn,g), (n > 2), is

Ricci flat with respect to the Levi-Civita connection. Thus we can state:

Theorem 5.1. A Riemannian manifold (Mn,g), (n > 2), equipped with ∇̃ satisfying R̃ · P̃ = 0 is Ricci flat.

By the use of (2.1), (2.11), (2.12), (3.1), Theorems 3.1 and 5.1, we conclude that

P̃(Z,U)V = R(Z,U)V = P(Z,U)V.

Corollary 5.2. If a Riemannian manifold (Mn,g) admits a projective semi-symmetric connection ∇̃ and satisfies the condition R̃ · P̃ = 0,

then the curvature tensor R and projective curvature tensor P for ∇ coincides with projective curvature tensor of ∇̃.

From Theorems 4.2 and 5.1, we conclude the following corollary:

Corollary 5.3. Let (Mn,g), (n > 2), be an n-dimensional Riemannian manifold admit ∇̃ and ξ is a parallel unit vector field. Then every

semi-symmetric Riemannian manifold with respect to ∇̃ satisfies R̃ · P̃ = 0.

6. Example

P. Alegre, D. E. Blair and A. Carriazo [20] introduced the idea of generalized Sasakian space form and they constructed many examples by

using some different geometric techniques such as Riemannian submersions, warped products or conformal and related transformations in

2004. A Riemannian manifold Mn of dimension n equipped with a tensor field φ of type (1,1), a structure vector field ξ and a covariant

vector field η associated with the Riemannian metric g satisfies the relations

φ 2(X) =−X +η(X)ξ , η(ξ ) = 1, g(X ,ξ ) = η(X),φξ = 0 and g(X ,Y ) = g(φX ,φY )+η(X)η(Y ) (6.1)

for arbitrary vector fields X and Y , is called an almost contact metric manifold (Mn,φ ,ξ ,η ,g) [7]. An almost contact metric manifold

(Mn,φ ,ξ ,η ,g) is cosymplectic [7] if ∇φ = 0, which implies the following expressions

∇ξ = 0, ∇η = 0 and R(X ,Y )ξ = 0.

An almost contact metric manifold (Mn,φ ,ξ ,η ,g) is said to be a generalized Sasakian space form [20] if the Riemannian curvature tensor R

satisfies the tensorial relation

R(X ,Y )Z = f1{g(Y,Z)X −g(X ,Z)Y}+ f2{g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ}

+ f3{η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ}
(6.2)

for arbitrary vector fields X , Y and Z, where f1, f2 and f3 are smooth functions on Mn. First author proved that the generalized Sasakian

space form is a certain class of quasi Einstein manifold [35]. Here we suppose that the manifold Mn is cosymplectic as well as generalized

Sasakian space form and f1 = f3 6= 0. Replacing Z with the structure vector field ξ in (6.2) and then using equation (6.1), we get

R(X ,Y )ξ = 0. (6.3)

If we define the projective semi-symmetric connection ∇̃ on Mn as

∇̃XY = ∇XY +
n−1

2(n+1)
{η(Y )X +η(X)Y}+

1

2
{η(Y )X −η(X)Y}, (6.4)

and torsion tensor of the connection ∇̃

T̃ (X ,Y ) = η(Y )X −η(X)Y

for arbitrary vector fields X and Y , then with the help of equations (2.11), (6.3) and (6.4), we obtain the expression (2.21) and hence the

Theorem 2.3 verified.
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Abstract

The paper considers a linear Diophantine equation. A method (algorithm) for finding a

general class of solutions of equation is proposed. The proposed algorithm is explained by

examples of equations with two and three variables, trying to direct the reader to a general

idea that describes the essence of the method used.

1. Introduction

A Diophantine equation is an equation in several variables in which only integer solutions are allowed. One of its special cases is the linear

Diophantine equation in n ∈ N variables (where N := {1,2, . . .}), which is of the following general form

A1x1 +A2x2 + · · · +Anxn = B, (1.1)

whose solutions are required to be integers, where {Ai,B} ⊂ Z, n≥ 2 and i = 1,2, . . . ,n, where Z is the set of all integers. Equation (1.1) is

named in honor of the Greek mathematician Diophantus of Alexandria (circa 300 c.e.).

A large number of works on the solution of Linear Diophantine equations are devoted. In these works, various methods and algorithms for

solving equations are proposed and developed. For instance in [4], methods based on arguments of Euclidean algorithm are proposed. In this

regard, we refer the reader, also to [1], [2], [3], [5], [6].

The aim of the paper is to attempt to give a general algorithm for finding the class of all solutions of equation (1.1), which, unlike the

mentioned methods, would simplify the process of finding solutions.

In the second section, we give an algorithm for the method of finding the class of all solutions of an equation with two variables. Moreover,

we will explain this algorithm using a typical example, trying to direct the reader to a general idea that describes the essence of the proposed

method. In fact, the algorithm we proposed in this case, is based on arguments that differ significantly from the Euclidean algorithm. The

latter is known as the algorithm for finding the greatest common divisor of integers.

In the Third and Fourth sections, the developed algorithm for an equation with two variables extends to cases of an equation with three and

more variables.

2. Equation with two variables

Let n = 2 in equation (1.1). Then we consider the following equation with two variables x and y:

Ax+By =C, (2.1)

where {A,B,C} ⊂ Z are the given numbers. The greatest common divisor of numbers |A| and |B| is denote by gcd(|A|, |B|). There are many

sources devoted to finding solutions to equations (2.1). It is known that if the number |C| is not divisible by gcd(|A|, |B|), then equation (2.1)

has no solutions; see [4].

Now consider the case that the number C is divisible by gcd(|A|, |B|). Let’s divide numbers A, B, and C by gcd(|A|, |B|). Then equation (2.1)

be transformed to the following form:

ax+by = c, (2.2)
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where the numbers a, b, and c don’t have a common divisor, that is gcd(a,b,c) = 1. Integers with this property are hereinafter referred to as

prime numbers in common.

It is known that to construct all the solutions of equation (2.2), one partial solution is needed.

2.1. General Algorithm for finding a partial solution.

As this is often done in order to find all solutions of equation (2.2), it is first necessary to somehow establish one partial solution. Typically,

such a solution can be found primitively, using intuitive consideration. Then, using this solution, it is easy to construct the class of all

solutions. In this case, a specific analytical method for finding a partial solution is not used. In this section, we put forward one algorithm for

the method of finding a partial solution, based in fact, on the arguments essentially differing from Euclidian algorithm. Namely our algorithm

is based on a very simple but a very important for our aim idea: searching for a linear representation of the unit using a finite number of

so-called superpositions of the coefficients of the equation in question. And also, as will be shown below, this algorithm is applicable for

cases of equations with an arbitrary number of variables.

Definition 2.1. The number obtained as a result of eventual operations, which consist of the algebraic actions of addition and subtraction

between several prime numbers in common, we call the Superposition of these numbers.

Let

D := {a1,a2, . . . ,ak} ⊂ Z, k ∈ N.

Henceforth we denote

Spos(D) or Spos
(

ai1 ,ai2 , . . . ,ai j

)

, j ≤ k,

any superposition of numbers from the set D, where aim ∈ D, im ∈ N and m = 1,2, . . . , j.

The essence of the proposed algorithm will be based on the following simple axiom that describes the elementary properties of integers.

Main Axiom 2.1. Using repeatedly superposition of two mutually prime numbers, one can construct any integer.

First, we give an example.

Exercise 2.2. Find a partial solution of the equation

127x+36y = 79. (2.3)

Solution. The coefficients of the equation a = 127, b = 36, as seen, are mutual prime numbers. According to the Main axiom, using a

superposition of the same numbers we find, for example, the following number:

1) Spos(a,b) = a− (b+b+b) = a−3b = 127−3×36 = 19 =: a1.

Let continue to construct superpositions using the coefficients a, b and a1:

2) Spos(a,a1) = a−5a1 =−4a+15b = 32 =: a2;

3) Spos(a1,a2) = a2−a1 =−5a+18b = 13 =: a3;

4) Spos(a1,a3) = a1−a3 = 6a−21b = 6 =: a4;

5) Spos(a3,a4) = a3−2a4 =−17a+60b = 1.

In the last step, we built the number 1 as follows:

−17a+60b = 1. (2.4)

Multiplying both sides of equality (2.4) by 79, we can easily get one solution to the equation (2.3). In fact, this follows from (2.4) that

−1343a+4740b = 79,

so that (x0 =−1343;y0 = 4740) is the partial solution of equation (2.3).

Note that we built the superpositions so that the values of the sequence of {ak,k ∈ N} step by step approached unity, and continued the

process until they reached unity. It reached in step 5. In other words, we ”crushed” the right side of equation (2.3) and as a result we got

equality (2.4). Based on what has been done, we call the proposed method the Crushing method.

We also note two more moments. Firstly, the set of steps is not unique, because superpositions of two numbers can be constructed as many

time as desired, and the number of steps to the final equality of type (2.4) depends on the choice of these superpositions. Secondly, as a

consequence of the first moment, the partial solution (x = x0;y = y0) may be completely different.

The proposed Crushing method for finding one (partial) solution to equation (2.3) is universal in the sense that for any equation of type (3), a

finite number of superposition steps can be performed to crush up the right-hand side to unity and thereby obtain an equality of type (2.4). In

fact, for given coefficients {a,b,c} ⊂ Z, one can always find the minimum number of steps of such superpositions.

Now we give a general description of our algorithm. We follow the procedure from the solution of equation (2.3). Let it be required to

find one partial solution of equation (2.2) with the set of coefficients D1 := {a,b} ⊂ Z. The following sequence of superpositions will be

performed, until an appearance of the number 1:

Spos(D1) =: a1 and define D2 := {D1,a1} ;

Spos(D2) =: a2 and define D3 := {D2,a2} ;

· · · · · · · · · · · · · · · · · · · · · · · ·
Spos(Dk) = 1 f or some k ∈ N,
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where Dk := {Dk−1,ak−1}. From last equality we obtain

c ·Spos(Dk) = ax0 +by0 = c,

and needless to say we get (x0;y0) – the solution of equation (2.3).

Thus, the above algorithm (Crushing method) can be admitted as a General Algorithm for finding a partial solution to the equation with two

variables of the form (2.2).

2.2. General class of solutions.

Suppose that one pair of solutions (x0;y0) is known. As we proved in the previous subsection, for equations that have a solution, one can

always find one pair of solutions by using the Crushing method. Then it is obvious that equation (2.2) can be written as

ax+by = ax0 +by0. (2.5)

Hence

a(x− x0) = b(y0− y).

Since gcd(a,b) = 1, it is necessary to be x− x0 = bk, where k ∈ Z. Then the general solution of equation (2.2) will have the following form:

{

x = x0 +bk,

y = y0−ak.
(2.6)

In view of the found general solution (2.6), we can write the equation (2.2) in the following equivalent form:

ax+by = a(x0 +bk)+b(y0−ak) , (2.7)

and therefore

a(x− x0)+b(y− y0)−abk+abk = 0. (2.8)

Relation (2.8) shows that equations (2.5) and (2.7) are the same. From here one can get a solution in the form of x = x0−bk and y = y0 +ak.

Therefore, the general solution is finally written in the following form:

{

x = x0±bk,

y = y0∓ak,
(2.9)

where k is any number of Z. From the last reasoning, we can conclude that in order to obtain a general solution to equation (2.5), it is

sufficient to rewrite the equation (2.5) moving all expressions to the left-hand side and add zero in the form

−abk+abk.

In particular, according to (2.9), we obtain the general solution of equation (2.3) in the following form:

{

x =−1343±36k,

y = 4740∓127k,

where k is any number of Z. Note that a particular solution can be minimized by choosing k. In this case, the general class of solutions of

equation (2.3) can be written more simply:

{

x = 25±36k,

y =−86∓127k.

3. Equation with three variables

In this section, we demonstrate a solution to an equation with three unknowns. Without loss of generality, as in the case of two variables, we

consider the equation

ax+by+ cz = d, (3.1)

where {a,b,c,d} ⊂ Z and gcd(a,b,c) = 1.
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3.1. Crushing method for three variables.

The previous section describes a general algorithm for finding one partial solution to the equation with two variables using the so-called

Crushing method. Here we demonstrate the possibility of spreading this method to solve the equation (3.1). The concept of a superposition

of three or more prime numbers in common is defined similarly to the case with two numbers. Further, we use the following statement, the

proof of which follows from the Main Axiom.

Proposition 3.1. Using the repeat superposition of three or more prime numbers in common, one can construct any integer.

Exercise 3.2. Find a partial solution of the equation

30x+105y+56z = 13. (3.2)

Solution. The set coefficients of (3.2) is {a,b,c} = {30,105,56}. By virtue of Proposition above, using the superposition of these

coefficients, we make the following steps:

1) Spos(a,c) = 2a− c = 4 =: a1;

2) Spos(b,a1) = b−26a1 = b−52a+26c = 1.

We have constructed number 1 only in the second step:

−52a+b+26c = 1.

Multiplying both sides of the last equality by 13, we obtain

−676a+13b+338c = 13,

and thereby we found one (partial) solution of equation (3.2):

x0 =−676, y0 = 13, z0 = 338.

The general class of solutions will be constructed below.

As in the case of two variables, we note that there will be no obstacles to constructing the minimum number of steps of the corresponding

superpositions for any given set of coefficients {a,b,c,d} ⊂ Z in equation (3.1), as a result of which we achieve one partial solution.

3.2. General class of solutions.

As noted in the previous subsection, for equations that have solutions, one can always find one solution (x0;y0;z0) using the crushing method.

Now, using this solution, we intend to obtain a class of all solutions. For this, we extend the method from previous subsection to the case

under consideration. Similarly to equality (2.8), we write the equation (3.1) in the following form:

a(x− x0)+b(y− y0)+ c(z− z0)−abk1 +abk1−ack2 +ack2− cbk3 + cbk3 = 0. (3.3)

Therefore, we can present the general solution in the form










x = x0±bk1± ck2,

y = y0∓ak1± ck3,

z = z0∓ak2∓bk3,

(3.4)

where {k1,k2,k3} ⊂ Z.

The following matrix clearly indicates to the coefficients and their signs in each row of the system (3.4). Here, in front of the matrix, on the

column we put the partial solution by the corresponding variable, on the rows of the matrix are the coefficients in the order specified in the

equation (3.1).

x0←→

y0←→

z0←→







0 ·a ±b ±c

∓a 0 ·b ±c

∓a ∓b 0 · c






. (3.5)

In each row of the matrix, multiplication by zero indicates the absence of the corresponding coefficient. For example, in the second row there

is no second coefficient, which is consistent with the second row of system (3.4). The coefficients multiplied by zero form the diagonal of

the matrix, which divides it into two parts. Coefficients in the upper part of the diagonal, as a rule, have a plus sign, and in the lower part -

coefficients with a minus sign.

The constructed matrix which we call the matrix of solution class, visually specifies the form of the general solution of the equations in

question.

In particular, based on (3.4) and (3.5), we can construct the class of general solutions of equation (3.2) in the following form:










x = 676±105k1±56k2,

y = 13∓30k1±56k3,

z = 338∓30k2∓105k3,

where {k1,k2,k3} is any set inside Z.

Remark 3.3. In the book [4, pp. 23–33] proposed an algorithm for finding a solution of linear Diophantine equations, which requires

a fairly lengthy process. The application of this algorithm was demonstrated by the example of one equation with three variables. By

comparing, we can make sure that our proposed method looks slightly simpler.
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4. Equation with n variables

Now consider the equation (1.1) with n variables. Dividing by gcd(A1,A2, . . . ,An), we write it in the form

a1x1 +a2x2 + · · · +anxn = b, (4.1)

where {ai,b} ⊂ Z, i = 1,2, . . . ,n and gcd(a1,a2, . . . ,an) = 1.

4.1. General class of solutions.

In this subsection, we demonstrate a general description of the algorithm for constructing the class of all solutions of equation (4.1). Suppose

that the set of numbers (α1,α2, . . . ,αn) is the partial solution to this equation. Such a solution can always be found using the general

algorithm (crushing method) described in the previous sections. To find a general solution to the equation, we represent it in the form of type

(3.3). After similar reasoning as in Subsection 3.2, we can construct the class of all solutions of equation (4.1) in the following form:







































x1 = α1±a2k12±a3k13±a4k14±·· ·±ank1n,

x2 = α2∓a1k21±a3k23±a4k24±·· ·±ank2n,

x3 = α3∓a1k31∓a2k32±a4k34±·· ·±ank3n,

x4 = α4∓a1k41∓a2k42∓a3k43±·· ·±ank4n,

· · · · · · · · · · · · · · · · · · · · · · · ·

xn = αn∓a1kn1∓a2kn2∓a4kn3∓·· ·∓an−1knn−1,

(4.2)

where
∥

∥ki j

∥

∥

n

i, j=1
is the quadratic matrix such that ki j ∈ Z, kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,n.

The following matrix, as in the case of three variables, gives a clear picture of constructing a class of general solutions of the equation,

indicating the coefficients and their signs in each row of the system (4.2):

α1←→

α2←→

α3←→

...

αn−1←→

αn←→

























0 ·a1 ±a2 ±a3 · · · ±an−1 ±an

∓a1 0 ·a2 ±a3 · · · ±an−1 ±an

∓a1 ∓a2 0 ·a3 · · · ±an−1 ±an

...
...

...
. . .

...
...

∓a1 ∓a2 ∓a3 · · · 0 ·an−1 ±an

∓a1 ∓a2 ∓a3 · · · ∓an−1 0 ·an

























. (4.3)

Note that in the case of an equation with many variables, constructing the matrix of the form (4.3) greatly simplifies discussions in solving

the equations.

Remark 4.1. According to the fact that ki j = k ji, i, j = 1,2, . . . ,n, the number of all different symbols ki j is
(

n
2

)

, i.e.

(

n

2

)

=
n(n−1)

2
. (4.4)

Let’s get to the examples.

Exercise 4.2. Find a partial solution of the equation

30x+42y+105z+70u = 17. (4.5)

Solution. The coefficients of the equation are a = 30, b = 42, c = 105 and d = 70. Using the superpositions of the coefficients we obtain

1) Spos(b,d) = 2b−d = 14 =: a1;

2) Spos(a,a1) = a−2a1 = a−4b+2d = 2 =: a2;

3) Spos(c,a2) = c−52a2 = c−52a+208b−104d = 1.

We obtained

−52a+208b+ c−104d = 1.

Therefore

−884a+3536b+17c−1768d = 17,

and thus we have a partial solution

x0 =−884, y0 = 3536, z0 = 17, u0 =−1768.

Now we construct the matrix of solution class:

−884←→

3536←→

17←→

−1768←→











0 ·30 ±42 ±105 ±70

∓30 0 ·42 ±105 ±70

∓30 ∓42 0 ·105 ±70

∓30 ∓42 ∓105 0 ·70











.



Universal Journal of Mathematics and Applications 91

Thereafter we can construct the class of all solutions in the form



















x =−884±42k12±105k13±70k14,

y = 3536∓30k21±105k23±70k24,

z = 17∓30k31∓42k32±70k34,

u =−1768∓30k41∓42k42∓105k43.

This system is a class of general solutions of equation (4.5) in accordance with the representation (4.2). Moreover, due to (4.4), the form of

the general solution can be simplified by getting rid of double indices in numbers ki j:



















x =−884±42k1±105k2±70k3,

y = 3536∓30k1±105k4±70k5,

z = 17∓30k2∓42k4±70k6,

u =−1768∓30k3∓42k5∓105k6,

where {ki, i = 1,2, . . . ,6} ⊂ Z.

4.2. Special cases.

As in many mathematical theories, we can separate some cases related to the method of searching for partial solutions. In the following

subsections, we highlight several special cases for which there is no need to use a general algorithm to find the partial solution.

4.2.1.

If in the equation b = 0, then the class of its general solutions can be constructed very simply, as in the following example.

Exercise 4.3. Find a class of general solutions of the equation

96x+11y+75z+8u+31v = 0.

Solution. It is seen that x = y = z = u = v = 0 is one of the partial solutions. By using (4.3), let’s build the matrix

0←→

0←→

0←→

0←→

0←→

















0 ·96 ±11 ±75 ±8 ±31

∓96 0 ·11 ±75 ±8 ±31

∓96 ∓11 0 ·75 ±8 ±31

∓96 ∓11 ∓75 0 ·8 ±31

∓96 ∓11 ∓75 ∓8 0 ·31

















.

Then the class of general solutions to the equation can be constructed in the following form:































x = 0±11k12±75k13±8k14±31k15,

y = 0∓96k21±75k23±8k24±31k25,

z = 0∓96k31∓11k32±8k34±31k35,

u = 0∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓8k54,

where numbers ki j ∈ Z, such that kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,5.

4.2.2.

If the number b is divisible by some one of the coefficients {a1,a2, . . . ,an}, then the equation can be solved as in the following example.

Exercise 4.4. Find a class of general solutions of the equation

96x+11y+75z+3u+31v = 27.

Solution. We can put x = y = z = v = 0 and get u = 9. Hence by using (4.3), we obtain































x = 0±11k12±75k13±3k14±31k15,

y = 0∓96k21±75k23±3k24±31k25,

z = 0∓96k31∓11k32±3k34±31k35,

u = 9∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓3k54,

herein ki j ∈ Z, such that kii = 0 and ki j = k ji for all i, j = 1,2, . . . ,5.
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4.2.3.

If the set of coefficients {a1,a2, . . . ,an} contains a pair of coefficients {ai1,ai2} such that gcd(ai1,ai2) = 1, then the class of general solutions

of equation (4.1) can be constructed based on the solution of the equation with these coefficients and with the corresponding variables.

Exercise 4.5. Find a class of general solutions of the equation

96x+11y+75z+8u+31v = 27.

Solution. Putting x = z = v = 0 we have

11y+8u = 27.

Now the solution to the last equation does not seem complicated. Thence we can easily construct the class of general solutions in the form of































x = 0±11k12±75k13±8k14±31k15,

y = 9∓96k21±75k23±8k24±31k25,

z = 0∓96k31∓11k32±8k34±31k35,

u =−9∓96k41∓11k42∓75k43±31k45,

v = 0∓96k51∓11k52∓75k53∓8k54,

where numbers ki j ∈ Z are as above.

Remark 4.6. When it is necessary, as in Example 4.5, that the class of general solutions of equation (4.1) can be constructed based

on the solution of the equation with three variables, if the set of coefficients {a1,a2, . . . ,an} contains the subset {ai1,ai2,ai3} for which

gcd(ai1,ai2,ai3) = 1.

5. Concluding notes

In our opinion, the method proposed in this article is very simple and convenient for use by mathematicians with minimal mathematical

skills. We believe that the Crushing method can be developed for a more general case. Subsequently, it will be possible to develop simplified

solution methods for nonlinear equations.

So, in our subsequent researches, the proposed method will be modified and applied in other cases. We will pay special attention to

minimizing the amount of numbers ki j ∈ Z. In particular, we will use it when searching for a solution to a system of linear Diophantine

equations.

As an example, without details, here we give a general solution to the following system of equations found using the algorithm proposed

above:










3x+4y = 2,

5x+2z = 12,

y+3u = 11.

Using the algorithm, we can find the solution in the following form:



















x = 2+12k,

y =−1−9k,

z = 1−30k,

u = 4−4k,

where k ∈ Z.

In addition, we will be interested in solvability in integers of the following equation:

(a1x1 +a2x2 + · · · +anxn)
p = b1x1 +b2x2 + · · · +bnxn,

where p ∈ N and {ai,bi} ⊂ Z, i = 1,2, . . . ,n.
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