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Department of Foreign Language Education,
Necmettin Erbakan University,
Konya-TÜRKİYE
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Zehra İşbilir

Department of Mathematics,
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Abstract
We present existence and uniqueness results for a class of higher order anti-periodic fractional boundary value
problems with Riesz space derivative which is two-sided fractional operator. The obtained results are established
by applying some fixed point theorems. Various numerical examples are given to illustrate the obtained results.
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1. Introduction
Recently, many researchers have investigated a large range of problems including fractional differential equations. A variety of
scientific areas such as physics, polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity, biology, control theory, etc involve fractional differential
equations. Some applications and detailed explanation of fractional differential equations can be found in the books [1, 2, 3]
and references [7, 29, 16]. Geometric and physical interpretation of fractional differentiation and integration can be found in
the paper [27]. Existence results for fractional differential equations have studied and developed by many authors; see the
books [26, 4, 2] and references [11, 12, 24, 15, 9, 26, 4, 2, 17, 18, 19, 30, 31, 39, 41, 42, 43, 44, 45] and references therein.

Much of recent works on fractional boundary/initial value problems involve Riemann-Lioville and Caputo derivatives in the
literature. Unfortunately, these fractional operators are one-sided operators which hold either past or future memory effects.
Unlike these fractional operators, the Riesz space fractional operator is two-sided operator which holds both the history and
future non-local memory effects. This is important in the mathematical modelling for physical processes on a finite domain
because the present states depend both on the past and future memory effects. As an example, Riesz fractional derivative has
been used for the memory effects in both past and future concentrations in the anomalous diffusion problem [13, 5].

Numerical solutions of the fractional calculus, specifically in the anomalous diffusion that involves the Riesz derivative
have been presented in [13, 8, 5, 38]. Analytical and numerical solutions for fractional differential equations using different
definitions for fractional derivatives and integrals have been proposed and studied in the literature [28, 32, 33, 34, 35, 21, 36, 37].
Recently, there are papers on existence and positive solutions for the fractional boundary value problems with the Riesz-Caputo
derivative [14, 25, 20].

The mathematical modelling of many physical phenomena can be expressed in terms of anti-periodic boundary value
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problems [10]. Recently, a large amount of papers are devoted to anti-periodic boundary value problems, for example, see
[22, 23] and references therein.

In this paper, we study the existence and uniqueness of solutions for the following anti-periodic boundary value problem of
the Riesz-Caputo fractional differential equations

RC
0Dν

T u(η) = F(η ,u(η)) ν ∈ (2,3], 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0,
(1.1)

where RC
0Dν

T is the Riesz-Caputo derivative defined below and F : [0,T ]×R→ R is a continuous function.
The remainder of paper is organized as follows. Section 2 introduces some preliminaries, definitions and lemmas which are

useful in proving main results. Section 3 provides some sufficient conditions for the existence and the uniqueness of solutions
of the problem (1.1) with anti-periodic boundary conditions. Finally, some numerical examples are given to illustrate the
applications of the main results in the last section.

2. Preliminaries
This section is devoted to some important definitions and lemmas that will be needed in the sequel.

Definition 2.1. [26] Let ν > 0. The left and right Riemann-Liouville fractional integral of a function f ∈C[0,T ] of order ν

defined as, respectively

Iν
0 f (x) =

1
Γ(ν)

∫ x

0
(x− s)ν−1 f (s)ds, x ∈ [0,T ].

T Iν f (x) =
1

Γ(ν)

∫ T

x
(s− x)ν−1 f (s)ds, x ∈ [0,T ].

Definition 2.2. (Riesz Fractional Integral) Let ν > 0. The Riesz fractional integral of a function f ∈C[0,T ] of order ν defined
as

0Iν
T f (x) =

1
2Γ(ν)

∫ T

0
|x− s|ν−1 f (s)ds, x ∈ [0,T ].

Note that the Riesz fractional integral operator can be written as

0Iν
T f (x) =

1
2

(
Iν
0 f (x)+ T Iν f (x)

)
(2.1)

Definition 2.3. [26] Let ν ∈ (n,n+1],n ∈ N. The left and right Caputo fractional derivative of a function f ∈Cn+1[0,T ] of
order ν defined as, respectively

C
0 Dν

x f (x) =
1

Γ(n+1−ν)

∫ x

0
(x− s)n−ν f (n+1) ds = (In+1−ν

0 Dn+1)u(x).

C
x Dν

T f (x) =
(−1)n+1

Γ(n+1−ν)

∫ T

x
(s− x)n−ν f (n+1) ds = (−1)n+1(T In+1−ν Dn+1)u(x).

where D is the ordinary differential operator.

Definition 2.4. Let ν ∈ (n,n+1],n ∈N. The Riesz-Caputo fractional derivative RC
0Dν f of order ν of a function f ∈Cn+1[0,T ]

defined by

RC
0Dν

T f (x) =
1

Γ(n+1−ν)

∫ T

0
|x− s|n−ν f (n+1)(s)ds

=
1
2

(
C
0 Dν

x f (x)+(−1)n+1C
x Dν

T f (x)
)

=
1
2

(
(In+1−ν

0 Dn+1)u(x)+(−1)n+1(T In+1−ν Dn+1)u(x)
)
.



On the Solutions of the Higher Order Fractional Differential Equations of Riesz Space Derivative with Anti-Periodic
Boundary Conditions — 173/179

Lemma 2.5. [26] Let f ∈Cn[0,T ] and ν ∈ (n,n+1]. Then we have the following relations

Iν
0

C
0 Dν

x f (x) = f (x)−
n−1

∑
k=0

f (k)(a)
k!

(x−a)k,

T IνC
x Dν

T f (x) = f (x)−
n−1

∑
k=0

(−1)k f (k)(b)
k!

(b− x)k.

In the case when ν ∈ (2,3] and f (x) ∈C3(0,T ) we have

0Iν
T

RC
0Dν

T f (x) =
1
2

(
Iν
0

C
0 Dν

x f (x)− T IνC
x Dν

T f (x)
)

= f (x)− 1
2
( f (0)+ f (T ))− 1

2
( f ′(0)+ f ′(T ))x+

T
2

f ′(T )

− 1
4
( f ′′(0)+ f ′′(T ))x2−

T 2−2T x
4

f ′′(T ).

(2.2)

The following fixed point theorems will be needed to establish the existence results.

Theorem 2.6. [6] Let M be a closed convex and nonempty subset of a Banach space X. Let A,B be the operators such that

(i) Ax+By ∈M whenever x,y ∈M;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists u ∈M such that u = Au+Bu.

Theorem 2.7. [6] Let X be a Banach space. Assume that O is an open bounded subset of X with θ ∈O and let T : O→ X be a
completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂O.

Then T has a fixed point in O .

Lemma 2.8. Assume that g ∈C([0,T ],R). A unique solution u ∈C3([0,T ]) of the following fractional boundary problem

RC
0Dν

T u(η) = g(η) ν ∈ (2,3], 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0,
(2.3)

is given as

u(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds.

(2.4)

Proof. We infer from (2.2) and (2.3) that

u(η) =
1
2
(u(0)+u(T ))+

1
2
(u′(0)+u′(T ))η− T

2
u′(T )

1
4
(u′′(0)−u′′(T ))η2 +

T 2−2T η

4
u′′(T )+

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds.

(2.5)

The anti-periodic boundary conditions u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0 imply that

u(η) =−T
2

u′(T )+
T 2−2T η

4
u′′(T )+

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds. (2.6)
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Then,

u′(η) =− T
2

u′′(T )+
1

Γ(ν−1)

∫
η

0
(η− s)ν−2g(s)ds− 1

Γ (ν−1)

∫ T

η

(s−η)ν−2g(s)ds,

u′′(η) =
1

Γ(ν−2)

∫
η

0
(η− s)ν−3g(s)ds+

1
Γ (ν−2)

∫ T

η

(s−η)ν−3g(s)ds.

Hence, we have

u′(T ) =− T
2

( 1
Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds

)
+

1
Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds,

u′′(T ) =
1

Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds.

(2.7)

Plugging the equations in (2.7) into (2.6) gives

u(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3g(s)ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2g(s)ds +

1
Γ(ν)

∫ T

0
|η− s|ν−1g(s)ds,

which completes the proof.

3. Existence of Solutions
We prove the main results of the paper in this section. Let C[0,T ] be the space of continuous functions u defined on [0,T ] with
the norm ‖u‖= supη∈[0,T ] |u(η)|. We assume the following conditions on F are satisfied.

(H1) F satisfies a Lipschitz condition in the second variable, that is,

|F(η ,u)−F(η ,v)| ≤ L|u− v|,∀η ∈ [0,T ],u,v ∈ R.

(H2) F is dominated by a L1 function, that is,

|F(η ,u)| ≤ `(η),∀(η ,u) ∈ [0,T ]×R, and ` ∈ L1([0,T ],R+).

Theorem 3.1. Let F ∈C([0,T ]×R,R) satisfy the assumption (H1) with

L≤
2Γ(ν +1)

T ν(8+ν(ν +1))
.

Then the problem (1.1) has a unique solution.

Proof. We convert the problem (1.1) into a fixed point solution of operator T : C([0,T ],R)→C([0,T ],R) defined by

(T u)(η) =
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3F(s,u(s))ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2F(s,u(s))ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1F(s,u(s))ds, η ∈ [0,T ].

We shall prove that the operator T has a fixed point by showing that T is a contraction. To this end, we first demonstrate that

T Sr ⊂ Sr where Sr = {u ∈C([0,T ],R) : ‖u‖ ≤ r} with r ≥
KT ν(8+ν(ν +1))

2Γ(ν +1)
and K := supη∈[0,T ] |F(η ,0)|. For u ∈ Sr, we
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have

|(T u)(η)| ≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3|F(s,u(s))|ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2|F(s,u(s))|ds

+
1

Γ(ν)

∫ T

0
|η− s|ν−1|F(s,u(s))|ds

≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3(|F(s,u(s))−F(s,0)|+ |F(s,0)|)ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2(|F(s,u(s))

−F(s,0)|+ |F(s,0)|)ds+
1

Γ(ν)

∫ T

0
|η− s|ν−1(|F(s,u(s))−F(s,0)|+ |F(s,0)|)ds

≤(Lr+K)
(2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3 ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2 ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1 ds

)
≤(Lr+K)

( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)
≤ r.

Next, for u,v ∈C([0,T ),R) and for any η ∈ [0,T ], we get∣∣(T u)(η)− (T v)(η)
∣∣

≤
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3|F(s,u(s))−F(s,v(s))|ds

+
T

2Γ(ν−1)

∫ T

0
(T − s)ν−2|F(s,u(s))−F(s,v(s))|ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1|F(s,u(s))−F(s,v(s))|ds

≤L‖u− v‖
(2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3 ds+

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2 ds+

1
Γ(ν)

∫ T

0
|η− s|ν−1 ds

)
≤
( LT ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)
‖u− v‖< ‖u− v‖.

This shows that T is a contraction. Therefore, the Banach fixed point theorem tells us T has a fixed point which is a solution
to the problem (1.1).

Theorem 3.2. Let F ∈C([0,T ]×R,R) be a completely continuous function. Assume that the conditions (H1) and (H2) hold

with
LT ν(ν +1)

4Γ(ν)
< 1. Then the fractional boundary problem with anti-periodic boundary conditions (1.1) has a solution on

[0,T ].

Proof. Let Sr = {u ∈C([0,T ],R) : ‖u‖ ≤ r be the ball of radius r with r≥
‖`‖L1 T ν

Γ(ν +1)
(2+

ν(ν +1)
4

), where ‖`‖L1 =
∫ T

0 |`(s)|ds.

We define two operator F and S on Sr given by

(Fu)(η) :=
1

Γ(ν)

∫ T

0
|η− s|ν−1F(s,u(s))ds,

(S u)(η) :=
2T 2−2T η

4Γ(ν−2)

∫ T

0
(T − s)ν−3F(s,u(s))ds−

T
2Γ(ν−1)

∫ T

0
(T − s)ν−2F(s,u(s))ds.

For any u,v ∈ Sr, as above, we have

‖Fu+S v‖ ≤
‖`‖L1T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)≤ r.

Hence, it follows that Fu+S v ∈ Sr whenever u,v ∈ Sr. It can easily be shown that S is a contraction using the assumption
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LT ν(ν +1)
4Γ(ν)

< 1. The continuity of F follows from the continuity of F . Moreover, F is uniformly bounded on Sr as follows.

|(Fu)(η)| ≤
1

Γ(ν)

∫
η

0
(η− s)ν−1|F(s,u(s))|ds+

1
Γ(ν)

∫ T

η

(s−η)ν−1|F(s,u(s))|ds

≤
‖`‖L1

Γ(ν)

(∫ η

0
(η− s)ν−1 ds+

∫ T

η

(s−η)ν−1 ds
)

≤
‖`‖L1

Γ(ν +1)
(ην +(T −η)ν)≤

2‖`‖L1T ν

Γ(ν +1)
.

We now show that the operator F is compact on Sr. For u ∈ Sr, we first estimate the derivative (Fu)′(η):∣∣(Fu)′(η)
∣∣≤ 1

Γ (ν−1)

∫
η

0
(η− s)(ν−2)∣∣F(s,u(s))∣∣ds+

1
Γ (ν−1)

∫ T

η

(s−η)(ν−2)∣∣F(s,u(s))∣∣ds

≤
(

ην−1

Γ (ν)
+

(T −η)ν−1

Γ (ν)

)
L≤ 2T ν−1L

Γ (ν)
:= βT,L,ν ,

(3.1)

where βT,L,ν is independent of the function u. Therefore, for any η1,η2 ∈ [0,T ] with η1 < η2, we have

|(Fu)(η1)− (Fu)(η2)|=
∫

η2

η1

|(Fu)′(s)|ds≤ βT,L,ν(η2−η1).

Hence, F is relatively compact on Sr. It follows form Arzela Ascoli Theorem that F is compact on Sr. As a consequence
of Theorem 2.6, we infer that F +S has a fixed point which is a solution of the problem (1.1) on [0,T ]. Thus the proof is
completed.

Theorem 3.3. Assume that limu→0
F(η ,u)

u
= 0. Then the problem (1.1) has one solution.

Proof. limu→0
F(η ,u)

u
= 0 implies that there is a δ > 0 such that |F(η ,u)| ≤ ε|u| for 0 < |u|< δ , where ε is chosen such that

( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)

ε ≤ 1. (3.2)

Set Sr = {u ∈C([0,T ],R) : ‖u‖< r and let u ∈ ∂Sr, that is ‖u‖= r. As before, the continuity of the operator T follows from
the continuity of F , and, as before, it can be shown that T = F +S is bounded on Sr. Note that |(T u)′ = (Fu)′+(S u)′|
where (Fu)′ is given by (3.1) and (S u)′ is given as

|(S u)′(η)|=
T

2Γ (ν−2)

∫ T

0
(T − s)(ν−3)∣∣F(s,u(s))∣∣ds≤

T ν−1L
Γ (ν−1)

.

Hence,

|(T u)′(η)| ≤
(ν +1)T ν−1L

Γ (ν−1)
:= L1.

Therefore, for η1,η2 ∈ [0,T ] with η1 < η2, we have

|(T u)′(η1)− (T u)′(η2)| ≤
∫

η2

η1

|(T u)′(s)|ds≤ L1(η2−η1).

We deduce that T is equicontinuous on [0,T ] . Hence, in view of the Arzela–Ascoli theorem, the operator T is completely
continuous. Morevover, we have

|(T u)(η)| ≤
( T ν

Γ(ν +1)
(2+

ν(ν +1)
4

)
)

ε‖u‖,

which implies ‖T u‖ ≤ ‖u‖ for u ∈ ∂Sr in light of (3.2). As a consequence of Theorem 2.7, the operator T has a fixed point
which is solution of the problem (1.1).



On the Solutions of the Higher Order Fractional Differential Equations of Riesz Space Derivative with Anti-Periodic
Boundary Conditions — 177/179

Remark 3.4. The results in this paper can be applied to obtain the existence results for nonlinear third-order ordinary
differential equations with anti-periodic boundary conditions [40] by taking ν = 3

u′′′(η) = F(η ,u(η)) 0≤ η ≤ T,

u(0)+u(T ) = 0, u′(0)+u′(T ) = 0, u′′(0)+u′′(T ) = 0.

4. Numerical Examples
In this section, numerical examples are given to show the applications of the result of this paper.

Example 4.1. Consider the following fractional boundary problem with anti-periodic boundary conditions

RC
0D

5
2
1 u(η) =

1
(2+η)2

u(η)

2+u(η)
0≤ η ≤ 1,

u(0)+u(1) = 0, u′(0)+u′(1) = 0, u′′(0)+u′′(1) = 0.
(4.1)

Here, F(s,u(s)) =
1

(2+η)2

u(η)

2+u(η)
, T = 1 and ν = 5

2 . We have |F(s,u)−F(s,v)| ≤ 1
4‖u− v‖,hence the condition

(H1) is fulfilled with L = 1
4 . Also, we calculate LT ν

Γ(ν+1) (2+
ν(ν +1)

4
)≈ 0.3150 < 1. Therefore, the fractional boundary value

problem (4.1) has a solution by Theorem 3.1.

Example 4.2. Consider the following fractional boundary problem with anti-periodic boundary conditions

RC
0Dν

1 u(η) = u3/2(η)+3(η +2)(u(η)− tanu(η)), ν ∈ (2,3], 0≤ η ≤ 1,
u(0)+u(1) = 0, u′(0)+u′(1) = 0, u′′(0)+u′′(1) = 0,

(4.2)

where F(s,u(s))= u3/2(η))+3(η+2)(u(η)− tanu(η)), T = 1 and ν ∈ (2,3] is any real number. We have limu→0
F(η ,u)

u
=

0, hence the condition of Theorem 3.3 holds. As a result of Theorem 3.3, the fractional boundary value problem (4.2) has at
least one solution.

5. Conclusion
This paper concerns with the existence and uniqueness for fractional differential equations with the Riesz space with anti-
periodic boundary conditions in Banach spaces. With the help of Banach’s contraction principle and some fixed point theorems,
existence results have been presented. As a special value of the fractional order, the results are extended to nonlinear third order
ordinary differential equation with anti-periodic boundary conditions. Some examples are given to illustrate the theoretical
results.

Acknowledgement
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments
and suggestions.

Funding
There is no funding for this work.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.



On the Solutions of the Higher Order Fractional Differential Equations of Riesz Space Derivative with Anti-Periodic
Boundary Conditions — 178/179

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References
[1] R. L. Magin, Fractional calculus in bioengineering, Begell House Publisher, Inc., Connecticut, 2006.
[2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
[3] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford University Press, Oxford 2005.
[4] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley, NY, 1993.
[5] S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the Caputo-time Riesz–Caputo fractional

advection–diffusion equation, Numer. Algorithms, 56 (2011), 383-403.
[6] D. R. Smart, Fixed point Theorems, Cambridge University Press, Cambridge 1980.
[7] C. Pinto, A. R. M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Appl. Math. Comput.,

242(2014), 36-46.
[8] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space–time fractional

diffusion, Chem. Phys., 284 (2012), 521-541.
[9] L. Guo, L. Liu, W. Ye, Uniqueness of iterative positive solutions for the singular fractional differential equations with

integral boundary conditions, Comput. Math. Appl., 59(8) (2010), 2601–2609.
[10] J. W. Negele, E. Vogt (Eds.), Volume 23 of advances in the physics of particles and nuclei, Advances in nuclear physics,

Springer Science and Business Media, 1996.
[11] R. Agarwal, D, O’Regan, S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential

equations, J. Math. Anal. Appl., 371 (2010), 57-68.
[12] A. Babakhani, V. Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal.Appl.,

278 (2003), 434-442.
[13] C. Celik, M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J.

Comput. Phys., 231 (2012), 1743–1750.
[14] F. Chen, A. Chen, X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Adv. Dif. Eq., 2019

(2019), 119.
[15] M.Darwish, S. Ntouyas, On initial and boundary value problems for fractional order mixed type functional differential

inclusion, Comput. Math. Appl., 59 (2010), 1253–1265.
[16] H. Sun, S. Hu, Y. Chen, W. Chen, Z. Yu, A dynamic–order fractional dynamic system Chinese Phys. Lett., 30 (2013),

Article 046601 pp.4.
[17] S.Toprakseven, Existence and uniqueness of solutions to anti-periodic Riezs-Caputo impulsive fractional boundary value

problems, Tbil. Math. J. 14(1) (2021), 71-82.
[18] S. Toprakseven, Existence and uniqueness of solutions to Riesz-Caputo impulsive fractional boundary value problems,

Journal of Interdisciplinary Mathematics, (2021), DOI: 10.1080/09720502.2020.1826629.
[19] S. Toprakseven, Positive solutions for two-point conformable fractional differential equations by monotone iterative scheme,

TWMS J. App. Eng. Math., 11(1) (2021), 289-301.
[20] S. Toprakseven, Solvability of fractional boundary value problems for a combined caputo derivative, Konuralp J. Math.,

9(1) (2021), 119-126.
[21] F. Usta, M. Z. Sarıkaya, The analytical solution of Van der Pol and Lienard differential equations within conformable

fractional operator by retarded integral inequalities, Demo. Math., 52(1) (2019), 204–212.
[22] B. Ahmad, Existence of solutions for fractional differential equations of order q ∈ (2,3] with anti-periodic boundary

conditions, J. Appl. Math. Comput., 34 (2010), 385-391.
[23] Y. Chen, J.J. Nieto, D. O’Regan, Anti-periodic solutions for evolution equations associated with maximal monotone

mappings, Appl. Math. Lett., 24 (3) (2011), 302-307.
[24] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51

(2016), 48–54.



On the Solutions of the Higher Order Fractional Differential Equations of Riesz Space Derivative with Anti-Periodic
Boundary Conditions — 179/179

[25] C. Gu, G. Wu, Positive solutions of fractional differential equations with the Riesz space derivative, Appl. Math. Lett., 95
(2019), 59–64.

[26] A. Kilbas, H. H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, vol. 204, North–Holland
mathematics studies, Elsevier, Amsterdam, 2006.

[27] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus
Appl. Anal., 5 (2002), 367–386.

[28] M. Z. Sarıkaya, F. Usta, On comparison theorems for conformable fractional differential equations, Int. J. Anal. App.,
12(2) (2016), 207-214.

[29] Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, P. Ziubinski, Diffusion process modeling by
using fractional–order models, Appl. Math. Comput., 15 (257) (2015), 2-11.

[30] S. Toprakseven, The existence and uniqueness of initial-boundary value problems of the fractional Caputo-Fabrizio
differential equations, Uni. J. Math. App., 2 (2) (2019), 100-106.

[31] S. Toprakseven, The existence of positive solutions and a Lyapunov-type inequality for boundary value problems of the
fractioanl Caputo-Fabrizio differential equations, Sigma J. Eng. Nat. Sci., 37 (4) (2019), 1125-1133.

[32] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl.
Math., 384(2021), 113198, DOI: 10.1016/j.cam.2020.113198.

[33] F. Usta, Fractional type Poisson equations by radial basis functions Kansa approach, J. Ineq. Special Func., 7(4) (2016),
143-149.

[34] F. Usta, Numerical solution of fractional elliptic PDE’s by the collocation method, Applications and Applied Mathematics:
An International Journal, 12(1) (2017), 470- 478.

[35] F. Usta, H. Budak, M. Z. Sarıkaya, Yang-Laplace transform method Volterra and Abel’s integro-differential equations of
fractional order, Int. J. Nonlinear Anal. App., 9(2) (2018), 203-214, DOI: 10.22075/ijnaa.2018.13630.1709.

[36] F. Usta, A mesh free technique of numerical solution of newly defined conformable differential equations, Konuralp J.
Math., 4(2) (2016), 149-157.

[37] M. Yavuz, T. A. Sulaiman, F. Usta, H. Bulut, [Analysis and numerical computations of the fractional regularized long
wave equation with damping term, Math. Meth. Appl. Sci., In Press, DOI: 10.1002/mma.6343.

[38] G. Wu, D. Baleanu et al., Lattice fractional diffusion equation in terms of a Riesz–Caputo difference, Physics A., 438
(2015), 335-339.

[39] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous
medium, Appl. Math. Lett., 37 (2014), 26–33.

[40] A. R. Aftabizadeh, Y. K. Huang, N. H. Pavel, Nonlinear third-order differential equations with anti-periodic boundary
conditions and some optimal control problems, J. Math. Anal. Appl., 192 (1995), 266-293.
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1. Introduction and Preliminaries
The author [1] has recently obtained some results regarding asymptotic behavior and stability for solutions of first order linear
impulsive neutral delay differential equations with constant coefficient and constant delay. These results are obtained using a
real root of the corresponding characteristic equations. Our aim in this article is to obtain different results from the article in [1]
by using two different real roots of the corresponding characteristic equation.

Consider the linear impulsive neutral delay differential equation

[x(t)+ cx(t−σ)]′ = ax(t)+bx(t− τ) , t 6= tk , t ≥ 0, (1.1)

4x(tk) = `k , k ∈ Z+ = {1,2, · · ·}, (1.2)

where σ and τ are positive constants, a,b,c and `k are real constants, x(t) ∈ R and4x(tk) = x(t+k )− x(t−k ). The impulse points
tk satisfy 0 < t1 < · · ·< tk < tk+1 < · · · and limk→∞ tk = ∞ and also tk−σ be not impulsive points for all k ∈ Z+.

Let’s introduce the positive constant h defined by h = max{σ ,τ}. Together with (1.1), an initial condition is indicated, i.e.

x(t) = φ(t) , −h≤ t ≤ 0, (1.3)

where the initial function φ is any given continuous real-valued function on the interval [−h,0].
With the equation (1.1) we associate its characteristic equation

λ

(
1+ ce−λσ

)
= a+be−λτ . (1.4)
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Equation (1.4) is obtained from (1.1) by looking for solutions of the form x(t) = eλ t for t ∈ R.
The authors in [2]-[6] obtained interesting results for the solutions of linear impulsive neutral delay differential equations

in the form of (1.1). The authors in [2] examined some classes of integro-functional inequalities of the Gronwall type for
piecewise continuous functions, and through the results obtained from them, they made estimates for the solutions of impulsive
functional differential equations. As an application, they have proven the existence of solutions of certain nonlinear equations
with arbitrarily long lifespan for sufficiently small initial functions. Later on, in the article [3] made by the same authors,
the problem of stability under persistent disturbances of an impulsive systems of differential-difference equations of neutral
type is investigated. An as application the existence of a global solutions of a systems with quadratic nonlinearities is proved
for sufficiently small initial data. In [4], by means of Lyapunov’s direct method sufficient conditions for uniform asymptotic
stability of the zero solution of impulsive systems of differential-difference equations of neutral type are found. In [5], the
authors examined the asymptotic behavior of positive solutions of first-order neutral impulsive differential equations with
constant coefficients and constant delays, and established the necessary and sufficient conditions for the existence of such
solutions. Finally, the authors in [6] established some criteria for the asymptotic stability of a neutral delay control system
by applying the Lyapunov functions and Razumikhin technique, which combine with impulsive feedback control. They also
showed that the stability behavior of the system can be controlled by appropriate impulsive perturbations.

In this paper, we construct estimates for (1.1)-(1.3) solutions using two different real roots of the corresponding characteristic
equation. We obtained the results using the methods in [1, 7, 8]. Sufficient information about the delay or neutral impulsive
differential equations and initial value problem (1.1)-(1.3) is given in [1]. For more results regarding delay or neutral impulsive
differential equations, we refer the reader to [9]-[16] and references therein.

2. The Main Result
In this section, before going to the main result, we will give an lemma about two different real roots of the characteristic
equation (1.4) by Philos and Purnaras [8]. In the following lemma, only the first part of the lemma in [8] is considered.

Lemma 2.1. ( [8], Lemma 3.1) Suppose that c ≤ 0 and b < 0. Let λ0 be a nonpositive real root of the characteristic
equation (1.4) and let β (λ0) = bτe−λ0τ + ce−λ0σ (1−λ0σ). Then

1+β (λ0)> 0

if (1.4) has another real root less than λ0, and

1+β (λ0)< 0

if (1.4) has another nonpositive real root greater than λ0.

Now, our main conclusion in this article is that we can give the following theorem.

Theorem 2.2. Suppose that

c≤ 0 and b < 0.

Let λ0 be a nonpositive real root of the characteristic equation (1.4) with 1+β (λ0) 6= 0 where β (λ0) is defined as in Lemma
2.1, and let

L(λ0;φ) =φ(0)+ cφ(−σ)+be−λ0τ

∫ 0

−τ

e−λ0s
φ(s)ds− cλ0e−λ0σ

∫ 0

−σ

e−λ0s
φ(s)ds.

Let also λ1 be a nonpositive real root of (1.4) with λ0 6= λ1.

(I) Assume that λ0 > λ1 and `i > 0 for i ∈ Z+. Also let there be a number d1 > 0 such that it is provided

1+β (λ0)≥
1
d1

∞

∑
i=1

`ie−λ0ti , (2.1)

then, for any φ ∈C
(
[−h,0],R

)
such that

φ(t)≤ eλ0t
[

d1 +
L(λ0;φ)

1+β (λ0)

]
f or t ∈ [−h,0], (2.2)
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the solution x of (1.1)-(1.3) satisfies

D1 (λ0,λ1;φ)≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t f or all t ≥ 0, (2.3)

where

D1 (λ0,λ1;φ) = min
−h≤t≤0

{
e−λ1t

[
φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]}

.

Note: Since λ0 > λ1, according to the Lemma 2.1 is 1+β (λ0)> 0.

(II) Assume that λ0 < λ1 and `i < 0 for i ∈ Z+. Also let there be a number d2 > 0 such that it is provided

1+β (λ0)≤
1
d2

∞

∑
i=1

`ie−λ0ti , (2.4)

then, for any φ ∈C
(
[−h,0],R

)
such that

eλ0t
[

d2 +
L(λ0;φ)

1+β (λ0)

]
≤ φ(t) f or t ∈ [−h,0], (2.5)

the solution x of (1.1)-(1.3) satisfies

d2e(λ0−λ1)t ≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ D2 (λ0,λ1;φ) f or all t ≥ 0, (2.6)

where

D2 (λ0,λ1;φ) = max
−h≤t≤0

{
e−λ1t

[
φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]}

.

Note: Since λ0 < λ1, according to the Lemma 2.1 is 1+β (λ0)< 0.

Proof. (Proof of Part (I) of the Theorem 2.2): We will show that the double inequality (2.3) is first

D1 (λ0,λ1;φ)≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for all t ≥ 0,

and

e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t for all t ≥ 0,

respectively. Let φ ∈C
(
[−h,0],R

)
such that satisfies (2.2) and x be the solution of (1.1)-(1.3). Furthermore, let y(t) = e−λ0tx(t)

for t ≥−h. As it has been shown ( [1], Lemma 1.1), the fact that x satisfies (1.1)-(1.3) for t ≥ 0 is equivalent to the fact that y
satisfies

y(t)+ce−λ0σ y(t−σ) = L(λ0;φ)+
n(t)

∑
i=1

`ie−λ0ti

+(a−λ0)
∫ t

0
y(s)ds+be−λ0τ

∫ t−τ

0
y(s)ds− cλ0e−λ0σ

∫ t−σ

0
y(s)ds

(2.7)

where

n(t) = max{k ∈ Z+ : tk ≤ t} and n(t) = 0 if t < t1.

In addition, the initial condition (1.3) can be made equivalent to

y(t) = e−λ0t
φ(t) for t ∈ [−h,0].

Later on, by using the fact that λ0 is root of (1.4) and by using z(t) = y(t)− L(λ0;φ)
1+β (λ0)

for t ≥−h, then (2.7) becomes

z(t)+ ce−λ0σ z(t−σ) =
n(t)

∑
i=1

`ie−λ0ti −be−λ0τ

∫ t

t−τ

z(s)ds+ cλ0e−λ0σ

∫ t

t−σ

z(s)ds for t ≥ 0 (2.8)
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and we immediately see that the initial condition (1.3) becomes

z(t) = e−λ0t
φ(t)− L(λ0;φ)

1+β (λ0)
for t ∈ [−h,0]. (2.9)

Next, let us define

w(t) = e(λ0−λ1)tz(t) for t ≥−h.

By the use of the function w, (2.8) becomes

w(t)+ ce−λ1σ w(t−σ) = e(λ0−λ1)t
n(t)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t

t−τ

e(λ0−λ1)(t−s)w(s)ds+ cλ0e−λ0σ

∫ t

t−σ

e(λ0−λ1)(t−s)w(s)ds for t ≥ 0.

(2.10)

Also, (2.9) takes the following equivalent form

w(t) = e−λ1t
[

φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for t ∈ [−h,0].

By way of the definitions of y, z and w, we have

w(t) = e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for t ≥−h. (2.11)

Thus, from the definition of the constant D1 (λ0,λ1;φ), it follows that the double inequality (2.3) in the conclusion of our
theorem can equivalently be written as follows

min
−h≤s≤0

w(s)≤ w(t)≤ d1e(λ0−λ1)t for all t ≥ 0. (2.12)

The proof of the theorem will be accomplished by proving the double inequality (2.12). First, let’s prove the following inequality
of the double inequality (2.12)

min
−h≤s≤0

w(s)≤ w(t) for all t ≥ 0. (2.13)

To prove (2.13), we consider an arbitrary real number A such that A < min−h≤s≤0 w(s). Clearly,

A < w(t) for −h≤ t ≤ 0. (2.14)

We will show that

A < w(t) for all t ≥ 0. (2.15)

To this end, let us assume that (2.15) fails to hold. Then, because of (2.14), there exists a point t∗ > 0 so that

A < w(t) for −h≤ t < t∗, and w(t∗) = A.

Thus, by using the hypothesis that c≤ 0, b < 0, `i > 0 for i ∈ Z+ and taking into account the fact that λ0 ≤ 0, from (2.10) we
obtain
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A = w(t∗) =−ce−λ1σ w(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)w(s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)w(s)ds

> A
{
−ce−λ1σ −be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)ds
}
+ e(λ0−λ1)t∗

n(t∗)

∑
i=1

`ie−λ0ti

> A
{
−ce−λ1σ −be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)ds
}

= A
{
−ce−λ1σ −be−λ0τ

(
1

λ1−λ0

)[
1− e(λ0−λ1)τ

]
+ cλ0e−λ0σ

(
1

λ1−λ0

)[
1− e(λ0−λ1)σ

]}
=

A
λ1−λ0

{
−cλ1e−λ1σ +be−λ1τ + cλ0e−λ0σ −be−λ0τ

}
=

A
λ1−λ0

{(λ1−a)+(a−λ0)}= A.

This is a contradiction and hence (2.15) is always satisfied. We have thus proved that (2.15) holds true for all real numbers A
with A < min−h≤s≤0 w(s). This guarantees that (2.13) is fulfilled and so, the first part of the double inequality (2.12) (or, (2.3))
is proved.

Now, let’s prove the second part of the double inequality (2.3). Property (2.2) implies φ(t)− L(λ0;φ)
1+β (λ0)

eλ0t ≤ d1eλ0t . So, if

both sides of this inequality are multiplied by e−λ1t , using the definition (2.11), it follows that

e−λ1t
[

φ(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ d1e(λ0−λ1)t for t ∈ [−h,0]

or by way of the definition of w, we have

w(t)≤ d1e(λ0−λ1)t for t ∈ [−h,0]. (2.16)

We will show that d1e(λ0−λ1)t is a bound of w on the whole interval [−h,∞], namely that

w(t)≤ d1e(λ0−λ1)t for all t ≥−h. (2.17)

For the sake of contradiction suppose that there exists a t̄ > 0 such that w(t̄)> d1e(λ0−λ1)t̄ . Let

t∗ = inf
{

t̄ : w(t̄)> d1e(λ0−λ1)t̄
}
.

Now, by right continuity, either w(t∗) = d1e(λ0−λ1)t∗ if there is no impulsive point at t∗, or w(t∗) ≥ d1e(λ0−λ1)t∗ as
a consequence of a t∗. Whatever the case, using right continuity, we thus have w(t) ≤ d1e(λ0−λ1)t for t ∈ [−h, t∗), where
w(t∗) = d1e(λ0−λ1)t∗ if this occors at a non-impulsive point. Then, by using the hypothesis that c≤ 0, b < 0, `i > 0 for i ∈ Z+

and taking into account the fact that λ0 ≤ 0, and also using (2.1), from (2.10) we have that
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d1e(λ0−λ1)t∗ = w(t∗) =−ce−λ1σ w(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−be−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)w(s)ds+ cλ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)w(s)ds

≤−cd1e−λ1σ e(λ0−λ1)(t∗−σ)+ e(λ0−λ1)t∗
n(t∗)

∑
i=1

`ie−λ0ti

−bd1e−λ0τ

∫ t∗

t∗−τ

e(λ0−λ1)(t∗−s)e(λ0−λ1)sds+ cd1λ0e−λ0σ

∫ t∗

t∗−σ

e(λ0−λ1)(t∗−s)e(λ0−λ1)sds

< d1e(λ0−λ1)t∗

{
−ce−λ0σ −be−λ0τ

τ + cλ0e−λ0σ
σ +

1
d1

∞

∑
i=1

`ie−λ0ti

}

= d1e(λ0−λ1)t∗

{
−β (λ0)+

1
d1

∞

∑
i=1

`ie−λ0ti

}
≤ d1e(λ0−λ1)t∗ .

This gives us the desired contradiction, since we proved w(t∗) < d1e(λ0−λ1)t∗ , and we assumed w(t∗) = d1e(λ0−λ1)t∗ if t∗ is
a continuity point, or w(t∗) ≥ d1e(λ0−λ1)t∗ if t∗ is a discontinuity point. So (2.17) is true and the second part of the double
inequality (2.12) (or, (2.3)) is proved. As a result, the Part (I) of Theorem 2.2 has been proven.

(Proof of Part (II) of the Theorem 2.2): As in Part (I), the double inequality (2.6) can be shown to be

e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]
≤ D2 (λ0,λ1;φ) for all t ≥ 0,

and

d2e(λ0−λ1)t ≤ e−λ1t
[

x(t)− L(λ0;φ)

1+β (λ0)
eλ0t
]

for all t ≥ 0

respectively. So, from the definition (2.11), it follows that the double inequality (2.6) in the conclusion of our theorem can
equivalently be written as follows

w(t)≤ max
−h≤t≤0

w(t) for all t ≥ 0,

and

d2e(λ0−λ1)t ≤ w(t) for all t ≥ 0,

respectively. Thus, using the hypothesis in the Part (II), it can be proved similarly as in the Part (I). As a result, the proof of the
Part (II) of Theorem 2.2 here is omitted.

It is immediately clear that the following corollary of double inequalities ((2.3) and (2.6)) in Theorem 2.2 can be written as
equivalent.

Corollary 2.3. Assume that the conditions in Theorem 2.2 are provided. Then the solution of (1.1)-(1.3) satisfies
(I) for λ1 < λ0

D1 (λ0,λ1;φ)eλ1t +
L(λ0;φ)

1+β (λ0)
eλ0t ≤ x(t)≤ eλ0t

(
d1 +

L(λ0;φ)

1+β (λ0)

)
for all t ≥ 0,

(II) for λ0 < λ1

eλ0t
(

d2 +
L(λ0;φ)

1+β (λ0)

)
≤ x(t)≤ D2 (λ0,λ1;φ)eλ1t +

L(λ0;φ)

1+β (λ0)
eλ0t for all t ≥ 0.

Also, if λ0,λ1 < 0, then from (I) and (II) the solution of (1.1)-(1.3) satisfies

lim
t→∞

x(t) = 0.
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Example 2.4. Consider

[x(t)− 1
3

x(t− 1
4
)]′ =

1
2

x(t)− 1
2

x(t− 1
2
) , t 6= tk , t ≥ 0, (2.18)

4x(tk) =
(

1
4

)k

, k ∈ Z+, (2.19)

x(t) = φ(t) , −1
2
≤ t ≤ 0,

where φ ∈C
(
[− 1

2 ,0],R
)

and tk are arbitrary impulsive points, such that tk− 1
4 are not impulsive points for all k ∈ Z+.

The characteristic equation of (2.18) is

2λ

(
3− e−

λ
4

)
= 3

(
1− e−

λ
2

)
. (2.20)

We see that λ = 0 and λ ≈−2.08 are real roots of (2.20). Let λ0 = 0 and λ1 =−2.08. Let’s choose the number d1 = 1. We
have λ0 > λ1, `i =

( 1
4

)i
> 0 i ∈ Z+ and from (2.1)

1+β (0) = 1− 1
4
− 1

3
=

5
12

>
∞

∑
i=1

(
1
4

)i

=
1
3
.

Thus, by applying Theorem 2.2-(I) and Corollary 2.3-(I), we obtain the following results:
According to (2.2), for any φ ∈C

(
[− 1

2 ,0],R
)

such that

φ(t)≤
[

1+
L(0;φ)

5/12

]
, for t ∈

[
−1

2
,0
]
, (2.21)

the solution x of (2.18)-(2.19) satisfies

D1 (0,−2.08;φ)≤ e2.08t
[

x(t)− L(0;φ)

5/12

]
≤ e2.08t for all t ≥ 0,

or equivalent

D1 (0,−2.08;φ)e−2.08t +
L(0;φ)

5/12
≤ x(t)≤ 1+

L(0;φ)

5/12
for all t ≥ 0,

where

L(0;φ) = φ(0)− 1
3

φ

(
−1

4

)
− 1

2

∫ 0

− 1
2

φ(s)ds

and

D1 (0,−2.08;φ) = min
− 1

2≤t≤0

{
e2.08t

[
φ(t)− L(0;φ)

5/12

]}
.

Now let’s take the special case of φ(t) = 1. Then

L(0;1) = 1− 1
3
− 1

2

∫ 0

− 1
2

ds =
5

12
and D1 (0,−2.08;1) = min

− 1
2≤t≤0

{
e2.08t

[
1− L(0;1)

5/12

]}
= 0.

Thus, for φ(t) = 1 the inequality (2.21) is provided and the solution x of (2.18)-(2.19) satisfies

0≤ e2.08t [x(t)−1]≤ e2.08t for all t ≥ 0,

or equivalent

1≤ x(t)≤ 2 for all t ≥ 0.
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Example 2.5. Consider

[x(t)− e−
1
4 x(t− 1

2
)]′ =−x(t)+ e−

1
4 x(t− 1

2
) , t 6= tk = k , t ≥ 0, (2.22)

4x(tk) =−
(

1
e2

)k

, k ∈ Z+, (2.23)

x(t) = φ(t) , −1
2
≤ t ≤ 0,

where φ ∈C
(
[− 1

2 ,0],R
)
.

The characteristic equation of (2.22) is

λ

(
1− e−

1
4 e−

λ
2

)
=−1+ e−

1
4 e−

λ
2

or

λ − (λ +1)e−
1
4 (2λ+1)+1 = 0. (2.24)

We see that λ =−1 and λ =− 1
2 are real roots of (2.24). Let λ0 =−1 and λ1 =− 1

2 . Let’s choose the number d2 =
5
4 . We have

λ0 < λ1, `i =− 1
2

(
1
e2

)i
< 0 i ∈ Z+ and from (2.4)

1+β (−1) = 1− e
1
4 ≈−0.284

<−4
5

∞

∑
i=1

1
2

(
1
e2

)i

ei =−2
5

∞

∑
i=1

1
ei ≈−0.232.

Thus, by applying Theorem 2.2-(II) and Corollary 2.3-(II), we obtain the following results:
According to (2.5), for any φ ∈C

(
[− 1

2 ,0],R
)

such that

e−t
[

5
4
+

L(−1;φ)

1− e
1
4

]
≤ φ(s) for t ∈

[
−1

2
,0
]
, (2.25)

the solution x of (2.22)-(2.23) satisfies

5
4

e−
t
2 ≤ e

t
2

[
x(t)+

L(−1;φ)

1− e
1
4

e−t
]
≤ D2

(
−1,−1

2
;φ

)
for all t ≥ 0, where

L(−1;φ) = φ(0)− e−
1
4 φ

(
−1

2

)
+ e

1
4

∫ 0

− 1
2

es
φ(s)ds− e

1
4

∫ 0

− 1
2

es
φ(s)ds

= φ(0)− e−
1
4 φ

(
−1

2

)
and

D2

(
−1,−1

2
;φ

)
= max
− 1

2≤t≤0

{
e

t
2

[
φ(t)+

L(−1;φ)

1− e
1
4

e−t
]}

.

Now let’s take the special case of φ(t) = 1. Then L(−1;1) = 1− e−
1
4 and

D2

(
−1,−1

2
;φ

)
= max
− 1

2≤t≤0

{
e

t
2

[
1+

1− e−
1
4

1− e
1
4

e−t

]}
= max
− 1

2≤t≤0

{
e

t
2

[
1+ e−(t+ 1

4 )
]}

= 1+ e−
1
4 .

Thus, for φ(t) = 1 the inequality (2.25) is provided, i.e.

e−t
[

5
4
− e−

1
4

]
≤ 1 for t ∈

[
−1

2
,0
]
,
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and for φ(t) = 1 the solution x of (2.22)-(2.23) satisfies

5
4

e−
t
2 ≤ e

t
2

[
x(t)+ e−(t+ 1

4 )
]
≤ 1+ e−

1
4 for all t ≥ 0

or from Corollary 2.3-(II) it follows that

e−t
(

d2 +
L(−1;φ)

1+β (−1)

)
≤ x(t)≤ D2

(
−1,−1

2
;φ

)
e−

t
2 +

L(−1;φ)

1+β (−1)
e−t ,

e−t

(
5
4
+

1− e−
1
4

1− e
1
4

)
≤ x(t)≤

(
1+ e−

1
4

)
e−

t
2 +

1− e−
1
4

1− e
1
4

e−t ,

e−t
(

5
4
− e−

1
4

)
≤ x(t)≤

(
1+ e−

1
4

)
e−

t
2 − e−(t+ 1

4 ) for all t ≥ 0.

Also, from the last double inequality we get

lim
t→∞

x(t) = 0.

3. Conclusion
In this paper, an important result is obtained for the behavior of the solutions by making use of two appropriate real roots of the
characteristic equation and two examples were given. The real roots used in this paper play an important role in determining
the results.
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[9] R. P. Agarwal, F. Karakoç, A survey on oscillation of impulsive delay differential equations, Comput. Math. Appl., 60
(2010), 1648-1685.

[10] G.H. Ballinger, Qualitative Theory of impulsive delay differential Equations, National Library of Canada, 1999.
[11] X. Liu, J. Shen, Asymptotic behavior of solutions of impulsive neutral differential equations, Appl. Math. Letters, 12

(1999), 51-58.
[12] X. Liu, Y. M. Zeng, Linear multistep methods for impulsive delay differential equations, Appl. Math. Comput., 321 (2018),

555-563.
[13] F. Jiang, J. Shen,Asymptotic behavior of solutions for a nonlinear differential equation with constant impulsive jumps, Acta

Math. Hungar., 138(1–2) (2013), 1–14.
[14] I. M. Stamova, Stability analysis of impulsive functional differential equations, Walter de Gruyter, Berlin, 2009.
[15] Z. You, J. Wang, Stability of impulsive delay differential equations, J. Appl. Math. Comput., 56 (2018), 253-268.
[16] G.L. Zhang, M.H. Song, M. Z. Liu, Exponential stability of the exact solutions and the numerical solutions for a class of

linear impulsive delay differential equations, J. Comput. Appl. Math., 285 (2015), 32-44.



Communications in Advanced Mathematical Sciences
Vol. IV, No. 4, 190-197, 2021

Research Article
e-ISSN: 2651-4001

DOI:10.33434/cams.964042

Padovan and Perrin Hybrid Number Identities
Renata Passos Machado Vieira1*, Milena Carolina dos Santos Mangueira2, Francisco Regis
Vieira Alves3, Paula Maria Machado Cruz Catarino4

Abstract
This work investigates the numbers of Padovan and Perrin hybrids. At first, the hybrid numbers, the sequences
in the hybrid form and their matrix forms are ordered as studied sequences. Thus, it was possible to display the
negative index hybrids, define some identities belonging to these hybrid sequences, develop novel theorems and
present them as binomial sums of the Padovan and Perrin hybrids.

Keywords: Identities, hybrid numbers, Padovan sequence, Perrin sequence
2010 AMS: Primary 11B35, Secondary 11B39

1Department of Mathematics, Federal Institute of Education, Science and Techonology of State of Ceara - IFCE,
ORCID:0000-0002-1966-7097
2Department of Mathematics, Federal Institute of Education, Science and Techonology of State of Ceara - IFCE,
ORCID:0000-0002-4446-155X
3Department of Mathematics, Federal Institute of Education, Science and Techonology of State of Ceara - IFCE,
ORCID:0000-0003-3710-1561
4University of Tras-os-Montes and Alto Douro - UTAD, ORCID:0000-0001-6917-5093
*Corresponding author: re.passosm@gmail.com
Received: 7 July 2021, Accepted: 20 October 2021, Available online: 27 December 2021

1. Introduction
A recursive linear sequence has an infinite number of terms and is generated by a linear recurrence, called a recurrence

formula, which allows you to calculate the terms of the sequence from its predecessors. Thus, in order to be able to calculate
the terms of a sequence, it is necessary to know its initial terms. For mathematics, sequences are found in the area of number
theory and have applicability in several areas.

In the mathematical scope, the Fibonacci sequence is the most explored sequence, however, the Padovan sequence is
considered a prime Fibonacci sequence which is a linear and recurrent type sequence of third order, of integers. The Padovan
Sequence, named after the Italian architect Richard Padovan (1935 - ?) [13], his work and contributions have important
repercussions for research in Mathematics.

On the other hand, we have the Perrin sequence, which is a linear and recurrent sequence of integers and presents the same
recurrence relation as the Padovan sequence, differing only in the terms of the sequence. This sequence was defined in 1899
by the French mathematician Olivier Raoul Perrin (1841-1910) [16]. Due to the similarity between the Padovan and Perrin
sequences, in the works of [2, 6, 12] properties and identities between these numbers are presented.

So we have the recurrences of the Padovan and Perrin sequences defined below.

Definition 1.1. The recurrence of the sequence of Padovan and Perrin, respectively, is given by:

Pn = Pn−2 +Pn−3,n > 3,
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Pen = Pen−2 +Pen−3,n≥ 3

being P0 = P1 = P2 = 1, Pe0 = 3, Pe1 = 0 and Pe2 = 2 the initial conditions.

Since these sequences have the same recurrence relation, we can perform algebraic operations in order to obtain the
characteristic polynomial of these sequences [1].

Definition 1.2. The characteristic polynomial of the Padovan and Perrin Sequence is defined as:

x3− x−1 = 0,

having three roots, two complex and one real.

And yet, in the literature of pure mathematics, there is the set of hybrid numbers, defined by [10], which presents the
complex, hyperbolic and dual numbers together, combined with each other.

Definition 1.3. A hybrid number is defined as:

K= {z = a+bi+ cε +dh : a,b,c,d ∈ R, i2 =−1,ε2 = 0,h2 = 1, ih =−hi = ε + i}

From the definition of hybrid numbers, it is possible to perform some operations with these numbers, namely: addition,
subtraction, multiplication by scalar. As for the multiplication between two hybrid numbers, this product is obtained by
distributing the terms to the right, preserving the order of multiplication of the units and using the equalities i2 =−1,ε2 =
0,h2 = 1, ih =−hi = ε + i.

From the multiplication of the imaginary units, we can present the table of the multiplication of a hybrid number, as shown
in the Table 1.

· 1 i ε h
1 1 i ε h
i i −1 1−h ε +i
ε ε 1+h 0 − ε

h h − ε −i ε 1
Table 1. Multiplication table for K.

Furthermore, from the hybrid numbers it is possible to present their conjugate, denoted by z and is defined as

z = a−bi− cε−dh

and the real number
C(z) = zz = zz = a2 +(b− c)2− c2−d2 = a2 +b2−2bc−d2

is called the hybrid number character, where the root of the absolute value of that real number will be the hybrid number norm.
z, so we have to: ‖z‖=

√
|C(z)|.

From the linear recursive sequences and the hybrid numbers, the hybridization process of the sequences is then carried out,
as seen in [4, 7, 8, 9, 14, 15]. For the Padovan and Perrin sequence we can define these numbers as:

Definition 1.4. The hybrid numbers of Padovan and Perrin, denoted by PHn and PeHn, are defined as:

PHn = Pn +Pn+1i+Pn+2ε +Pn+3h,

PeHn = Pen +Pen+1i+Pen+2ε +Pen+3h,

where PH0 = 1+ i+ε +2h and PH1 = 1+ i+2ε +2h and PH2 = 1+2i+2ε +3h the initial conditions for hybrids of Padovan
and PeH0 = 3+2ε +3h and PeH1 = 2i+3ε +2h and PeH2 = 2+3i+2ε +5h the initial conditions for Perrin hybrids.

Based on the work of [11], we can present the hybrid Padovan matrix form (Qn) given by:

Qn =

PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1

 , for n > 1.
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That satisfies equality Qn =UnQ, where:

U =

0 1 0
1 0 1
1 0 0

 ,Q =

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h

 ,
So, for n = 1, you have that:

Q1 =U1Q =

0 1 0
1 0 1
1 0 0

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
2+3i+4ε +5h 2+2i+3ε +4h 1+2i+2ε +3h
1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h


=

PH3 PH2 PH1
PH4 PH3 PH2
PH2 PH1 PH0


Assuming it is valid for n = k,(k ∈ Z):

Qk =UkQ =

0 1 0
1 0 1
1 0 0

k1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

PHk+2 PHk+1 PHk
PHk+3 PHk+2 PHk+1
PHk+1 PHk PHk−1


In this way, it is shown that it is valid for n = k+1,(k ∈ Z):

Qk+1 =Uk+1Q =

0 1 0
1 0 1
1 0 0

k+11+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

0 1 0
1 0 1
1 0 0

k0 1 0
1 0 1
1 0 0

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

0 1 0
1 0 1
1 0 0

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

Pn−1 Pn−2 Pn−3
Pn Pn−1 Pn−2

Pn−2 Pn−3 Pn−4

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

PHk+3 PHk+2 PHk+1
PHk+4 PHk+3 PHk+2
PHk+2 PHk+1 PHk


Furthermore, the Perrin hybrid matrix (Wn) is given by:

Wn =

PeHn+2 PeHn+1 PeHn
PeHn+3 PeHn+2 PeHn+1
PeHn+1 PeHn PeHn−1

, for n > 1.
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That satisfies equality Wn = AnW , where

A =

0 1 0
1 0 1
1 0 0

 ,W =

2+3i+2ε +5h 2i+3ε +2h 3+2ε +3h
3+2i+5ε +5h 2+3i+2ε +5h 2i+3ε +2h

2i+3ε +2h 3+2ε +3h −1+3i+2h

 .
With this, based on what was previously presented and based on the work of [17], in this work, we will present several

identities on Padovan and Perrin hybrid numbers, their extension to hybrids with negative indices and identities around them.

2. Results
Based on the definitions seen in the introduction referring to the hybrid numbers of Padovan and Perrin, some theorems are

then developed with the aim of carrying out a new investigative study on these numbers.

Definition 2.1. Hybrid numbers of Padovan and Perrin with negative indices are defined by:

PH−n = P−n +P−n+1i+P−n+2ε +P−n+3h

PeH−n = Pe−n +Pe−n+1i+Pe−n+2ε +Pe−n+3h

Based on this, we can obtain the binomial sums of the Padovan hybrid numbers in the following theorem.

Theorem 2.2. The following identities are valid:
(i)∑

n
k=0
(n

k

)
PHk = PH3n,

(ii)∑
n
k=0
(n

k

)
PHk+1 = PH3n+1,

Proof. (i) According to Binet’s formula of Padovan hybrid numbers PHn = Axn
1 +Bxn

2 +Cxn
3, one has that:

n

∑
k=0

(
n
k

)
PHk =

n

∑
k=0

(
n
k

)
(Axk

1 +Bxk
2 +Cxk

3)

A
n

∑
k=0

(
n
k

)
xk

1 +B
n

∑
k=0

(
n
k

)
xk

2 +C
n

∑
k=0

(
n
k

)
xk

3

A(1+ x1)
n +B(1+ x2)

n +C(1+ x3)
n.

Considering the infinite interactions of the cubic roots given by the expression ψ =
3
√

1+ 3
√

1+ 3
√

1+..., one can establish
the relation ψ3 = 1+ψ , where ψ represents the real Padovan root [5]. Hence, 1+ x1 = x3

1,1+ x2 = x3
2 and 1+ x3 = x3

3. With
that, ∑

n
k=0
(n

k

)
PHk = PH3n.

(ii) Similarly to demonstration (i), this Identity can be validated.

Thus, we have the binomial sums of the Perrin hybrid numbers in the following proposition. Since the proof of these sums
is similar to the Padovan hybrid numbers discussed in the previous Theorem, we omit the proof.

Theorem 2.3. The following identities are valid:
(i)∑

n
k=0
(n

k

)
PeHk = PeH3n,

(ii)∑
n
k=0
(n

k

)
PeHk+1 = PeH3n+1.

Theorem 2.4. For m > 3, n > 3, one can:
PHn+2PHm +PHn+1PHm+1 +PHnPHm−1 = PHn+m +PHn+m+1i+PHn+m+2ε +PHn+m+3h.

Proof. According to the matrix form of the Padovan hybrid numbers:

U =

0 1 0
1 0 1
1 0 0

 ,Q =

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h

 ,
Un =

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

 .
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Resulting in Qn =UnQ:PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1


Thus, performing (Qn)(Qm), one can equal the term a13, obtaining:

PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1

PHm+2 PHm+1 PHm
PHm+3 PHm+2 PHm+1
PHm+1 PHm PHm−1

= PHn+2PHm +PHn+1PHm+1 +PHnPHm−1.

By definition, one has to PHn = PHn+m +PHn+m+1i+PHn+m+2ε +PHn+m+3h.
Soon:

PHn+2PHm +PHn+1PHm+1 +PHnPHm−1 = PHn+m +PHn+m+1i+PHn+m+2ε +PHn+m+3h.

Theorem 2.5. For m > 0, n > 0, one has to:
PeHn+2PeHm +PeHn+1PeHm+1 +PeHnPeHm−1 = PeHn+m +PeHn+m+1i+PeHn+m+2ε +PeHn+m+3h.

Proof. According to the matrix form of Perrin’s hybrid numbers:

A =

0 1 0
1 0 1
1 0 0

 ,W =

2+3i+2ε +5h 2i+3ε +2h 3+2ε +3h
3+2i+5ε +5h 2+3i+2ε +5h 2i+3ε +2h

2i+3ε +2h 3+2ε +3h −1+3i+2h

 ,
AnW =

PeHn+2 PeHn+1 PeHn
PeHn+3 PeHn+2 PeHn+1
PeHn+1 PeHn PeHn−1

 .
Thus, performing (Wn)(Wm), one can equal the term a13, obtaining:

PeHn+2 PeHn+1 PeHn
PeHn+3 PeHn+2 PeHn+1
PeHn+1 PeHn PeHn−1

PeHm+2 PeHm+1 PeHm
PeHm+3 PeHm+2 PeHm+1
PeHm+1 PeHm PeHm−1

= PeHn+2PeHm +PeHn+1PeHm+1 +PeHnPeHm−1

By definition, one has to PeHn = PeHn+m +PeHn+m+1i+PeHn+m+2ε +PeHn+m+3h. Soon:

PeHn+2PeHm +PeHn+1PeHm+1 +PeHnPeHm−1 = PeHn+m +PeHn+m+1i+PeHn+m+2ε +PeHn+m+3h.

Theorem 2.6. For m > 3, n > 3, one has to:
(i)PHm+n−PHm+n+1i−PHm+n+2ε−PHm+n+3h = PHm+2PHn +PHm+1PHn+1 +PHmPHn−1,
(ii)PHn+m +PHn+m+1i+PHn+m+2ε +PHn+m+3h = PHm+2PHn +PHm+1PHn+1 +PHmPHn−1.

Proof. Using the conjugate of the matrix Q, called Q, where:

Q =

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h

.

Thus, performing:

UnQ =

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

1−2i−2ε−3h 1− i−2ε−2h 1− i− ε−2h
2−2i−3ε−4h 1−2i−2ε−3h 1− i−2ε−2h
1− i−2ε−2h 1− i− ε−2h i− ε−h


=

PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1

 .



Padovan and Perrin Hybrid Number Identities — 195/197

Thus, considering the element a13, it can be said that:
(i)Q(Um+nQ) = (QUm)(UnQ),

Q(Um+nQ) = Q

Pn+m−2 Pn+m−3 Pn+m−4
Pn+m−1 Pn+m−2 Pn+m−3
Pn+m−3 Pn+m−4 Pn+m−5

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

1−2i−2ε−3h 1− i−2ε−2h 1− i− ε−2h
2−2i−3ε−4h 1−2i−2ε−3h 1− i−2ε−2h
1− i−2ε−2h 1− i− ε−2h i− ε−h

PHn+m+2 PHn+m+1 PHn+m
PHn+m+3 PHn+m+2 PHn+m+1
PHn+m+1 PHn+m PHn+m−1


=

PHn+m+2 PHn+m+1 PHn+m
PHn+m+3 PHn+m+2 PHn+m+1
PHn+m+1 PHn+m PHn+m−1

 .

(QUm)(UnQ) =

1−2i−2ε−3h 1− i−2ε−2h 1− i− ε−2h
2−2i−3ε−4h 1−2i−2ε−3h 1− i−2ε−2h
1− i−2ε−2h 1− i− ε−2h i− ε−h

Pm−2 Pm−3 Pm−4
Pm−1 Pm−2 Pm−3
Pm−3 Pm−4 Pm−5

(UnQ)

=

PHm+2 PHm+1 PHm
PHm+3 PHm+2 PHm+1
PHm+1 PHm PHm−1

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h


=

PHm+2 PHm+1 PHm
PHm+3 PHm+2 PHm+1
PHm+1 PHm PHm−1

PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1


(ii)(QUm+n)Q = (QUm)(UnQ),

(QUm+n)Q =

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h

Pm+n−2 Pm+n−3 Pm+n−4
Pm+n−1 Pm+n−2 Pm+n−3
Pm+n−3 Pm+n−4 Pm+n−5

Q

=

PHm+n+2 PHm+n+1 PHm+n
PHm+n+3 PHm+n+2 PHm+n+1
PHm+n+1 PHm+n PHm+n−1

1−2i−2ε−3h 1− i−2ε−2h 1− i− ε−2h
2−2i−3ε−4h 1−2i−2ε−3h 1− i−2ε−2h
1− i−2ε−2h 1− i− ε−2h i− ε−h


=

PHm+n+2 PHm+n+1 PHm+n
PHm+n+3 PHm+n+2 PHm+n+1
PHm+n+1 PHm+n PHm+n−1



(QUm)(UnQ) =

1+2i+2ε +3h 1+ i+2ε +2h 1+ i+ ε +2h
2+2i+3ε +4h 1+2i+2ε +3h 1+ i+2ε +2h
1+ i+2ε +2h 1+ i+ ε +2h i+ ε +h

Pm−2 Pm−3 Pm−4
Pm−1 Pm−2 Pm−3
Pm−3 Pm−4 Pm−5

(UnQ)

=

PHm+2 PHm+1 PHm
PHm+3 PHm+2 PHm+1
PHm+1 PHm PHm−1

Pn−2 Pn−3 Pn−4
Pn−1 Pn−2 Pn−3
Pn−3 Pn−4 Pn−5

1−2i−2ε−3h 1− i−2ε−2h 1− i− ε−2h
2−2i−3ε−4h 1−2i−2ε−3h 1− i−2ε−2h
1− i−2ε−2h 1− i− ε−2h i− ε−h


=

PHm+2 PHm+1 PHm
PHm+3 PHm+2 PHm+1
PHm+1 PHm PHm−1

PHn+2 PHn+1 PHn
PHn+3 PHn+2 PHn+1
PHn+1 PHn PHn−1



Theorem 2.7. For m > 0, n > 0, one has to:
(i)PeHm+n−PeHm+n+1i−PeHm+n+2ε−PeHm+n+3h = PeHm+2PeHn +PeHm+1PeHn+1 +PeHmPeHn−1,
(ii)PeHn+m +PeHn+m+1i+PeHn+m+2ε +PeHn+m+3h = PeHm+2PeHn +PeHm+1PeHn+1 +PeHmPeHn−1.
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Proof. Using the conjugate of the matrix W , called W , where:

W =

2+3i+2ε +5h 2i+3ε +2h 3+2ε +3h
3+2i+5ε +5h 2+3i+2ε +5h 2i+3ε +2h

2i+3ε +2h 3+2ε +3h −1+3i+2h

.

Thus, performing:

AnW =

0 1 0
1 0 1
1 0 0

n2−3i−2ε−5h 2i−3ε−2h 3−2ε−3h
3−2i−5ε−5h 2−3i−2ε−5h 2i−3ε−2h

2i−3ε−2h 3−2ε−3h −1−3i−2h

=

PeHn+2 PeHn+1 PeHn
PeHn+3 PeHn+2 PeHn+1
PeHn+1 PeHn PeHn−1

 .
Thus, considering the element a13, it can be said that:

(i)W (Am+nW ) = (WAm)(AnW ),
(ii)W (Am+nW ) = (WAm)(AnW ).

3. Conclusion
This work carried out an investigative study around the hybrid numbers of Padovan and Perrin, developing new and proven

theorems based on fundamental algebraic operations and their respective matrix forms. Thus, the results presented here have
the bias of motivating further studies on the numbers of Padovan and Perrin hybrids, improving the investigation for other
numerical sequences.
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1. Introduction
Quaternions are defined as a 4-tuple of real numbers and represented by a linear combination of the elements of the standard
orthonormal basis such as

q = q0 + iq1 + jq2 + kq3

with the multiplication rules

i2 = j2 = k2 = i jk =−1, (1.1)

where q0,q1,q2 and q3 are any real numbers, q0 is called the scalar part of q and iq1 + jq2 + kq3 is the vector part. Note that its
scalar and vector parts are abbreviated as Sc(q) and Vec(q), respectively. The conjugate of q is

q∗ = q0− iq1− jq2− kq3

and its norm is

N(q) =
√

qq∗ =
√

q2
0 +q2

1 +q2
2 +q2

3. (1.2)

Eq. (1.1) indicates that the real quaternions form a non-commutative division algebra, even the skew field in the set of
quaternions. Due to the loss of commutativity, it is very difficult to study them.

Quaternions are useful tools in many science areas such as mathematics, physics and computer sciences. The monographs
in [1] and [2] present well-known systematic investigations on the subject. In recent decades, several researchers investigate
different types of quaternions. In [3], Horadam gave the Fibonacci quaternions in the form

Qn = Fn + iFn+1 + jFn+2 + kFn+3,
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where Fn is the usual Fibonacci number defined as

Fn+2 = Fn+1 +Fn for n > 0

by the initial terms F0 = 0 and F1 = 1. In addition, the Lucas numbers are defined by the same recurrence relation but with the
initial conditions L0 = 2 and L1 = 1. Certain important results on the Fibonacci quaternions are presented in the references
[3]-[8] and many other related references which are not given here.

In the current literature, many interesting generalizations of the Fibonacci and Lucas numbers and their various types can
be found. However, one of the most interesting approaches to the topics is given by Stakhov and Tkachenko in [9]. By Binet’s
formulas of the Fibonacci and Lucas numbers, they introduced a new concept called hyperbolic Fibonacci and hyperbolic Lucas
functions. The monograph [10] offers a detailed review. Furthermore, Stakhov and Rozin improve this approach to symmetrical
hyperbolic Fibonacci and symmetrical hyperbolic Lucas functions. According to the authors in [11], the symmetrical hyperbolic
functions are defined as follows:

Symmetrical Fibonacci sine functions: sFs(x) =
αx−α−x
√

5
, (1.3)

Symmetrical Fibonacci cosine functions: cFs(x) =
αx +α−x
√

5
, (1.4)

Symmetrical Lucas sine functions: sLs(x) = α
x−α

−x (1.5)

and

Symmetrical Lucas cosine functions: cLs(x) = α
x +α

−x, (1.6)

where x is any real number and α is the golden ratio. It should be noted that sFs(2k) =F2k, cLs(2k) = L2k, cFs(2k+1) =F2k+1,
and sLs(2k+1) = L2k+1 can be written for k ∈ Z, respectively. Since the hyperbolic functions play a great role in modern
sciences such as mathematics and physics, these special functions are very important. Note that throughout the paper, we will
omit the letter “s” in right-hand sides of the representations “sFs(x)” and “cFs(x)” for combinatorial simplicity, e.g. sF (x)
and cF (x), respectively.

Based on the above developments, Daşdemir introduced the symmetrical hyperbolic Lucas sine and cosine quaternions as

sPs(x) = sLs(x)+ isLs(x+1)+ jsLs(x+2)+ ksLs(x+3)

and

cPs(x) = cLs(x)+ icLs(x+1)+ jcLs(x+2)+ kcLs(x+3) ,

respectively [12]. Here, x is any real number, and sLs(x) and cLs(x) were respectively defined in (1.5) and (1.6).
In this paper, we define new classes of quaternions. The coefficients of these quaternions are chosen from the symmetrical

hyperbolic Fibonacci functions. Note that our definitions give the quaternions regarded as a combinations of real valued-
functions, not integer valued-functions. Further, we give hyperbolic properties and some identities including the Binet’s
formulas, the generating functions, the Cassini’s and d’Ocagne’s identities for these quaternions.

2. Main Results
Consider the symmetrical hyperbolic Fibonacci functions given in (1.3) and (1.4). Hence, we give the following definition.

Definition 2.1. The symmetrical hyperbolic Fibonacci sine and cosine quaternion functions are defined by the relations

S (x) = sF (x)+ isF (x+1)+ jsF (x+2)+ ksF (x+3) (2.1)

and

C (x) = cF (x)+ icF (x+1)+ jcF (x+2)+ kcF (x+3) , (2.2)

respectively.
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For simplicity, we shall call these quaternions in (2.1) and (2.2) s-Fibonacci quaternions and c-Fibonacci quaternions,
respectively. It should be noted that x is regarded as any real number throughout the paper.

We can present the following fundamental properties of the quaternions defined above.

Theorem 2.2. Let x be any real number. Hence, we have the following relations:

S (x+2) =C (x+1)+S (x) (2.3)

and

C (x+2) = S (x+1)+C (x) , (2.4)

respectively.

Proof. The proof is completed by employing the Binet’s formulas given in (1.3) and (1.4).

Remark 2.3. According to Theorem 2.2, it is possible to exchange symmetrically S (x) with C (x) and C (x) with S (x) for all
linear relations of the s-Fibonacci and c-Fibonacci quaternions.

Note that the recurrence relations given in (2.3) and (2.4) are inhomogeneous. If we apply the corresponding relation to the
first term of its right-hand-side, we obtain new structure of each equation, in the homogeneous form, as

S (x+2) = 3S (x)−S (x−2) (2.5)

and

C (x+2) = 3C (x)−C (x−2) . (2.6)

We can represent the recurrence relations in (2.3)-(2.6) by generating matrix technique. To do this, we introduce the
matrices

Mc(x) =
[

C (x+1) S (x)
S (x) C (x−1)

]
,

Ms(x) =
[

S (x+1) C (x)
C (x) S (x−1)

]
,

Ns(x) =
[

S (x+1) S (x)
S (x−1) S (x−2)

]
and

Nc(x) =
[

C (x+1) C (x)
C (x−1) C (x−2)

]
.

Hence, we can write

Mc(x) = P.Ms(x−1) , Ms(x) = P.Mc(x−1) , (2.7)

Ns(x) = R.Ns(x−2) and Nc(x) = R.Nc(x−2) , (2.8)

where P =

[
1 1
1 0

]
and R =

[
3 −1
1 0

]
. Hence, we can give the following theorem.

Theorem 2.4. Let x and n be a real positive integer, respectively. Then,

Mc(x) = Pm.

{
Ms(µ) , if m is odd
Mc(µ) , if m is even ,

Ms(x) = Pm.

{
Mc(µ) , if m is odd
Ms(µ) , if m is even ,

Ns(x) = Rm.Ns(µ) ,
and

Nc(x) = Rm.Nc(µ) .
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Proof. Extending the right side of the matrix equations in (2.7) and (2.8) to the right, the desired results are obtained by a
property of matrix multiplication.

Remark 2.5. It follows from Theorem 2.4 that all the determinantal identities obtained for s-Fibonacci quaternions are equal
to negative sign of those for c-Fibonacci quaternions. Hence, it is sufficient that we only give the next results for the s-Fibonacci
quaternions. But keep in mind that negative signs of right-hand side for these equations are valid for c-Fibonacci quaternions.

The Binet’s formulas for the s-Fibonacci and c-Fibonacci quaternions are given in the following theorem.

Theorem 2.6 (Binet’s formula). The Binet’s formulas of s-Fibonacci and c-Fibonacci quaternions are given as follows:

S (x) =
Aαx−Bα−x
√

5
and C (x) =

Aαx +Bα−x
√

5
, (2.9)

where A = 1+ iα + jα2 + kα3, B = 1− iβ + jβ 2− kβ 3 and β =−α−1.

Proof. From the definition of s-Fibonacci quaternions and the Binet’s formula of sF (x), we can write

S (x)= sF (x)+ isF (x+1)+ jsF (x+2)+ ksF (x+3)
= αx−α−x

√
5

+ i αx+1−α−(x+1)
√

5
+ j αx+2−α−(x+2)

√
5

+ k αx+3−α−(x+3)
√

5

=
αx(1+iα+ jα2+kα3)−α−x(1+iα−1+ jα−2+kα−3)√

5
.

Substituting β =−α−1 into the last equation, the first equation is attained. By employing the same procedure, the other is
obtained. So, the proof is completed.

From the Binet’s formulas in (2.9), we conclude that the c-Fibonacci quaternions are an even function, but nothing can be
said for the s-Fibonacci quaternions. In addition, considering the Binet’s formulas given in (2.9), we can write

C (x) = S (x)+
2B√

5
β

x. (2.10)

This result indicates that a study of the one involves familiarity with the other one. Note that all the results obtained in this
paper are transformed to the other by employing Eq. (2.10).

From the Binet’s formulas given in (2.9), we conclude that the s-Fibonacci and the c-Fibonacci quaternions have the same
form except for the sign of α−x. Hence, we can enter an auxiliary function that possesses 1 and -1 for consecutive integer
values of x into the Binet’s formulas to guarantee continuous condition. To do this, the function cos(πx) may be the best choice.
Consequently, the following definition arises naturally.

Definition 2.7. The quasi-sine Fibonacci quaternion is defined as

Q (x) =
Aαx− cos(πx)Bα−x

√
5

(2.11)

Here, we can say that the definition in (2.11) satisfies the same recurrence relation in (2.3). For even or odd integer values
of x, the quasi-sine Fibonacci quaternion reduces to the s-Fibonacci and the c-Fibonacci quaternions, respectively.

Theorem 2.8. For any real number x, we have

N(S (x)) =

√
3cF (2x+3)− 8

5
(2.12)

and

N(C (x)) =

√
3cF (2x+3)+

8
5
. (2.13)

Proof. Considering definition in (1.2), we can write

[N(S (x))]2 = [sF (x)]2 +[sF (x+1)]2 +[sF (x+2)]2 +[sF (x+3)]2

=

[
αx−α−x
√

5

]2

+

[
α(x+1)−α−(x+1)

√
5

]2

+

[
α(x+2)−α−(x+2)

√
5

]2

+

[
α(x+3)−α−(x+3)

√
5

]2
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Here, expanding the square terms and using property α2 +1 =
√

5α yields to

[N(S (x))]2 =
α2x
(
1+α2 +α4 +α6

)
+α−2x

(
1+α−2 +α−4 +α−6

)
−8

5

=
3
√

5
(

α(2x+3)+α−(2x+3)
)
−8

5
.

The last equation gives Eq. (2.12). Repeating the same procedure, (2.13) can be demonstrated.

Next theorem only presents some linear elementary properties for the s-Fibonacci quaternions to reduce the size of the
paper. Note that according to Remark 2.3, a property known for the one can also be written for the other due to the exchange
rule for all the linear properties.

Theorem 2.9. Let x be any real numbers. Then, we have

sPs(x) = S (x+1)+S (x−1), (2.14)

2S (x+1) =C (x)+ sPs(x),

5S (x) = sPs(x+1)+ sPs(x−1)

and

cPs(x)+5S (x) = 2sPs(x+1).

Proof. We only prove Eq. (2.14) since the others can be showed similarly. From the Binet’s formula in (2.9), we can write

Aαx+1−Bα−(x+1)
√

5
+

Aαx−1−Bα−(x−1)
√

5
=

(
α2 +1

)(
Aαx−1−Bα−x−1

)
√

5

and using α2 +1 =
√

5α , the proof is completed.

Theorem 2.10 (Hyperbolic version of the Pythagorean Theorem). The following property holds for any real number x:

C (x)2−S (x)2 =− 4√
5
[C (0)]∗.

Proof. To show the validity of theorem, we use an interesting property of quaternions: Let p be any quaternion of the
components p0, p1, p2, and p3. Then, p2 = 2p0 p− [N(p)]2. Hence, we can write

C (x)2−S (x)2 = 2cF (x)C (x)− [N(C (x))]2−2sF (x)S (x)− [N(S (x))]2

= 2cF (x)C (x)−2sF (x)S (x)− 16
5
.

It can be showed that cF (x)cF (x+ y)− sF (x)sF (x+ y) = 2√
5
cF (y) for all real numbers x any y by using the Binet’s formulas

in (1.3) and (1.4). Considering this identity, we obtain

C (x)2−S (x)2 = 2cF (x)C (x)−2sF (x)S (x)− 16
5

=
4√
5

C (0)− 16
5

Since 2√
5
cF (0) = 4

5 , the proof is completed.

Theorem 2.11 (Moivre-type formula). Let x be any real number and n be any (positiveor negative) integers. Then,

[C (x)+S (x)]n =
(

2√
5

A
)n−1

(C (nx)+S (nx)) (2.15)

and

[C (x)−S (x)]n =
(

2√
5

B
)n−1

(C (nx)−S (nx)) . (2.16)
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Proof. Using the Binet’s formulas in (2.9), we can write[
Aαx +Bα−(x)√

5
+

Aαx−Bα−x
√

5

]n

=

[
2A√

5

]n

α
nx

=

[
2A√

5

]n−1 2Aαnx +Bα−nx−Bα−nx
√

5

=

[
2A√

5

]n−1 Aαnx +Bα−nx +Aαnx−Bα−nx
√

5
,

which is Eq. (2.15). Similarly, Eq. (2.16) can be proved.

Now we give two important theorems that will be reduced to some special cases.

Theorem 2.12 (Vajda identity). Let x, y, z, and t be any real numbers. Then, we have

S (x+ z)S (y− t)−S (x)S (y+ z− t) =
2√
5
[C (u)−C (v)]∗+

1√
5
(sF (u)− sF (v))(2i+5k) , (2.17)

where u = x− y+ z+ t and v = x− y− z+ t.

Proof. By employing the Binet’s formula in (1.3) for each part after applying the multiplication rule in (1.1) to the left-hand
side of Eq. (2.17), the desired result is obtained directly.

From Vajda identity, we also have the following special identities:

• For y− t = y and z = 1, we recover the d’Ocagne’s identity:

S (x+1)S (y)−S (x)S (y+1) =
1√
5

{
2 [S (x− y)]∗+ cF (x− y)(2i+5k)

}
.

• For x = y and r = s, we find the Catalan’s identity:

S (x+ z)S (x− z)−S (x)2 =
1√
5

{
2 [C (2z)]∗+ sF (2z)(2i+5k)+2γ

}
,

where γ =− 2√
5
+ i+ 3√

5
j+2k.

• For x = y and r = s = 1, we find the Cassini’s identity:

S (x+1)S (x−1)−S (x)2 =
1
5

(
2−8 j−

√
5k
)
.

Theorem 2.13 (Mixed-Vajda identity). Let x, y, z, and t be any real numbers. Then, the mixed-Vajda identity of first kind is

S (x+ z)S (y− t)−C (x)C (y+ z− t) =
2√
5
[C (u)+C (v)]∗+

1√
5
(sF (u)+ sF (v))(2i+5k)

and the mixed-Vajda identity of second kind is

C (x+ z)S (y− t)−C (x)S (y+ z− t) =
2√
5
[S (u)−S (v)]∗+

1√
5
(cF (u)− cF (v))(2i+5k) ,

where u = x− y+ z+ t and v = x− y− z+ t.

Proof. The proof can be completed by repeating the same procedure in Theorem 2.12.

Particular cases of the mixed-Vajda identity of first kind are as follows:

• For y− t = y and z = 1, we obtain the d’Ocagne’s identity of first kind:

S (x+1)S (y)−C (x)C (y+1) =
1√
5

{
2[C (x− y+1)+C (x− y−1)]∗

+(sF (x− y+1)+ sF (x− y−1))(2i+5k)

}
.
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• For x = y and r = s, we find the Catalan’s identity of first kind:

S (x+ z)S (x− z)−C (x)2 =
1√
5

{
2 [C (2z)]∗+ sF (2z)(2i+5k)−2γ

}
.

where φ = i−
√

5 j+ k.

• For x = y and r = s = 1, we find the Cassini’s identity of first kind:

S (x+1)S (x−1)−C (x)2 =
1√
5

(
2
√

5−4i−4
√

5 j−9k
)
.

Similarly, we have the following particular cases of the mixed-Vajda identity of second kind are as follows:

• For y− t = y and z = 1, we obtain the d’Ocagne’s identity of second kind:

C (x+1)S (y)−C (x)S (y+1) =
1√
5

{
2 [C (x− y)]∗+ sF (x− y)(2i+5k)

}
.

• For x = y and r = s, we find the Catalan’s identity of second kind:

C (x+ z)S (x− z)−C (x)S (x) =
1√
5

{
2 [S (2z)]∗+ cF (2z)(2i+5k)− 2√

5
φ

}
.

where φ = i−
√

5 j+ k.

• For x = y and r = s = 1, we find the Cassini’s identity of second kind:

C (x+1)S (x−1)−C (x)S (x) =
1
5

(
2
√

5−4i−4
√

5 j−9k
)
.

Theorem 2.14 (General bilinear formula). Let x, y, z, t, and w be any integers satisfying x+ y = z+ t. Then, we have

sF (x)C (y)− cF (z)S (t) = sF (x−w)C (y−w)− cF (z−w)S (t−w)

and

cF (x)S (y)− sF (z)C (t) = cF (x−w)S (y−w)− sF (z−w)C (t−w) .

Proof. The proof is seen easily by applying the similar technique used in Theorem 2.12.

We define the following functions:

Gs (x, t) =
∞

∑
n=0

S (x+n) tn, Gc (x, t) =
∞

∑
n=0

C (x+n) tn (2.18)

and

gs (x, t) =
∞

∑
n=0

S (x+n)
tn

n!
and gc (x, t) =

∞

∑
n=0

C (x+n)
tn

n!
.

Note that generating functions are powerful tools for solving linear homogeneous recurrence relations with constant coefficients.
Let us introduce generating functions of the s-Fibonacci and c-Fibonacci quaternions. Hence we can write the following
theorem.

Theorem 2.15. The generating functions for the s-Fibonacci and c-Fibonacci quaternions are as follows:

Gs (x, t) =
S (x)+S (x+1) t−S (x−2) t2−S (x−1) t3

(1+ x− x2)(1− x− x2)
(2.19)

and

Gc (x, t) =
C (x)+C (x+1) t−C (x−2) t2−C (x−1) t3

(1+ x− x2)(1− x− x2)
.
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Proof. We only show the validity of Eq. (2.19) since other can be proven in a similar way. First, we take t4Gs (x, t) and
−3t2Gs (x, t) into account. Hence, from Eqs. (2.5), (2.18) and the last equations, we have(

1−3x2 + x4)Gs (x, t) = S (x)+S (x+1) t−S (x−2) t2−S (x−1) t3,

which is desired result.

We give the exponential generating function for S (x) and C (x) in the following theorem.

Theorem 2.16. The exponential generating functions for the s-Fibonacci and c-Fibonacci quaternions are as follows:

gs(x, t) =
Aαxeαt −Bα−xe−β t

√
5

and

gc(x, t) =
Aαxeαt +Bα−xe−β t

√
5

,

where t is any real number and e is the famous Euler’s constant.

Proof. Considering MacLaurin expansion for the exponential function, we can write

gs(t) =
∞

∑
n=0

S (x+n)
tn

n!
=

∞

∑
n=0

Aαx+n−Bα−(x+n)
√

5
tn

n!

=
1√
5

(
Aα

x
∞

∑
n=0

(αt)n

n!
−Bα

−x
∞

∑
n=0

(
α−1t

)n

n!

)

=
1√
5
(Aα

xeαt −Bα
−xeα−1t),

which is the first equation. Using the same procedure, the second equation can be obtained.

We give the Honsberger formula for s-Fibonacci and c-Fibonacci quaternions in the following theorem. Note that there are
many applications in physic and statistics.

Theorem 2.17 (Honsberger formula). Let x and y be any real numbers. Then,

S (x+ y) = sF (x+1)C (y)+ cF (x)S (y−1)

and

C (x+ y) = sF (x+1)S (y)+ cF (x)C (y−1) .

Proof. Using the Binet’s formulas in (1.3), (1.4) and (2.9), we can write

sFs(x+1)C (y)+ cFs(x)S (y−1) =
αx+1−α−(x+1)

√
5

Aαy +Bα−y
√

5
+

αx +α−x
√

5
Aαy−1−Bα−(y−1)

√
5

=
1
5

{
Aα

x+y+1−Bα
−(x+y+1)+Aα

x+y−1−Bα
−(x+y−1)

}
=

1
5

{
Aα

x+y−1 (
α

2 +1
)
−Bα

−(x+y−1) (
α
−2 +1

)}
.

It can be proved easily that α2 +1 =
√

5α and α−2 +1 =
√

5α−1 are satisfied. Substituting these properties, the result follows.
The second equation can be proved similarly.

Let z be any real number. Substituting (x,y) = (x− z,y+ z) into the Honsberger formulas we can give a more general
version of Theorem 2.17 in the following.
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Corollary 2.18. For any real numbers x, y and z, we have

S (x+ y) = sF (x− z+1)C (y+ z)+ cF (x− z)S (y+ z−1)

and

C (x+ y) = sF (x− z+1)S (y+ z)+ cF (x− z)C (y+ z−1) .

We now give summation formula in the following theorem.

Theorem 2.19. Let x be any real number and n be any positive integer. Then, we have

n−1

∑
k=0

S (x+ k) =C (x+n+1)+C (x+n)−C (x)−C (x−1)

and

n−1

∑
k=0

C (x+ k) = S (x+n+1)+S (x+n)−S (x)−S (x−1) .

Proof. Summing all the equations after writing Eq. (2.5) for x,x+ 1, . . . ,x+ n, with some mathematical arrangements, we
obtain

n

∑
k=0

S (x+ k) =−S (x)−S (x+1)+S (x+n+1)+S (x+n+2)+S (x−2)+S (x−1)−S (x+n−1)−S (x+n) .

Applying the recurrence relation in (2.3) to the last equation, the result follows.

3. Conclusion
In this paper, we defined the hyperbolic Fibonacci and the quasi-sine Fibonacci quaternion and try to develop some matrix
equations to these definitions. Also, we investigated some identities including Binet’s formulas, the generating functions, the
Pythagorean-type and Moivre-type formulas. In particular, we presented Vajda-type identities that can be reduced to some
important well-known forms, including Catalan’s or Cassini’s identities.
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Abstract
In this paper we consider r(x)−Kirchhoff type equation with variable-exponent nonlinearity of the form

utt −∆u−
(
a+b

∫
Ω

1
r(x)
|∇u|r(x)dx

)
∆r(x)u+βut = |u|p(x)−2u,

associated with initial and Dirichlet boundary conditions. Under appropriate conditions on r(.) and p(.), stability
result along the solution energy is proved. It is also shown that regarding arbitrary positive initial energy and
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1. Introduction
Let Ω be a bounded domain of Rn(n≥ 1) with a smooth boundary ∂Ω. Consider the following r(x)−Kirchhoff type hyperbolic
boundary value problem

utt −∆u−
(
a+b

∫
Ω

1
r(x)
|∇u|r(x)dx

)
∆r(x)u+βut = |u|p(x)−2u, (x, t) ∈Ω× (0,∞), (1.1)

u(x, t) = 0 (x, t) ∈ ∂Ω× (0,∞), (1.2)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈Ω, (1.3)

where a,b,β are positive constants and ∆r(x) is called r(x)−Laplace operator defined as

∆r(x)u = div(|∇u|r(x)−2
∇u).
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Here, we have the following condition on the variable exponents:
(A1) the exponents r(.) and p(.) are given measurable functions on Ω such that:

2 < r1 ≤ r(x)≤ r2 < ∞,

2 < p2 ≤ p(x)≤ p2 < ∞,

with
r1 := essin fx∈Ω

r(x), r2 := esssupx∈Ω
r(x),

p1 := essin fx∈Ω
p(x), p2 := esssupx∈Ω

p(x).

Before going any further, it is worth pointing out some results about the Kirchhoff-type equations. Kirchhoff equation

utt −M
(∫

Ω

|∇xu|2dx
)
∆xu = f (x, t), (1.4)

where M(s) = as+b, a,b > 0, was proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for
free vibrations of elastic strings. In the last decade many papers in the literature have investigated the existence of solutions
and blow-up results to the Kirchhoff-type problem. For example, Matsuyama and Ikehata [2] considered the following
initial-boundary value problem

utt −M
(
‖∇u(t)‖2

2

)
∆u+δ |ut |p−1ut = µ|u|q−1u, t ≥ 0, x ∈Ω,

u(0,x) = u0(x), ut(0,x) = u1(x), x ∈Ω,

u(t,x)|∂Ω = 0, t ≥ 0.

They proved a global solvability in the class H2×H1
0 and energy decay of the problem without the smallness of the initial data in

a certain sense. Ono [3] investigated the global existence, decay properties, and blow-up of solutions to the nonlinear Kirchhoff
strings with nonlinear dissipation. Pişkin [4] considered the initial-boundary value problem for the following extensible beam
equation with nonlinear damping and source terms

utt +∆
2u−M

(
‖∇u‖2)

∆u+ |ut |p−1ut = |u|q−1u (x, t) ∈Ω× (0.T ),

u(x,0) = u0(x), ut(x,0) = u1(x) x ∈Ω,

u(x, t) =
∂

∂ν
u(x, t) = 0 x ∈ ∂Ω,

author established the existence of the solution by Banach contraction mapping principle and the decay estimates of the solution
by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, the blow up of solutions in finite time
has been proved.
In another study, the following initial boundary value problem for a Kirchhoff type plate equation has been considered by Zhou
[5]:

utt +α∆
2u−a∆u−b

(∫
Ω

|∇u|2dx
)γ

∆u+λut = µ|u|p−2u in ΩT ,

u(x,0) = u0(x), ut(x,0) = u1(x) in Ω,

u(x, t) = ∂ν u(x, t) = 0 on Γ.

He proved the blow-up of solutions and the lifespan estimates for three different ranges of initial energy. Global existence of
solutions has been proved by the potential well theory, and decay estimates of the energy function have been established by
using Nakao’s inequality. For more results about the Kirchhoff type equations we refer the readers to [6, 7, 8, 9, 10].
On the other hand, it is known that modeling of some physical phenomena such as flows of electro-rheological fluids, nonlinear
viscoelasticity and image processing give rise to equation with nonstandard growth conditions, that is, equations with variable
exponents of nonlinearities. In [11], Shahrouzi and Kargarfard proved the blow-up result for the following Kirchhoff type
problem:

utt −M(‖∇u‖2)∆u−∆m(x)u+h(x, t,u,∇u)+βut = φp(x)(u), in Ω× (0,+∞){
u(x, t) = 0, (x, t) ∈ Γ0× (0,+∞)

M(‖∇u‖2) ∂u
∂n (x, t) = αu−|∇u|m(x) ∂u

∂n , (x, t) ∈ Γ1× (0,+∞)
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u(x,0) = u0(x), ut(x,0) = u1(x), in Ω,

and proved the blow up of solutions with positive initial energy and suitable conditions on datas. Recently, Antontsev et. al
[12], investigated the following nonlinear Timoshenko equation with variable exponents

utt +∆
2u+M

(
‖∇u‖2

L2(Ω)

)
∆u+ |ut |m(x)−2ut = |u|q(x)−2u,

and by using the Faedo–Galerkin method, they proved the local existence of the solution under suitable conditions. Also, the
nonexistence of solutions with negative initial energy has been investigated. (see also [13, 14, 15])
Dai and Hao [16] studied the following problem

−M
(∫

Ω

1
p(x)
|∇u|p(x)dx

)
div(|∇u|p(x)−2

∇u) = f (x,u), in Ω

u = 0, on ∂Ω.

By means of a direct variational approach and the theory of the variable exponent Sobolev spaces, they established conditions
ensuring the existence and multiplicity of solutions for the problem. Recently, Hamdani et. al. [17] investigated the following
nonlocal p(x)−Kirchhoff problem:

−(a−b
∫

Ω

1
p(x)
|∇u|p(x)dx)div(|∇u|p(x)−2

∇u) = λ |u|p(x)−2u+g(x,u), in Ω

u = 0, on ∂Ω.

They obtained a nontrivial weak solution by using the Mountain Pass theorem. For more results in Kirchhoff type equations
with variable-exponents nonlinearities we refer the reader to [18, 19, 20, 21, 22, 23] and references therein.

Motivated by the aforementioned works, in the present paper, we study a r(x)− Kirchhoff type equation with variable-
exponent nonlinearities. Under appropriate conditions on the initial data and variable exponents, we prove asymptotic stability
and blow up of solutions with positive initial energy.
The rest of paper is organized as follows. In Section 2, we recall some definitions and Lemmas about the variable-exponent
Lebesgue space, Lp(.)(Ω), the Sobolev space, W 1,p(.)(Ω) and additional conditions that be use for main results. In Section 3,
we prove the asymptotic stability of solutions for appropriate initial data and variable exponents. Finally, the blow-up result has
been proved with positive initial energy and suitable conditions on data and variable exponents, in fourth Section.

2. Preliminaries
Throughout this work, all the functions considered are real-valued. We denote by ‖.‖q the Lq-norm over Ω . In particular, the
L2-norm is denoted ‖.‖ in Ω. In order to study problem (1.1)-(1.3), we need some theories about Lebesgue and Sobolev spaces
with variable-exponents (for detailed, see [24, 25, 26, 27, 28]). Let p(x)≥ 1 and measurable, we assume that

C+(Ω) = {h|h ∈C(Ω), h(x)> 1 ∀x ∈Ω},

h+ = max
Ω

h(x), h− = min
Ω

h(x) f or any h ∈C(Ω),

Lp(x)(Ω) =
{

u| u is a measurable real− valued f unction,
∫

Ω

|u(x)|p(x)dx < ∞

}
.

We equip the Lebesgue space with a variable exponent, Lp(x)(Ω), with the following Luxembourg-type norm

‖u‖p(x) := inf
{

λ > 0
∣∣∣∫

Ω

|u(x)
λ
|p(x)dx≤ 1

}
Lemma 2.1. [24, 28] Let Ω be a bounded domain in Rn

(i) the space (Lp(x)(Ω),‖.‖p(x)) is a Banach space, and its conjugate space is Lq(x)(Ω), where 1
q(x) +

1
p(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have ∣∣∫
Ω

uvdx
∣∣≤ ( 1

p−
+

1
q−
)
‖u‖p(x)‖v‖q(x).

(ii) If p,q ∈C+(Ω), q(x)≤ p(x) for any x ∈Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω), and the imbedding is continuous.
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The variable-exponent Lebesgue Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | ∇u exists and |∇u| ∈ Lp(x)(Ω)}.

This space is a Banach space with respect to the norm ‖u‖W 1,p(x)(Ω) = ‖u‖p(x)+‖∇u‖p(x). Furthermore, let W 1,p(x)
0 (Ω) be the

closure of C∞
0 (Ω) in W 1,p(x)(Ω). The dual of W 1,p(x)

0 (Ω) is defined as W−1,p′(x)(Ω), by the same way as the usual Sobolev
spaces, where 1

p(x) +
1

p′(x) = 1.
If we define

p∗(x) =

{
N p(x)

N−p(x) , p+ < N
∞, p+ ≥ N,

then we have

Lemma 2.2. [24, 28] Let Ω be a bounded domain in Rn then for any measurable bounded exponent p(x) we have
(i) W 1,p(x)(Ω) and W 1,p(x)

0 (Ω) are separable Banach spaces;
(ii) if q ∈C+(Ω) and q(x)< p∗(x) for any x ∈Ω, then the imbedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact and continuous;
(iii) if p(x) is uniformly continuous in Ω then there exists a constant C > 0, such that

‖u‖p(x) ≤C‖∇u‖p(x) ∀u ∈W 1,p(x)
0 (Ω).

By (iii) of Lemma 2.2, we know that the space W 1,p(x)
0 (Ω) has an equivalent norm given by ‖u‖W 1,p(x)(Ω) = ‖∇u‖p(x).

We recall the trace Sobolev embedding in Lebesgue space with a constant exponent

H1
Γ0
(Ω) ↪→ Lq(Γ1) f or 2≤ q <

2(n−1)
n−2

where
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}

and the embedding inequality

‖u‖q,Γ1 ≤ Bq‖∇u‖2, (2.1)

where Bq is the optimal constant.
We sometimes use the Young’s inequality

ab≤ βaq +C(θ ,q)bq′ , a,b≥ 0, θ > 0,
1
q
+

1
q′

= 1, (2.2)

where C(θ ,q) = 1
q′
(θq)−

q′
q are constants.

3. Asymptotic stability
In this section we prove a stability result for the solution energy. For this goal we make the following assumptions:
(A2) There exist ε > 0 sufficiently small and β sufficiently large such that

p2 ≤
1

ε(β − ε)
≤ r1 ≤ r(x)≤ r2 ≤ 2ε(β − ε)r2

1.

The energy associated with problem (1.1)-(1.3) is given by

E(t) =
1
2
(
‖ut‖2 +‖∇u‖2)+ (a+ b

2

∫
Ω

1
r(x)
|∇u|r(x)dx

)∫
Ω

1
r(x)
|∇u|r(x)dx−

∫
Ω

1
p(x)
|u|p(x)dx. (3.1)

Our main result in this section reads in the following theorem:

Theorem 3.1. Let the conditions (A1) and (A2) are satisfied. Then the energy E(t) of problem (1.1)-(1.3) tends to zero as time
goes to infinity.
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To prove the above theorem, we need following Lemmas. First, we define

F(t) = E(t)+ ε

∫
Ω

uutdx,

for some ε > 0.

Lemma 3.2. Let u be the solution of (1.1)-(1.3). Then the energy functional satisfies

E ′(t) =−β

∫
Ω

|ut |2dx≤ 0. (3.2)

Proof. By multiplying equation (1.1) by ut and integrating over Ω, using integration by parts, we obtain (3.2) for any regular
solution. This equality remains valid for weak solutions by a simple density argument.

The following Lemma estimates an appropriate upper bound for F ′(t):

Lemma 3.3. Under the assumptions of Theorem 3.1, F(t) satisfies, along the solution, the estimate

F ′(t)≤−(β − ε)‖ut‖2− ε‖∇u‖2− εβ

∫
Ω

uutdx− ε

∫
Ω

|u|p(x)dx− ε(a+b
∫

Ω

1
r(x)
|∇u|r(x)dx)

∫
Ω

|∇u|r(x)dx. (3.3)

Proof. To prove this Lemma, at first we differentiate F(t) to obtain

F ′(t) = E ′(t)+ ε‖ut‖2 + ε

∫
Ω

uuttdx,

thanks to Lemma 3.2, we get

F ′(t)≤−(β − ε)‖ut‖2 + ε

∫
Ω

uuttdx. (3.4)

By multiplying (1.1) in u, it is easy to see that∫
Ω

uuttdx =−‖∇u‖2− (a+b
∫

Ω

1
r(x)
|∇u|r(x)dx)

∫
Ω

|∇u|r(x)dx−β

∫
Ω

uutdx+
∫

Ω

|u|p(x)dx. (3.5)

Combining (3.5) with (3.4), proof is completed.

Now, from definition of F(t) and Lemma 3.3, we have

F ′(t)+
1

(β − ε)
F(t)≤−

(
β − 1

2(β − ε)
− ε

)
‖ut‖2−

(
ε− 1

2(β − ε)

)
‖∇u‖2−a

(
ε− 1

r1(β − ε)

)∫
Ω

|∇u|r(x)dx

−b
(

ε

r2
− 1

2r2
1(β − ε)

)(∫
Ω

|∇u|r(x)dx
)2
−
( 1

p2(β − ε)
− ε

)∫
Ω

|u|p(x)dx−
∫

Ω

uutdx. (3.6)

Using the Young and Poincaré inequalities, we get

|
∫

Ω

uutdx| ≤ ε

2
‖∇u‖2 +

B2
2

2ε
‖ut‖2, (3.7)

where B2 is the best constant in Poincaré inequality.
Utilizing (3.7) into (3.6) to get

F ′(t)+
1

(β − ε)
F(t)≤−

(
β − 1

2(β − ε)
− ε− B2

2
2ε

)
‖ut‖2−

(
ε

2
− 1

2(β − ε)

)
‖∇u‖2−a

(
ε− 1

r1(β − ε)

)∫
Ω

|∇u|r(x)dx

−b
(

ε

r2
− 1

2r2
1(β − ε)

)(∫
Ω

|∇u|r(x)dx
)2
−
( 1

p2(β − ε)
− ε

)∫
Ω

|u|p(x)dx. (3.8)

Thanks to the (A2), we deduce

F ′(t)+
1

(β − ε)
F(t)≤ 0. (3.9)

Integrating over (0,t), we get from (3.9)

F(t)≤ F(0)e
−t

β−ε ,

according to (A2), this inequality show that F(t)→ 0 as t→ ∞. Since E(t)≤C0F(t), thus the proof of Theorem 3.1 has been
completed.
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4. Blow-up
In this section we are going to prove that for appropriate initial data some of the solutions blow up in a finite time. To prove the
blow-up result for certain solutions with positive initial energy, we assumed that:
(A3)

p1 ≥ r2 +2, r2
2 ≤ 2r2

1 ≤ 2r2
2.

At this point, we shall add a new variable v(x, t) to the system (1.1)-(1.3). Let us define for any λ > 0

v(x, t) = e−λ tu(x, t). (4.1)

A direct computation by substituting (4.1) into the problem (1.1)-(1.3), yields

vtt +(2λ +β )vt +λ (λ +β )v−∆v−(a+b
∫

Ω

1
r(x)
|eλ t

∇v|r(x)dx)div(|eλ t
∇v|r(x)−2

∇v)= |eλ tv|p(x)−2v, (x, t)∈Ω×(0,∞) (4.2)

v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞), (4.3)

v(x,0) = u0(x), vt(x,0) = u1(x)−λu0(x), x ∈Ω. (4.4)

The energy function related with problem (4.2)-(4.4) is given by

Eλ (t) = e−2λ t
∫

Ω

|eλ tv|p(x)

p(x)
dx− 1

2
I(t), (4.5)

where

I(t) = ‖vt‖2 +λ (λ +β )‖v‖2 +‖∇v‖2 +2ae−2λ t
∫

Ω

|eλ t∇v|r(x)

r(x)
dx+be−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2

Now we are in a position to state our blow-up result as follows:

Theorem 4.1. Let the conditions (A1) and (A3) are satisfied. Assume that Eλ (0)> 0. Then there exists a finite time t∗ such
that the solution of the problem (1.1)-(1.3) blows up in a finite time, that is

‖u(t)‖→+∞ as t→ t∗.

To prove the blow-up result, we need the following Lemma.

Lemma 4.2. Under the conditions of Theorem 4.1, the energy functional Eλ (t), defined by (4.5), satisfies

Eλ (t)≥ er2λ tEλ (0) ∀t ∈ R+. (4.6)

Proof. A multiplication of equation (4.2) by vt and integrating over Ω gives

E ′
λ
(t) = (2λ +β )‖vt‖2−bλe−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2−ae−2λ t

∫
Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

+e−2λ t
∫

Ω

λ (p(x)−2)
p(x)

|eλ tv|p(x)dx−be−2λ t(∫
Ω

|eλ t∇v|r(x)

r(x)
dx
)(∫

Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

)
,

next, for any ε > 0, we have

E ′
λ
(t)− εEλ (t) = (2λ +β +

ε

2
)‖vt‖2 +b(

ε

2
−λ )e−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)2

+
ε

2
λ (λ +β )‖v‖2 +

ε

2
‖∇v‖2

+aεe−2λ t
∫

Ω

|eλ t∇v|r(x)

r(x)
dx−ae−2λ t

∫
Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx+ e−2λ t

∫
Ω

λ (p(x)−2)
p(x)

|eλ tv|p(x)dx



A Nonlinear r(x)-Kirchhoff Type Hyperbolic Equation: Stability Result and Blow up of Solutions with Positive Initial
Energy — 214/216

−εe−2λ t
∫

Ω

|eλ tv|p(x)

p(x)
dx−be−2λ t(∫

Ω

|eλ t∇v|r(x)

r(x)
dx
)(∫

Ω

λ (r(x)−2)
r(x)

|eλ t
∇v|r(x)dx

)
. (4.7)

Utilizing additional condition (A1), we get

E ′
λ
(t)− εEλ (t)≥ b(

ε

r2
2
− λ (r2−2)

r2
2

− λ

r2
1
)e−2λ t(∫

Ω

|eλ t
∇v|r(x)dx

)2
+a(

ε

r2
− λ (r2−2)

r2
)e−2λ t

∫
Ω

|eλ t
∇v|r(x)dx

+
1
p1

(λ (p1−2)− ε)e−2λ t
∫

Ω

|eλ tv|p(x)dx.

Finally, if we set ε := r2λ then by using (A3) we arrive at

E ′
λ
(t)− εEλ (t)≥ 0,

and by integration over (0, t) we obtain the desired result.

Proof of Theorem 4.1. For obtaining the blow-up result, the choice of the following functional is standard

ψ(t) = ‖v(t)‖2, (4.8)

then

ψ
′(t) = 2

∫
Ω

vvtdx, (4.9)

ψ
′′(t) = 2

∫
Ω

vvttdx+2‖vt‖2. (4.10)

A multiplication of equation (4.2) by v and integrating over Ω gives∫
Ω

vttvdx =−(2λ +β )
∫

Ω

vvtdx−λ (λ +β )‖v‖2−‖∇v‖2− e−2λ t(a+b
∫

Ω

|eλ t∇v|r(x)

r(x)
dx)

∫
Ω

|eλ t
∇v|r(x)dx.

+e−2λ t
∫

Ω

|eλ tv|p(x)dx (4.11)

By using definition of Eλ (t) in (4.11), we have∫
Ω

vttvdx≥ r2Eλ (t)+
r2

2
‖vt‖2 +λ (

r2

2
−1)(λ +β )‖v‖2 +(

r2

2
−1)‖∇v‖2 +

b(r1−2)
2r1

e−2λ t(∫
Ω

|eλ t
∇v|r(x)dx

)2

+(1− r2

p1
)e−2λ t

∫
Ω

|eλ tv|p(x)dx− (2λ +β )
∫

Ω

vvtdx,

and taking into account (A3) to obtain∫
Ω

vttvdx≥ r2Eλ (t)+
r2

2
‖vt‖2 +λ (

r2

2
−1)(λ +β )‖v‖2− (2λ +β )

∫
Ω

vvtdx. (4.12)

By substituting (4.8)-(4.10) in (4.12) we get

ψ
′′(t) ≥ 2r2Eλ (t)+(r2 +2)‖vt‖2 +λ (λ +β )(r2−2)ψ(t)− (2λ +β )ψ ′(t)

≥ (r2 +2)‖vt‖2 +λ (λ +β )(r2−2)ψ(t)− (2λ +β )ψ ′(t), (4.13)

where Lemma 4.2 and hypotheses of Theorem 4.1 about initial energy have been used.
Multiplying (4.13) in ψ(t), we get

ψ(t)ψ ′′(t)≥ (r2 +2)‖v‖2‖vt‖2 +λ (λ +β )(r2−2)ψ2(t)− (2λ +β )ψ(t)ψ ′(t), (4.14)
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and finally we obtain

ψ(t)ψ ′′(t)≥ (r2 +2)
4

(ψ ′(t))2 +λ (λ +β )(r2−2)ψ2(t)− (2λ +β )ψ(t)ψ ′(t),

where the inequality (ψ ′(t))2 ≤ 4‖v‖2‖vt‖2 has been used.
Thus by the modified concavity method we deduce that there exists a finite time t∗ such that

lim
t→t∗

ψ(t) = ∞.

Consequently, the proof of Theorem 4.1 has been completed.
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