ecEamm uocwzkprow_mn_mzm‘,m :

r ~e-ISSN 2587-0971




TURKISH JOURNAL OF SCIENCE

(An International Peer-Reviewed Journal)
ISSN: 2587-0971

Volume: VI, Issue: 111, 2021

Turkish Journal of Science (TJOS) is published electronically yearly. It publishes, in English or
Turkish, full-length original research papers and solicited review articles. TJOS provides a forum
to scientists, researchers, engineers and academicians to share their ideas and new research in the

field of mathematical and related sciences as well as theirs applications. TJOS is a high-quality

double-blind refereed journal. TJOS is also an international research journal that serves as a
forum for individuals in the field to publish their research efforts as well as for interested readers
to acquire latest development information in the field. TJOS facilitate communication and
networking among researchers and scientists in a period where considerable changes are taking
place in scientific innovation. It provides a medium for exchanging scientific research and
technological achievements accomplished by the international community.

Abstracting & Indexing in:

1- CiteFactor
https://www.citefactor.org
2- ResearchBib
http://journalseeker.researchbib.com/view/issn/2587-0971
3- Scientific Indexing Services
https://www.sindexs.org/JournalList.aspx?1D=4519
4- COSMOS
http://www.cosmosimpactfactor.com/page/journals_details/5755.html
5- ASOS
https://asosindex.com.tr/index.jsp?modul=journal-page&journal-id=1655
6- J-Gate
https://jgateplus.com/home/j-gate/

Correspondence Address

Turkish Journal of Science (TJOS)
http://dergipark.gov.tr/tjos




Editors-in-Chief

Dr. Ahmet Ocak AKDEMIR
Associate Editor

Dr. Mustafa Ali DOKUYUCU

Editorial Board
Thabet ABDELJAWAD, Prince Sultan University, Saudi Arabia
Ercan CELIK, Atatiirk University, Turkey
Ali AKGUL, Siirt University, Turkey
Elvan AKIN, Missouri Tech. University, USA
Mohammad W. ALOMARI, University of Jerash, Jordan
Rehana ASHRAF, Lahore College of Women University, Pakistan
Merve AVCI-ARDIC, Adiyaman University, Turkey
Saad lhsan BUTT, COMSATS University of Islamabad, Lahore
Campus, Pakistan
Halit ORHAN, Atatlrk University, Turkey
Sever Silvestru DRAGOMIR, Victoria University, Australia
Alper EKINCI, Bandirma Onyedi Eyliil University, Turkey
Zakia HAMMOUCH, Moulay Ismail University, Morocco
Fahd JARAD, Cankaya University, Turkey
Zlatko PAVIC, University of Osijek, Croatia
Kirsat AKBULUT, Atatlirk University, Turkey
Feng QI, Henan Polytechnic University, China
Saima RASHID, Government College University, Pakistan
Erhan SET, Ordu University, Turkey
Haci1 Mehmet BASKONUS, Harran University, Turkey
Sanja VAROSANEC, Zagreb University, Croatia
Omiir DEVECI, Kafkas University, Turkey
Rustam ZUHERMAN, University of Indonesia, Indonesia
Sitileyman SENYURT, Ordu University, Turkey
Tuan NGUYEN ANH, Thu Dau Mot University, Vietnam
Nguyen Huu CAN, Ton Duc Thang University, Vietnam



CONTENTS

Numerical Solution of Volterra Integral Equations Using Hosoya
Polynomial

Structure of nearly a—cosymplectic manifolds

The Solution of Linear Volterra Integral Equation of the First Kind
with ZZ-Transform

The Representation and Finite Sums of the Padovan-p Jacobsthal
Numbers

The Complex-type Pell p-Numbers in Finite Groups

Fourier Method for Higher Order Quasi-Linear Parabolic Equation
Subject with Periodic Boundary Conditions

The Period and Rank of the Complex-type Padovan-p Numbers
Modulo m

Mathematical Modeling of the Shape of Cavity Created with Laser
Using Melting, Boiling Temperature

Partial Sums of The Miller-Ross Function

Merve Zeynep GECMEN,
Ercan CEL/K, Mustafa Ali
DOKUYUCU

Gilhan AYAR and Dilek
DEM/RHAN

Erhan OZDEMIR, Ercan
CEL/K and Sid:ka Sule
SENER

Ozgiir ERDAG and Omiir
DEVEC/

Yesim AKUzZUM

Irem BAGLAN and Timur
CANEL

Omiir DEVEC/ and Ozgiir
ERDAG

Timur CANEL and frem
BAGLAN

Sercan KAZIMOGLU

110-117

118-126

127-133

134-141

142-147

148-155

156-161

162-166

167-173



TURKISH JOURNAL OF SCIENCE http:/dergipark.gov.tr/tjos
VOLUME 6, ISSUE 3, 110-117
ISSN: 2587-0971

Numerical Solution of Volterra Integral Equations Using Hosoya
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Abstract. In this study, Volterra integral equation is solved by Hosoya Polynomials. The solutions obtained
with Hosoya method were compared on the figure and table. And error analysis was done. Matlab package
programming has been used to obtain results, tables and error analysis.

1. Introduction

Many mathematical models in disciplines such as engineering, physics and chemistry consist of integral
equations [1]. Integral equations are equations in which the unknown function is under the integral sign
[9]. Integral equations has been used in various applications such as geophysics, electricity and magnetism,
kinetic theory of gases, regeneration theory, quantum mechanics, radiation, optimization, optimal control
systems, mathematical economics, mathematical problems of radiative equilibrium, fluid mechanics, steady
state heat [11]. One of most important integral equation is Volterra integral equation. Recently, Volterra
integral equations have been increasingly used in engineering and applied mathematics studies. This
equation has been studied in many fields of study such as Banach space, Haar functions problems, potential
theory and Dirichlet problems, spectral methods, numerical computational problems and computer science
problems [10]. In addition, the method studied in this paper was applied to the Volterra integral equation.

2. Volterra Integral Equations

The third kind of Volterra integral equations is of the form

X

u(x)h(x) = f(x) + A fK(x, Hu(t)dt (1)

[2%
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where the limits of integration are function of x and the unknown function u(x) appears linearly under the
integral sign. Second kind of Volterra integral equations is of the form

X

u(x) = f(x)+ /\fK(x, Hu(t)dt (2)

a
where h(x) = 1. First kind of Volterra integral equations is of the form

X

flx) = /\fK(x, Hu(t)dt 3

a

3. Hosoya Polynomials

The Hosoya polynomial was initiated in 1988 by Haruo Hosoya [5, 8]. Hosoya polynomials count the
distance between vertices of the path graph [12]. It is obtained from path graphs of certain pairs of graphs
[3, 4]. Studies such as obtaining the physical and chemical properties of organic molecules with the Hosoya
polynomial of the graph were carried out [12]. For a path graph with the Hosoya polynomial is described
as,

H(P,5) = Z (P, 1)’ (4)

>0

where d(P,]) is the distance between vertex pairs in the path graph [6, 7]. Sum of the path graph vertices
m with 1,2, ..., m are multipled 6 parameter. Then Hosoya values are calculated based on m vertex values
[13]. For m integer values we represent path as p,, , then Hosoya polynomial of path compute as:

H(py,0) = Y d(p1, 00" =1

>0

H(pa,0) = Y d(pa, 0 = 6 +2
>0

H(ps,0) = Y d(pa, o' = 6> + 25 +3
>0

H(pm, ) = m + (m — 1)5 + (m — 2)6% + ...
+(m—(m— 2))6’”_2 +(m—-(m-— 1))(5’"‘1
A function w(x) € L,[0; 1] is dilated as:
n

w(x) = Y ziH(pi, x) = ZTHy(x), (5)

i=1
where Z and H(x) are m X 1 matrices shown as:
_ T
Z - [21122/ 23/-~/Zm] (6)

and
H,(x) = [H(p1, ), H(p2, ), ..., H(pm, )] " @)
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4. Hosoya Polynomial Method

Consider The Volterra integral equation

X

y(x) = w(x) + fL(x, Hy)dt, 0 < x,t <1

1
to solve equation (8), the method is as follows:

1. First we define y(x) as defined in Equation (5). This equation is,
y(x) = Z"Hp(x)

2. Then using place of (9) in (8), we get,

ZTH,(x) = w(x) + f L(x,t) [ZH,(t)] dt
1

3. Replacing the collocation point x; = #, j=1,2,--- ,min Equation (10). Then we get,

ZTH,(xj) = w(xj) + Z" f L(x;, H)H, (t)dt
1

Z'Hy(xp) - Y)=w

where
Y = [L(xj, t)H,(t)dt
1

4. In the last step, we get the conclutions of unknown Hosoya values,

ZTL=w

where

L=Hyx)-Y

112

(10)

(11)

solving this system of equations we get coefficients Z and then use in place of these coefficients in (9),

we obtain the necessary result of (8) [2].

5. Numerical Example
5.1. Example
Consider Volterra integral equation,

X

u(x) =x+ f(t — x)u(t)dt

1

(12)
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which has the exact solution u(x) = sin(x). First we substitute u(x) = ZTH p(x) in equation (12). We get,

ZTH,(x) = x + f (t—x) [ZTH, (1)) dt (13)
1

Because of that reason for m = 3,

X X

ftHl(t)dt—fol(t)dt

1 1
X X

+ Zo[Ha(x) — f HH, (f)dt — f xH()dt

1 1
x X

+Zg[H3(.X) - fi’Hg(t)dt— fo3(t)dt

1 1

Z1[Hy(x) - ]

—

(14)

—
Il
=

Next, we achieve the Hosoya polynomials as

1 1

+ Zo[(x +2) — [ft(t + 2)dt — fx(t + Z)dt]] (15)

1 1

Zl[l—[ftdt—fxdt]]

+Z3[(x2+2x+3)—[ft(t2+2t+3)dt—fx(t2+2t+3)dt]]:x

1 1

Next,

3 A2
Z1[2+?—x]
3
., 2 3x 10 16
+Zz[6+x 2+3] (16)
2 4 3
g T B 2
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If it is compute as x; = % and putting instead of the collocation points x1, xp, x3 , we get the system of

three equations with three unknowns as,

3 x2
Zl[i"‘%_xl]
3
e 3 10
+Zz[6 +x > + 3]

X12 53X1 x14 2X13

Z - —_— | =
RS i i i
3 x?
Z1[§+%—x2]
3 3 10
+ Zﬂ% + 1,2 — % + 3] (17)
2 4 3
X2 53XZ X2 23('2 _
+Z3[5 5 + R 1 3 ]—XZ
3 x32
Z1[§+%—x3]
3
¥ 23 10
+ 2o 6 + X3 > + 3]
2 4 3
+Z3[5_xi+%_xi_2£]:x3

2 12 4 3

resolving these systems we get the three unknown Hosoya values,
Z1 =0.5012, Z, = 0.8672, Z3 = -0.4101
putting back with these coefficients in the approximation, we get
u(x) = Z1[H1(x)] + Z2[Ha(x) + Z3[H3(x)]
If in (17) is written in place of the x1, X7, x3 values, approximate solutions are achieved.

u1(x) = Z1[H1(x1)] + Z2[Ha(x1) + Z3[H3(x1)]
uz(x) = Z1[Hi(x2)] + Z2[Ha(x2) + Z3[H3(x2)] (18)
uz(x) = Z1[H1(x3)] + Z2[Ha(x3) + Z3[H3(x3)]

We get the approximate values,
uy = -0.0682718, u, = 0.397826, uz = 0.820127

Maximum Error analyzed for m = 3 is,

Emax = JZ (ug(xi) - u”(xi))z =

= (19)

\/(xl —1)” + (x2 — tn)” + (x3 — uz)” = 0.2605

and for m = 3, 8,10 are shown in the Tables 1, 2,3 and Figures 1,2, 3.
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Table 1: Conclution of Hosoya Polynomial Method, for m = 3

X Hosoya Polynomial Method  Exact Solution
0.1667 0.1659 -0.0682718
0.5 0.4794 0.397826
0.8333 0.7402 0.820127
Figure 1: Example 5.1 form = 3
1 T T T T T T
B X
B ~— —&— Exact Solution
N — Agpprox.Solution
0.95 - ~— .
”‘IMKH
\'x.
09 \-‘_\ -
\\‘\
.
0.85 . .
AN
.
08 \-\\ 4
075 ‘\\ T
“u
u? 1 1 1 1 | 1
01 02 03 04 0.5 0.6 0.7 08
Table 2: Conclution of Hosoya Polynomial for m = 8
X Hosoya Polynomial Method Exact Solution
0.0625 0.5851 -0.214276
0.1875 0.1864 -0.0383231
0.3125 0.3125 0.138228
0.4375 0.3074 0.312622
0.5625 0.5333 0.482137
0.6875 0.6875 0.644129
0.8125 0.6346 0.79607
0.9375 0.9361 0.935588
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Figure 2: Example 5.1 for m = 8

L — = T T T T T T T
h '---.__\_‘x —&— Exact Solution
~ Approx Solution | -
Hx PP t
‘M\\‘\ =
N .\ ]
k\ |
\\._
0.1 02 0.3 0.4 05 06 0.7 0.8 08
Table 3: . Conclution of Hosoya Polynomial Method for m = 10
X Hosoya Polynomial Method Exact Solution
0.050 0.050 -0.231732
0.150 0.1494 -0.0912973
0.250 0.2474 0.0500501
0.350 0.3429 0.190897
0.450 0.4350 0.329837
0.550 0.5227 0.465482
0.650 0.6052 0.596475
0.750 0.6816 0.721508
0.850 0.7513 0.839333
0.950 0.9134 0.948771
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Figure 3: Example 5.1 for m = 10

1—= " m— T T T T T T T T

- ~—@— Exact Solution
0.95 ~. i -
Approx Solution

09F ' L )

085 L .

065 _

6. Conclution

In this paper, the solution of Volterra integral equations with Hosoya method is examined. The method
was applied to test problem in the matlab achieved with a certain algorithm. The method is solved for

m=3,m=

8, m = 10 values. The maximum error analysis was obtained according to the results exact and

approximate solutions. The results exact and approximate solutions are shown with tables and figures.
When the achieved conclutions are analyzed, it is seen that the Hosoya method is an useful method for
solving the Volterra integral equation.
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Abstract. The main purpose of this paper is to study the structure of nearly a— cosymplectic manifolds
and some basic curvature relations of this manifolds satisfying some conditions where «a is real defined.

1. Introduction

In more recent times,the geometry of cosymplectic manifolds has an increasing interest. The topology
of cosymplectic manifolds and curvature properties of almost cosymplectic manifolds have been examined
by Blair and Goldberg[1], Yano[14], Olszak[6], Kirichenko[17], Endo[9] and others. The category of almost
cosymplectic manifolds is much wider than other structures. Many other authors also have applications to
characterize and analize the properties of almost cosymplectic manifolds (see [18, 22, 25]).

In addition to geometric studies of cosymplectic manifolds, recent interest in the subject of the geometry
of nearly contact structures has become favorite. Many mathematicians have began to examine nearly
structures on various manifolds by examining new curvature properties. Some of these are nearly Kaehler,
nearly Sasakian, nearly Kenmotsu and nearly cosymplectic manifolds etc. Now we will try to give some of
these works in a chronological order.

Nearly Kaehler manifolds are presented by Gray in [4, 5]. Blair et al. has introduced nearly Sasakian
manifolds [2] and also Olszak has improved this kind of manifolds [7]. In another study of Olzsak, the
properties of five dimensional nearly Sasakian and non-Sasakian manifolds have been given [8]. Parallel
to Olszak’s works, Endo has analyzed and has studied the geometry and curvature properties of nearly
cosymplectic manifolds [10]. In addition to these important works, nearly cosymplectic manifolds and
some curvature conditions on nearly cosymplectic structures have been studied by many authors and they
have also introduced some of the remarkable properties of nearly cosymplectic structures [16, 20, 23, 24].

Starting from the previous studies, in this study we define nearly a— cosymplectic manifolds and obtain
some basic curvature properties of nearly a—cosymplectic manifolds. By means of this paper, we will
elaborate on the subject using the notations and terminology of nearly a—cosymplectic manifolds.

2. Preliminaries

Throughout this study, M is considered as C* class manifolds and we accept X, Y, U’, V', U, V € x(M) as
vector fields unless otherwise stated.

Corresponding author: GA mail address: gulhanayar@gmail.com ORCID:0000-0002-1018-4590, DD ORCID:0000-0003-4576-2466
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Let (M, ¢, &, 1, g) be (2n+1)— dimensional differentiable almost contact metric manifold with (1, 1)—tensor
field ¢, a characteristic vector field £, 1-form 7 and the Riemannian metric g. M, with this structure (¢, &, 1, g)
is called an almost contact metric structure. By the way, an almost contac metric structure satisfies the
following conditions here with [1];

9(@X, 9Y) = g(X, Y) = n(X)n(Y), )

P°X = =X +n(X)&,

né) =1,
rank¢g = 2n.

where X Y € y(M). Also an almost contact metric structure (¢, &, 17, g) satisfies;

n(X) = g(X, &),

P(&) =0,
n(@X) =0,
9(X, oY) + g(Y,pX) = 0. 2

In the above equations, ¢ is skew-symmetric operator with respect to g and @ is the bilininear funda-
mental 2—form such that ®(X,Y) = g(X, ¢Y) on M [15]. An almost contact metric manifold with dn = 2
is called a contact metric manifold on M. Moreover, almost contact metric manifolds in which both ® and
7 are closed are called almost cosymplectic manifolds with dn = 0 and d® = 0, where d is the exterior
differential operator. Finally, a normal almost cosymplectic manifold is called a cosymplectic manifold (see
[1-3] for further details).

By the way, Kenmotsu manifolds, as it is named, were defined and studied by Katsuer Kenmotsu in
1972 [13]. Later, nearly Kenmotsu manifolds were studied by Shukla [11]. Shukla, A. defined an almost
contact manifold (M, ¢, &, 11, g) as a nearly Kenmotsu manifold with the following relation;

(Vi)Y + (Vy$)X = —n(Y)pX - n(X)¢Y )
where V is Levi-Civita connection of g.

Recently, many other authors [12, 19, 21] have studied the geometric properties of nearly Kenmotsu
manifolds. If we mentioning about nearly Kenmotsu manifolds briefly, we can describe the skew-symmetric
(1,1)—tensor field H, with dn(X,Y) = g(HX,Y). When H = 0, M is said to be a nearly Kenmotsu manifold.
Now, it is easy to see that every Kenmotsu manifold is nearly Kenmotsu manifold but converse is not true.

On the other hand, a nearly cosymplectic manifold is an almost contact metric manifold (M, ¢, &, 7, 9)
such that

(V)Y + (Vy)X =0, XY € x(M),

where V denote the Levi-Civita connection with respect to the Riemannian metric g on M [10]. For a nearly
cosymplectic manifold, the vector field ¢ is Killing and satisfies V£ = 0 and V¢n = 0 conditions.

As we know that with the normality condition ([¢, ¢] + 2nd ® &) = 0), a nearly cosymplectic structure is
a cosymplectic structure [10].

Beside, for an a—cosymplectic manifold the following condition holds [22];

(Vx®)Y = a[g(@X, )C - n(V)¢X] (4)

for any vector field X and Y on M.
Now from the equation above, by the sum of (Vx¢$)Y and (Vy¢)X, we define a nearly a¢—cosymplectic
manifold (M, ¢, &, 1, g) , with the following definition;
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Definition 2.1. Let (M, ¢,&,n,9) be 2n + 1)— dimensional differentiable almost contact metric manifold with
(1, 1)—tensor field ¢, a characteristic vector field &, 1—form 1 and the Riemannian metric g.Then if M satisfies the
following relation ;

(V@)Y + (Vy§)X = a[-n(Y)oX - n(X)pY] (5)

then, M is a said to be a nearly a—cosymplectic manifold where V is Levi-Civita connection of g and a € R.

3. Nearly a—cosymplectic manifolds
In this section, for a nearly a—cosymplectic manifold (M, ¢, &, 17, g), some basic structures are given.

Proposition 3.1. For a nearly a—cosymplectic manifold (M, ¢, &, 1, g) we have;

gV &, V') + g, V&) = 2ag(pU’, pV'),

Vié = —adp®U’ + HU, (6)
¢H + Hep =0,
Ve = ¢H,
HE =0,
V& =0, 7)

where H is the skew-symmetric (1, 1)-tensor field.

Proof. By (5), (V:9)& = — ¢p(Ve&) = 0, hence V& = 0 and V¢n = 0. Now by making use of equation (1) we
have

0 =g((Vep)U', V') + g(Ve) V', pU)

—g(Vu ), @V') = g(VvP)E, pU') = 2g(pU’, pV”)
g(Vw&, V') + g(Vy &, U') = 2ag(pU’, $V).

With help of definition of H, we get V7 & = —a¢?U’ + HU'.
By ¢& = 0 and n(¢U’) = 0,we have

0=Vu) +oVuwé =-(Vep)U' + pHU, (8)

0 =n((Vup)V") + (Vv o)U’)
= -, (Vv $)&) = g(V', (Vu§)&)
= g(Ve)U', V') + g((Vep) V', U')
= g(U', pHY) + g(V', pHU')
= g((pHU' + HYU'), V).
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4. Curvature properties of nearly a—cosymplectic manifolds

In this section, for a nearly a—cosymplectic manifold (M, ¢, &, 1, g), some curvature relations are given.
R is the Riemannian curvature tensor and it is defined by

R, VU = (Vg U) = (V5 W) = [Vur, Ve IU = Vg v U
At the same time, the (0,4)—type tensor field is defined as
R, V', U V)=gRU,VUV).

Theorem 4.1. For a nearly a—cosymplectic manifold (M, ¢, &, n, g), following curvature relations are hold;

RWU, V', U V)+RU, V', U V) +RU, oV, U V) + R(pU', V', U V) =0, )

RE W, V', U) = a[-2nU")g(UHY) + n(V")g(HU, U’) — n(L)g(HY, U')]

+ o [n(V/)g(U’, ) = n(Ug(V', U] = g(Vu F)V', L), (10)
R(oU’, ¢V’ U, V) = RU', V', U, V), (11)
R(oW’, oV, pU, V) = R(U', V', U, V) = n(U")R(E, V', U, V) + n(V')R(E, U, U, V). (12)

Proof. Let define a (1,3)—type tensor field T; as follow
(Vi OU = (V3 (V' = T, V', U), (13)
which satisfies To(U’, V', U) = T,(UW’, U, V’). To put it simples, we can write the (0,4)—type tensor field T5,
with respect to g, as follows;
T, (W, V', U, V) = g(Ts(U', V', U), V).

If we use the Ricci identity, then we obtain

0=RWU, V', U,§V) - R, V', V,oU) ~ g(V, 1,0, V) + g(V2, , )L V).

Also by the first Bianchi identity and (13), we get

R, V', U,¢V) = RU, V', V,pU) + g(V U, V) = g(V, p 9IU V)
=R, V', V,¢pU) = g(Vi, y OV, V) + g(V3, yOIU', V)
+ Ts(u,/ ll/ V,/ V) - TS(Vl/ L[/ u,I V)r
and thus, we have
R, V', U¢Vv)=RU, UV, oV)=RV', U U,PV)
=RU, UV, ¢V)-R(V',UV,oU)
+ (V3 U, V) = g(V5, y U, V),

If we equalize the right sides of equations above, we get

R, V', U, ¢V) = RWU, V', V,¢pU) = R(V', U, V,pU') + g(Viy y @) V', V)
+g(Viy U, V) + To(V, LW, V) = To(U', U, V', V) = 29((Vy, yo)U, V). (14)
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and we note that

9V y @V, V) + 9(V, U, V) = RWU, U, V', V) = RU, U, V, V') + T(U, U, V', V),

(V5 U, V) = g(Vy, y U W) = TV, VU D).
By considering this in (14), we have
2R(U, U, V', V) =R, V', V,0oU) - R(V', U, V,pU") = R(U', U, V,pV’)
T U, V', UV)+T(V', U U, V)+ T(U U, V', V) +2T(V', V, U U’)
= 29((Vy, y)U, U). (15)
If we apply (5) to (15), we obtain
(U, VU, V) = a(=g(V', U’ + HU') + (W )n(V')g(U, V)
+ 2 (—g(U U’ + HU') + n(U)nU)g(@V’, V)
= (V)g(Vud)U, V) = n)g(Vu )V, V),
and after a straight forward computation, we get
T(V,uu,v)+ T (uu,v', V) -T U, V', UV)+2T,(V,v,Uuu) =
a [G(U’, VI, U V) +29(pV’, V)g(HU', U) + 2g(pU, V)g(HU', V') +2g9(pU’, V)g(HY, U) + 29(pU’, U)g(HY, V)]
+a? [29(oU (V' 62V) + (W )n(V))g(@U, V) — nn(V')g(@U’, V)],
where
G, V', V) = al-n(V)g(Vud)ll, V) +n(V)g(Vud)U, V) = 20(V)g(Vv- )U, L))
The anti-symmetrization of (15) in V’ and V' and also using the first Bianchi identity, we have
3R(pU’, U, V', V) +3R(U, oU, V', V) + 3R(U’, U, pV’, V) + 3R(U’, U, V', pV)
+a[4g(@V', V)gHU', U) + 29(0U, V)g(HW, V') — 29(U, V')g(HU, V)
+4g(opU’, U)g(HY, V) + 2g(U’, V)g(HY, U) — 29(pU’, V')g(HV, LI)] =0,

which implies equation (9) if one assumes H = 0. Now we will show that H = 0. For U’ = &, (HE = ¢& = 0),
we get

R, U V', V) +R(E U GV, V)+R(E UV, V) =0, (16)
and
—R(&, UV, V) =R(E, U V', V) + R(E, oU, ¢V, dV) + n(V')R(E, U, E, V) = 0. 17)
Hence we have
R(E UV, pV) +R(E, 0U V', dV) + n(V)R(E, ¢U E, V) =0, (18)

and

- R(EI CZ)LI/ V// V) + R(E/ LI/ (PV// V) + T}(V)R(é/ L[/ 5/ (PV’)
- VIR, pU, & V) +n(VR(E, ¢U, E, V) = 0. (19)

From (16) and (19), we have

2R(E, U, V', V) + RE ULV, §V) = n(V)RE OULE V) + n(V) [RE U E V) - RE QULE V). (0)
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and changing U by ¢U and V by ¢V in (20), we get
—2R(E, U V", V) = R(E,¢U V", V) = =n(V)R(E, U, &, §V) + n(VIR(E, U, E, V). (1)
Taking the sum of the last two equations above, we obtain
R(&E U V', V) =R(E UV, V) =n(V)R(E, U E V) +n(V)RE, U, E,0V') = R(E, U, &, oV). (22)
From the equations (19) and (22), we get (16) as
3R(E, GU V', V) = n(V') [2R(E, 9U,E, V) = R(E, U &, dV)| + n(V) [2R(E, U, &, 9V') - R(E, 9ULE, V)],
R, U ¢V, pV) = 0.
Applying V& = —a¢? + H, we have
RV, U & W) = —g(Vv )W, U) + g(VuE)U', V') = g(Vi, 9)U’, U) + g(VE U, V7).
Using the first Bianchi identity by applying the cyclic sum on U’, V’, U, we obtain
g(Vu V', U) = g(Vv-E)U', U) + g(VuH)U', V') = 0,
in this way we have

R(V', U, & U') = - g(Vy P, U) + g(Vud?HU, V') = g(Vu H)V', U)
+a[-2nU")g(U, HY) + n(V")g(U’, HU) — n(U)g(U’, HY)]
+a? [n(V)g(U’, U) = n(thg(U’, V)] = g(Vu H)V', U), (23)

0=R(E U, ¢V, oU) = —2anU)gHV', pU) — g(Vu H)GV, pU)
= a[-2nU")g(HY, U)] — g(Vu H)pV’, pUD). (24)

If we take V’, a unit eigenvector field on M such that n(V’) = 0 and H2V’ = AV’; in this way, note that
HngV' =A¢pV’ ,as pH = —H¢. Then

’ 1 4 4
0=R( U, V', pHY) = 2aAn(U’) = g(VuH)$V’, pHY) - Eg((Vu/Hz)qbV ,OV7)
1
=2aAn(U’) - Ed)\(ll’) =0, (25)
so that dA = —4aAn, where U’ is arbitrary vector field on M.
As aresult, A =0 ordn =0, means H = 0. Then from (23), we obtain (10).

Stating the left hand side of (9) by R., we will prove (11).
Then, if we applying this regulation in (10), we have

0=R(U, ¢V, U, V)= R(U, V', ¢pU, V) = R(U, V', U, ¢V) + R.(pU, V', UL, V)
= 2R\, V', pU, dV) + 2R(GU’, HV’, U, V).

Now, it is immediate to see (12). O

Proposition 4.2. For a nearly a—cosymplectic manifold (M, ¢, &, 1, 9), following relation holds;

—20g(pU’, V)& + (Vurd)V' +an(V)oU' + (Vo p)pV’ =0.
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Proof. By ¢* = —Id + n® &, we have

g((VuP)pV’, U) = a[n(V')gU’, U) + nhgU’, V') = 2n(U")n(V")n(U)]
+n(V')g(HU', U) + n()gHW, V") + g(Vu $)V', pU),

taking into account (5), we get

g(Vouwrp)V', U) = a[2n(V")g(W’, U) — n(U)g(U’, V') = n(U")n(V")n(U)]
+n(U)g(HU, V') + n(U)g(HW', V') + g(Vur p)V’, pU). (26)

From the equations above, the expression we are trying to show is obtained. [J

Proposition 4.3. For a nearly a—cosymplectic manifold (M, ¢, &, n, g), following curvature relations are hold;

Rie(U', &) = o [-2nn(U")], (27)
Ric(@V’, pU) = a? [2nn(V')n(U)] + Ric(V", 1), (28)
Ric(U, V") + Ric(pU, V') = 0, (29)

where Ric is the Ricci tensor of M.

Proof. In for dimension M is 2n + 1 and (Eg = &, Ey, ..., Ey, Ent1, ..., E2y), orthonormal ¢-frame satisfies ¢E; =
Eiwn, @Eivy = —E;, i = 1,...,n. If we evaluate the ¢-basis with (10), we can give the Ricci tensor Ric(U’, &) by
27).

Then from the equation (12) we get;

Ric(U, V') = Z(R(Ei, U, V', Ed) + R(Ejsn, U, V', Eisn)) + R(E, U/, V', &)
i=1
= Ric(¢pU', V") + n(U)Ric(&, V') = R(E, U, ¢V, &) + R(E, U, V', &)
= Ric(pU’, dV’) + n(U')Ric(&, V') = Ric(pU’, pV") = 2a2nn(U)n(V"), (30)

in which we applied (27). From the direct consequence of (28), we obtain (29). O

Proposition 4.4. The fundamental form of a nearly a—cosymplectic manifold (M, ¢, &, 1, g) satisfies;

3dD(, V', U) = a [-20(U)g(o V", U) - n(V")g(ol’, L) +n(W)g(oll’, V')| = 3g((Vuwrp) V", ). (31)

’ ’ ’ 4 1 4 ’
AoU’, v, U) = 2a(n A @)U, V', U) + 79(, 91U, V'), pU).- (32)
Proof. From the well known following identities
3ddUr, V', U) = (Vur @)V, U) + (Vv @)U U') + (Vu@)U', V')

and
[¢, 01U, V') = =p(Vur @)V’ + (V- P)U" + (Vou )V = (Vo o)U',
we have
3dor, v, U) = —g((Vu/cﬁ)V', u + g((VV/cp)U', u - g((quZ))U', V)
= a[-20(U)g(@V", U) + n(V')g(U, U') = n(lg(@ V', U] = 3g(Vup)V', L), (33)
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%[(PAP](U’, V') = a[-nU)V +n(VHU'] = ¢(Vur )V + ¢(Vv-p)U'. (34)

Hence

6dD(L’, V', U) = a[-n(U)g(dV", U) + n(V')g(@U, U) + 2n(U)g(dU’, V")| = 3g(Vur )V’ = (Vv p)U, L)
= da[nU)g(V", pU) + n(V")g(U, pU') + n(Lg(Ul’, oV")] + §g<[¢, P, V), $U)
= 12001 DU, V', U) + (06, 91U, V), 4L,

|

Theorem 4.5. Every normal nearly a—cosymplectic manifold (M, ¢, &, 1, g) is cosymplectic manifold.

Proof. We know that dn = 0 and if and only if N = 0, the structure is normal. According to Proposition 4.4,
in the case of N = 0 we have
3doU’, V', Z) =2a(n AO)U', V', Z)

and
dd =2an A .

That is to say, M is almost a—cosymplectic. Namely, we can see that a normal almost a¢—cosymplectic
manifold is a—cosymplectic. [

Acknowledgment

This paper includes the original conclusion of MSc thesis of the second named author, carried out at
the department of Mathematics, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University.
Authors are grateful for valuable contributions of the referees.

References

[1] Blair DE, Goldberg SI. Topology of almost contact manifolds. Journal of Differential Geometry 1967; 1: 347-354.
[2] Blair DE, Showers DK, Yano K. Nearly Sasakian structures. Kodai Mathematical Seminar Reports 1976; 27: 175-180. doi:
10.2996/kmj/1138847173
Blair DE, Showers DK. Almost contact manifolds with killing structures tensors II. Journal of Differential Geometry 1974; 9:
577-582.
[4] Gray A. Nearly Kaehler manifolds. Journal of Differential Geometry 1970; 4(3): 283-309. doi: 10.4310/jdg/1214429504
[5] Gray A. The structure of nearly Kaehler manifolds. Mathematische Annalen 1976; 223(3): 233-248. doi: 10.1007/BF01360955
[6] Olszak Z. On almost cosymplectic manifolds. Kodai Mathematical Journal 1981; 4(2): 239-250. doi: 10.2996/kmj/1138036371
[7] Olszak Z. Nearly Sasakian manifolds 1979; 33(3): 277-286.
[8] Olszak Z. Five-dimensional nearly Sasakian manifolds 1980; 34(3): 273-276.
[9] Endo H. On Ricci curvatures of almost cosymplectic manifolds. Al I. Cuza” Iasi sect. la Mat (N. S) 40 (1994): 75-83.
[10] Endo H. On the curvature tensor of nearly cosymplectic manifolds of constant ®-sectional curvature. Ann. St. Univ. lasi 51 (2005):
439-554.
[11] Shukla A. Nearly trans-Sasakian manifolds. Kuwait Journal of Science and Engineering 1996; 23(2).
[12] Behzad N, Niloufar HK. On nearly Kenmotsu manifolds. Turkish Journal of Mathematics 2013; 37(25): 1040-1047. doi:10.3906/mat-
1207-38
[13] Kenmotsu K. A class of almost contact Riemannian manifold. Tohoku Mathematical Journal 1972; 24: 93-103.
[14] Goldberg SI, Yano K. Integrability of almost cosymplectic structures. Pasific Journal of Mathematics 1969; 31(2): 373-382. doi:
10.2140/pjm.1969.31.373
[15] Yano K, Kon M. Structures on manifolds, World Scientific,508p, 1984.
[16] Banaru M. On nearly-cosymplectic hypersurfaces in nearly-Kahlerian manifolds, Studia Univ. Babes-Bolyai. Math. Cluj-Napoca
47.3 (2002): 2-11.
[17] Kirichenko VE. Almost cosymplectic manifolds satisfying the axiom of ®-holomorphic planes. Doklady Akademii Nauk SSSR
1983; 273(2): 280-284.

[3



[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

G. Ayar, D. Demirhan / TJOS 6 (3), 118-126 126

Libermann MP. Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact . Colloque de
Geometrie Differentielle Globale Bruxelles,1958, Centre Belge de Recherche Mathematiques Louvain, 1959, pp. 37-59.

Mobin A, Jun JB. On semi invariant submanifold of nearly Kenmotsu manifolds with quarter Journal of the Korean Society of
Mathematical Education, The Pure and Applied Mathematics 2011; 18(1): 1-11. doi: 10.7468/jksmeb.2011.18.1.001

De Nicola A , Dileo G, Yudin I. On Nearly Sasakian and nearly cosymplectic manifolds. Annali di Matematica 2018; 197: 127-138.
doi: 10.1007/s10231-017-0671-2

Erken IK, Piotr D, Murathan C. On the existence of proper nearly Kenmotsu manifolds. Mediterranean Journal of Mathematics
2016; 13: 4497-4507. doi: 10.1007/s00009-016-0758-91660-5446/16/064497-11

Ozturk H, Aktan N, Murathan C. Almost a-cosymplectic (k, u, v)-spaces, arXiv:1007.0527. (or arXiv:1007.0527v1 [math.DG] for
this version)

Ayar G, Tekin P, Aktan N. Some curvature conditions on nearly cosymplectic manifolds. Indian Journal Of Industrial And
Applied Mathematics 2019; 10(1): 51-58. doi: 10.5958/1945 919X.2019.00004.5

Ayar G, Yildirim M. Nearly cosymplectic manifolds with nullity conditions. Asian-European Journal of Mathematics 2019; 12(6):
2040012 (10 pages). doi: 10.1142/51793557120400124

Aktan N, Yildirim M, Murathan C. Almost f-cosymplectic manifolds. Mediterranean Journal of Mathematics 2014; 11: 775-787.
doi: 10.1007/s00009-013-0329-20378-620X/14/020775-13



TURKISH JOURNAL OF SCIENCE http:/dergipark.gov.tr/tjos
VOLUME 6, ISSUE 3, 127-133
ISSN: 2587-0971

The Solution of Linear Volterra Integral Equation of the First Kind
with ZZ-Transform

Erhan OZDEMIR?, Ercan CELIiKP®, Sidika Sule SENER®

? Ataturk University, Faculty of Science, Department of Mathematics, Erzurum-TURKEY
b Ataturk University, Faculty of Science, Department of Mathematics, Erzurum-TURKEY
¢ Ataturk University, Faculty of Science, Department of Mathematics, Erzurum-TURKEY

Abstract. In this paper, we apply ZZ-transform to solve linear Volterra integral equation of the first kind.
The several examples solve by ZZ- Transform. This means that ZZ- transform is a powerful tool for solving
linear Volterra integral equations of the first kind. The Convolution theorem for the ZZ- transform has been
proved. ZZ- transform for the solution of linear Volterra integral equation of the first kind submitted in
application section of this paper, some applications are given to demonstrate the effectiveness of proposed
scheme.

1. Introduction

Integral transformations are encountered in many fields of engineering and science such as electrical
networks, heat transfer, mixing problems, springs, signal processing, bending of beams, Newton’s second
law of motion, carbon dating problems, decay and exponential growth problems. In later times, many the
scientist are related in solving the problems of engineering and science by introducing new integral trans-
forms. The ZZ-Transform is integral transform. There are many integral transforms in the literature. Some
of these transformations are Laplace transform, Fourier transform, Elzaki transform, Sumudu transform,
Aboodh transform, Kamal transform [1, 9]. These transformations are used to solve for differential equa-
tions and integral equations. The ZZ-Transform was first presented by Zain Ul Abadin Zafar in 2016 [10].

X
The linear Volterra integral equation of the first kind is given by f(t) = f K(x, Hyu(t)dt, u(x) is the unknown
0

function and occurs only inside the integral sign. The function f(x)and the kernel K(x, t) are real-valued
functions [11]. The ZZ—transform of the function f(t)for ¢ > Ois defined as;

Z(u,s) = Z{f()} = Sfo‘ f(ut)e™'dt (1)
or

2009 = Z{f0) = 5 [ foea @
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Where Z (u, s) is transform operator. Assuming that the integral on the right side in (2) exists. The unique
function f(t) in (2) is called the inverse transform of Z (1, s)is indicated by

fO =27 {Z(u,5)) )
If F(t) is piecewise continuous and of exponential order, the ZZ—transform of the function F(t) for t > Oexist.

These conditions are only sufficent conditions for the existence of ZZ—transform of the function F(t).

1.1. Linearity Property of ZZ—Transform:

If Z{F(t)} = A(u,s) and Z{G(t)} = B(u,s)then Z {aF(t) + bG(t)} = aZ {F(t)} + bZ{G(t)} = aA(u,s) + bB(u,s)
,where g, bare arbitrary constants.

1.2. ZZ- Transform of Some Elementary Functions:

Table 1: ZZ— Transform of Some Elementary Functions:

No  f()  Zf(H)

1 1 1

2 t 4

3 eat S—L;M

4 sinat T
5 cos at %
6 t" n! ‘;—:

7  e"sinbt bii‘z

(3 —u) +b?

8 eMcosht Lt

9 tcosat

10 tsinat —

1.3. Existence of ZZ—Transform

Theorem 1.1. If f(t) is piecewise continuous in interval 0 < t < Kand of exponential order y for t > K, then its
ZZ— transform Z(u, s) exists for all s > y,u >y .

Proof. We have for every positive number K,

P K 00
s g = 2 4 2 -3t
” 0ff(if)e dt ” L fB)e ="dt + ” fl; fB)e 'dt

Since f(t) is piecewise continuous in every finite interval 0 < t < K, the first integral on the right side exists.
Also the second integral on the right side exists. So f(t) is of exponential order y for t > K. To see this we
have only to observe that in such case:
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S sy S sy
— u < — u
[u f f(be dt] <~ [F(e'] at
K

EaY ST e
Sufe (f(t))dtsuf(; e «'Me"'dt

0

<= f eitertar <M f e GrNigt
u u
0 0
_sM e Gt [" _sM
u (_5 _ J/) s—yu

O

1.4. Convolution of two Functions:

Convolution of F(t) and G(t) functions is defined by

t t

FH®G(Ht)=F®G= fF(x)G(t - x)dx = fF(t — x)G(x)dx.

0 0

2 2 4

u s u

s 52+ u?

s
Uu% (52 + 12)?

Zix(t) = 2

1.5. Convolution Theorem for ZZ—Transforms:
Theorem 1.2. If Z{F(t)} = A(u, s) and Z{G(t)} = B(u, s) then

Z(f®9) = =Z(HZ(g)

Z{F(H) ® G()} = %zuf(t)}Z{G(t)} = %A(ws)B(u, 5)

Proof.

S s S <
Z(H)Z(g) = = | f(D)e v"dr= | g(8)e +’dd
u ! u J

[

2 (o]
2H2g) == | foeitar [ g itds
uz‘of f

0

t=%+tandd=¢t-71

Z(g) = f g(t — t)e It

:fg(t—v:)e_ftteZTdt
0
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:fg(t—T)e_Zte;Tdt
T

=e§ffg(t—1)e‘5tdt

T

Thus
= Z;‘fﬂj(f)e_ZTdTeZTt[‘e_itg(t——T)dt
0 T
= Z—zsz(’[)fejtg(t—’c)dtd”[
0 T
) t
2
:izj}ﬂif}uwa—zwuﬁ
0 0
2 P i
=% [errenm
0
S
= aZ(f‘X’!])
2(f®9) = 2()2()
O

1.6. Inverse of ZZ—Transforms:

If Z{F(t)} = Z{u,s}then F(t) is called the inverse ZZ—transform of Z {u,s}and it is defined as F(t) =
Z71Z (u.s)}, where Z™! is the inverse ZZ—transform operator.

1.7. Applications:

In this chapter, some applications are given to show the effectiveness of ZZ~—transform for solving of
linear Volterra integral equation of the first kind.

Example 1.3. Consider linear Volterra integral equation of the first kind:

X

x:]ﬁmm )

0
Applying the ZZ— transform to both sides of (5), we have:

X

Zix} =7 fu(t)dt (6)

0

Using convolution theorem of ZZ—transform on (6), we have:
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% - %.1.2 {u(x))

Ziu()) =1
Operating inverse ZZ—transform on both sides of (7), we have:

Z M Z ) = 271 (1)

u(x) =1.

This is the exact solution of equation (5).

Example 1.4. Consider linear Volterra integral equation of the first kind:

x* = %f(x — tu(t)dt
0

Applying the ZZ—transform to both sides of (8), we have:

z{xZ}zz{% f (x—t)u(t)dt}

0

Using convolution theorem of ZZ—transform on (9), we have:

2 1
22‘_2 - 5gz{x}Z{u(x)}
2 1
2‘5‘_2 - EggZ{u(X)}
Z{u(x)} = 4

operating inverse ZZ—transform on both sides of (10), we have:
ZHZ{u)) =27 {4)
u(x) =4
This is the exact solution of equation (8).

Example 1.5. Consider linear Volterra integral equation of the first kind:

t

y(t) = 2+ fy(u) sin(t — u)du

0

t
Z{yhy =2 {t2 + fy(u) sin(t — u)du}

0
From the linearity property of the inverse ZZ—transform

t
Zlyt) =2 {tz} +Z {fy(u) sin(t — u)du}
0
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Using convolution theorem of transform on (12), we have:

Z{y(t) = Z{}+ ZZ{y(®) Z sint)

uwr u us
Z{yt} = 25+ gz{y(f)} ey

12

2
Z{y(t) - Z{y(t >}(S3 = Suz) 25

2 2
Z{y(t)}(l : ﬁ) =25
3 1/[2
Z{y®) (53 + suz) 2
2 2
20l o) =25
2
Z{yp) =25 S5
u2 ut

operating inverse ZZ—transform on both sides of (13), we have:
_ [ ut
ZHZ{yw) =27 {25—2 +2s—4}

From the linearity property of the inverse ZZ—transform

y(t)=271{2 { :} + 7 {2”5‘:}

2, t
)=+t
yh =t"+ 5
This is the exact solution of equation (11).

Example 1.6. Consider linear Volterra integral equation of the first kind:

t
f cos(t — s)x(s)ds = tsint

0

Applying the ZZ—transform to both sides of (14), we have:

t
Z {fcos(t - s)x(s)ds} = Z {tsint}

0

Using convolution theorem of ZZ—transform on (15), we have:

SZ

uZ {cost} Z {x(t)} = 5
s (Z—zz +1
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u s2 s ut
A ) R . -
s s2 + u? b} U2 (32 + y2)?
us
Zix()} =2——— 1
{x()} 712 (16)

operating inverse ZZ—transform on both sides of (16), we have:

-1 1 us
ZUZ B = Z &?Tﬁ}

x(t) = sint

This is the exact solution of equation (14).

2. Conclusion

In this study, we have discussed the ZZ—transform for the solution of linear volterra integral equation
of the first kind. The given examples show that the exact solution have been obtained spending a very little
time and using very less computational work.
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Abstract. In this paper, we regard the Padovan-p Jacobsthal sequence and then we discuss the connection
of the Padovan-p Jacobsthal numbers and Jacobsthal numbers. Furthermore, we give the permanental,
determinantal, combinatorial, and exponential representations, and the sums of the Padovan-p Jacobsthal
numbers by the aid of the generating function and generating matrix of this sequence.

1. Introduction

The well-known Jacobsthal sequence {],,} is defined by the following recurrence relation:

Jo=Jn1t 2]n—2
for n > 2 in which Jo = 0 and J; = 1. It is easy to see that the characteristic polynomial of the Jacobsthal
sequence is j (x) = x> —x — 2.

In [2], Akiiztim defined the Padovan-p Jacobsthal sequence { ]ﬁ} by the following homogeneous linear
recurrence relation for any given p (3,4,5,...) and n > 0

P — 7P P _ 7P _nF P _ P _oyP
In+p+4_]n+p+3+3]n+p+2 ]n+p+1 2]"+P+]n+2 ]n+1 2y

inwhich Jj =---=J,=0and ]} ;=1
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Also in [2], she gave the generating matrix of the Padovan-p Jacobsthal sequence { ]Z} as follows:

1T 3 -1 -2 0 -~ 0 1 -1 -2]
10 0 0O O - 0 0 0 O

01 0 0 0 0 0 0 0

00 1 0 0 0 0 0 0

00 0 1 0 0 0 0 0
Ph=l0 0 0o 0 1 0 0 0 O
o 0o 0 0 --- 1 0 0 0

o0 0 0 0 -~ 0 1 0 0

0 0 0 0 0 -~~~ 0 0 1 0

1(p+4)x(p+4).

The matrix PJ, is entitled a Padovan-p Jacobsthal matrix. By an inductive argument, she obtained that

r 7 P P P P P
]z+p+3 ]g+p+4 - ]z+p+3 Pllp (71 + p + 3) - ]g+p+3 P{Zp (1’1 + p + 4) - Iz+p+4 - ]Z+p+3
]z+p+2 ];l+p+3 - ]g+p+2 Pﬂp (7’1 + p + 2) - ]Z+p+2 P{Ilp (1’1 + p + 3) - ]z+p+3 - ]Z+p+2
(P] )” ]n+p+1 ]n+p+2 - ]n+p+1 Pap (Tl tp+ 1) - ]n+p+1 Pap (Vl tp+ 2) - ]n+p+2 - ]n+p+1 P];?
r) - . . .

]Z+1 ]Zgz_]fjn Pap(n+1)—]Z+1 P”P("sz)—fﬁgz—fﬁﬂ
LF; ]n+1_ JF; Pap(”)_]f; Pap(n+1)_]n+1_ flj
where P J,isa (p +4) X (p) matrix as follows:
Pap (n + 3) Pap(n+4) -+ Pap(n+p) - ]Z+p+2 -2 ]Z+p+1 -2 ]ZWZ ]
Pap (n +2) Pap(n+3) -+ Pap(n+p-1) - ]Zﬂm -2, —ZIZHM
ppo| PO@ED P2 PapGiep=2) =2, 2
p ) ) . . )
Pap(n—p+1) Pap(n—-p+2) --- Pap (n —2) —’lﬁ—Z]Z?l —2£ﬁ
Pap (n —p) Pap(n—-p+1) --- Pap (n - 3) ] =2 =2
forn > p.

In the literature, many authors studied number theoretic properties such as these obtained from homo-
geneous linear recurrence relations relevant to this paper; see for example, [5, 7, 8, 14, 15]. In [1, 3, 4, 10—
13, 16-20, 23], the authors defined some linear recurrence sequences and gave their various properties
by matrix methods. In this paper, we investigate the Padovan-p Jacobsthal sequence. Firstly, we discuss
connections between the Jacobsthal and Padovan-p Jacobsthal numbers. Furthermore, we derive the per-
manental and determinantal representations of the Padovan-p Jacobsthal numbers by using certain matrices
which are obtained from the generating matrix of this sequence. Finally, we acquire the combinatorial and
exponential representations and the sums of the Padovan-p Jacobsthal numbers by the aid of the generating
function and the generating matrix of this sequence.

2. Main Results

First, we derive a relationship between the above-described Padovan-p Jacobsthal sequence and Jacob-
sthal sequence.

Theorem 2.1. Let [ (1) and ]! be the nth the Jacobsthal number and Padovan-p Jacobsthal numbers, respectively.
Then,
](1/1) = ]Z+p+2 - IZ+p - ]Z

forn>0andp > 3.
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Proof. The assertion may be proved by induction method on n. It is clear that J(0) = ]Z = ]g -] =0.

Assume that the equation holds for n > 1. Then we must show that the equation holds for n + 1. Since the
characteristic polynomial of the Jacobsthal sequence {] (1)}, is

jx) = -x=2
we obtain the following relations:

Jn+p+4)=]Jn+p+3)+3J/(n+p+2)—J(n+p+1)-2J(n+p)+J(n+2)—J(n+1)-2] (n)
for n > 1. Hence, by a simple calculation, we have the conclusion. [J

Now we take into account the relationship between the Padovan-p Jacobsthal numbers and the perma-
n
nents of a certain matrix which is obtained using the Padovan-p Jacobsthal matrix (P ]p) .

Definition 2.2. A u X v real matrix M = [m,-,j] is called a contractible matrix in the k™ column (resp. row.) if the
k" column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, X, ..., x, are row vectors of the matrix M. If M is contractible in the k' column such
that m;x # 0,m;x # 0 and i # j, then the (u — 1) X (v — 1) matrix M;j; obtained from M by replacing the ith
row with m;rx; + mjrx; and deleting the jth row. The k" column is called the contraction in the k™ column
relative to the i row and the j row.

In [6], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order & > 1 and N is a
contraction of M.

Now we concentrate on finding relationships among the Padovan-p Jacobsthal numbers and the per-
manents of certain matrices which are obtained by using the generating matrix of this sequence. Let

F%J] = [ iFf )] be the m x m super-diagonal matrix, defined by

3 ifi=tandj=7+1forl<t<m-1,
ifi=tandj=tforl<7<m,
1 i=tand j=t+p+1lforl<t<m-p-1
and
i=t+landj=tforl<t<m-1,
() _ ifi=tand j=t+2forl1<t<m-2
fij’ = -1 and ’
i=tand j=t+p+2forl<t<m-p-2,
ifi=tand j=7t+3for1<t<m-3
-2 and
i=tand j=t+p+3forl<t<m—-p-3,
0 otherwise.

for m > p + 4. Then we have the following Theorem.

Theorem 2.3. Form>p +4,
Pa,] _

P
perpmfp - ]m+p+3'

1,;” ]’g] and let the equation be hold for m > p + 4. Then we show that the
equation holds for m + 1. If we expand the perFy,,
the first row, then we obtain

Proof. Let us keep in view matrix F

by the Laplace expansion of permanent with respect to

Pa,]

= perF,., Pa,]

— perFm_zlp

Pa,]

Pa,]
- 2perFm_3/p

Pa,] _
+per1—“m_p_1,p peer_p_zrp

Pa,] Pa,]
F - 2per1—"m_p_3/p.

Pa,]
per m+1,p F

+ 3per. odp
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Since

and

we easily obtain that perf™"/

— 7P
m+lp — ]m+p+4'

perFf)n‘f;,] = ]fn+p+3’
PerE, = e
Perpif—,]zp = ]fn+p+1’
perFiﬂié,p = ]ﬁﬁp,
perFSf—,L—l,p = ]fn+2’
perF 51“—’;—2,;0 = e
perEyy s, = I

So the proof is complete. []

Let G%’,} = [gi(p,)] be the m X m matrix, defined by

]

3
1

r) _
Jij =1 -1
-2
0

ifi=tand j=71+1forl1<t<m-2,
ifi=tand j=tforl <t <m,
i=tand j=t+p+1lforl<t<m—-p-2
and
i=t+landj=tforl<t<m-2,
ifi=tand j=t+2forl1<7<m-3
and
i=tand j=t+p+2forl<t<m—-p-3,
ifi=tand j=t+3forl1<t<m-4

for m > p + 4. Then we have the following Theorem.

Theorem 2.4. Form >p +4,

and
i=tand j=t+p+3forl<t<m-p-3,
otherwise.
Pa,] _ 4p
pET’Gm,p - ]m+p+2'

137

Proof. Let us keep in view matrix G%] and let the equation be hold for m > p + 4. Then we show that the

equation holds for m + 1. If we expand the perG% by the Laplace expansion of permanent with respect to

the first row, then we obtain

Pa,]
m+1,p

Pa,]
m,p

Pa,]

perG ol p

= perG,, ,, + 3perG

Since

— perGP“’] - 2perGP”’] + perGP”’] - perGia_’; 2p

m=2,p m=3,p m—-p—1,p
Pa,] _ 1p
peer,P - ]m+p+2’
Pa,]  _ qp
peer—l,p - ]m+p+1’

Paj  _ g
percm_z,p - ]erp/
Paj  _ 1P
peer—Bv,p - ]m+p—1’
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Pa,] _ 7P
peer—p—lp - ]m+1’
Pa,]
perG, ” A =7
and
Pa,] — 7
peer—p—S,p - Imfl’

Pa,]

we easily obtain that perG, | » = ]f; pe3

So the proof is complete. [

Suppose that an“;,] = [h(ﬁ)] be the m x m matrix, defined by
p i,j

(m—-1)th
3
1 ... 1 0
Pl — 1 )
m,p 0 Gf:la_le
0
for m > p + 4, then we have the following results:
Theorem 2.5. Form >p +4,
m+p+1

perH," = Z Jr.

i=0

Proof. If we extend per H," with respect to the first row, we write

mp

Pa,] _ Pa,] Pa,]
perH,,, = perH, ST perG, ~ 1

Thence, by the results and an inductive argument, the proof is easily seen. []

A matrix M is called convertible if there is an n X n (1, —1)-matrix K such that perM = det (M o K), where
M o K denotes the Hadamard product of M and K.

Now we give relationships among the Padovan-p Jacobsthal numbers and the determinants of certain
matrices which are obtained by using the matrices Eyr p] , Gp“] and HP”] Letm > p+4 and let R be the m X m
Hadamard matrix, defined by

11 1 -~ 1 1]

-1 1 1 -~ 11

1 -1 1 - 11
R= .

1 1 -1 11

1 1 1 -1 1

Corollary 2.6. For m > p +4,

det (Fl”)lﬁl’] © R) ]Zz+p+3’

dEt( f"upj © R) m+p+2

and
m+p+1

det( PMOR) Z It

i=0
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Proof. Since perFh; = det (FP”J o R), perGo = det (GZZ,] o R) and perHZ'f};] = det (HZ“F,] o R) form >p+4,by

mp mp mp
Theorem 2.3, Theorem 2.4 and Theorem 2.5, we have the conclusion. [

Let K (ky, ko, ..., ky) be a v X v companion matrix as follows:

kl k2 kv

1 0 - 0
K(kller”-/kv) =

0 - 1 0

For more details on the companion type matrices, see [21, 22].

Theorem 2.7. (Chen and Louck [9]) The (i, j) entry kff’; (ki, ko, ..., ky) in the matrix K" (ky, ky, ..., ky) is given by
the following formula:

() -
ki/j (k1/k2/---/kv) - Z

Htbt -+t
(bt 12 ¢

t]'+t]'+1+-'-+tv A4+t
t1,...,ty

Jo-ox 0

HA-ttyy o (B++t)! -
teto ) - Isa

where the summation is over nonnegative integers satisfying t1 + 2ty + -+ + vty =n—i+ j, ( Py
R

multinomial coefficient, and the coefficients in (1) are defined to be 1 if n =i — j.

Then we can give combinatorial representations for the Padovan-p Jacobsthal numbers by the following
Corollary.

Corollary 2.8. Let J" be the nth the Padovan-p Jacobsthal number for n > p. Then
i

]P _ t] + t2 + -+ tp+4 3{2 (_1)t3+tp+3 (_2)f4+fp+4
" f1,t2, - rtp+4
(fl,f2/~-ufp+4)
where the summation is over nonnegative integers satisfying t; + 2t +--- + (p + 4) tyys =n—p - 3.
ii.
FPa,p _ _1 Z tp+4 v i+t +---+ tp+4 3t (_1)z3+tp+3 (_2)t4+t,,+4
! f+b+ il f1,t2, 0 bpea
(t1,t2,t) P P

where the summation is over nonnegative integers satisfying t; + 2ty + -+ (p + 4) tyyy = n + 1.
Proof. 1f we takei =p+4, j=1forthecasei. andi =p+3, j = p+4 for the case ii. in Theorem 2.7, then we
can directly see the conclusions from (P ]p)n. O

The generating function of the Padovan-p Jacobsthal sequence { ]ﬁ} is obtained as follows:

xp+3

1—x—3x2 + 23 4+ 2x% — xP+2 4 xP+3 4 2P 4’

g(x) =

where p > 3.
Then, with the following theorem, we can deliver an exponential representation for the Padovan-p
Jacobsthal numbers by the aid of the generating function.

Theorem 2.9. Let g (x) be generating function of the Padovan-p Jacobsthal numbers. The following exponential
representation for the Padovan-p Jacobsthal numbers as follows::

0 Ni ,
_ 3 Q1+3_2_23+ Pl _ p+2 _ 9 pi3)
gx)=x exp; i( X — X X+ x x X ),

where p > 3.
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Proof. Since
Ing(x) = Inx"*3 — ln<1 —x =32+ + 20 — P24 P 4 2xp+4)
and

—In (1 —x =32+ 23+ 2% — AP P 4 2x”+4) = —[-x (1 +3x — 22 = 20% + AP — P2 - 2x”+3) -

1 2
Exz (1 +3x — 1% = 2% + a7t — P2 2xp+3) -

i

1 .
—=x (1 +3x — 22 = 2x% + AP — P2 — 2x’“+3)
i

it is clear that

[e] i .
g(x) =" exp Z(xT) (1 +3x —x2 =223 Pt — 4Pt - 2x’7+3)1
i=1
by a simple calculation, we obtain the conclusion. [J

Now we consider the sums of the Padovan-p Jacobsthal numbers. Let

T, = i ]fj
i=0

forn >pandp = 3, and let Kﬁ”’] and (K,I,J”’] )n be the (p + 5) X (p + 5) matrix such that

(1 0 0 --- 0 0]
1
KPa,] — 0
p .
: PJ,
0
| 0
If we use induction on n, then we obtain
1 00 00
Tn+p+2
KP”’] a Tn+p+1
( P ) - :
: PJ,
T
Tn—l

3. Conclusion

We considered a sequence called the Padovan-p Jacobsthal sequence, which is obtained using polynomi-
als characteristic of the Padovan p-sequence and the Jacobsthal sequence. Furthermore, using the generating
matrix of the Padovan-p Jacobsthal sequence, we obtained some new structural properties of the Padovan-p
Jacobsthal numbers such as the generating functions, the permanental, combinatorial, determinantal, and
exponential representations and the finite sums.
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The Complex-type Pell p-Numbers in Finite Groups
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Abstract. In this study, we study the complex-type Pell p-numbers modulo m and further we get the periods
and the ranks of the complex-type Pell p-numbers modulo m. Additionally, we give some results on the
periods and the ranks of the complex-type Pell p-numbers modulo . Then, we consider the multiplicative
orders of the complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell
p-numbers by means of the elements of groups. Finally, we produce the periods of the complex-type Pell
2-numbers in the semidihedral group SDyn, (m > 4).

1. Introduction

The complex-type Pell p-numbers for any givenp (p = 2,3, ...) is defined [2] by the following recurrence
equation:

Py (n+p+1)=2"" P, (n+p)+i-P,(n) (1)
forn > 1, where P, (1) =---=P,(p) =0, P, (p+1) =1and V-1=i.
In [2], the complex-type Pell p-matrix K, had been given as:
2110 0 i
1 0 0 0
K,=| 0 1 0 0
0 0 L0 i),
Then, for n > p, they found that
P,(n+p+1) iP;(n+1) 1:P;(n+2) 'iP;(ner)
) P;(n+p) iP, (n) zP;(n+1) zP;(n+p—1)
(k) = : : : : 2)
P,(n+2) iPy(n-p+2) iPy(n—p+3) -+ iP,(n+1)
P,(n+1) iPy(n-p+1) iP,(n—p+2) - iP;, (n)

in addition, the determinant of the K, matrix is (-=1)" i.
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Definition 1.1. A sequence is well known to be periodic if after a certain point it consists only of repeats of a fixed
subsequence. A sequence is simply periodic with period k if the first k elements in the sequence form a repeating
subsequence.

For a finitely generated group G = (A), where A = {ay, a5, ...,4, }, the sequence x, = 4,41, 0 <u <n -1,
n
Xpsu = | Xuso-1, 4 = 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

v=1
FA(G)in [6].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements x, x1, X2, ..., Xz,
...for which, given an initial (seed) set xo, x1, X2, . .., Xj-1, each element is defined by

_ XoX1*** Xp_1 forj<n<k,
" Xp—kXp—ke1 X1 forn > k.

The k-nacci sequence of a group G generated by xo, x1, X2, . .., Xj-1 is indicated by F (G; X0, X1,X2,...,% j—l)
in [15].

In [9], Deveci and Shannon showed that the following conditions apply for every elements x, y of the
group G:

Definition 1.2. (i) Suppose that z = a + ib such that a and b are integers and suppose that e is the identity of G, then
w2 = xa(modlxl)+ib(mod|x|) — xﬂ(mod\xl)xib(modlxl) — xib(modlxl)xu(modlxl) — xib(modlxl)+a(mod|x|)
* xia — (xi)ﬂ — (xa)i,
xe = ¢,
+ x0+i0 —
(i1) Let z1 = aq + iby and Zp =0+ iby such that ay, by, ay and b, are integers , then (x yzz)_1 =y 2xTA,
(iii) If xy # yx, then X'y' # y'x'.
(iv) (xy)' = yix' and (xiyi)l =xly L.
S N i y
(v) xy' = y'x and so (xy’) =x'y~" and (xly) =x"y.

In [1, 3, 4, 8§, 11, 16], the authors have produced the cyclic groups and the semigroups through some
special matrices and then, they have studied the orders of these algebraic structures. The study of the
recurrence sequences in groups began with the earlier work of Wall [21]. Also, the theory extended to
some special linear recurrence sequences by several authors; see for example, [5, 7, 10, 12-15, 17-20, 22].
In this study, we study the complex-type Pell p-numbers modulo m and then we get the periods and the
ranks of the complex-type Pell p-numbers modulo m. Then, we consider the multiplicative orders of the
complex-type Pell p-matrix when read modulo m. Also, we redefine the complex-type Pell p-numbers with
the elements of groups and then we give the periods of the complex-type Pell 2-numbers in the semidihedral

group.

2. The Complex-type Pell p-Numbers in Finite Groups

Reducing the complex-type Pell p-numbers by a modulus m, we obtain a repeating sequence, indicated
by

(P} ={P,,. ), P,,,@, ..., Py, (j), ...
where P} (n) = P, (n) (modm). This relation has the same recurrence relation as in (1)

pm

Theorem 2.1. For p > 2, the sequence {P;/m (n)} is simply periodic sequence.
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Proof. Consider the set

W = {(wl,wz, ... ,wp+1) | wy’s are complex numbers a, + ib, where
a, and b, are integers such that 0 < a,,b, <m-land1<v<p+1}.

Suppose that the notation |W]| is the order of the set W. Since the set W is finite, there are |W| distinct
p + 1-tuples of the complex-type Pell p-numbers modulo m. So, at least one of the p + 1-tuples appears twice

in the sequence {P;,,m (n)}. Then, the subsequence following this p + 1-tuple repeats; that is, {P;,,m (n)} isa
periodic sequence. Let P, ,, (k) =P, , (), P, (k+1) =P, (+1),..., P, (k+p+1) =P, (I+p+1)and
k =1, then k = I (modp + 1). It is obvious that

Py (n) = (—i)-P;,(n+p+1)+2i7’+2-P;(n+p).

So we get P}, k-1) = p,(-1,P,,(k=-2)=P, (1-2),..., Py 1) = P (k — I+ 1), which indicates
that {P;,m (n)} is a simply periodic. [

We indicate the period of the sequence {P;,m (n)} by t, (m).

For given a matrix B = [b,-]-] with b;;’s being integers, B (modm) means that each element of B are
reduced modulo m, that is, B (modm) = (bi,- (modm)). If (det B, m) = 1, then the set (B),, is a cyclic group; if
(det B,m) # 1, then the set (B),, is a semigroup. Let the notation [{B),,| indicates the order of the set (B),,.

Since detK, = (-1)"i, the set <Kp>m is a cyclic group for every positive integer m > 2. It is easy to see

from (2) that it is t, (m) = |<Kp>m|

Theorem 2.2. Letvbea prime. Ifris the smallest positive integer such that t, (U’“) #t, (0"), thent, (ZJM) = oty (V)
for every integer p > 2

Proof. Suppose that r is the smallest positive integer such that ¢, (ZJ’“) # t, (v") and suppose that z is a

z)z-¢-1 Z)z-¢-1
b =] (modv“l), then (Kp)tp( ) = I (modv*). Thus we obtain that t, (v*) divides

t,(0%)

positive integer. If (Kp)

ty (Z)Z+l>. Also, writing (Kp> =1+ (ml(zj) . vz), by the binomial theorem, we obtain

’

v
) _ @ .2\ = V() (1@ . 2) = 241
(Kp) _(I+(mi’j-v)) —ZO‘ ; (mi’].-v)zl(modv )
=
and so it appears that f, (Z)Z+1) divides v t, (v*). Therefore, t, (02”) =t, (v*)ort, (ZJZ+1) = vt, (v*), and the latter
holds if and only if there is a mle) which is not divisible by v. Since we assume that r is the smallest positive

integer such that ¢, (vr”) # t, (v"), there is an mfz]) that is not divisible by v. This shows that , (v” 1) = vt (0").
So, the proof is complete. [

Definition 2.3. The rank of the sequence {P;/m (n)} is the least positive integer a such that P} (o) = P} (a+1) =
=P, (a +p—1) = 0(modm), and we indicate the rank of {P;;/m (n)} by r, (m).

If Py, (a +p—1) = 0(modm), then the terms of the sequence {P;,,m (n)} starting with index r, (m), namely

pm
0,0,...,0,0,0,..., are exactly the initial terms of {P; m (n)} multiplied by a factor 0.
N—— ’
p
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The exponents @ for which (Kp)m = [ (modm) form a simple aritmetic progression. So we give
[0]
(Ky)" = I(modm) = t,(m) | @.

Similarly, the exponents @ for which (Kp)m = 0I (modm) for some O € C form a simple aritmetic progression,
and so o
(Kp) = 0l (modm) & r, (m) | ®@.

Thus, it is simple to show that r, (m) divides t, (m).

The order of the sequence {P;/m (n)} is defined by :’; EZ; and we indicate it by Q, (m). Let (Kp)fp(m) =

ory(m)

01 (modm), then ord,, (6) is the least positive value of 6 such that (K,,) = [ (modm). So it is confirm that
ordy, (6) is the least positive integer 6 with t, (m) | 6r, (m). Thus, we obtain ord,, (6) = 6. As a result, we

may easily conclude that Q, (m) is always a positve integer, and that Q, (m) = ord, (P; (rp (m) + p)), the
multiplicative order of P;, (rp (m) + p).

pm

Example 2.4. Since
{P;,Z(n)} = {0/0/0/0/011IOIOIOIOIOIiIOIOIOIOIO/1’O’"‘/}/

we have t5(2) = 12, r5(2) = 6 and Qs (2) = 2.

Theorem 2.5. suppose that my and my are positive integers withmy, my > 2, thenr, (Ilcm [my, my]) = lem [r,, (my),1p (mz)].

In the same way, t, (lcm [my, my]) = lem [tp (m1),t, (mz)].

Proof. Let Icm [my, my] = m. Then

P, (rp (m)) =P, (rp (m) + 1) =...=P, (rp (m)+p-— 1) = 0 (modm)
and
P; (rp (mw)) = P;, (rp (my) + 1) =...= P; (rp (my) +p — 1) = 0 (modm)

for w = 1,2. Using the least common multiple operation implies that P, (rp (m)) =P, (rp (m) + 1) =...=
P, (rp (m)+p-— 1) = Omodmy, for w = 1,2. Hence we get r, (m1) | r, (m) and r, (m) | r, (m), which signifies

that Iem [r, (1), 7, (m2)| divides r, (lcm [my, my]). We also know that

P; (lcm [rp (my),1p (m2)]) = P; (lcm [rp (my), 1y (mz)] + 1) =...= P; (lcm [rp (my), 1y (mz)] +p- 1) = 0 (modmy,)
for w = 1,2. Then we can write

P; (iem [r, (ma), 1 (m2)]) = P (lem [, (m1) vy (ma)| + 1) = - = Py (lem [, (), 1, (m)| + p = 1) = 0 (modm),

and it follows that r, (Icm [my, m,]) divides lcm [r,, (my),1p (mz)]. Thus, the proof is complete.
The period t, (m) is proved with a similar proof method. [

Now we take into account the complex-type Pell p-numbers in groups.
Suppose that G be a finite j-generator groupandlet X = {(x1,x2,...,x) E GXGX--- X G| < {xl,xz, .. .,xj} >=
| —
i
G}. We call (xl, X, ..., X j) a generating j-tuple for G.
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Definition 2.6. Suppose that G is a j-generator group and suppose that (xl, X2,.e0, x]-) is a generating j-tuple for G.
So we define the complex-type Pell p-orbit P;, (G; X1,X2,..., xj) = {a,, (n)} as shown:

a,(n+p)=a,(n- 1)iap (n+p- 1)2”+1 (n>1)

where
a,(1)=x1,a,2)=x2,..., ap () =xj,ap(j+ 1) =¢,...,ap(p+1)=e if j<p+1,
ap, (1) =x1, a,(2) =x2,...,a8,(p +1) = xp11 if j=p+1

Theorem 2.7. Suppose that G is a j-generator group. If G is finite, then the complex-type Pell p-orbit of G is periodic.
Proof. We think of the set
H = {((hl)m(m0d|h1I)+ib1(delh1I),
() iba(modiicl)

a/(mad|h/|)+ihj(mod|hj|)
() )

cey

j
hi,hy,...,hj € Gand a,, b, € Zsuchthat1 <n < ]}
If G is finite, the H is a finite set. For any ¢ > 0, there exists k > ¢ + j such that a,(c+1) = a,(k+1),

a,(c+2)=a,(k+2),...,a,(c+j) = a,(k+ j). Due to repeating, for all generating j-tuples, the sequence
P; (G; X1,X2,..., xj) is periodic. O

Weindicate the length of the period of the complex-type Pell p-orbit P, (G; X1,X0,...,% j) by hP; (G; X1,X2,..., x]-).
Now we give the lengths of the periods of the complex-type Pell 2-orbit of the semidihedral group SD5».
The semidihedral group SD,» of order 2™ is defined by the presentation

SDom = (x,y | x2m—1 = yZ =e, y_lxy — x—1+2’”‘2>

for every m > 4. Note that the orders x and y are 2”1 and 2, respectively.

Theorem 2.8. For generating pairs (x, y), the length of the period of the complex-type Pell 2-orbit in the semidihedral
group SDom is 273 - 5 (2).

Proof. For the complex-type Pell 2-orbit, we consider ¢, (2) = 6. The orbit P; (SDgam; x,y) is

4i 4

i Q2 —4i =9 . 20i 4
X, y,ex,yx,x —,xXx ,yx=—,x-,
—97i i 42 . —40i .17 ., 8i .56
LR T Sl et Sl V5 G S P
and so the orbit becomes:

az (1) X, a(2)=y,a23) =e,...
BmQ2-hQRa+1) = BN 425 Q)a+2) =y a2t Q) a+3) = x4,

where A1, A; and Aj are positive integers such that gcd (A1, A2, A3) = 1. Thus, for § € IN, we need the smallest
integer a such that 8a = 2" - 8. If we choose a = 2"~*, we get

02" @ +1)=x0 (2’“‘3 h(2) + 2) =y,m(2"% h@)+3)=e....
Since the elements succeeding a, (2’"‘3 th(2) + 1) , o (2’”‘3 “h(2)+ 2) and a, (2""3 h(2) + 3) depend on

x, y, e for their values, the cycle begins again with the a, (2’”‘3 1 (2) + 1) nd element. Thus it is verified that
the length of the period of the complex-type Pell 2-orbit in SDon is 273 - £, (2). O
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Example 2.9. The sequence P, (SDe4; x, y) is

X, ye,x, Yt xH x ,yx | x12,x ’,yx

X_Bi, 17’ yx8i x24’x /]/x x41 X ]/x 20,
,y1x18 X yx16i X y1x18 ,X23,

yx x ,y1x26 , ,yx241 x X yleo

20i 4 Bl
X ,x,yx 8 x4, ,yx e,x,y,e,.

which implies that hP), (SD3p; x, y) = 48.

3. Conclusion

In this study, we have considered the complex-type Pell p-numbers modulo m and then we have
obtained the periods and the ranks of the complex-type Pell p-numbers modulo m. Also, we have studied
the multiplicative orders of the complex-type Pell p-matrix when read modulo m. Finally, we have redefined
the complex-type Pell p-numbers with the elements of groups and then we have obtained the periods of
the complex-type Pell 2-numbers in the semidihedral group SDy», (m > 4).
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Abstract. In this paper, higher order inverse quasi-linear parabolic problem was investigated. It demon-
strated the solution by the Fourier approximation. It proved the existence, uniqueness of the solution by
Fourier and iteration method.

1. Introduction

In this study we present a high order scheme for determining unknown control parameter and unknown
solution of two-dimensional parabolic inverse problem. Two- dimensional inverse parabolic problems
are used especially in chemical diffusion applications, heat transfer processes have been used a lot such
as population, medical area, electrochemistry, engineering, chemical area, plasma physics .This kind of
problems with nonlocal boundary conditions are not easy to study. There are many papers on finding
analytical and numerical solutions of inverse coefficient problems with nonlocal boundary conditions in
one dimension [2, 5]. In these papers, Finite Difference Method, Boundary Element Method, Finite Element
Method, etc. are examined to approximate numerical solutions.Finding of the unknown function in a
nonlinear parabolic equation is used frequently by many engineers and scientists [1-5].

In this study, Fourier method is used for the for the solution of this problem.

HereI''={0<x<m 0<y<m 0<t<T}, @y, f(x,y,t u)are given functions.

du Pu 9

u
;:b(t)ﬁ+a—y2+f(x,y,t,u),(x,y,t)el’ 1)
u(x,y,0) =p(x,y), x€[0,n],y€[0,n] 2)
u©,y,t) = u(myt), yel0,n],tel0,T]

u(x,0,t) u(x,m,t), x€[0,m],t€[0,T] 3)
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u(0,v,t) = u(m,y,t), yel0,n],tel0,T]
uy(x, 0,t) = uy(x, m,t), x € [0,7],t €[0,T] 4)
k(t) = f f xyu(x,y, t)dxdy,t € [0, T] (5)
0 0

where, in heat diffusion in a thin rod in which the law of variation k(t) of the total quantity of heat in
the bar is given. [6]

2. Solution of (1)-(4) Model

As known, in Fourier Method, the solution of problem (1)—(4) is considered in the following form :

u(x,y,t) = uOT(t)

+ Z (temn(F) cOs (2mx) €os (2ny) + tesmn(f) cos (2mx) sin (2ny))

mmn=1

+ Z (tsemn(t) sin (2mx) cos (2ny) + Usyy(t) sin (2mx) sin (2ny)).

m,n=1

We have Fourier coefficients by applying the standart procedure of the Fourier method, as follows:

t mom
up(t) = uo(0)+iszff(x,y,@u)dxdydr
U
000

t
- f[b(S)(Zm)2+(2n)2]ds 4 A f[b(s)(Zm)2+(2n)2]ds
Uenn() = Uemn(0)e 0 + = e f(x,y,7,1) cos (2mx) cos (2ny) dxdydt
e
0

T

t
- j‘[b(s)(zm)2+<2n)2]ds 4 ft [b(s)@m)?+(2n)]ds
— f et f (x,y,t,u)cos (2mx) sin (2ny) dxdydt
0 0

tesmn(t) = Uesmn(0)e © >

:l

t
-f [b(s)(Zm)2+(2n)2]ds f ~
0
T

t
- [[o(s)@my?+(2n)?]ds
uscmn(o)e 0 er

f (x,y, 7, u)sin (2mx) cos (2ny) dxdydt

Usemn(t)

2|N|4;
3 ©

t
- [b(s)(2m)2+(2n)2]ds 4

t
- [[bG)@m)?+(2n)*]ds
Usmn(t) = usmn(0)e © 2 e

f(x,y,7,u)sin(2mx) sin (2ny) dxdydt

i
I
I

:l

Then we obtain the solution:
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t
1 4
T/l(x, y/ t) = Z‘: [(PO + P ffO(T, T/l) dT]
0
t t
> 4 — [[o(s)@m)>+@n)]ds
+ Z Pemn + — fe Tf[ ] Forn(T, 1) d7T | cos (2mx) cos (2ny)
m,n=1 n 0
t t
> 4 — [[bos)@m)*+@n)2]ds .
+ Z Pesmn+ —5 | € ° Sesmn (T, u)dT | cos (2mx) sin (2ny) (6)
mmn=1 T 0
t t
> 4 ~ [[os)@m)+@n?]ds )
+ Z Psemn + — f e fsemn (T, u)dT | sin (2mx) cos (2ny)
mn=1 T 0
t t
= 4 — [[o(s)@m)>+@n)2]ds
+ Z Psmn + — f e Tf[ ] Sfomn (T, w)d7 | sin (2mx) sin (2ny)
mmn=1 T 0
- f [b(s)(@m)?+(2n)? |ds - f [b(s)(@m)?+(2n)?ds
where ®o = Llo(O), Pemn = ucmn(o)e 0 7 Pesmn = ucsmn(o)e 0 ’
= [[bs)@m)?+(2n)]ds = [[bs)@m)*+(2n)*]ds
Pscmn = Usen(0)e 0 7 Psmn = Usmn(0)e 0

We have the following constraints for functions of the problem:
(C1) k(t) € C* [0, T]

d(C2) @(x, y)eC ([0, 7] X [0, 71]), (0, y) = @10, y), p<(0, ) = @x(70,y), p(x,0) = @(x, ), Py (x,0) = @y (x, 70)
an

f f xyp(x, y)dxdy = k(0),
00
C3) f(x,y,t,u) is provided following conditions:

(
(1)|3f(x,y,t,u) _ af(xéz,t,ib < l(x, Y, t) |u _ »1:4 )

ox
aftxytu) _ IfCoyt)
| ay oy SZ(x/]//t) u_m/
Prytw) Pyt

P Ty | <10y, 1) |u— ] where I(x, y, 1) € Lo(D), I(x, y, ) 2 0,
() f(x,y,t,u) € C>*°[0,n], t € [0, T],
@) frytw| = fey bl f@ytw] = Ayt eyt = fey b,

fo@ytw| = oGyt falytw] = ooyt
(5) can be diffrentiated under the assumptions (C1)-(C3),

f f xyus(x, t)dxdy = k'(t), 0 <t < T. 7)
0 0

then the unknown coefficient is obtained in this form

K(t) = [ [xyfee,y, tudxdy — Su,(m,t)
b(t) = 00

(®)

%3 uy(1, t)

Definition 2.1. Show the set {u(t)} = {tio(t), Uemn(t), Ucsmn(t), Usemn(t), Usmn(t), m, 1 = 1, ...} of continuous functions
on [0, T] which satisfy the condition
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o (1)l
max—;— + max |u t)| + max |u 1) + max |u t)| + max |u Bl < oo.
max mz (v it (0 + 202X it (O] + 100X ()] + pnax i1

[lu(@®)|l = ma xluo(t)| + Z (5nax [then ()] + max |ucsm,,(t)| + max Iuscmn(t)l + max Iusmn(t)l) is the norm in B. (B
=1 \0<t<
is the Banach spaces)

Theorem 2.2. If the conditions (C1)-(C3) be implemented. Then it has a unique solution.

Proof. If we apply an iteration to equation (6), the following functions are obtained:

4
20 = o [ [rteunao)oe
0 0 O
t m

(To(syam+2n2]d
Ui D) = Qo + ifffe Jie I cos (2mx) cos (2ny) f(x,]/, T,M(N))dxdyd’[/
0 0 0

-
C - foener)
4 b(s)(2m)=+(2n)* |ds
U () = Pesn + — f f f e cos (2mx) sin (2ny) f (x, y, 7, u™)) dxdydr,
0 0 0
P foenenr
4 (s)@m)2+(2n)?]ds
ub () = Psemn + —3 f f f e sin (2mx) cos (2ny) f (x,y,'c,u(m)dxdyd@
0 0 0
" (o)
4 b(s)(2m)*+(2n)* |ds
gle)(t) (Psmn+¥ f f f e sin (2mx) sin (2ny) f (x,y,T,u(N))dxdydT.
0 0 0

According to the assumptions , we get u®(t) € B, t € [0, T]. Using Cauchy ,Holder, Bessel inequalities and
Lipschitzs condition, finally we get:

()4
||u(1>(t)“B 0<t<§|”o4_()| + Z ((I)nax |ucm,,(t)| + max |ugznn(t)( + max |uscmn(t)| + max |usmn )})
- mn=
_ el
- 2 Z ('@cmn) + |(Pcsmn‘ + |(P5Cﬂ’l1’l| + ‘(Psmn|)
m,n=1

3 16
NI iy o] 000

+ \/T(w;—n+16)M.

According to the assumptions of the theorem, we have u)(t) € B. The same operations for the step N,
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[ud" )]

ol = g0 3 (ool 01+ s 0]+ s b0
< @ + y |(Pcmn| + |(Pcsm") + |(p55m"| + |(Ps”m|
: 2 mn=1
16
NIV ey ) 0
S *;j ©ym

is obtained. We get u™*1(t) € B since u™(t) € B,

{u(t)} = {uO(t)/ ucmn(t)r ucsmn(t)r uSle’l(t)l usmn(t)l mmn=1, } € B.

If we apply an iteration to equation (8), the following functions are obtained::

Kt)— [ [xyfee,y,t,u®™)dxdy — ZulV(m, 1)
b(N+1)(t) — 00

3 (N
Zul(r, 1)

By using the same operations we obtain:

_eol+ 2 ol

(N+1)
B DO oy < 2 ],

N+ < 2 |k (t)|
”b t)”C -2 H (N)(t)”

We get bN*D(¢) € C[0, T] since u™(t) € B.
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Let us show that, uN*D(¢), bN*1 are converged for N — 0.

u(l)(t) — u(0>(t) M

S

0 1 0 1 0 0
L ) = 4 0) + U ®) = 10 (1) + W (0 = 0 (1)) + Wi (t) = ),

t
1| 4
= Z[;fff[faﬂ(x,y,’r,u(o))—fa[;(x,y,T,O)]dxdydT
0 0

0
I i
4 ~ [Tos) @mp+@n2]ds
+ Z m2mn f f f [fxy(x,y,f,u@))—fxy(x,y,T,O)]e g cos (2mx) cos (2ny) dxdydt
mn=1 00 0
t mon t
= — [[bts)@m)2+@n)2]ds
* Z : f f f € ! cos (2mx) sin (2ny) dxdydt
m2mn
m,n=1 00 0
I mom !
3 ~ [[b(s)@m)>+@2m)?]ds
+ Z 24 f f f [fxy(x,y,T,u(O))—fxy(x,y,T,O)]e Tj sin (2mx) cos (2ny) dxdydt
n2mn
mmn=1 90 0
It mom
4 f [b(s)@m)>+(2n)?1ds .
i Z m2mn fff fuyler 1) = fry e, 0)] sin (2mx) sin (2ny) dxdydt
mmn=1 0
T

i[% ft f f Fyx, y,T,O)dxdydT]
0 0 0

t
m,n=1 ofo
t mon
s 4 - [[o6)@my?+(2n)?]ds )
+ Z 2mn f f f fey(x,y,7,0)e cos (2mx) sin (2ny) dxdydt
mn=1 00
I mom

< mmn
mmn= 0 0

t n

m2mn
mmn=1

- f [b(s)@m)?+(2n)?]ds
f f Sy, y,7,0)e 7 cos (2mx) cos (2ny) dxdydt
0

- [[b6s)@m)?+(2n)?]d
+ Z 4 fffij(x ¥, 7,0 f[ } el sin (2mx) cos (2ny) dxdydt

s
~ [[b(s)@m)?+(2n)?|ds
+ Z 4 f f f fey(x,y,7,0)e Tf[ ’ sin (2mx) sin (2ny) dxdydr.
0 0

153

Let some inequalities(Bessel, Holder, Lipschitzs) be implemented , the following estimations are obtained:

3 1

) - w0, = VTV (i o w0, + M)

where N
3 +16
A= NTET2) (ffes ]| 6@l +M)-
Ay, s
[0t~y < ——=
where
S = ﬁ(3ﬁ+ 16) 1+ ™ + i ”l(x, v t)”LzU”)
) 3 2w ool 2o,

By using the same operations we obtain:
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B9 -89 < C 400 - 100

The same operations for the step N :
0O = 80O 1y < O [P0 = )]

M n||l(x,y,t)||L2(r) M n||l(x,y,t)||L2(l_) ) )
Al o, © 2o, ) o= (2||u<~><t>||B||u<N+l><t>||B * ), ) -The series which
is consisting of the right hand side of (9) are convergent by ratio test. So, the series which is consisting of
the left hand side of (9) are convergent by comparison test. Moreover, by the Weierstrass M test , the series

where C; =

Y |u(N+1)(t) - u(N)(t)) is uniformly convergent.
N=0

We obtain u®™+D — 3y pN+D) 5 p(N) N — co.
Therefore u™N*D(t) and b™*V(t) are converged.
Now let’s show that:

Jlim uNtD (1) = u(r), lim bN* (1) = b(e).

By using Cauchy, Holder, Bessel and Lipschitzs inequalities, we have

-0l = VFCYELE) iy ) - a0

3 16
VECYL) i 00 - i)

+ \/_(3 ‘/_ - 16)M 1T [Ju(t) = u™ D) -

By using the same operations we obtain:

”b(t) _ b(N+1)(t)||C[0/T] < Cy ”l(x, v, t)“Lz(r) ||u(t) — u(N+1)(t)||B
+C iy o] [0 - w0,

3 16
Ju - a0, = VYL i, )] ey - w500

+\/_3\/_+16)”l(x y,t)|| )M(N”)(f)—”(N)(t)”B

Lr)|

VT <3V—+ Loy [Joct) - BNV,

applying Gronwall’s inequality to last inequality ,we have

A\/T(B\/E;M) "
- a0}, < 2%(““"'%0”35 )

xexp(\/_B‘/_J’m) i, v, 6| (10)

L@
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The series which is consisting of the right hand side of (10) are convergent by ratio test. So, the series
which is consisting of the left hand side of (10) are convergent by comparison test. Moreover, by the

Weierstrass M test , the series ) Iu(t) —uN +1)(t)| is uniformly convergent.
N=0

We obtain u™*Y) — 1, b0+ 5 p N — oo.

To show the uniqueness, we get two solution pairs of the problem (1)—(5) as (c, 1) and (b, v)

Applying Cauchy inequality, Holder Inequality, Lipschitzs condition and Bessel inequality to the differ-
ence |u(t) — v(t)|, we obtain

\/—3\/_+16

llu(t) = o(t)llg < ) |1, y,t>|| Nlu(t) = 0Bl

! ﬁ(”ﬁ—;“m TIBCE) ~ <)l
2
llu(t) — o)l < 0 X exp(ﬁ(wz—;m)) (e o (11)

we get u(t) = o(t) and c(t) = b(t).
The proof is over. [
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Abstract. In this paper, we study the complex-type Padovan-p sequence modulo m and then we give
some results concerning the periods and ranks of this sequence for any p and m. Furthermore, we produce
the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan-p
sequence when read modulo m. Finally, we give the relationships between the periods of the complex-type
Padovan-p sequence modulo m and the orders of the cyclic groups produced.

1. Introduction
It is well-known that the Padovan sequence {P (n)} is defined recursively by the equation:
Pn)=Pn-2)+P(n-3)

forn >3,where P(0)=P(1)=P(2) =1.
The Padovan p-sequence {Pap (n)} is defined [6] by initial values Pap (1) = Pap(2) = --- = Pap(p) = 0,
Pap(p+1) =1, Pap (p + 2) = 0 and the following homogeneous linear recurrence relation

Pap(n+p +2) = Pap(n + p) + Pap (n)

for any givenp(p = 2,3,4,...) and n > 1. Note that the (21 + 1) th term of the Padovan 2-sequence {Pa2 (n)},
is equal to nth Fibonacci number.

The complex-type Padovan p-sequence {Pag) (n)} is defined [11] as follows:
Pa;f) (n+p+2)=i- Pa;f) (n+p)+ "> -Pa;,i) (n) (1)

for any given p(p =3,5,7,...) and n > 1, where Pa;f) H=---= Pa;f) (p)=0, Pa;") p+1)=1, Pa;,i) (p+2)=0
and V-1 =i.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the shortest repeating subsequence is called the period of the sequence. For example,
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the sequence a,b,c,d,b,c,d,b,c,d, ... is periodic after the initial element 2 and has period 3. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For
example, the sequencea,b,c,d,a,b,c,d,a,b,c,d, ... is simply periodic with period 4.

The study of the behavior of the linear recurrence sequences under a modulus began with the earlier
work of Wall [17] where the periods of the ordinary Fibonacci sequences modulo m were investigated.
Recently, the theory extended to some special linear recurrence sequences by several authors; see, for
example, [3, 4, 12, 15, 16]. In the first part of this paper, we consider the complex-type Padovan-p sequence
modulo m and then we derive some interesting results concerning the periods and ranks of the complex-type
Padovan-p sequence for any p and m.

The relationships between the periods of the linear recurrence sequences modulo m and the cyclic groups
which are produced using the multiplicative orders of the generating matrices of these sequences when
read modulo m have been studied recently by many authors; see, for example, [1, 2, 5, 7-10, 13, 14, 18].
In the second part, we derive the cyclic groups using the multiplicative orders of the generating matrix of
the complex-type Padovan-p numbers when read modulo m. Then, we give the relationships between the
periods of the complex-type Padovan-p sequence modulo m and the orders of the cyclic groups produced.

2. The Main Results

If we reduce the complex-type Padovan-p sequence {Pa;i) (n)} by a modulus m, taking least nonnegative
residues, then we get the following recurrence sequence:

{Pal™ (n)} = {Pal™ (0), Pa{™ (1), ..., Pal™ (j), ...}

where Pa;f ) (j) is used to mean the jth element of the complex-type Padovan-p sequence when read modulo

m. We note here that the recurrence relations in the sequences {Pa;f’m) (n)} and {Pag) (n)} are the same.

Theorem 2.1. For any given p(p = 3,5,7,...), the sequence {Pag”") (n)} is simply periodic.
Proof. Consider the set

C = {(cl,cz, ... ,cp+2) | ¢,’s are complex numbers a, + ib, where (2)

a, and b, are integers such that 0 <a,,b, <m—-land1<n<p+2}. 3)

Let the notation |C| indicate the cardinality of the set C. Since the set C is finite, there are |C| distinct
(p + 2)-tuples of the complex-type Padovan-p numbers modulo m. Thus, it is clear that at least one of these

(p + 2)-tuples appears twice in the sequence {Pag’m) (n)}. Therefore, the subsequence following this (p + 2)-
tuple repeats; that is, {Pag’"') (n)} is a periodic sequence. Let us consider Pa;f’m) (u) = Pa;f’m) (v), Pa;(f’m) wu+1)=

Pa;f’m) (v+1),..., Pa;f’m) (u+p+2)= Pa;f’m) (v+p+2)and v > u. Then we have v = u (mod(p + 2)). From the
recurrence relation in (1), we can write the following recursive equations:

Pag) (u) =7 Pa;(f) (+p+2)+ 3P ~Pag) (u+p)

and
Pag) (v) = > 'Pa;f) (v+p+2)+i7 'Pa;f) (v+p).

So we get Paff’m) u-1) = Pa;f’m) (v-1), Pa;,i’m) wu-2) = Pa;f’m) w=2), ..., Pag’m) ) = PaS’m) (v—u+2),
Pa;f’m) 1= Pa;f’m) (v — u + 1), which implies that the complex-type Padovan-p sequence modulo m is simply
periodic. O
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Let the notation lPi, (m) denote the smallest period of the sequence {Pasm) (n)}.
Given an integer matrix A = [aij], A (modm) means that all entries of A are modulo m, thatis, A (modm) =
(a,-]- (modm)). Let us consider the set (A),, = {(A)" (modm) | n > 0}. If (detA,m) = 1, then the set (A),, is a

cyclic group; if (det A, m) # 1, then the set (A),, is a semigroup.
In [11], the generating matrix of the complex-type Padovan-p sequence had been given as:

[0 -1 0 0 0 2]
1 0 0 00 0
01 0 00 0
DP:P@] |0 0 1 0 0 0
I (pe2)x(p+2) .
00 0 1 0
00 0 01 0

The matrix D, is said to be the complex-type Padovan-p matrix. Then they had been written the
following matrix relation:

>Pas)(n+p+2)— >Pas)(n+p+1)—
Pal(,l) (n+p+1) Pa;f) (n+p)
‘ : =Dy- ‘ :
Pa’(;) (n+2) Pa’(;) (n+1)
Pa’(;) n+1) | | Pag) (n)

It can be readily established by mathematical induction that forn > p + 1,

[ Pa;,o (n+p+1) Pa;,’:) (n+p+2) i”*z-Pa;j) (n+1) ip+2.p,1;7’:) (n+2) iP+2-Pq;j) (n+p)
Pu;’) (n+p) Pa;,’) (n+p+1) 2. Pa;,o (n) 2. Pu;,’) n+1) s P2 Pu;,’) (n+p-1)
(D )n ~ Pu;,o (n+p-1) Pu;,') (n+p) 2. Pa;,’) (n-1) P2 Pa;,’) (n) s P2 Pu;,’) n+p-2) W
p) = . . . . .
W, oy pe2 . pa) ps2 . pal) ' 32 po)
Pay, n+1) Pay, n+2) v - Pa,, m-p+1) # - Pay, m-p+2) - i - Pay, (n)
Pu;f) (n) Pa;,o n+1) P+2 -Pa;,l) (n—p) P2 Pa}(;) m-p+1) - P2 -Pa;,') n-1)

Since det D, = #*?, the set <D’”>m is a cyclic group for every positive integer m > 2. From Theorem 2.1

and the equation (??), it is easy to see that IP;'J (m) = '(D”>m| for any givenp (p = 3,5,7,...).

Clearly,
w2 _ )0 = —1 (mod4),
PUT) <, p=1(mod4).

7

Since also det D, = i"*? and IP;, (m) = |<DF’>

m

1P (m)

(i” +2>1P;;(m) _ (det Dp)lP;;(m) — det Dp " = 1 (modm) .

From this we see that 4 |ZP;'J (m).

The rank of the sequence {Pag’m) (n)} is the least positive integer r such that Pag’m) (r+1) = Pag’"’) (r+2) =
Pa;f’m) (r +p) = O(modm), Pa;f’m) (r+p+1) = u(modm) (u € C), PaS’m) (r+p +2) = 0(modm), and we denote
the rank of {PaS’m) (n)} by RP;, (m). If Pa;f’m) (r+p+1) = u(modm) (u € C), then the terms of the sequence
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{Pag’"’) (n)} starting with index RP;, (m), namely 0,0,...,0,u,0,-u,0,u,..., are exactly the initial terms of
——
P

{Paff’m) (n)} multiplied by a factor u.
Let the notation I denote the identity matrix of size (p + 2). The exponents n for which (Dp)n = [(modm)
form a simple aritmetic progression. Then we have

(D,,)}7 = I(modm) ZP;, (m) | n.

Similarly, the exponents n for which (Dp)n = cl(modm) for some ¢ € C form a simple aritmetic progression,

and hence " )
(Dp) = cl(modm) < RP;j (m) | n.

Consequently, we can see that RP;, (m) divides IP;, (m) for any givenp (p = 3,5,7,...) and m > 3.

The order of the sequence {Pag’m) (n)}, (m > 3) is defined by % and we denote it by OP;', (m). Let
RP, () . . ’ ARPY (m)
(D,,) = cl(modm) (c € C), then ord,, (c) is the least positive value of A such that (Dp) = I(modm).

So it is confirm that ord,, (c) is the least positive integer A with ZP; (m) | /\RP; (m) for m > 3. As a direct
consequence of this we see that the smallest such A is OP,, (m) for m > 3. Therefore, we obtain OP,, (m) =
ordy ), (m = 3) when (D,)"""”
a positive integer, and that OP]’;, (m) = ord,, (Pag) (RP;7 (m)+p+ 1)) for m > 3, the multiplicative order of
Pay™ (RP; (m) + p +1).

= cl(modm). As a result, we may easily deduce that OP;7 (m) is always

Example 2.2. The sequence {Pa(;z) (n)} is as follows:

0,00101,01,41,0,1,4,0,0,0,i,1,i,1,4,
0,01,40,40,0,1,0,0,0,0,7,0,:,0,7,1,,0,
1,0001,41,i1,0,0,41,0,1,0,0,40,
0,001,01,0,1,5,....

Thus it is verified that IP% (2) = 62, RP; (2) = 31 and OP} (2) = 2.
Example 2.3. The sequence {Pa(;"l) (n)} is as follows:

0,001,0,3,0,1,43,2,1,3,2,0,0,i,1,4,3,31,0,24,3,1,2,3i,0,0, 3, 2i,
2,24,2,i,0,1,2,1,1,3,2,3i,1,2i,0,0,1,4,1, 34,3,24,0,341,0,1,0,0, 1,0,
0,00,3,01,243,3;1,23,i,2,0,0,3i,3,3i,1,4,0,21,1,3,2,1,0,0,1, 2,
2,24,2,3i,0,31,2,3i,3,1,2,i,3,2i,0,0,3,34,3,i,1,2i,0,4,3,0,3,0,0, 31,0,
0,0,01,0,3,0,1,4....

Thus it is verified that IP% (4) = 124, RP%, (4) = 62 and OP,, (4) = 2.
Theorem 2.4. Let p be a prime. Then we have the following results for any given p (p = 3,5,7,...):

i. If t is the smallest positive integer such that P}, (pt“) # 1P}, (p"), then IP}, (pt“) = plP;, (p").
ii. If t is the smallest positive integer such that RP,, (p”l) # RP;, (p"), then RP, (p”l) = pRP, (p").

1P (o1
Proof. i. Let n be a positive integer such that (Dp) o) = I(modp™'). Then we can easily derive

1Pi (o1 . X
(Dp) 7o) = I(modp"), which implies that [P, (p”“) is divided by IP, (p"). On the other hand, we may
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IPI 1 n
write ( ) (") =1+ ((d](: )) . p"). Thus, we get the following matrix equation by using binomial expansion

(Dp)pzp,a(p"):(H(( (p)) )) ZPZ( )(( (p)) )E (modp™?),

k=0
which yields that p - IP}, (p") is divided by IP,, (p”“). Hence, IP,, (p”“) = 1P, (p") or IP,, (p””) =p- 1P, (p"),
and the latter holds if and only if there is a (d](;: )) which is not divisible by p. Due to fact that we assume ¢

is the smallest positive integer such that lP;, (pt”) * IP;‘7 (p"), there is an (dj(.;: )) which is not divisible by p.

This shows that IP,, (p”l) = pIP} (p").
ii. The proof is similar to the above and is omitted. [

Theorem 2.5. Let my and m; be positive integers withmy, my > 2, then RP;, (Iem [my1, my]) = Iem [RP; (m), RP;, (mz)]
and ZP;7 (Iem [my, my]) = Iem [ZP;, (m), ZP;, (mz)]for any given p (p = 3,5,7,...).

Proof. Let us consider the ranks RP;7 (mq) and RP;, (my). Suppose that Iem [m;,m;] = m. Then we may write
Pa) (RP, (my) + 1) = Paf) (RP., (m1) +2) = - - = Pa}) (RP} (m1) + p) = O(modm),

Paf) (RP}, (m) + p + 1) = w1 (modm), Paf) (RP, (m1) + p + 2) = O(modm),

Pa) (RP} (m2) + 1) = Pal) (RP', (my) + 2) = -+ = Pal) (RP}, (my) + p) = O(modm),
Paf) (RP}, (m3) + p + 1) = uz(modm), Pafy (RP, (m2) + p +2) = 0(modm)

d
" Pa) (RP, (m) +1) = Pa) (RP, (m) + 2) = -+ = Pa) (RP’, (m) + p) = O(modm),

Pa;(? (RP;, (m)+p+ 1) = u(modm), Pa;f) (RP;, (m)+p+ 2) = O(modm)
where u1, u; and u are complex numbers. Using the least common multiple operation this implies that
Paf) (RP (m) + 1) = Paf) (RP, (m) + 2) = -+ = Paf) (RP’, (m) + p) = 0(modm}),

P (R -+ -+1) = s, e (R85 0+ +2) = Ot

for j = 1,2. So we get RP;, (m1) | RP} (m) and RP;, (m3) | RP,, (m), which means that RP,, (Ien [my, my]) is
divided by lcm [RP; (my), RP; (mz)] We also know that

Pa;,i) (lcm [RP;, (1111),RP;7 (mz)] + 1) = Pug) (lcm [RP;, (mq) ,RP;, (mz)] + 2) =...= Pa;j) (lcm [RP;, (ml),RP;7 (mz)] + p) = O(modmj),

Pay (1em [RP (1), R} ()] + p + 1) = wj(modny), Paf) (1em [RP} (m), RP; (ms)] + p +2) = O(madm;)
for j = 1,2. Then we can write

Pa;') (lcm [RP;, (mq) ,RP;, (mz)] + 1) = Pa}(f) (lcm [RP;j (ml),RP;7 (mz)} + 2) =...= Pa;,o (lcm [RP; (ml)/RP;; (7712)] + P) = 0(modm),

Pa;f) (lcm [RP;, (my) ,RP;J (mz)] +p+ 1) = u(modm), Pag) (lcm [RP;, (my) ,RP;, (mz)] +p+ 2) = 0(modm),

which yields that lcm [RP; (m), RP; (mz)] is divided by RP;, (Iem [m1, ms]). So we have the conclusion.
There is a similar proof for the periods IP;, (1) and IP,, (my). O
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3. Conclusion

We have examined the complex-type Padovan-p sequence modulo m and then we give some results
concerning the periods and ranks of this sequence for any p and m. In addition, we have considered the
complex-type Padovan-p matrix and we obtained cyclic groups by taking the multiplicative order of this
matrix according to m. Finally, we have reached that the periods of the complex-type Padovan-p sequence
according to modulo m are equal to the order the cyclic groups obtained.
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Abstract. In this study, a groove was formed on the Ti-6Al-4V plate with Nd:YAG laser. The structure of the
resulting grooves was examined. Mathematical modeling of the heat dissipation was made by making use
of the melting and boiling temperatures observed on the plate. Later, to prove the validity of the obtained
mathematical model, grooves with different geometries were obtained with different laser energies. The
results obtained with the proposed mathematical model are quite compatible with the experimental results.

1. Introduction

When it is desired to modify the mechanical properties of materials such as friction and adhesion, one of
the most used methods is the surface texturing process. For different materials, different texturing methods
can be applied according to the material properties and the intended pattern properties. Surface texturing
processes can be divided into three main groups as chemical, mechanical and thermal.

Ti-6Al-4V alloy is widely used in industry and especially in the healthcare industry due to its low density
and high toughness. Titanium and titanium alloys are used in the production of many parts, especially
in aviation, health and space technology, because they are more durable than steel but much lighter [1].
Ti-6Al-4V is a titanium alloy with high specific strength and excellent corrosion resistance. It is one of the
most commonly used titanium alloys and is applied in a wide range of applications where low density
and excellent corrosion resistance are necessary such as e.g. biomechanical applications (implants and
prostheses) [2]. Additive Manufacturing [3], racing and aerospace industry [4], marine applications and
chemical industry [5], etc..

Although Ti-6Al-4V alloy has superior properties and is preferred in many applications, tribological
performance is inadequate. The tribologic properties can be improved by surface texturing. The process
of creating regular patterns on the material surface by various methods can be called surface texturing.
The sizes, shapes and proportions of these patterns on the surface greatly affect the adhesion and friction
properties of the surface. Due to the different physical and chemical properties of materials, it can be
processed with different methods for different materials. In addition to the many advantages of these
methods, they also have some disadvantages such as environmental pollution, increased burrs from the
material and wear of the parts.
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Lasers have many advantages in material processing. Lasers are preferred in many areas, especially
thanks to their superior qualities such as the absence of wear on parts, precise processing and the preserva-
tion of this sensitivity in almost all products. Although many metals can be processed very easily by laser,
there are difficulties in laser processing of Al and its alloys due to their high reflectivity.

Many studies have been carried out to control the dimensions and geometries of the patterns created
on the material with the laser and to determine the appropriate laser parameters [6, 7]. Many parameters,
including the properties of the laser used in laser material processing and the ambient conditions, affect the
properties of the patterns obtained on the material. Numerous experimental studies have been carried out
to obtain suitable parameters [8-10]. Since there are many parameters affecting the result in laser material
processing, classical experimental methods take a lot of time and have high costs. For this, successful results
are obtained with mathematical modeling as well as optimization studies [11-13].

In this study, a groove was created on the Ti-6Al-4V plate and mathematical modeling of the heat distri-
bution was made with the measurements taken from the geometries of these grooves and the data obtained.
In the mathematical modeling using the Fourier method, Melting, Boiling and melting Temperature were
used as boundary conditions.

The effects of the laser beam energy on the groove width of Ti-6Al-4V plate were investigated in the
mathematical model. Physical properties of Ti-6Al-4V and laser parameters were used to conduct model.

The heat distribution equation on surface can be written as below;

dT(x, ) 2 *T(x,t)

ot ox? e

Ilt//

where, T is the temperature as a function of time
material that can be obtained as below;

and distance "x”, a is the thermal diffusivity of the

=4

wherelj A is the thermal conductivity, ¢ specific heat and p density of material.

Let t, > 0 be a fixed number and denote by D = {(x.t) : 0 <x < ,0 <t <t}

where x is the investigated length that varies between zero and [. t, is the pulse duration that means
laser beam start at “0” and laser is beam is cut of at t,.

Therefore one of the initial condition can be written as;

T(x,0)=Ty,0<x<1

where T is the initial temperature of the material. It was assumed that all the energy absorbed by the
surface was transmitted to the material. Thus, in the absence of heat loss, the boundary condition (x = 0)
on the surface can be written as follows:

(dT(0,t))/dt = 0,(dT(1, t))/dt = O(t > 0)

This is a parabolic problem. Classical solution of the problem (1)-(3) is T(x, ) € C*}(D) N C*(D). The
heat source problem has been investigated with parabolic equation in many studies.

By applying the standard procedure of the Fourier method, we obtain the following representation for
the solution of (1)-(3).

T(x,t) = Z(x)T(t)

(X" ())/(X() = (T ()/(@?T(t) = —A*

where A is fix number.

The eigen values are

A = Qmk/1* k=1,...,00

The eigien functions are

Xi(x) = cos@‘x, X, = sin@x,

X(x) = CreosZEx + Cosinx.

T(t) = CaeCF0,

Then the following solution is obtained using Fourier method.

T(x,t)= X (Tck cos 288 + Ty sin 2”—f‘k) e~ (O,

k=1
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The laser intensity within the material can be found using the Beer-Lambert’s Law:
i) _
—= = —al

Where I(x) is the laser intensity as a function of distance from laser spot and 4 is the absorption coefficient
of the material respectively. Although absorption coefficient is changed within the material but it was taken
as constant in our study. Laser intensity as a function of distance within material can be written as;

— | adx

I= I()E ”f

Actually most of the beam intensities have Gaussian distribution. We made one more assumption that
our laser beam is top-hat beam that means intensity is homogeneously distributed in spot area.

The heat generation from the laser beam absorbed by the material is defined as,
s=HA

dx
Using Leibniz rule yields, the heat source can be written as;

—fadx
S=1Ipe

The temperature distribution as a function was obtained as given below;

(9]

t 7
T 2 k T 2 k
T(x,t) = Z qocke(zlk)2t+ff8(x, t) cos %xe*(zlk)z(t”)dxd’c cos )
=1 0 0

l
k

t 7

. 7 2nak o 2nak

+Z (Pske‘(ztk)thtffS(x,t)sin nla xe~ TV =0z |sin nloc x — —xH/IA.
k=1 0 0

2. MATERIAL AND EXPERIMENTAL SETUP

The Ti-6Al-4V plates with 2.5 cm x 2.5 cm having an area of 3 mm thick were used for to surface
machining process. Some physical and thermal properties of Ti-6Al-4V which were used in mathematical
modeling have been listed in Table 1. In the ablation process commercial Nd:YAG laser was used with
different energy at constant scan speed. The laser beams were focused 1 mm above the surface, the spot
diameters were obtained as 580 um.

Table 1 Some physical and thermal properties of Ti-6Al-4V

Properties Value Unit
Density 4410 kg/m3
Specific Heat Capacity 5263 kJ / kg.K
Melting point 1650 K
Boiling Temperature 3133 K
Thermal Conductivity 6.7 W/mK

3. RESULTS AND DISCUSSION

In this study, mathematical model has been proposed for the groove width on Ti-6Al-4V plate with 3 ]
of energy and 2 mm/s scan speed. An optical microscope was used to take the images of ablated surfaces
of Ti-6Al-4V plate. Groove widths were measured from these images.

The Boiling and molten zone boundary distances were measured as 1310 ym and 1120 um respectively.
Temperatures at Boiling and molten zone boundary are 3133 K and 1650 K respectively. These temperatures
are used in obtained mathematical model obtain the Fourier coefficients. These coefficients depend on the
material properties. The coefficients in the temperature distribution equation (2) were calculated as ¢
(=701,68) and @y (-112.48). Then, in order to verify the validity of mathematical model, new grooves
were created obtained using 2.5, 3.5,4, and 4.5 Joules of laser energies. The coefficients obtained with first
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experiment (conducted with 3 Joule of laser energy) were used to calculate temperature distribution for the
Ti-6Al-4V plate and different laser beam energies.
Table 2 Laser Energies and groove widths measured from images.

Laser Energy Boiled Melt

Joule Zone width Zone width
26 1252 1434

39 1319 1513

52 1367 1568

65 1404 1611

78 1434 1646

The calculated temperatures for boundaries are given in Table 3.
Table 3. Melting and Boiling Temperatures calculated with mathematical model, real values and percent
error between them.

Energy

Joule T(x,t) (K) T(x,t) (K) (calculated) % error
2.5  Melting 1650 1640 0.61
2.5 Boiling 3133 3121 0.38
3 Melting 1650 (ref)

3 Boiling 3133 (ref)

35 Melting 1650 1662 0.72
3.5 Boiling 3133 3178 1.44
4 Melting 1650 1674 1.45
4 Boiling 3133 3191 1.85
45 Melting 1650 1692 2.55
45 Boiling 3133 3209 2.43

4. CONCLUSION

Micro-scale patterns created on metal surfaces change the mechanical properties of the surfaces. In
addition to the many advantages of laser surface treatment, it is very difficult to accurately predict the
properties of the surface to be obtained due to the complexity of the laser-material interaction. Thanks
to the mathematical modeling of the heat distribution of the surface to be obtained with the laser texture,
the properties of the product to be obtained can be known in advance. In mathematical modeling, as in
parameter optimizations, both time and material can be saved in experimental studies.

In this study, firstly, grooves were created on the Ti-6Al-4V plate with a 3 ] laser. Measurements were
made on the obtained through and the constants to be used in the temperature distribution equation were
calculated. Then, grooves were obtained with 2.5, 3.5, 4 and 4.5 Joules energies to prove the validity of the
mathematical model obtained. The measurements made on these grooves and the results obtained with
the mathematical model were compared. The error rates of the results obtained vary between 0.38 and 2.55
%. The fact that the error rates are so low indicates that the proposed model is an acceptable one.
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Abstract. This article deals with the ratio of normalized Miller-Ross function [, (z) and its sequence of
partial sums (E,),, (z) . Several examples which illustrate the validity of our results are also given.

1. Introduction

Let A be the class of functions f normalized by

f@=z+) a2 (1)
n=2

which are analytic in the open unit disk U = {z € C: |z| < 1}.
Denote by S the subclass of A which consists of univalent functions in U. Consider the function E, . (z)
defined by

. (c2)"
E, =z'y —
(@) =2 n:OF(v+n+1)

(2)

where T stands for the Euler gamma function and v > -1, ¢ € C and z € U. This function was introduced
by Miller and Ross in 1993 [9] and is therefore known as the Miller-Ross function.

The function defined by (2) does not belong to the class A. Therefore, we consider the following normal-
ization of the Miller-Ross function E, . (z) : forz € U,

_ 1-v _ . c"l’ (V + 1) n+1
E, (z) =T (v+1)z Ev,c(z)_nzz'a—r(v+n+l)z 3)

wherev > -1land c € C.
Note that some special cases of E, . (z) are:

]E0,1 (Z) = ¢*z

]E1,1 (Z) =t -1

Z_ 2 Yy
Es: (z) = 3(2e zZ 22-2) 4)

2
E 1 (2) = e? /5 VzErf 4[5,
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where Erf 4/z is the error function.

For various interesting developments concerning partial sums of analytic univalent functions, the reader
may be (for examples) refered to the works of Brickman et al. [1], Kazimoglu et al. [7], Caglar and Orhan
[2], Lin and Owa [8], Deniz and Orhan [4, 5], Owa et al. [11], Sheil-Small [14], Silverman [15] and Silvia
[16]. Recently, some researchers have studied on partial sums of special functions (see [3, 7, 10, 13, 17]).

By using the Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma functions, by (1), =
r(r}a)” ) = ) (A+1)---(A+n+1), we obtain the following series representation for the ratio of normalized

Miller-Ross function E, . (z) given by (3):

(]Ev,c)o (Z) =z "
(E,o), () =z+ Y Az™, meN=(1,23,..., ()
n=1

where

_dTw+1) "
”_F(v+n+1)_(v+1)n'v> land c e C.

We obtain lower bounds on ratios like

R { ]Ev,c (Z) }/ R {(]Ev,c)m (2) } ) R { ]E,v,(i (2) }, R {(]EV;C)’m (2) } '
(]Ev,c)m (Z) ]Ev,c (Z) (IEV,C) m (Z) E v,c (Z)
Several examples will be also given.
Results concerning partial sums of analytic functions may be found in [6, 12] etc.

2. MAIN RESULTS

In order to obtain our results we need the following lemma.
Lemma 2.1. Let v > -1, c € Cand |c| < v + 1. Then the function E, . (z) satisfies the next two inequalities:

v+1

|1Ev,c (Z)‘ < v+

(zeU) (6)

2viel + 2e| = lc

E.,.(z)| <1+ (zel). 7)
| (v—lcl +1)° (
Proof. By using the well-known triangle inequality:
|z1 + 22| < |z1| + |22

and the inequality

v+1),2w+1)", neN, (8)
we have

dTwv+1) = |o"T (v +1)

= <
‘EV’C(Z” i Tv+n+1) <1 Tv+n+1)
lc|" — ( Ic| ) v+1
< =
(v+1)n_l+z v+1 v—lc+1’ (I <v+1)
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and thus, inequality (6) is proved.
To prove (7), using again (8) and the triangle inequality, for z € U, we obtain

1 +i (n+1)c”P(v+l)Zn

= (1 +1)|c|"T (v + 1)
Frv+n+1) S1+Z

Frv+n+1)

E\e (2)|

n=

+1), =l +1)

and thus, inequality (7) is proved. O

(n+1)c" . el \' L, 2viel+ 2] — el
Z 1+;(n+1)(m) =1+, (d<v+1)

169

Let w (z) be an analytic function in U. In the sequel, we will frequently use the following well-known result:

‘R{l+w(z)

———= >0, zeUifand onlyif |w(z)| <1, z € U.
1-w(z)

Theorem 2.2. Letv > —1and 0 < 2|c| <v+ 1. Then

E,(2) v=2lc|+1
%{(IEV,C)m(Z)} = v=ld+1”’ zet

and

(Eve),, (2) v—|c+1
9%{ E,.2) }2 vl

Proof. From inequality (6) we get

OT (v +1)
1 here A, = —————
+Z |c| Vo1 e Trv+n+1)

The last inequality is equivalent to
v—|c + 1) S
—_— Ay, <1
( |cl ; "

In order to prove the inequality (9), we consider the function w(z) defined by

1+w() (v— Iel +1) E,.(z) _(V—2|c| + 1)
1-w(z) |cl (Eyc),, (2) lc|

or

l+wE) 1+ Y= Anz" + (V_IEIH) Yomme1 AnZ"
1-w(z) 1+YM, Ayzn '

From (11), we obtain
—|c|+1 oo
(V }El\"— )Zn—m+l Anzn
242) 0 Azt + (V ‘C‘H) Yo a1 Anz

lc]

w(z) =

and

v—|c|+1 oo
( :i:Jr ) Zn:m+1 An
2-2 277?:1 An - (V_:i:-H) Z;t.o=m+1 A”

lw(z)| <

Now, [w(z)| < 1 if and only if

v>-1,ceCandn e N.

(10)

(11)
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which is equivalent to
ZA (V_'C'”) Z A< 1. (12)
n=m+1

To prove (12), it suffices to show that its left-hand side is bounded above by
—lcj+1 )
A,
( ol Z

which is equivalent to
m

(v 2|C|+1)Z 50

n=1

The last inequality holds true for 0 < 2|c] <v + 1.
We use the same method to prove the inequality (10). Consider the function w(z) given by

1-w(z)

1+w(z) (1/;-| 1) (]Ellisr(nzzz) B (v - :E: + 1)

1+ T A = () T2 A2
1+ Y0, Azt '

From the last equality we get

- (%) Z;t.o=m+1 Anzn
0(z) = i
- m n v=2|c|+1
242)0 Apzt — (T)Zn a1 AnZ"
and
v+l ZO"_ A
|w(z)| < ( |c] ) n=m+1*n

2-2 anzl Ap - (%) ZrDzO:erl Ay
Then, [w(z)| < 1 if and only if

Y 4, +(V_:%) i A, <1, (13)

we have that the inequality (10) holds true. Now, the proof of our theorem is completed. [

2 _ (+1)?
Theorem 2.3. Let v > —1and 0 < 2v|c| + 2|c| - |c|” < . Then

%{L@}Zl—w,zeﬂ (14)
(Eyo)y (2) (v —=lcl+1)
and )
(IEV/C):n (Z)} (w—lc+1)
R > , 15
{ E} (2) = v =lc|+ 1> +2vic| + 2| - | 15
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Proof. From (7) we have
o a2
1+2:(n+1)/1ns1+zv—|c—|igﬂ—¥l
=1 v —lc+1)

'T(v+1)
 T(v+n+1)”

where A, = v > -1, c € Cand n € N. The above inequality is equivalent to

(v—ld+1)°
2vc| +2]c| — |c|

Z(n+1)A <1.

To prove (14), define the function w(z) by

ltwe _ -ld+1)? E ( v-ld+1?
1-wz)  2vic]+2|c| - |cf* (Bue), () \2v]e| + 21c| = |c]?
which gives
— 2 00
(VL-H[)F anm+1 (n + 1)Anz1’l

2v|c]+2|c|—|c|

w(z) = 2
v— 1 )
24210 (n+ DAz + Z L YR (4 1) Az
and ,
(V*|C|+1) ZOO_ (1’1 + 1)A
w(z)| < 2vlcl+2|c]—|cf} “n=m+1 n

— 2 (o) :
2-2Y" (n+1)A, - Dy (14 1) A,

2vlcl+2le|—c?

The condition |w(z)| < 1 holds true if and only if

- v-ld+1° v
n+1) A, + —— 17 n+1)A, <1.
; "2l + 21 = P Z (n+ DA,

n=m+1

The left-hand side of (16) is bounded above by

_ ol D* Z(n+1)A

2ve| + 21c| = |cf? ~

which is equivalent to
(M—l)i("'*‘l)fl >0
el + 2~ ) T

which holds true for 0 < 2v|c| +2|c| - [c[* < (V+1)

The proof of (15) follows the same pattern. Con51der the function w(z) given by

l+we) _ ( (v —lel +1)? +1) E,.(2) _( (v —lel +1)? )
1-w(z) 2v el +21c| — Ic| (Evo) (@) \2v el +21c| - |cf

2vlc]+2lc]—|c?

1+ Y, (n+1)Az" - (M)Z;‘;mﬂ n+1)A,z"

1+Y,,(n+1)A,z"

Consequently, we have that

[ _=d+1)? o0
(2v\c\+2\c\—|c|2 + 1) Zn:mﬂ (n+1)Auz"

w(z) =

2vlc|+2c|—|c?

2425 (n+1)Anz — (ﬂ - 1)zf:m+1 (n+1)A,z"

171

(16)



and

Sercan Kazimoglu /TJOS 6 (3), 167-173 172

v— 1)? %)
(21/(|c|+|;||2|—)|c|2 * 1) Zﬂ=m+1 (n+1)A,

lw(z)] <

v— 2 o] ’
2-2%0 (n+1)A, - (% - 1)2,1:,,1+1 (n+1) A,

The last inequality implies that [w(z)| < 1 if and only if

( 2=l + 1)

o) m
—ur m+D)A, <2-2Y n+1)A
2v|c|+2|c|—|c|2) )3 ! Z} !

or equivalently

n=m+1

m 2 0
Zm+1>m+(%) Y DA, <1 (17)
n=1

2vc| +2]c| —

n=m+1

It remains to show that the left-hand side of (17) is bounded above by

This is equivalent to

v — e +1)°
(ZVICI +21cl = Ic? )Z‘(

AT SRS )
(2v|c|+2|c| )Z(n+1)A >0,

which holds true for 0 < 2v|c| + 2|c| = |c]* < @ Now, the proof of our theorem is completed. [

3. Examples

In this section, we give several examples which illustrate our main theorems in Sections 2. In Theorem
2.2 and Theorem 2.3, we obtain the following corollaries for special cases of v and c.

Corollary 3.1. If we take v = 3 and ¢ = 1, we have

3(207 22 -2z -2) 6 (z—-2)+2+2)

» By ()=

z2 z3

(Es1 @) (2) =2 (B}, @),(2) =1,

Es1(2) =
and for m = 0 we get
s0,
Y
*
M

o

Settingm = 0,v =3 and ¢ =

~0.222, zeU,

\Y
O N

~225 zeU,

|~

v

~0.037, ze U,

~
o
(8™
™
|
N
NN
w
)
N
|
)
g
—— —— ——
\%
=\

NN
NN

Z3
> — =X 3. .
(ez(z-2)+z+2)} = g Y35 e

1 in Theorem 2.2 and Theorem 2.3 respectively, we obtain the next result

involving the function IE%/% (), defined by (4), and its derivative.



Sercan Kazimoglu /TJOS 6 (3), 167-173 173

Corollary 3.2. The following inequialities hold true:

v

~025 zelU,

N

[\

R{—
e2 \JSErf\f5 -z
i V2m(z = 1) Erf[Z +2+z
zVz
zyz
i V2r(z - 1) Erf{Z +2+2

¢3 \EEf\E-2 B 2z 3 \2m(-DEf\[542 42
~ PO = rmeaw AP = o

R

7
ﬁ ~(0.583, z € (L[,

12
75~ 048, zeU.

v

2z } %zz.él,zel{,

Example 3.3. The image domains of fi(z) =

_ zvz . .
and fu(z) = — e shown in Figure 1.

0.6 R e o T P T T T e — — .2 )
04F w ]
02k .jil.—_] ’ "f[fllu'; \
00k - 5 ) | ]
-02f :
—04F L(z) Sl=
0.0 0.

b
.
=
—
(=]
=
=
)
L= ]
Lad
=
el
L

Figurel.

References

[1] Brickman L, Hallenbeck DJ, MacGregor TH, Wilken D. Convex hulls and extreme points of families of starlike and convex
mappings. Trans. Amer. Math. Soc. 185, 1973, 413—428.

[2] Caglar M, Orhan H. On neighborhood and partial sums problem for generalized Sakaguchi type functions. The Scientifc Annals
of ALI Cuza University of Iasi. 1, 2014, 17-28.

[3] Caglar M, Deniz E. Partial sums of the normalized Lommel functions. Math. Inequal. Appl. 18, 2015, 1189-1199.

[4] Deniz E, Orhan H. Some Properties Of certain subclasses of analytic functions with negative coefficients by using generalized
Ruscheweyh derivative operator. Czech. Math. J. 60, 2010, 699-713.

[5] Deniz E, Orhan H. Certain subclasses of multivalent functions defined by new multiplier transformations. Arab. J. Sci. Eng. 36,
2011, 1091-1112.

[6] Frasin BA. Generalization of partial sums of certain analytic and univalent functions. Appl. Math. Lett. 21, 2008, 735-741.

[7] KazimogluS, Deniz E, Caglar M. Partial Sums of The Bessel-Struve Kernel Function. 3rd International Conference on Mathematical
and Related Sciences: Current Trend and Developments. 2020, 267-275.

[8] LinLJ, OwaS. On partial sums of the Libera integral operator. ]. Math. Anal. Appl. 213, 1997, 444-454.

[9] Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. Wiley. 1993.

[10] Orhan H, Yagmur N. Partial Sums of generalized Bessel functions. J. Math. Inequal. 8, 2014, 863-877.

[11] Owa S, Srivastava HM, Saito N. Partial sums of certain classes of analytic functions. International Journal of Computer Mathe-
matics.81, 2014, 1239-1256.

[12] Ravichandran V. Geometric properties of partial sums of univalent functions. Math. Newslett. 22, 2012, 208-221.

[13] Rehman MS, Ahmad QZ, Srivastava HM, Khan B, Khan N. Partial sums of generalized g—Mittag-Leffler functions. Aims Math.
5,2019, 408-420.

[14] Sheil-Small T. A note on partial sums of convex schlicht functions. Bull. London Math. Soc. 2, 1970, 165-168.

[15] Silverman H. Partial sums of starlike and convex functions. . Math. Anal. Appl. 209, 1997, 221-227.

[16] Silvia EM. On partial sums of convex functions of order a. Houston J. Math. 11, 1985, 397-404.

[17] Yagmur N, Orhan H. Partial sums of generalized Struve functions. Miskolc Mathematical Notes. 17, 2016, 657-670.



	TJOS Cover
	jenerik
	1-1007790-MZ.Geçmen
	2-1000396-G.Ayar
	3-1020651-E.Özdemir
	4-1027972-Ö.Erdağ
	5-1030558-Y.Aküzüm
	6-1008171-İ.Bağlan
	7-1031148-Ö.Erdağ
	8-1008297-T.Canel
	9-1027848-S.Kazımoğlu

