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On the Algebra of Interval Vectors

Yılmaz Yılmaz, Halise Levent and Hacer Bozkurt*

Abstract
In this study, we examine some important subspaces by showing that the set of n-dimensional interval
vectors is a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set
of n-dimensional interval vectors is actually a (nr, ns)-dimensional quasilinear space and any quasilinear
space is (nr, 0s)-dimensional if and only if it is n-dimensional linear space. We also give examples of
(2r, 0s) and (0r, 2s)-dimensional subspaces. We define the concept of dimension in a quasilinear space
with natural number pairs. Further, we define an inner product on some spaces and talk about them as
inner product quasilinear spaces. Further, we show that some of them have Hilbert quasilinear space
structure.

Keywords: Quasilinear space; interval vectors; inner product quasilinear space; Hilbert quasilinear space.

AMS Subject Classification (2020): Primary: 46C50 ; Secondary: 06B99; 47H99; 46B99.
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1. Introduction

Interval analysis is one of the main areas developed to determine the solutions of many problems in a certain
compact interval. Modeling such situations sometimes emerges as a linear interval equation system and the
solutions of such systems are often difficult. One of the main studies on the solutions of this type of equations is
given by [1]. Another important fundamental work is [2]. Further, linear programming problems with incomplete
information also appear as a system of linear interval equations, and some of the important studies on the solution
of such problems were given by J.Rohn [3, 4]. The existence of the solution of linear interval equation systems or
the determination of the properties of the solution set is also a difficult process, and the results obtained in [5, 6] are
also important studies for this purpose. Moreover, [7] is another important work that examines the solubility of
equations of this type based on some specific conditions. Since the solutions of such equations appear as interval
vectors, it is important to know the properties of n-dimensional interval vectors and the algebraic structure of the set
formed by these types of vectors. But, we know that the set of n-dimensional interval vectors is not a vector space.
We can see this immediately for 1-dimensional interval vectors. The reverse of the shuffle between intervals may
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not be available. First of all, let’s specify that the interval [0, 0] = {0} is the unit element of the addition operation
between intervals. But, we know that it is not possible to find an interval [x, x] such that [1, 0] + [x, x] = [0, 0].
Although, the set of interval vectors does not have a vector space structure, it has an algebraic structure that we call
quasilinear space, which is a generalization of vector spaces.

The concept of a quasilinear space on the field of real numbers was first introduced by Aseev in [8]. In this study,
the normed quasilinear space and the finite quasilinear operator definitions defined between these types of spaces
are also given and some properties are examined. However, in this study, the definition of subspace has not been
characterized and there is no such definition as a quasilinear space or a quasi-stretch. Moreover, whether it is a
generalization of a definition such as the linear dependence or independence of a subset in quasilinear space is not
given in Aseev’s pioneering work. In fact, the definition of these concepts is extremely vital for the establishment of
a healthy quasilinear algebra. In our [9–12] referenced articles, we tried to eliminate some of these shortcomings in
quasilinear algebra. Then we also introduced the concept of inner product in quasilinear spaces, and thus we were
able to define the concept of Hilbert quasilinear space definition [13–16]. The introduction of these concepts also
provides us with the opportunity to make many applications. For example, in [17, 18] we gave examples of how
quasilinear spaces can be used in signal processing. In addition, normed and Hilbert quasilinear space examples of
some fuzzy number sets are given in [19] and their properties are examined. A recent study on qasilinear spaces is
the concept of quasi-algebra its details can be found in [20, 21].

In this study, we examine some important subspaces by showing that the set of n-dimensional interval vectors is
a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set of n-dimensional
interval vectors is actually a (nr, ns)-dimensional quasilinear space and any quasilinear space is (nr, 0s)-dimensional
if and only if it is n-dimensional linear space. We also give examples of (2r, 0s) and (0r, 2s)-dimensional subspaces.
We define the concept of dimension in a quasilinear space with natural number pairs. Further, we define an inner
product on some spaces and talk about them as inner product quasilinear spaces.

2. Preliminaries

Let us give basic facts on interval vectors from [22]. The term interval will mean closed interval x = [x, x] in
this work and the left and right endpoints of x will be denoted by x and x, respectively. We say that x is degenerate
if x = x. The width of x is defined and denoted by w(x) = x −x and the absolute value of x, denoted |x| , is the
maximum of the absolute value of its endpoints: |x| = |[x, x]| = max {|x| , |x|} . The midpoint of x is given by
m (x) = 1

2 (x+ x) . By an n-dimensional interval vectors, we mean an ordered n-tuble of intervals

x = (x1, x2, ...xn). =
([
x1, x1

]
, ...,

[
xn, xn

])
.

For example, a two-dimensional interval vector

x = (x1, x2) =
([
x1, x1

]
,
[
x2, x2

])

can be represented as a rectangle in the plane. Addition of interval vectors is defined by coordinate-wise addition
of intervals and the scalar real multiplication by an interval vectors is also similar. For example; if two-dimensional
interval vectors x = ([−1, 2] , [3, 6]) and y = ([−1, 2] , [3, 6]) are given, then

2x− 3y = (2 [−1, 2] , 2 [3, 6]) + ((−3) [−1, 2] , (−3) [3, 6])

= ([−2, 4] , [6, 12]) + ([−6, 3] , [−18,−9])

= ([−8, 7] , [−12, 3]) .

Note that the set of all n-dimensional interval vectors is not a vector space. x � y iff xk ⊆ yk for each k = 1, 2, ..., n is
a partial order relation on the set of all n-dimensional interval vectors. The set of all n-dimensional interval vectors
is denoted by I

n
R
.

The product of two intervals x = [x, x] and y =
[
y, y
]

is given by xy = [x, x]
[
y, y
]
= [minS,maxS] where

S = {xy, xy, xy, xy}.
Although we use the term n-dimensional, the algebraic meaning of this term should be questioned, since the set

A is not a vector space. However, the set A has an algebraic structure, which we call quasilinear space, which is a
generalization of classical vector spaces, first given by Aseev [8]. First, let’s give the definition of quasilinear space.

A set X is called a quasilinear space, [8], on the field K of real or complex numbers, if a partial order relation
"�", an algebraic sum operation, and an operation of multiplication by real numbers are defined in it in such a way
that the following conditions hold for all elements x, y, z, v ∈ X and all α, β ∈ K:

x � x, (2.1)
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x � z if x � y and y � z, (2.2)

x = y if x � y and y � x, (2.3)

x+ y = y + x, (2.4)

x+ (y + z) = (x+ y) + z, (2.5)

there exists an element (zero) θ ∈ X such that x+ θ = x, (2.6)

α(βx) = (αβ)x, (2.7)

α(x+ y) = αx+ αy, (2.8)

1x = x, (2.9)

0x = θ, (2.10)

(α+ β)x � αx+ βx, (2.11)

x+ z � y + v if x � y and z � v, (2.12)

αx � αy if x � y. (2.13)

Any linear space is a QLS with the partial order relation ” = ”. Perhaps the most popular example of a nonlinear
QLS on the field real numbers is I1

R
with the inclusion relation “⊆”.

Let us record some basic results from [8].
In a QLS X , the element θ is minimal, i.e., x = θ if x � θ. An element x′ is called inverse of x ∈ X if x+ x′ = θ.

The inverse is unique whenever it exists. An element x possessing inverse is called regular, otherwise is called
singular.

Lemma 2.1. [8] Suppose that each element x in QLS X has inverse element x′ ∈ X . Then the partial order in X is determined
by equality, the distributivity conditions hold, and consequently X is a linear space.

In a real linear space, the equality is the only way to define a partial order such that the conditions (1)-(13) hold.
Let us give some assumption in quasilinear spaces. It will be assumed in what follows that −x = (−1)x. Note

that the additive inverse x′ may not be exists but if it exists then x′ = −x. For example, the interval [1, 2] is a singular
element in I

1
R

since the inverse of the element [1, 2] does not exists. However, − [1, 2] = (−1) [1, 2] = [−2,−1] ∈ I
1
R
.

Let us give an easy characterization of regular elements. An element x is regular in a QLS if and only if x′ = −x, or
equivalently, x− x = θ. We should note that in a linear QLS, briefly in a linear space, each element is regular. Hence,
the notions of regular and singular elements in linear spaces are redundant. Regular elements in I

1
R

is known as
degenerate intervals and they are just the real numbers.

Definition 2.1. [10] Suppose that X is a QLS and Y ⊆ X . Then Y is called a subspace of X whenever Y is a QLS
with the same partial order and the restriction to Y of the operations on X .

In [8] the concept of a subspace for a QLS was not defined. After detailed investigations we saw that the
characterization of the definition is just the same as in linear subspaces.

Theorem 2.1. [10] Y is a subspace of a QLS X if and only if for every x, y ∈ Y and α, β ∈ R, αx+ βy ∈ Y .

Let Y be a subspace of a QLS X and suppose that each element x in Y has an inverse in Y. Then by Lemma 2.1
the partial order on Y is determined by the equality. In this case Y is a linear subspace of X .

An element x in X is said to be symmetric if −x = x and Xsym denotes the set of all symmetric elements. In a
linear QLS, equivalently, in a linear space zero is the only symmetric element. Xr and Xs stand for the set of all
regular and singular elements with zero in X , respectively. Further, it can be easily shown that Xr, Xsym and Xs are
subspaces of X. They are called regular, symmetric and singular subspaces of X, respectively. Regular subspace of X is
a linear space while the singular subspace is a nonlinear QLS. Furthermore, it isn’t hard to prove that summation of
a regular element with a singular element is a singular element.
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3. Main results

Theorem 3.1. I
n
R

is a quasilinear space by the partial order relation x � y iff
[
xk, xk

]
⊆
[
yk, yk

]
for each k = 1, 2, ..., n.

Proof. Most of the proof comes from the known result in interval analysis, see [22]. Let us only verify two axioms.
The zero is θ = (0, 0, ...0). = ([0, 0] , ..., [0, 0]) in I

n
R

and if x, y ∈ I
n
R

and α, β ∈ R then

(α+ β)x =
(
(α+ β)

[
x1, x1

]
, ..., (α+ β)

[
xn, xn

])

�
(
α
[
x1, x1

]
, ..., α

[
xn, xn

])
+
(
β
[
x1, x1

]
, ..., β

[
xn, xn

])

= αx+ βx.

Further, x � y means
[
xk, xk

]
⊆
[
yk, yk

]
for each k and hence for every (positive or negative) α ∈ R, α

[
xk, xk

]
⊆

α
[
yk, yk

]
. This implies αx � αy.

Example 3.1. The symmetric subspace of I2
R

is
(
I
2
R

)
sym

= {([−a, a] , [−b, b]) : a, b ∈ R} . Further, the singular sub-

space of I2
R

is just (
I
2
R

)
s
=
{([

x1, x1

]
,
[
x2, x2

])
: x1 6= x1 or x2 6= x2

}
∪ {([0, 0] , [0, 0])}

and the regular subspace is
(
I
2
R

)
r
= {([a, a] , [b, b]) : a, b ∈ R} ≡ {({a} , {b}) : a, b ∈ R} ≡ R

2.

Thus, we can see R
2 as a regular subspace of I2

R
. The equivalence mentioned here means that there is a linear

bijection and even an isometry when the normed space structure is introduced between these spaces. In general, In
R

has these special subspaces and we can see R
n ≡ (In

R
)r is a linear part of In

R
.

Definition 3.1. [8] In a QLS X, a real function ‖.‖X : X −→ R is called a norm if the following conditions hold:

‖x‖X > 0 if x 6= 0, (3.1)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (3.2)

‖αx‖X = |α| ‖x‖X , (3.3)

if x � y, then ‖x‖X ≤ ‖y‖X , (3.4)

if for any ε > 0 there exists an element xε ∈ X such that (3.5)

x � y + xε and ‖xε‖X ≤ ε then x � y.

A quasilinear space X with a norm defined on it, is called normed quasilinear space (briefly, normed QLS). It
follows from Lemma 2 that if any x ∈ X has an inverse element x′ ∈ X then the concept of normed QLS coincides
with the concept of real normed linear space. Hausdorff metric or norm metric on X is defined by the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2 and ‖ari ‖ ≤ r, i = 1, 2} .

Since x � y + (x− y) and y � x+ (y − x), the quantity hX(x, y) is well-defined for any elements x, y ∈ X , and
the function hX satisfies all axioms of the metric. Further, hX(x, y) may not equal to ‖x− y‖X if X is not a linear
space, but always hX(x, y) ≤ ‖x− y‖X for every x, y ∈ X [8].

Example 3.2. A norm on I
n
R

is defined by

‖x‖∞ = max
1≤k≤n

|xk| = max
k

{
max

{∣∣xk

∣∣ , |xk|
}}

where k ∈ {1, 2, ..., n} and |xk| is the absolute value of the interval xk. Another important norm on I
n
R

is

‖x‖2 =

(
n∑

k=1

|xk|
2

)1/2

=

(
n∑

k=1

{
max

{∣∣xk

∣∣ , |xk|
}}2

)1/2
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which is perhaps the most important one. This norm is the classical norm of I
n
R
. To prove ‖.‖2 is a norm on

I
n
R

let us only verify the last condition. Let ε > 0 be given and let x = (x1, x2, ...xn). =
([
x1, x1

]
, ...,

[
xn, xn

])

and y = (y1, y2, ...yn). =
([
y1, y1

]
, ...,

[
yn, yn

])
∈ I

n
R
. Assume that there exists an element xε = (xε

1, x
ε
2, ..., x

ε
n). =([

xε
1, x

ε
1

]
, ...,

[
xε
n, x

ε
n

])
∈ I

n
R

such that x � y + xε and ‖xε‖2 =
(∑n

k=1 |x
ε
k|

2
)1/2

≤ ε. This implies, for each

k ∈ {1, 2, ..., n} ,
[
xk, xk

]
⊆
[
yk, yk

]
+
[
xε
k, x

ε
k

]
and |xε

k| = max
{∣∣∣xε

k

∣∣∣ ,
∣∣xε

k

∣∣
}
≤ ε. Now for ε → 0 we get |xε

k| → 0 for

each k ∈ {1, 2, ..., n} and this means ‖xε‖2 → 0 and hence xε → 0 in I
n
R
. Eventually, we get x � y.

4. Quasilinear independence and basis

In this section, we will give some algebraic definitions [9, 11]. Let X be a QLS and {xk}
n
k=1 be a subset of X

where n is a positive integer. A (linear) combination of the set {xk}
n
k=1 is an element z of X in the form

α1x1 + α2x2 + ...+ αnxn = z

where the coefficients α1, α2, ..., αn are real scalars. On the other hand, a quasilinear combination of the set {xk}
n
k=1 is

an element z ∈ X such that
α1x1 + α2x2 + ...+ αnxn � z

for some real scalars α1, α2, ..., αn. Hence, the quasilinear combination, briefly ql-combination, is defined by the
partial order relation on X. In fact, the definition of linear combination in a QLS is also depend on the partial order
relation and it can be defined as in the following form; a linear combination of the set {xk}

n
k=1 is an element z of X

such that
α1x1 + α2x2 + ...+ αnxn � z and z � α1x1 + α2x2 + ...+ αnxn,

where the coefficients α1, α2, ..., αn are real scalars. In a linear QLS, this is the definition of the classical linear
combination since the relation "�" turns to the relation "=". Clearly, a linear combination of {xk}

n
k=1, is a quasilinear

combination of {xk}
n
k=1, but not conversely. For any nonempty subset A of a QLS X, we know that the span of A is

written by SpA and

SpA = {
n∑

k=1

αkxk : x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

However, QspA, the quasispan (q-span, for short) of A, is defined by the set of all possible quasilinear combinations
of A, that is,

QspA = {x ∈ X :
n∑

k=1

αkxk � x,

for some x1, x2, ..., xn ∈ A and for some scalars α1, α2, ..., αn}.

Obviously, SpA ⊆ QspA. Further, SpA = QspA for some linear QLS (linear space), hence, the notion of QspA is
redundant in linear spaces. Moreover, we say A quasi spans X whenever QspA = X.

Let us give an example from the quasilinear space of compact intervals.

Example 4.1. Let X = I
1
R

and take A = {[1, 3]}, a singleton in X. The q-span of A is

QspA = {x ∈ I
1
R
: λ [1, 3] ⊆ x, λ ∈ R}.

For example, [2, 7] ∈ QspA since 2 [1, 3] ⊆ [2, 7] whereas [2, 7] /∈ SpA since there is no λ ∈ R satisfying λ [1, 3] = [2, 7].
Further, [2, 3] /∈ QspA since we cannot find any λ ∈ R satisfying the condition λ [1, 3] ⊆ [2, 3]. Clearly, QspA 6= I

1
R

Let B = {{1}}, another singleton in X. It consist of a regular element or degenerate interval. For any x ∈ X, clearly,
we can write λ.{1} ⊆ x for some λ ∈ R. This means QspB = X . It can be easily shown that a singleton arising from
nonzero regular element can quasispans X. A singular element cannot quasi spans X.

Theorem 4.1. Let A = {x1, x2, ..., xn} be a subset of the QLS X . Then QspA is a subspace of X.

Definition 4.1. (Quasilinear independence and dependence) A set A = {x1, x2, ..., xn} in a QLS X is called quasilinear
independent (briefly ql-independent ) whenever the inequality

θ � λ1x1 + λ2x2 + ...+ λnxn (4.1)

holds if and only if λ1 = λ2 = ... = λn = 0. Otherwise, A is called quasilinear dependent (briefly ql-dependent ).



72 Y. Yılmaz, H. Levent & H. Bozkurt

If we recall again that every linear space is a QLS with the relation "=", it can be seen that the notions of
quasilinear independence and dependence coincide with linear independence and dependence.

Example 4.2. Consider the singleton A = {[1, 2]} in I
1
R

. It is obvious that {0} = [0, 0] ⊆ α[1, 2] if and only if α = 0
where {0} is the zero element of I1

R
. Therefore, A is ql-independent. However, the singleton B = {[−1, 2]} is

ql-dependent since [0, 0] ⊆ β[−1, 2] for β = 2 6= 0. This is a unusual case since a non-zero singleton is obviously
linear independent in linear spaces. On the other hand, the set {[1, 2], [−1, 2]} is ql-dependent. In general, we can
see from the definition that any subset including an element related to zero must be ql-dependent in a QLS. This is
a generalization of the well-known fact that a subset including zero must be linear independent in linear spaces.

Example 4.3. In I
2
R

, let v1 = ([−2, 1] , [0, 0]) and v2 = ([0, 0] , [−2, 3]) . Then the set {v1, v2} is ql-dependent since

([0, 0] , [0, 0]) ⊆ λ1v1 + λ2v2 = ([−2, 1] , [−2, 3])

for λ1 = λ2 = 1 where ([0, 0] , [0, 0]) is the zeros of I
2
R

. However, {u1, u2} is ql-independent where u1 =
([−2,−1] , [0, 0]) and u2 = ([0, 0] , [2, 3]) . On the other hand, let u = ([−2, 2] , [−3, 3]) then the singleton {u} is
ql-dependent in I

2
R

since ([0, 0] , [0, 0]) ⊆ u.

Definition 4.2. A ql-independent subset A of a QLS X which quasi spans X is called a basis (or Hamel basis) for X .

Remark 4.1. For any a ∈ R, the singleton {{a}} is a basis for I1
R

. Further, B = {([1, 1] , [0, 0]) , ([0, 0] , [1, 1])} is a basis
for I2

R
. In general, B = {([1, 1] , [0, 0] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])} is a basis for In

R
. As can be seen, a basis of

I
n
R

is a set of degenerate intervals of In
R

.

Following example is extraordinary since it presents an example of QLS which has no basis. This is an unusual
case since all linear spaces have a (Hamel) basis.

Example 4.4. Let us consider singular subspace

{{0}} ∪ {[a, b] : a < b and a, b ∈ R} = (I
1
R
)s

of I1
R

. This quasilinear space has no basis. Any singleton {[a, b]} in (I
1
R
))s cannot quasi spans (I1

R
)s where a < b.

Now let us introduce the notion of dimension of a QLS. Our investigation shows that it is necessary to split it
into two different notion as regular and singular dimension. Previously, let us give analog of a classical definition.

Definition 4.3. Let S be a ql-independent subset of the QLS X . S is called maximal ql-independent subset of X
whenever S is ql-independent, but any superset of S is ql-dependent.

Definition 4.4. Regular (Singular) dimension of any QLS X is the cardinality of any maximal ql-independent subsets
of Xr(Xs). If this number is finite then X is said to be finite regular (singular)-dimensional, otherwise; is said to
be infinite regular (singular)-dimensional. Regular dimension is denoted by r-dimX and singular dimension is
denoted by s-dimX . If r-dimX = a and s-dimX = b then we say that X is an (ar, bs)-dimensional QLS where a and
b are natural numbers or ∞.

Remark 4.2. The above definition means that r-dimX is classical definition of dimension of the linear space Xr. So,
r-dimX = dimXr. Notice that a non-trivial singular subspace of a QLS cannot be a linear space. Further, we can
easily see that any QLS is (nr, 0s)-dimensional if and only if it is n-dimensional linear space. In this respect, the
trivial linear space {0} is a (0r, 0s)-dimensional QLS. Later, we will give an example of a (0r, 0s)-dimensional QLS
other than {0}.

Let us determine dimensions of some nonlinear QLSs.

Example 4.5. It isn’t hard to prove that In
R

is (nr, ns)-dimensional QLSs, that is, n-dimensional nonlinear QLS.
Consider again the singular subspace (I

1
R
)s of I

1
R
. r − dim (I

1
R
)s = 0 since ((I

1
R
)s)r = {0}. Further, {[1, 2]} is

ql-independent in ((I
1
R
)s)s and so s − dim (I

1
R
)s = 1. Hence, (I1

R
)s is (0r, 1s)−dimensional. Obviously,

(
I
1
R

)
r

is
(1r, 0s)−dimensional. In this respect, R is also (1r, 0s)−dimensional

If X = (I
2
R
)s ∪ {([t, t] , [0, 0]) : t ∈ R} then X is a subspace of I2

R
and r − dimX = 1 since Xr = {([t, t] , [0, 0]) :

t ∈ R}. Further, the set {u1, u2} in Example 4.3 is ql-independent. This proves s − dimX = 2. Hence X is a
(1r, 2s)−dimensional QLS.



On the algebra of interval vectors 73

Consider the QLS X = ΩC(c0), the set of all closed bounded subsets of the Banach space c0. Regular subspace
Xr is equivalent to c0, the linear space of all sequences convergent to zero, and so r − dimX = ∞. Let us define the
set

{{(t, 0, 0, ...) : 1 ≤ t ≤ 4}, {(0, t, 0, ...) : 1 ≤ t ≤ 4}, ...}

= {[1, 4]⊙ e1, [1, 4]⊙ e2, ...}

where
[1, 4]⊙ ek = {(0, ..., 0,

k. term
s , 0...) : s ∈ [1, 4]}

is ql-independent in Xs, where ek’s are coordinate vectors of c0, k = 1, 2, ....Therefore, s − dimX = ∞ and so
X = ΩC(c0) is an (∞r : ∞s)-dimensional QLS. In general, an infinite-dimensional linear space E is a (∞r, 0s)-
dimensional QLS while ΩC(E) is (∞r,∞s)-dimensional QLS.

In a finite dimensional linear space X let us recall that each x ∈ X has a unique representation

x =
n∑

k=1

akbk

where n is the dimension of X, B = {b1, b2, ..., bn} is a basis of X and a1, a2, ..., an are corresponding scalars. Since
a consolidate QLS has a basis we can give a similar representation. Let X be a (nr : ns)−dimensional (finite-
dimensional) QLS where nr and ns are positive integers, and nr = ns. Let us try to give a representation in X. If y
is any element of X then the floor Fy = {x ∈ Xr : x � y} of y have many regular elements. From linear algebra any
x ∈ Fy has a unique representation

x =

n∑

k=1

αx
kbk

where each αx
k, k = 1, 2, ..., n, is a real scalar depending on x. Now let us consider the supremum with respect to

the partial order relation "�" on the QLS X . Thus, by the definition of consolidate space, we get the representation

y = sup{x ∈ Xr : x � y} = sup{
n∑

k=1

αx
kbk : x � y, x ∈ Xr}

of each element y in X. That is, any element of a (nonlinear) consolidate QLS can be represented by the basis
elements and by the supremum with respect to "�". More practically, we can write

y = sup
x�y
x∈Xr

n∑

k=1

αx
kbk. (4.2)

Theorem 4.2. Any y ∈ I
n
R

has a unique representation

y = sup
x�y
x∈Xr

n∑

k=1

αx
kbk

where B = {bk}
n
k=1 = {([1, 1] , [0, 0] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])} is the standard basis of In

R
and the supremum is

calculated by the partial order "�" on I
n
R
.

Proof. Let us first write y explicitly;

y = (y1, y2, ..., yn) =
([
y1, y1

]
, ...,

[
yn, yn

])
.

Now take an arbitrary tk ∈ yk and constitute the degenerate interval [tk, tk] . Obviously, [tk, tk] ⊆ yk for each

k and hence, ([tk, tk]) � (yk) = y. Since t = (tk) ∈ R
n has a unique representation t =

n∑
k=1

tkek, we can say
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([tk, tk]) := x ∈ (I
n
R
)r has the unique representation x = ([tk, tk]) =

n∑
k=1

tkbk. On the other hand, for any yk there may

be a lot of tk ∈ yk. In other words, there may be a lot of [tk, tk] ⊆ yk. You can easily see that, for each k,

yk = sup
⊆

{[tk, tk] : [tk, tk] ⊆ yk}

= sup
⊆

{
n∑

k=1

tkbk : [tk, tk] ⊆ yk

}
.

This representation is still unique by the properties of the suprema by the partial order relation ⊆ . Thus, we get

y = (yk)
n
k=1 =

(
sup
⊆

{
n∑

k=1

tkbk : [tk, tk] ⊆ yk

})n

k=1

= sup
�

{
n∑

k=1

txkbk : ([tk, tk])
n
k=1 = x � y = (yk)

n
k=1

}
.

The last supremum, of course, is taken over "�" relation on I
n
R

and the representation is obviously unique.

The representation is also known as the super position of y in I
n
R

.

Example 4.6. Let us give the super position of y = ([−1, 3] , [2, 2]) in I
2
R

where y1 = [−1, 3] and y2 = [2, 2] . By the
discussion in the proof

y1 = [−1, 3] = sup
⊆

{[t, t] : [t, t] ⊆ y1} = sup
⊆

{[t, t] : t ∈ [−1, 3]}

and

y2 = [2, 2] = sup
⊆

{[t, t] : [t, t] ⊆ y2} = sup
⊆

{[t, t] : t ∈ [2, 2]}

= sup
⊆

{[2, 2]} = [2, 2] .

Hence,

y = ([−1, 3] , [2, 2]) =

(
sup
⊆

{
2∑

k=1

tkbk : [tk, tk] ⊆ yk

})2

k=1

= sup
⊆

{t1 ([1, 1] , [0, 0]) + t2 ([0, 0] , [1, 1]) : [tk, tk] ⊆ yk, k = 1, 2}

= sup
�

{
[t1, t1] ([1, 1] , [0, 0]) + [t2, t2] ([0, 0] , [1, 1])

: x = ([t1, t1] , [t2, t2]) � y

}
.

Definition 4.5. A quasilinear space X is called consolidate (solid-floored) QLS whenever y = sup{x ∈ Xr : x � y} for
each y ∈ X. Otherwise, X is called a non-consolidate QLS, briefly, nc-QLS.

The supremum in this definition is taken on the order relation "�" in the definition of a QLS. Above definition
assumes sup{x ∈ Xr : x � y} exists for each y ∈ X. Implicitly, we say that X is consolidate if and only if y = supFy,
for each y ∈ X.

We signify that any linear space is a consolidate QLS: Indeed, Xr = X for any linear space X and so

y = sup{x ∈ Xr : x � y} = sup{x ∈ Xr : x = y} = sup{y} = y

for any element y in X .

Example 4.7. I
n
R

is a consolidate QLS. Singular subspace of I1
R

is a nc-QLS since Fy = ∅ for the element y = [1, 2] in
(I

1
R
)s. Further,

B = {[a, b] : a ≤ 0 ≤ b, a, b, 0 ∈ R}

is another nc-subspace of I1
R

. (I1
R
)sym is also a nc-QLS subspace of B and of I1

R
.
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Definition 4.6. For two quasilinear spaces (X,≤) and (Y,�) , Y is called compatible contains X whenever X ⊆ Y
and the partial order relation ≤ on X is the restriction of the partial order relation � on Y. We briefly use the symbol
X⊆Y in this case. We write X ≡ Y whenever X⊆Y and Y⊆X.

Remark 4.3. Hence X ≡ Y means X and Y are the same sets with the same partial order relations which make one
each quasilinear space. However, we may write X = Y for X ≡ Y whenever the relations are clear from context.

Definition 4.7. Let X be a QLS. Consolidation of X is the smallest consolidate QLS X̂ which compatible contains X,

that is, if there exists another consolidate QLS Y which compatible contains X then X̂ ⊆ Y.

Clearly, X̂ = X for some consolidate QLS X. Whether each QLS has a consolidation is not know yet. This notion
is unnecessary for consolidate QLSs, hence is in linear spaces.

Theorem 4.3. Consolidation of (I1
R
)s is I1

R
.

Proof. Obviously, I1
R

compatible contains (I1
R
)s. Suppose that Z is another consolidate QLS containing (I1

R
)s. For an

arbitrary element x of I1
R

we will show that x ∈ Z. If x ∈ (I1
R
)s then the proof is clear. If x /∈ (I1

R
)s then x have to be

a degenerate interval that is an element of (I1
R
)r. Hence, x = [a, a] for an a ∈ R. Assume that [a, a] /∈ Z. For any

ε > 0 we have that [a− ε, a+ ε] ∈ (I1
R
)s and so [a− ε, a+ ε] ∈ Z. Since Z is consolidate,

[a− ε, a+ ε] = sup{y ⊆ [a− ε, a+ ε] : y ∈ Zr}

for any ε > 0. This means there exists an element uε ∈ Zr such that uε ⊆ [a − ε, a + ε] in Z. Therefore, we
have [a, a] ∈ Zr, otherwise; the set [a− ε, a+ ε] cannot be a closed set in R and so this conflicts with the fact that
[a− ε, a+ ε] ∈ (I1

R
)s. Thus, the assumption [a, a] /∈ Z is incorrect.

For any element y of a QLS X , the set

F X̂
y =

{
z ∈

(
X̂
)
r
: z � y

}

denotes the floor of y in X̂ and sometimes F X̂
y is said to be the floor of y in the consolidation. For a consolidate QLS,

this notion is unnecessary. But the concept is important in a nc-QLS, especially, in producing of an inner-product on
a QLS.

Definition 4.8. Let X be a quasilinear space having a consolidation X̂ . A mapping 〈 , 〉 : X ×X → Ω(K) is called
an inner product on X if for any x, y, z ∈ X and α ∈ K the following conditions are satisfied :

If x, y ∈ Xr then 〈x, y〉 ∈ Ω(K)r ≡ K, (4.3)

〈x+ y, z〉 ⊆ 〈x, z〉+ 〈y, z〉 , (4.4)

〈αx, y〉 = α 〈x, y〉 , (4.5)

〈x, y〉 = 〈y, x〉 , (4.6)

〈x, x〉 ≥ 0 for x ∈ Xr and 〈x, x〉 = 0 ⇔ x = 0, (4.7)

‖〈x, y〉‖Ω(R) = sup
{
‖〈a, b〉‖Ω(R) : a ∈ F X̂

x , b ∈ F X̂
y

}
, (4.8)

if x � y and u � v then 〈x, u〉 ⊆ 〈y, v〉 , (4.9)

if for any ε > 0 there exists an element xε ∈ X such that (4.10)

x � y + xε and 〈xε, xε〉 ⊆ Sε (θ) then x � y,

where K is real or complex field and Ω(K) denotes the quasilinear space of the family of all compact subsets of K.
Further Sε (θ) is the zero-centered ε-radius closed circle in K. A quasilinear space with an inner product is called an
inner product quasilinear space, briefly, IPQLS.
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Theorem 4.4. For x =
([
x1, x1

]
, ...,

[
xn, xn

])
and y =

([
y1, y1

]
, ...,

[
yn, yn

])
∈ I

n
R
, the equality

〈x, y〉 =
n∑

k=1

[
xk, xk

] [
yk, yk

]

defines an inner-product and hence In
R

is an IPQLS on the field R by this inner product.

Proof. Let x, y ∈ (In
R
)r then x = ([x1, x1] , ..., [xn, xn]) and y = ([y1, y1] , ..., [yn, yn]) . So,

〈x, y〉 =
n∑

k=1

[xk, xk] [yk, yk]

=

n∑

k=1

{xkyk} ∈ Ω(R)r ≡ R.

Later three condition can be easily verified. Now for x ∈ (In
R
)r , 〈x, x〉 =

n∑
k=1

{xkxk} =
n∑

k=1

{
|xk|

2
}
∈ Ω(R)r ≡ R

and so we can write 〈x, x〉 ≥ 0. Easily we can see that 〈x, x〉 = 0 ⇔ x = 0. Let us now verify the equality

‖〈x, y〉‖Ω(R) = sup
{
‖〈a, b〉‖Ω(R) : a ∈ F X̂

x , b ∈ F X̂
y

}

where X = I
n
R
. Since X is consolidate X̂ = X and

‖〈x, y〉‖Ω(R) =

∥∥∥∥∥

n∑

k=1

[
xk, xk

] [
yk, yk

]
∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥

n∑

k=1

sup
⊂

{
〈[tk, tk] , [sk, sk]〉 : [tk, tk] ⊂

[
xk, xk

]
, [sk, sk] ⊂

[
yk, yk

]}
∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥

n∑

k=1

sup
⊂

{
〈[tk, tk] , [sk, sk]〉 : [tk, tk] ∈ F

I
1

R

[xk,xk]
, [sk, sk] ∈ F

I
1

R

[yk,yk]

}∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥sup
{

n∑

k=1

〈[tk, tk] , [sk, sk]〉 : [tk, tk] ∈ F
I
1

R

[xk,xk]
, [sk, sk] ∈ F

I
1

R

[yk,yk]

}∥∥∥∥∥
Ω(R)

=
∥∥∥sup

{
〈a, b〉 : a ∈ F

I
n

R

x , b ∈ F
I
n

R

y

}∥∥∥
Ω(R)

= sup
∥∥∥
{
〈a, b〉 : a ∈ F

I
n

R

x , b ∈ F
I
n

R

y

}∥∥∥
Ω(R)

= sup
{
‖〈a, b〉‖ : a ∈ F

I
n

R

x , b ∈ F
I
n

R

y

}

were a = ([t1, t1] , [t2, t2] , ..., [tn, tn]) and b = ([s1, s1] , [s2, s2] , ..., [sn, sn]) are degenerate interval vectors obeying
the above equality chain. Now let us only verify the last axiom of the inner product. Let us assume that for any

ε > 0 there exists an element xε =
([

x1ε , x1ε

]
, ...,

[
xnε

, xnε

])
∈ I

n
R

such that

x =
([
x1, x1

]
, ...,

[
xn, xn

])
� y =

([
y1, y1

]
, ...,

[
yn, yn

])
+ xε

and 〈xε, xε〉 ⊆ Sε (θ) . This implies, for each k ∈ {1, 2, ..., n} , [xk, xk] ⊆ [yk, yk] +
[
xkε

, xkε

]
. Since

〈xε, xε〉 =
n∑

k=1

[
xkε

, xkε

] [
xkε

, xkε

]
⊆ Sε (θ) ,

we get [
xkε

, xkε

] [
xkε

, xkε

]
=
〈[

xkε
, xkε

]
,
[
xkε

, xkε

]〉
⊆ Sε (θ)
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for each k. Since ε → 0 implies ‖Sε (θ)‖Ω(R) → 0, we obtain
〈[

xkε
, xkε

]
,
[
xkε

, xkε

]〉
→ {0}

in Ω(R). This brings us [xk, xk] ⊆ [yk, yk] for each k. Eventually we can say x � y.
Verification of remaining axioms are easy.

Let us see verification of the condition (26) in the proof by an easy example in I
n
R

in order to well-understanding
of the condition.

Example 4.8. Let us consider x = ([−3, 3] , [2, 5]) , y = ([−1, 3] , [2, 2]) in I
2
R
.

‖〈x, y〉‖Ω(R) =

∥∥∥∥∥

2∑

k=1

[
xk, xk

] [
yk, yk

]
∥∥∥∥∥
Ω(R)

= ‖[−3, 3] [−1, 3] + [2, 5] [2, 2]‖Ω(R)

=

∥∥∥∥
sup {[t, t] [s, s] : [t, t] ⊂ [−3, 3] , [s, s] ⊂ [−1, 3]}
+sup {[t, t] [s, s] : [t, t] ⊂ [2, 5] , [s, s] ⊂ [2, 2]}

∥∥∥∥
Ω(R)

=

∥∥∥∥∥∥
sup

{
[t, t] [s, s] : [t, t] ∈ F

I
1

R

[−3,3], [s, s] ∈ F
I
1

R

[−1,3]

}

+sup
{
[t, t] [s, s] : [t, t] ∈ F

I
1

R

[2,5], [s, s] ∈ F
I
1

R

[2,2]

}
∥∥∥∥∥∥
Ω(R)

=

∥∥∥∥∥∥
sup{

{
[t, t] [s, s] : [t, t] ∈ F

I
1

R

[−3,3], [s, s] ∈ F
I
1

R

[−1,3]

}

+
{
[t, t] [s, s] : [t, t] ∈ F

I
1

R

[2,5], [s, s] ∈ F
I
1

R

[2,2]

}
}

∥∥∥∥∥∥
Ω(R)

=
∥∥∥sup

{
〈a, b〉 : a ∈ F

I
2

R

x , b ∈ F
I
2

R

y

}∥∥∥
Ω(R)

= sup
∥∥∥
{
〈a, b〉 : a ∈ F

I
2

R

x , b ∈ F
I
2

R

y

}∥∥∥
Ω(R)

= sup
{
‖〈a, b〉‖ : a ∈ F

I
2

R

x , b ∈ F
I
2

R

y

}
.

Remark 4.4. The norm derived from this inner product is obtained in a usual way for any

x = (x1, x2, ...xn). =
([
x1, x1

]
, ...,

[
xn, xn

])
∈ I

n
R
:

‖x‖ =
√

‖〈x, x〉‖Ω(R) =



∥∥∥∥∥

n∑

k=1

[
xk, xk

] [
xk, xk

]
∥∥∥∥∥
Ω(R)




1/2

=

(
n∑

k=1

|xk|
2

)1/2

=

(
n∑

k=1

{
max

{∣∣xk

∣∣ , |xk|
}}2

)1/2

= ‖x‖2 .

This shows that the inner-product norm is just the 2-norm on I
n
R

. For n = 1 if x = [x, x] ∈ I
1
R

then

‖x‖ =
√
‖〈x, x〉‖Ω(R) =



∥∥∥∥∥

1∑

k=1

[
xk, xk

] [
xk, xk

]
∥∥∥∥∥
Ω(R)




1/2

= (|[x, x] [x, x]|)1/2

= (|[minS,maxS]|)1/2 , where S = {x2, xx, xx, x2}

= (max {minS,maxS})1/2 , where S = {x2, xx, xx, x2}

=
(
max

{∣∣a2
∣∣ : a ∈ [minS,maxS]

})1/2

=
(
|[x, x]|2

)1/2
= |[x, x]| .

Note in general that [x, x] [x, x] 6= [x, x]
2 where [x, x]

2 is defined as [x, x]
2
=
{
t2 : t ∈ [x, x]

}
in I

1
R
. However,

‖x‖2 = |[x, x] [x, x]| = |[x, x]|2 .
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Definition 4.9. Let x = ([x1, x1] , ..., [xn, xn]) and y = ([y1, y1] , ..., [yn, yn]) be two elements in I
n
R
. x and y are called

orthogonal if

〈x, y〉 =
n∑

k=1

[
xk, xk

] [
yk, yk

]
= [0, 0] = {0} .

Any set A in I
n
R

is called orthogonal if each two elements in A are orthogonal. Moreover, if we know each elements of
A has norm 1 then A is called orthonormal.

Example 4.9. Let us consider x = ([−3, 3] , [0, 0]) , y = ([0, 0] , [2, 5]) in I
2
R
. Obviously x and y are orthogonal. These

two elements are singular elements which are orthogonal. ([−3,−3] , [0, 0]) and y = ([0, 0] , [2, 2]) are regular
(degenerate) orthogonal elements. The set

A = {([1, 1] , [0, 0] , ..., [0, 0]) , ([0, 0] , [1, 2] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, n])

is an orthogonal set in I
n
R

which is not a basis. However,

B = {([1, 1] , [0, 0] , ..., [0, 0]) , ([0, 0] , [1, 1] , ..., [0, 0]) , ..., ([0, 0] , [0, 0] , ..., [1, 1])

is an orthonormal basis in I
n
R
.
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1. Introduction

Let f(α, β) be Lebesgue integral in the square R(−π, π;−π, π) and be of period 2π in each of the variables α and
β. Then the series

∞
∑

m=0

∞
∑

n=0

γmn

{

rmncos mα cos nβ + smn sin mα cos nβ + tmn cos mα sin nβ + qmnsin mα sin nβ

}

(1.1)

is called the double Fourier series associated with the function f(α, β)( [2],[3]) where

γmn =











1
4 for m = 0, n = 0
1
2 for m = 0, n > 0 or m > 0, n = 0

1 for m,n > 0

rmn =
1

π2

∫ ∫

R

f(α, β) cos mα cos nβ dα dβ (1.2)
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smn =
1

π2

∫ ∫

R

f(α, β) sin mα cos nβ dα dβ (1.3)

tmn =
1

π2

∫ ∫

R

f(α, β) cos mα sin nβ dα dβ (1.4)

qmn =
1

π2
=

∫ ∫

R

f(α, β) sin mα sin nβ dα dβ. (1.5)

We have

χ(α, β) = χx,y(α, β) =
1

4

{

f(x+ α, y + β) + f(x− α, y + β) + f(x+ α, y − β) + f(x− α, y − β)− 4f(α, β)

}

. (1.6)

1.Definition( [4],[5])

Let{p(1)m }and {p
(2)
n } are two sequence of constants, real or complex.

Let

P (1)
m = p

(1)
0 + p

(1)
1 + p

(1)
2 + ...+ p(1)m

P (2)
n = p

(2)
0 + p

(2)
1 + p

(2)
2 + ...+ p(2)n .

We shall also consider a double Nörlund transform of {amn}. Then the double Nörlund transform is

Vmn =
1

P
(1)
m P

(2)
n

m
∑

l=0

n
∑

g=0

p
(1)
m−lp

(2)
g−nalg. (1.7)

2. Definition([4],[5])
The double sequence {αlg} is said to be Nörlund summable to a limit V if

Vmn → V, (m,n) → (∞,∞). (1.8)

It is also known as summable(N, p
(1)
m , p

(2)
n ).

3. Definition([1], [2], [4], [5], [6])
If

p(1)m = 1 for m = 0, 1, 2, ...

p(2)n = 1 for m = 0, 1, 2, ...

}

(1.9)

then the double Nörlund transform reduces to double Cesàro transform of order one. This summability method is
known as Cesàro summability (C,1,1).

4.Definition([1], [2], [5], [6])

p(1)m =
1

m+ 1
,m = 0, 1, 2, ... and p(2)n =

1

n+ 1
, n = 0, 1, 2, ...

then the double Nörlund summability (N, p
(1)
m , p

(2)
n becomes Harmonic summability and is denoted by (H, 1, 1).

5. Definition([5])
If, for any γ ≥ 1, V mn → V, (m,n) → (∞,∞)in such a manner that γ ≥ m

n
, γ ≥ n

m
then the sequence {αlg} is

said to be restrictedly summable Np at(x, y) to the same limit.

There are several results on Nörlund summability of Fourier series. Nörlund summability of Fourier series
has been studied by the authors[1–16]. This motivates us to study on the Nörlund summability of Fourier series in
more generalized as particular cases. Therefore, an attempt to make an advance in this research work, we study on
the double Fourier series and its conjugate series by Nörlund method. T. Sing [7] proved the following theorem:
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Theorem 1.1. If

∫ v

0

∣

∣

∣

∣

χ(y)

∣

∣

∣

∣

dy = O

(

v

log v−1

)

,

where χ(y) = f(v + y) + f(v − y)− 2f(y) a s v → 0, then the Fourier series of f(u) at v = y is summable (N, pn) to f(y)
where {pn} is real non-increasing sequence such that

n
∑

a=2

(

pa

a log a

)

= o(Pn).

In this present research paper, we established the following theorem which is the extended forms of Singh [7]
and also the generalized results of [2].

2. Main Results

Theorem 2.1. If (α, β) → (0, 0),

∫ α

0

∫ β

0

∣

∣

∣

∣

χ(s, t)

∣

∣

∣

∣

dsdt = o

(

α

logα−1

β

log β−1

)

(2.1)

∫ π

δ

ds

∫ β

0

∣

∣

∣

∣

χ(s, t)

∣

∣

∣

∣

dt = o

(

β

log β−1

)

, (0 < δ < π) (2.2)

and
∫ π

δ

dt

∫ α

0

∣

∣

∣

∣

χ(s, t)

∣

∣

∣

∣

ds = o

(

α

logα−1

)

, (0 < δ < π) (2.3)

then the double Fourier series of f(α, β) at α = x, β = y is summable
(

N, p
(1)
m p

(2)
n

)

to f(x, y) where {p
(v)
n } are real

non-negative, non-increasing sequence of constants such that

n
∑

k=2

(

p
(v)
k

k log k

)

= o

(

P (v)
n

)

, (v = 1, 2). (2.4)

The following lemmas are required in the proof of our theorem.

Lemma 2.1. If {pn} is non-negative and non-increasing, then for 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and for any n, we have

∣

∣

∣

∣

b
∑

k=a

pke
i(n−k)t

∣

∣

∣

∣

≤ AP[t−1]. (2.5)

Lemma 2.2. Under the condition of lemma 2.1,

∣

∣

∣

∣

b
∑

k=a

Pksin
(

n− k + 1
2

)

t

sin t
2

∣

∣

∣

∣

= o (nPn) , 0 ≤ t ≤
1

n
. (2.6)

Lemma 2.3. Under the condition of lemma 2.1,

∣

∣

∣

∣

b
∑

k=a

pk
sin
(

n− k + 1
2

)

t

sin t
2

∣

∣

∣

∣

= o

[

1

t
P[t−1]

]

for
1

n
≤ t ≤ δ. (2.7)
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Lemma 2.4. Under the condition of lemma 2.1,

∣

∣

∣

∣

n
∑

k=0

pk
sin
(

n− k + 1
2

)

t

sin t
2

∣

∣

∣

∣

= o(1) for 0 ≤ δ < t ≤ π. (2.8)

They are uniformly in each of the intervals.

Proof. Let Umn(x, y; f) = Umn denotes the rectangular (m,n)th partial sum of the series (1.1), then we must have

Umn(x, y; f)− f(x, y) =
1

π2

∫ T

0

∫ π

0

χ(α, β)D1
m(α)D2

n(β)dαdβ (2.9)

where

D1
m(α) =

sin
(

m+ 1
2

)

α

2sinα
2

(2.10)

and

D2
n(β) =

sin
(

n+ 1
2

)

β

2sinβ
2

(2.11)

where D1
m(α) and D2

n(β) are respectively denote the Dirichlet kernels.

Let
{

Vmn(x, y)

}

denote the double Nörlund transform of the sequence
{

Vmn − f(x, y)

}

then

Vmn(x, y) =
1

P
(1)
m P

(2)
n

m
∑

l=0

n
∑

g=0

p
(1)
m−l p

(2)
n−g

{

Ulg − f(x, y)

}

,

=
1

P
(1)
m P

(2)
n

m
∑

l=0

n
∑

g=0

{

p
(1)
m−lp

(2)
n−g

1

π2

∫ π

0

∫ π

0

χ(α, β)D1
l (α)D

2
g(β)dαdβ

}

=

∫ π

0

∫ π

0

χ(α, β)

{

1

2πP
(1)
m

m
∑

l=0

p
(1)
m−l

sin
(

l + 1
2

)

l

sinα
2

}{

1

2πP
(2)
n

n
∑

g=0

p
(2)
g−n

sin
(

g + 1
2

)

β

sinβ
2

}

dαdβ (2.12)

=

∫ π

0

∫ π

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ (2.13)

where

N (1)
m (α) =

1

2πP
(1)
m

m
∑

l=0

p
(1)
m−l

sin
(

m− l + 1
2

)

α

sinα
2

(2.14)

and

N (2)
n (β) =

1

2πP
(2)
n

n
∑

g=0

p
(2)
g−n

sin
(

n− g + 1
2

)

β

sinβ
2

. (2.15)

Also equation (2.13) can be written as

Umn(x, y)− f(x, y) =

∫ π

0

∫ π

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

=

(

∫ π

0

∫ τ

0

+

∫ δ

0

∫ π

τ

+

∫ π

δ

∫ τ

0

+

∫ π

δ

∫ π

τ

)

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

= I1 + I2 + I3 + I4 say (2.16)
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by hypothesis and using the results of equations (2.6) and equations (2.7), we easily obtain

|I4| =

∣

∣

∣

∣

∫ π

δ

∫ π

τ

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

∣

∣

∣

∣

= o

(

1

P
(1)
m P

(2)
n

∫ π

δ

∫ π

τ

∣

∣

∣

∣

χ(α, β)N (1)
m (α)N (2)

n (β)

∣

∣

∣

∣

dαdβ

)

=

(

1

P
(1)
m P

(2)
n

∫ π

0

∫ π

0

∣

∣

∣

∣

χ(α, β)

∣

∣

∣

∣

dα.dβ

)

(

as N (2)
n (β), N (1)

m (α) are even function
)

= o(1). (2.17)

Also, for I3,

I3 =

∫ π

δ

N (1)
m (α)dα

∫ τ

0

χ(α, β)N (2)
n (β)dβ

=

∫ π

δ

N (1)
m (α)dα

{∫ 1

n

0

+

∫ δ

1

n

}

χ(α, β)N (2)
n (β)dβ

= I3,1 + I3,2 say. (2.18)

Thus

|I3,1| = o

(

n

P
(1)
m

∫ π

0

∫ 1

n

0

∣

∣

∣

∣

χ(α, β)

∣

∣

∣

∣

dβ

)

= o

(

n

Pm

)

o

( 1
n

log n

)

= o(1). (2.19)

Again by equation (2.6) and equation (2.7) and hypothesis,

∣

∣

∣

∣

I3,2

∣

∣

∣

∣

= o





1

P
(1)
m

∫ π

0

dα

∫ τ

1

n

∣

∣

∣

∣

χ(α, β)

∣

∣

∣

∣

1

P
(2)
n

P
(2)
[β−1]

β
dβ





= o





1

P
(1)
m P

(2)
n

∫ π

δ

dα

{

P[β−1]

β
χ1(α, β)

}τ

1

n

−

∫ τ

1

n

χ1(α, β)d

[

P
(2)
[β−1]

β

]





= (|I3,2,1|) + o (|I3,2,2|) say (2.20)

where

χ1(α, β) =

∫ β

0

|χ(αβ)|dw

and I3,2,1 and I3,2,2 stands for two inner integrals.

|I3,2,1| = o





1

P
(1)
m P

(2)
n

∫ π

δ

dα

{

P
(2)
[τ−1]

τ
φ1(α, τ)− n P (2)

n φ1(α,
1

n
)

}





= o





1

P
(1)
m P

(2)
n

p
(2)
[τ−1]

τ

∫ π

δ

dα

∫ τ

0

|χ(α, β)|dβ



+ o

(

n

P
(1)
m

∫ π

δ

dα

∫ 1

n

0

|χ(α, β)|dβ

)

= o(1) + o

(

n

P
(1)
m

1
n

log n

)

= o(1) (2.21)
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and

|I3,2,2| = o





1

P
(1)
m P

(2)
n

∫ π

δ

dα

[

P
(2)
[β−1]

β

]

χ(α, β)





= o





1

P
(1)
m P

(2)
n

∫ τ

1

n

d

[

P
(2)
[β−1]

β

] ∫ π

δ

dα

∫ β

0

|χ1(α,w)|dw





= o





1

P
(1)
m P

(2)
n

∫ τ

1

n

d
P

(2)
[β−1]

β

β

log( 1
β
)



 . (2.22)

Also,

∫ τ

1

n

β

log( 1
β
)
d

[

P
(2)
[β−1]

β

]

=

∫ n

1

τ

1

y log y
d

[

y P
(2)
[y]

]

for
∫ j+1

j

1

y log y
d

[

yP
(2)
[y]

]

<
1

j log j

∫ j+1

j

d

[

yP
(2)
[y]

]

=
1

j log j

[

yP
(2)
[y]

]j+1

j

=
1

j log j

{

(j + 1)P
(2)
j+1 − k P

(2)
j

}

<
1

j log j

{

P
(2)
j + P

(2)
j + P

(2)
j

}

for

p
(2)
k+1 ≤ p

(2)
k and kp

(2)
k ≤ p2k ≤

2p
(2)
j

j log j
+

p
(2)
j

j log j

thus,

∫ n

1

τ

1

y log y
d

[

xP
(2)
[x]

]

< A+
n
∑

j=c

(

2P
(2)
k

j log j
+

P
(2)
j

j log j

)

= o
(

P (2)
n

)

. (2.23)

Now, by hypothesis equation (2.4) and using the equation (2.23) and equation (2.13), we get

|I3,2,1| = o(1). (2.24)

Combining equations (2.18), (2.19),(2.20), (2.21), (2.22), (2.23) and (2.24), we get

|I3| = o(1). (2.25)

Similarly, we can show that

|I2| = o(1). (2.26)

Now, for I1,

I1 =

∫ δ

0

∫ τ

0

χ(α, β)N (1)
m (α)N (2)

n (β)dαdβ

=

(

∫ 1

m

0

∫ 1

n

0

+

∫ 1

n

0

∫ δ

1

n

+

∫ δ

1

m

∫ 1

n

0

+

∫ δ

1

m

∫ τ

1

n

)

χ(αβ)N (1)
m (α)N (2)

n (β)dαdβ

= I1,1 + I1,2 + I1,3 + I1,4 say. (2.27)
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Then by (2.6) and (2.7)

|I1.1| = o

(

∫ 1

m

0

∫ 1

n

0

|χ(α, β)|mn dαdβ

)

= o(mn)o

( 1
m

logm

1
n

log n

)

= o(1). (2.28)

Similarly,

|I1,2| = o(1)

|I1,3| = o(1)

}

(2.29)

and

∫ δ

1

m

∫ τ

1

n

∣

∣

∣

∣

χ(α, β)

∣

∣

∣

∣

P[α−1]

α

P[β−1]

β
dαdβ = χ(δ, τ)

1

δ
P

(1)
[δ−1]

1

τ
P

(2)
[τ−1] −

1

τ
P

(2)
[τ−1]

−
1

τ
P

(2)
[τ−1]

∫ δ

1

m

φ(α, τ)d
P

(1)
[α−1]

α
−

1

δ
P

(1)
[δ−1]

∫ τ

1

n

χ(α, β)d

[

P
(2)
[β−1]

β

]

.

Thus,

|I1,4| = o





∫ δ

1

m

∫ τ

1

n

∣

∣

∣

∣

χ(α, β)

∣

∣

∣

∣

1

P
(1)
m P

(2)
n

P
(1)
[α−1]

α

P
(2)
[β−1]

β
dαdβ





= o(1) + o

(

1

P
(1)
m P

(2)
n

(C1 + C2 + C3)

)

(2.30)

where o(1) corresponds to the integrated part in (2.29) and C1, C2 and C3 are repetitively denote the remaining
there integrals

C2 = o(1)

C3 = o(1)

}

. (2.31)

Again for C4

C4 = o





∫ δ

1

m

α

log( 1
α
)
d





P
(1)
[α−1]

α





∫ τ

1

n

β

log( 1
β
)
d

[

P
(2)
[β−1]

β

]





= o
(

P (1)
m P (2)

n

)

(2.32)

as in (2.23), using the estimate (2.31), we get from (2.30) that

|I1,4| = o(1) (2.33)

thus

|I1| = O(1). (2.34)

Combining equations (2.17),(2.23),(2.24),(2.34), we get equation (2.16). Which competes the proof of the theorem.
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Conclusion

Mathematical analysis is primarily concerned with the notion of limit of a sequences of real or complex number
which forms the basis for study of infinite series. The general theory of the convergence and Summability of a
double Fourier series has also been discussed by [1–16]. In 1913, in connection with the study of summation by
arithmetic means of double Fourier series corresponding to function having discontinuities along a curve Moore [16]
was led to the introduction of the notion of restricted summability of a double series. This differs from summability
in the general sense in that the indices of the sequences whose limit is involved, become infinite in such a manner
that there ratios remain bounded by two ordinary positive constants.
Corresponding to the classical tests for convergence of ordinary Fourier series, tests for pringsheim convergence of
the double fourier series have been given by a number of writers. A main point of difference in which double, or
multiple, Fourier series differ from ordinary series is the fact that the behavior of the former, as regards convergence,
divergence, or oscillation, at a point, does not, as in the later case, depend only on the nature of the function in a
neighborhood of the point, but upon its nature in cross-neighborhood of the point. The purpose of this research
paper is to formulate the least conditions for Nörlund summability of double Fourier series. The main theorem for
Nö"rlund summability of double Fourier series provide more stability to the system. Summability methods are
used to decrease error. In this research we may find that our main theorem is a extended version by which many
well known results on summabilities, can be obtained that is shown in above part. A function of two variables may
be associated with a double fourier series.
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In this study, firstly, we defined the notions of lacunary invariant convergence and lacunary invariant
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1. Introduction

The idea of fuzzy sets initially introduced by Zadeh [1] to deal with imprecise phenomena as an alternative to
classical set theory. After that, several classical concepts were reconstructed. Fuzzy topological spaces [2, 3], fuzzy
metric [4–6], fuzzy norm [7–10] are just some of the examples. Felbin’s fuzzy norm [9], which is associated with
Kaleva and Seikkala [5] type metric space by assigning a non-negative fuzzy real number to each element of a linear
space, forms the basis of this study. Das and Das [11] studied fuzzy topology generated by fuzzy norm. Diamond
and Kloeden [12] investigated the metric spaces of fuzzy sets-theory and applications. Fang and Huang [13] studied
on the level convergence of a sequence of fuzzy numbers. Recently Yalvaç and Dündar [14] defined the notions
of invariant convergence and invariant Cauchy sequences with some properties and inclusions in fuzzy normed
spaces. Also, some other authors [15–18] studied the concepts related to fuzzy numbers and fuzzy normed space.

Banach [19] defined the generalized limit, an application of Hahn-Banach theorem on the set of all bounded
real valued sequences. It is also known as Banach limit. Later, Lorentz [20] offered that if all Banach limits of
the given bounded sequence are equal, it is called almost convergent. In further studies [21, 22], invariant mean
and invariant convergence are given as more general cases of Banach limit and almost convergence. Also, several
authors including Schaefer [23], Mursaleen and Edely [24], Mursaleen [25, 26], Savaş [27, 28] had significant studies
on invariant convergence.
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Freedman et al.[29] gave the relation between strong Cesaro convergent space and the sequence of integers (2r)
and offered lacunary convergence by taking lacunary sequences instead of (2r). Further studies on this convergence
were done by several authors [30, 31].

Now, we recall the basic notions and some essential definitions used in our paper (See [1, 7–10, 15, 16, 18, 20–
26, 28–36]).

A fuzzy number is a fuzzy set provided that
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min[u(x), u(y)] for x, y ∈ R and 0 ≤ λ ≤ 1;
(iii) u is upper semi-continuous;
(iv) cl{x ∈ R : u(x) > 0} is a compact set.
The set of all fuzzy numbers is denoted by L(R). R can be embedded in L(R) since each r ∈ R considered a

fuzzy real number r̃ defined by
∼
r(t) = 1 if t = r and

∼
r(t) = 0 if t 6= r.

For u ∈ L(R), the α-level set of u is defined by

[u]α =

{
{x ∈ R : u(x) ≥ α}, if α ∈ (0, 1] ,

cl {x ∈ R : u(x) > α} , if α = 0.

The α-level set of a fuzzy number, denoted by [u]α = [u−
α , u

+
α ], is a non-empty, bounded and closed interval for

each α ∈ [0, 1] where u−
α = −∞ and u+

α = ∞ are also admissible.
If u ∈ L(R) and u(x) = 0 for x < 0, then u is called a non-negative fuzzy number. The set of all non-negative

fuzzy numbers is denoted by L∗(R). It is easy to see 0̃ ∈ L∗(R).
A partial ordering � in L(R) is defined by for u, v ∈ L(R),

u � v iff u−
α ≤ v−α and u+

α ≤ v+α for all α ∈ [0, 1].

Arithmetic equations addition, multiplication and multiplication with a scaler on L(R) are defined by
(i) (u⊕ v) (t) = sups∈R

{u (s) ∧ v (t− s)} , t ∈ R,
(ii) (u⊙ v) (t) = sups∈R,s 6=0 {u (s) ∧ v (t/s)} , t ∈ R,

(iii) For k ∈ R
+, ku is defined as ku (t) = u (t/k) and 0u (t) = 0̃, t ∈ R.

Let u, v ∈ L(R). Arithmetic equations in terms of α-level sets are defined by
(i) [u⊕ v]α = [u−

α + v−α , u
+
α + v+α ] ,

(ii) [u⊙ v]α = [u−
α .v

−
α , u

+
α .v

+
α ], u, v ∈ L∗(R),

(iii) [ku]α = k[u]α =

{
[ku−

α , ku
+
α ], k ≥ 0,

[ku+
α , ku

−
α ], k < 0.

For u, v ∈ L(R), the supremum metric on L(R) is defined by

D (u, v) = sup
0≤α≤1

max
{∣∣u−

α − v−α
∣∣ ,
∣∣u+

α − v+α
∣∣} .

One can see that
D
(
u, 0̃
)
= sup

0≤α≤1
max

{∣∣u−
α

∣∣ ,
∣∣u+

α

∣∣} = max
{∣∣u−

0

∣∣ ,
∣∣u+

0

∣∣} .

Obviously, D
(
u, 0̃
)
= u+

0 when u ∈ L∗(R).
A sequence (un) in L(R) is convergent to u ∈ L(R), denoted by D − lim

n→∞
un = u, if limn→∞ D(un, u) = 0, i.e.,

for all given ε > 0 there exists n0 ∈ N such that D (un, u) < ε, for all n > n0.
Let X be a vector space over R, ‖.‖ : X → L∗ (R) and L,R : [0, 1]× [0, 1] → [0, 1] be symmetric, nondecreasing

in both arguments and satisfy L (0, 0) = 0, R(1, 1) = 1.
The quadruple (X, ‖.‖ , L,R) is called fuzzy normed linear space (FNS) and ‖.‖ is a fuzzy norm if the following

axioms are satisfied
(i) ‖x‖ = 0̃ iff x = θ,
(ii) ‖rx‖ = |r| ⊙ ‖x‖ for x ∈ X, r ∈ R,
(iii) For all x, y ∈ X,
(a) ‖x+ y‖ (s+ t) ≥ L (‖x‖ (s) , ‖y‖ (t)) , whenever s ≤ ‖x‖−1 , t ≤ ‖y‖−1 and s+ t ≤ ‖x+ y‖−1 ,

(b) ‖x+ y‖ (s+ t) ≤ R (‖x‖ (s) , ‖y‖ (t)) , whenever s ≥ ‖x‖−1 , t ≥ ‖y‖−1 and s+ t ≥ ‖x+ y‖−1 .
When L = min and R = max are taken in above (iii), triangle inequalities become

‖x+ y‖−α ≤ ‖x‖−α + ‖y‖−α and ‖x+ y‖+α ≤ ‖x‖+α + ‖y‖+α
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for all α ∈ (0, 1]. Since they fulfil the other conditions of norm, ‖x‖−α and ‖x‖+α can be seen as ordinary norms on X .

Example 1.1. Let (X, ‖.‖C) be an ordinary normed linear space. Then, a fuzzy norm ‖.‖ on X can be obtained

‖x‖ (t) =





0, if 0 ≤ t ≤ a ‖x‖C or t ≥ b ‖x‖C ,
t

(1−a)‖x‖C

− a
1−a

, if a ‖x‖C ≤ t ≤ ‖x‖C ,
−t

(b−1)‖x‖C

+ b
b−1 , if ‖x‖C ≤ t ≤ b ‖x‖C ,

where ‖x‖C is the ordinary norm of x ( 6= θ) , 0 < a < 1 and 1 < b < ∞. For x = θ, define ‖x‖ = 0̃. Hence (X, ‖.‖) is
a fuzzy normed linear space.

Throughout paper let (X, ‖.‖) be an fuzzy normed linear space (FNS).
Let us consider the topological structure of the space X. For any ε > 0, α ∈ [0, 1] and x ∈ X, the (ε, α)-

neighborhood of x is the set Nx (ε, α) := {y ∈ X : ‖x− y‖+α < ε}.

A sequence (xn) in X is convergent to x with respect to the fuzzy norm, denoted by xn
FN
→ x, if it is provided

that (D)− limn→∞ ‖xn − x‖ = 0̃, i.e., for every ε > 0 there exists n0 ∈ N such that

D
(
‖xn − x‖ , 0̃

)
= sup

α∈[0,1]

‖xn − x‖+α = ‖xn − x‖+0 < ε,

for all n > n0. In terms of neighborhoods, for all ε > 0 there exists n0 ∈ N such that xn ∈ Nx (ε, 0) , for all n > n0.
Let σ be a mapping of the positive integers into itself. A continuous linear functional φ on ℓ∞, the space of real

bounded sequences, is said to be an invariant mean or a σ-mean if and only if
(i) φ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) φ(e) = 1, where e = (1, 1, 1...),
(iii) φ(xσ(n)) = φ(x) for all x ∈ ℓ∞.
The mappings σ are assumed to be one-to-one and satisfied the condition σm(n) 6= n for all positive integers n

and m, where σm(n) denotes the m-th iterate of the mapping σ at n. Invariant mean φ is a extension of the limit
functional on c, the space of convergent sequences, in the sense that φ(x) = limx for all x ∈ c. The sequence is
called invariant convergent when its invariant means are equal. In case σ(n) = n+ 1, the σ-mean become Banach
limit and invariant convergence become almost convergence.

A bounded sequence x = (xn) is σ-convergent to the number L if lim
m→∞

tmn = L uniformly in n, where

tmn =
xσ(n) + xσ2(n) + · · ·+ xσm(n)

m
.

A sequence x = (xn) in X is invariant convergent to L with respect to fuzzy norm if (D)−limm→∞ ‖tmn−L‖ =
∼
0,

uniformly in n. Namely, for given ε > 0 there exists m0 ∈ N such that for all m > m0,

D(‖tmn − L‖,
∼
0) = sup

α∈[0,1]

‖tmn − L‖+α = ‖tmn − L‖+0 < ε, for every n ∈ N.

Let 0 < q < ∞. The sequence x = (xn) in X is q-strongly invariant convergent to L with respect to fuzzy norm if

lim
m→∞

1

m

m∑

i=1

[
D
(
‖xσi(n) − L‖,

∼
0
)]q

= lim
m→∞

1

m

m∑

i=1

[
‖xσi(n) − L‖+0

]q
= 0,

uniformly in n.
An increasing sequence of non-negative integers θ = (kr) with k0 = 0 and hr = kr−kr−1 → ∞ is called lacunary

sequence. The intervals determined by θ are denoted by Ir = (kr−1, kr] and the ratio kr

kr−1

is given by qr.

For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary convergent to L if

lim
r→∞

1

hr

∑

i∈Ir

(xi − L) = 0.

For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary strongly convergent to L if

lim
r→∞

1

hr

∑

i∈Ir

|xi − L| = 0.
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For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary strongly convergent to L with
respect to fuzzy norm if

lim
r→∞

1

hr

∑

i∈Ir

D
(
‖xi − L‖,

∼
0
)
= 0.

2. Main results

Definition 2.1. For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary invariant convergent to

L with respect to fuzzy norm and it is denoted by xn
σ−FNθ−→ L if

lim
r→∞

D

(∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥ ,
∼
0

)
= lim

r→∞

∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥

+

0

= 0,

unifomly in n; i.e., for every ε > 0, there exists r0 ∈ N such that for all r > r0,

D

(∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥ ,
∼
0

)
=

∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥

+

0

< ε,

for all n ∈ N.

Definition 2.2. For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary invariant Cauchy
sequence with respect to fuzzy norm if for every ε > 0, there exists r0 ∈ N such that for all r, s > r0,

∥∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) −
1

hs

∑

j∈Is

xσj(n)

∥∥∥∥∥∥

+

0

< ε,

for all n ∈ N.

Theorem 2.1. Let θ = (kr) be a lacunary sequence and x = (xn) be a sequence in X. If x is lacunary invariant convergent to
L with respect to fuzzy norm, then x is lacunary invariant Cauchy sequence with respect to fuzzy norm.

Proof. Assume that the sequence x = (xn) is lacunary invariant convergent to L with respect to fuzzy norm in X.
Then, for every ε > 0 there exists r0 ∈ N such that for all r > r0,

∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥

+

0

<
ε

2
,

for all n ∈ N. Therefore for all r, s > r0,
∥∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) −
1

hs

∑

j∈Is

xσj(n)

∥∥∥∥∥∥

+

0

=

∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥

+

0

+

∥∥∥∥∥∥
1

hs

∑

j∈Is

xσj(n) − L

∥∥∥∥∥∥

+

0

<
ε

2
+

ε

2
= ε,

for all n ∈ N. Thus, x is lacunary invariant Cauchy sequence with respect to fuzzy norm.

Definition 2.3. For any lacunary sequence θ = (kr), the sequence x = (xn) in X is lacunary strongly invariant

convergent to L with respect to fuzzy norm and it is denoted by xn

[σ−FN ]θ
−→ L if

lim
r→∞

1

hr

∑

i∈Ir

D(‖xσi(n) − L‖,
∼
0) = lim

r→∞

1

hr

∑

i∈Ir

‖xσi(n) − L‖+0 = 0,

unifomly in n; i.e., for every ε > 0, there exists r0 ∈ N such that for all r > r0,

1

hr

∑

i∈Ir

D(‖xσi(n) − L‖,
∼
0) =

1

hr

∑

i∈Ir

‖xσi(n) − L‖+0 < ε,

for all n ∈ N.
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Theorem 2.2. Let θ = (kr) be a lacunary sequence and x = (xn) be a sequence in X. If x is lacunary strongly invariant
convergent to L, then L is unique.

Proof. Assume that xn

[σ−FN ]θ
−→ L1, xn

[σ−FN ]θ
−→ L2 and L1 6= L2. Then for every ε > 0, there exists r1 ∈ N such that

for all r > r1,
1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0 <

ε

2
,

for all n ∈ N and for given ε > 0, there exists r2 such that for all r > r2,

1

hr

∑

i∈Ir

‖xσi(n) − L2‖
+
0 <

ε

2
,

for all n ∈ N. Take r0 = max{r1, r2}. Then for all r > r0,

‖L1 − L2‖
+
0 =

1

hr

∑

i∈Ir

‖L1 − L2‖
+
0

≤
1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0 +

1

hr

∑

i∈Ir

‖xσi(n) − L2‖
+
0

≤
ε

2
+

ε

2
= ε,

for all n ∈ N. Since for all ε > 0,
‖L1 − L2‖

+
0 < ε,

we have L1 = L2.

Theorem 2.3. Let θ = (kr) be a lacunary sequence and x = (xn), y = (yn) be sequences in X . If x and y are lacunary
strongly invariant convergent to L1 and L2, respectively, then the sequence x+ y is lacunary strongly invariant convergent to
L1 + L2.

Proof. Assume that xn

[σ−FN ]θ
−→ L1 and yn

[σ−FN ]θ
−→ L2. Then for every ε > 0, there exists r1 ∈ N such that for all

r > r1,
1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0 <

ε

2
,

for all n ∈ N and for given ε > 0, there exists r2 such that for all r > r2,

1

hr

∑

i∈Ir

‖yσi(n) − L2‖
+
0 <

ε

2
,

for all n ∈ N. Take r0 = max{r1, r2} then for all r > r0,

1

hr

∑

i∈Ir

‖(xσi(n) + yσi(n))− (L1 + L2)‖
+
0 ≤

1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0 +

1

hr

∑

i∈Ir

‖yσi(n) − L2‖
+
0

≤
ε

2
+

ε

2
= ε,

for all n ∈ N. Hence, we have

(xn + yn)
[σ−FN ]θ
−→ (L1 + L2).

Theorem 2.4. Let θ = (kr) be a lacunary sequence and x = (xn) be sequence in X . If x is strongly lacunary invariant
convergent to L and c is a scaler, then the sequence cx is strongly lacunary invariant convergent to cL.
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Proof. Assume that xn

[σ−FN ]θ
−→ L and c is a scaler. Then for every ε > 0, there exists r0 ∈ N such that for all r > r0,

1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0 <

ε

|c|
,

for all n ∈ N. Therefore, we have

1

hr

∑

i∈Ir

‖cxσi(n) − cL1‖
+
0 = |c|

1

hr

∑

i∈Ir

‖xσi(n) − L1‖
+
0

< |c|
ε

|c|
= ε,

for all n ∈ N. So, we conclude

cxn

[σ−FN ]θ
−→ cL.

Theorem 2.5. Let θ = (kr) be a lacunary sequence and x = (xn) be sequence in X . If the sequence x is strongly lacunary
invariant convergent to L then x is lacunary invariant convergent to L.

Proof. Assume that x = (xn) is strongly lacunary invariant convergent to L with respect to fuzzy norm. Then for all
ε > 0, there exists r0 ∈ N such that for all r > r0,

1

hr

∑

i∈Ir

‖xσi(n) − L‖+0 < ε,

for all n ∈ N. Since

∥∥∥∥∥
1

hr

∑

i∈Ir

xσi(n) − L

∥∥∥∥∥

+

0

≤
1

hr

∑

i∈Ir

‖xσi(n) − L‖+0

< ε,

for all n ∈ N, then we obtain that x is lacunary invariant convergent to L with respect to fuzzy norm.
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1. Introduction

In the present paper, we will derive some sufficient conditions on existence and stability results for pantograph
equation involving fractional order of the form

{

Dα,β,ϑ;ψh(t) = g(t, h(t), h(λt)), t ∈ J := [a, b],

I 1−ν,ϑ;ψh(t)| = h0
(1.1)

where, Dα,β,ϑ;ψ is ψ-Hilfer proportional fractional derivative of orders α ∈ (0, 1), β ∈ [0, 1] and ϑ ∈ (0, 1], I 1−ν,ϑ:ψ

is ψ-fractional integral of orders 1− ν(ν = α+ β − αβ). Let g be the continuous function from J into R×R and h is
the given function.

Fractional calculus is extension of ordinary differentiation and integration to arbitrary order (non-integer). In
recent years, fractional differential equations (FDE) arise naturally in various fields such as science and engineering.
Theory of FDE has been extensively studied by many authors, see [1–9].

It is renowned that, within the settled scenario, there’s an awfully special delay equation called the pantograph
equations. In the following years, the pantograph equation became a prime example for a delay differential equation.
The pantograph equations have been well studied over the last several decades, refer to [10–12].
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Most recently a fractional derivative with kernel of function is introduced by Vanterler Da C. Sousa and the
classical properties with transformation of existing fractional derivative is discussed in [8, 13]. Motivated by
the above mentioned work, we introduce a new generalized fractional calculus based on a special case of the
proportional derivatives discussed in [14]. There are three features for our new generalized proportional fractional
(GPF) derivative that make it different and distinctive: the kernel of the fractional operator contains exponential
function, the generated fractional integrals possess a semi-group property and the obtained operators provide
undeviating generalization to the existing Riemann-Liouville and Caputo fractional derivatives and integrals when
the order 0 tends to 1.

The paper is organized as follows. In section 2, we declare the weighted spaces, basic definitions and results
for proportional derivatives and their corresponding integral equation. In Section 3, we analyze the existence,
uniqueness and stability results for proposed problem.

2. Preliminaries

Let J(0 ≤ a ≤ b) be a finite interval. The space of continuous function h, defined by C associated with the norm

‖h‖Cν,ψ = sup {|h(t)| : t ∈ J} .

We denote the weighted spaces of all continuous functions defined by

Cν,ψ = {g : J → R : (ψ(t)− ψ(a))
ν
g(t) ∈ C} , 0 ≤ ν < 1,

with the norm
‖g‖Cν,ψ = sup

t∈J

|(ψ(t)− ψ(a))
ν
g(t)| .

The weighted space Cnν,ψ of functions g on J is defined by

Cnν,ψ =
{

g : J → R : g(t) ∈ Cn−1; g(t) ∈ Cν,ψ
}

, 0 ≤ ν < 1,

with the norm

‖g‖Cn
ν,ψ

=
n−1
∑

k=0

∥

∥gk
∥

∥

C
+ ‖gn‖Cν,ψ .

For n = 0, we have, C0
ν = Cν .

Here, we present the following weighted space for our problem as follows

C
α,β
1−ν;ψ =

{

g ∈ C1−ν;ψ,D
α,β,ϑ;ψg ∈ Cν;ψ

}

,

and
Cν1−ν;ψ =

{

g ∈ C1−ν;ψ,D
ν,ϑ;ψg ∈ C1−ν;ψ

}

.

It is obvious that
Cν1−ν;ψ ⊂ C

α,β
1−ν;ψ.

Definition 2.1. [14] If ϑ ∈ (0, 1] and α ∈ C with ℜ(α) > 0. then the fractional integral

(

I
α,ϑ;ψh

)

(t) =

∫ t

0

ψ
′

(s)e
ϑ−1

ϑ
(ψ(t)−ψ(s)) (ψ(t)− ψ(s))

α−1

ϑαΓ(α)
h(s)ds. (2.1)

Definition 2.2. [14] If ϑ ∈ (0, 1] and α ∈ C with ℜ(α) > 0 and ψ ∈ C[a, b], where ψ
′

(s) > 0, the GPF derivative of
order α of the function h with respect to another function isdefined by with ψ

′

(t) 6= 0 is describe as

(

D
α,ϑ;ψh

)

(t) =

(

1

ψ
′(t)

d

dt

)n ∫ t

0

ψ
′

(s)e
ϑ−1

ϑ
(ψ(t)−ψ(s)) (ψ(t)− ψ(s))

n−α−1

Γ(n− α)
h(s)ds. (2.2)

Definition 2.3. [14] If ϑ ∈ (0, 1] and α ∈ C with ℜ(α) > 0 and ψ ∈ C[a, b], where ψ
′

(s) > 0, the GPF derivative in
Caputo sence of order α of the function h with respect to another function isdefined by with ψ

′

(t) 6= 0 is describe as

(

D
α,ϑ;ψh

)

(t) = I
n−α,ϑ;ψ

(

D
n,ϑ;ψh

)

(t). (2.3)
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Definition 2.4. The ψ-Hilfer GPF derivative of order α and type β over h with respect to another function is defined
by

(

D
α,β,ϑ;ψh

)

(t) = I
β(1−α),ϑ;ψ

(

D
1,ϑ;ψ

)

I
(1−β)(1−α),ϑ;ψh(t). (2.4)

Next, we shall give the definitions and the criteria of generalized Ulam-Hyers-Rassias(UHR) stability. Let ǫ > 0
be a positive real number and ϕ : J → R+ be a continuous function. We consider the following inequalities:

∣

∣Dα,β;ψv(t)− g (t, v(t), v(t))
∣

∣ ≤ ϕ(t). (2.5)

Definition 2.5. Eq. (1.1) is generalized UHR stable with respect to ϕ ∈ C1−ν,ψ if there exists a real number Cg,ϕ > 0
such that for each solution v ∈ C1−ν,ψ of the inequality (2.5) there exists a solution h ∈ C1−ν,ψ of Eq. (1.1) with

|v(t)− h(t)| ≤ Cg,ϕϕ(t).

Lemma 2.1. Let α, β > 0, then we have the following semigroup property

(I α,ϑ;ψ
I
β,ϑ;ψg)(t) = (I α+β,ϑ;ψg)(t),

and
(Dα,ϑ;ψ

I
α,ϑ;ψg)(t) = g(t).

Lemma 2.2. Let n− 1 < α < n where n ∈ N,ϑ ∈ (0, 1], 0 ≤ β ≤ 1, with ν = α+ β(n− α), such that n− 1 < ν < n. If
g ∈ Cν and In−ν,ϑ;ψg ∈ Cnν , then

(I α,ϑ;ψ
I
α,β,ϑ;ψg)(t) = g(t)−

n
∑

k=1

e
ϑ−1

ϑ
(ψ(t)−ψ(s))(ψ(t)− ψ(s))ν−k

ϑν−kΓν − k + 1
I
k−ν,ϑ;ψ(a),

Lemma 2.3. (Grönwall’s Lemma [13]) Let α > 0, a(t) > 0 is locally integrable function on J and if g(t) be a increasing and
nonnegative continuous function on J , such that |g(t)| ≤ K for some constant K. Moreover if h(t) be a nonnegative locally
integrable function on J with

h(t) ≤ a(t) + g(t)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

h(s)ds, (t) ∈ J,

with some α > 0. Then

h(t) ≤ a(t) +

∫ t

0

[

∞
∑

n=1

(g(t)Γ(α))n

Γ(nα)
ψ

′

(s) (ψ(t)− ψ(s))
nα−1

]

a(s)ds, (t) ∈ J.

Theorem 2.1. (Schauder fixed point theorem, [15]) Let B be closed, convex and nonempty subset of a Banach space C. Let
T : B → B be a continuous mapping such that T (B) is a relatively compact subset of C. Then T has at least one fixed point
in B.

Lemma 2.4. A function h is the solution of (1.1), if and only if h satisfies the random integral equation

h(t) =
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds. (2.6)

3. Main results

Utilizing the concept of Theorem 2.1, we obtain the following results for the proposed problem (1.1). First, we
declare the hypotheses used to obtain the result:

(H1) There exists a constant ℓ, such that

|g(·, h1(·), h2(·))− g(·, y1(·), y2(·))| ≤ ℓ (|h1 − y1|+ |h2 − y2|) .
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(H2) There exists an increasing function ϕ ∈ C1−ν,ψ and there exists λϕ > 0 such that for any t ∈ J

Iα;ψϕ(t) ≤ λϕϕ(t).

Theorem 3.1. Assume that hypothesis (H1) is satisfied. Then, Eq.(1.1) has at least one solution.

Proof. Consider the operator T : C1−ν,ψ → C1−ν,ψ. Hence h is a solution for the problem (1.1) if and only if
h(t) = (T h) (t), where the equivalent integral Eq. (2.6) which can be written in the operator form

(T h) (t) =
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds. (3.1)

Clearly, the fixed points of the operator T is solution of the problem (1.1). Set g̃ = g(s, 0, 0). For any h, we have

∣

∣

∣
(T h) (t) (ψ(t)− ψ(a))

1−ν
∣

∣

∣

≤
h0

ϑν−1Γ(ν)
+

(ψ(t)− ψ(a))
1−ν

ϑαΓ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |g(s, h(s), h(λs))| ds

≤
h0

ϑν−1Γ(ν)

+
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |g(s, h(s), h(λs))− g(s, 0, 0) + g(s, 0, 0)| ds

≤
h0

ϑν−1Γ(ν)
+

2ℓ (ψ(t)− ψ(a))
1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖h‖C1−ν,ψ

+
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖g̃‖C1−ν,ψ

≤
h0

ϑν−1Γ(ν)
+

ℓ

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖h‖C1−ν,ψ

+
B(ν, α)

ϑαΓ(α)
(ψ(b)− ψ(a))α ‖g̃‖C1−ν,ψ

This proves that T transforms the ball Br =
{

h ∈ C1−ν,ψ : ‖h‖C1−ν,ψ
≤ r

}

, into itself. We shall show that the

operator T : Br → Br satisfies all the conditions of Theorem 2.1. The proof will be given in the following steps.
Step 1: T is continuous.

Let hn be a sequence such that hn → h in C1−ν,ψ . Then, for each t ∈ J ,

∣

∣

∣
((T hn) (t)− (T h) (t)) (ψ(t)− ψ(a))

1−ν
∣

∣

∣

≤
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |g(s, hn(s), hn(λs))− g(s, h(s), h(λs))| ds

≤
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(s))α+ν−1 ‖g(·, hn(·), hn(·))− g(·, h(·), h(·))‖C1−ν,ψ

≤
1

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖g(·, hn(·), hn(·))− g(·, h(·), h(·))‖C1−ν,ψ

.

Due to continuity of g, we have

‖T hn − T h‖C1−ν,ψ
→ 0 as n→ ∞.

Step 2: T (Br) is uniformly bounded.
This is clear since T (Br) ⊂ Br is bounded.
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Step 3: We show that T (Br) is equi-continuous.
Let t1 > t2 ∈ J with Br be a bounded set of C1−ν,ψ as in Step 2, and h ∈ Br. Then

∣

∣

∣

∣

(ψ(t1)− ψ(a))1−ν (T h) (t1)− (ψ(t2)− ψ(a))1−ν (T h) (t2)

∣

∣

∣

∣

≤

∣

∣

∣

∣

(ψ(t1)− ψ(a))1−ν

ϑαΓ(α)

∫ t1

a

e
ϑ−1

ϑ
(ψ(t1)−ψ(a))ψ

′

(s)(ψ(t1)− ψ(s))α−1g(s, h(s), h(λs))ds

−
(ψ(t2)− ψ(a))1−ν

ϑαΓ(α)

∫ t2

a

e
ϑ−1

ϑ
(ψ(t2)−ψ(a))ψ

′

(s)(ψ(t2)− ψ(s))α−1g(s, h(s), h(λs))ds

∣

∣

∣

∣

≤
1

ϑαΓ(α)

∫ τ1

a

[

(ψ(τ1)− ψ(a))
1−ν

(ψ(τ1)− ψ(s))
α−1

(ψ(τ2)− ψ(a))
1−ν

(ψ(τ2)− ψ(s))
α−1

]

× ψ
′

(s) |g(s, h(s), h(λs))| ds

+
1

ϑαΓ(α)

∫ τ1

τ2

(ψ(τ2)− ψ(a))
1−ν

(ψ(τ2)− ψ(s))
α−1

ψ
′

(s) |g(s, h(s), h(λs))| ds

right hand side of the inequality approaches to zero, as t1 → t2. Therefore by Steps 1-3 together with the Arzela-
Ascoli theorem, we say that T is continuous and compact. Hence by Theorem 2.1, the operator T has a fixed point
which is a solution of the problem (1.1).

Lemma 3.1. Assume that the hypothesis (H1) is satisfied. If

2ℓ

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α < 1.

Then, problem (1.1) has a unique fixed point.

Proof. Consider the operator T : C1−ν,ψ → C1−ν,ψ defined by

(T h) (t) =
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds.

Clearly the operator T is well defined. Now for any h1, h2 ∈ C1−ν , we attain

∣

∣

∣
((T h1) (t)− (T h2) (t)) (ψ(t)− ψ(a))

1−ν
∣

∣

∣

≤
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |g(s, h1(s), h1(λs))− g(s, h2(s), h2(λs))| ds

≤
2ℓ (ψ(t)− ψ(a))

1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖h1 − h2‖C1−ν,ψ

≤
2ℓ

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖h1 − h2‖C1−ν,ψ

.

It follows that T has a contraction map, there exists a unique solution of problem (1.1).

Theorem 3.2. The hypotheses (H1) and (H2) are satisfied. Then Eq. (1.1) is g-UHR stable.

Proof. Let v be solution of inequality (2.5) and by Theorem 3.1, h is a unique solution of Eq. (1.1) is as follows

h(t) =
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds.
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By inequality (2.5), we obtain

∣

∣

∣

∣

v(t)−
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

−
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, v(s), v(λs))ds

∣

∣

∣

∣

≤ λϕϕ(t).

Hence for every t ∈ J , we have

|v(t)− h(t)|

≤

∣

∣

∣

∣

v(t)−
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

−
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

v(t)−
h0

ϑν−1Γ(ν)
e
ϑ−1

ϑ
(ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

−
1

ϑαΓ(α)

∫ t

a

e
ϑ−1

ϑ
(ψ(t)−ψ(s))ψ

′

(s)(ψ(t)− ψ(s))α−1g(s, v(s), v(λs))ds

∣

∣

∣

∣

+
1

ϑαΓ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |g(s, v(s), v(λs))− g(s, h(s), h(λs))| ds

≤ λϕϕ(t) +
2ℓ

Γ(α)

∫ t

a

ψ
′

(s)(ψ(t)− ψ(s))α−1 |v(s)− h(s)| ds.

By Lemma 2.3, there exists a constant c > 0 such that

|v(t)− h(t)| ≤ Cg,ϕλϕϕ(t).

Hence, Eq. (1.1) is g-UHR stable.

4. Conclusion

We have studied a nonlinear fractional differential equation with unknown function together with its lower-
order fractional derivative. Several existence and uniqueness results have been derived by applying different tools
of the fixed point theory. Our results are quite general and give rise to many new cases by assigning different values
to the parameters involved in the problem.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous
reviewers for their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and
approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is
published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organi-
zations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study,
scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.



On the study of pantograph differential equations with proportional fractional derivative 103

References

[1] Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Communications in
Nonlinear Science and Numerical Simulation. 44, 460-481 (2017).

[2] Abbas, S., Benchohra, M., Sivasundaram, S.: Dynamics and Ulam stability for Hilfer type fractional differential
equations. Nonlinear Studies. 4, 627-637 (2016).

[3] Furati, K. M., Kassim, M. D., Tatar, N. E.: Existence and uniqueness for a problem involving hilfer fractional derivative.
Computers & Mathematics with Applications. 64, 1616-1626 (2012).

[4] Hilfer, R.: Application of fractional calculus in physics. World Scientific. Singapore (1999).

[5] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. In:
Mathematics studies. 204, Elsevier (2006).

[6] Kamocki, R., Obczynski, C.: On fractional Cauchy-type problems containing Hilfer derivative. Electronic Journal of
Qualitative Theory of Differential Equations. 50, 1-12 (2016).

[7] Podlubny, I.: Fractional differential equations. Mathematics in Science and Engineering. 198, Academic Press
(1999).

[8] Vanterler da C. Sousa, J., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Communications in
Nonlinear Science and Numerical Simulation. 60, 72-91 (2018).

[9] Vivek, D., Kanagarajan, K., Sivasundaram, S.: Dynamics and stability of pantograph equations via Hilfer fractional
derivative. Nonlinear Studies. 23, 685-698 (2016).

[10] Balachandran, K., Kiruthika, S., Trujillo, J. J.: Existence of solutions of nonlinear fractional pantograph equations.
Acta Mathematica Scientia. 33B, 1-9 (2013).

[11] Guan, K., Wang, Q., He, X.: Oscillation of a pantograph differential equation with impulsive perturbations. Applied
Mathematics and Computation. 219, 3147-3153 (2012).

[12] Iserles, A.: On the generalized pantograph functional differential equation. European Journal of Applied Mathematics.
4,1-38 (1993).

[13] Vanterlerda C. Sousa, J., Capelas de Oliveira, E.: On the Ulam-Hyers-Rassias satibility for nonlinear fractional
differential equations using the ψ-Hilfer operator. Preprint arxiv:1711.07339 (2017).

[14] Ahmed, I., Kumam, P., Jarad, F., Borisut, P., Jirakitpuwapat, W.: On Hilfer generalized proportional fractional
derivative. Advances in Difference Equations. 2020, 329 (2020).

[15] Smart, D. R.: Fixed point theorems. Cambridge University Press (1980).

Affiliations

SUGUMARAN HARIKRISHNAN

ADDRESS: Department of Mathematics, TIPS College of Arts and Science, Coimbatore, India.
E-MAIL: hkkhari1@gmail.com
ORCID ID:0000-0002-6042-576X

DVIVEK VIVEK

ADDRESS: Department of Mathematics, PSG College of Arts & Science, Coimbatore, India.
E-MAIL: peppyvivek@gmail.com
ORCID ID:0000-0003-0951-8060

ELSAYED MOHAMMED ELSAYED

ADDRESS: Department of Mathematics, Faculty of Science,King Abdulaziz University, Jeddah 21589, Saudi Arabia.
E-MAIL: emmelsayed@yahoo.com
ORCID ID:0000-0003-0894-8472



MATHEMATICAL SCIENCES AND APPLICATIONS

E-NOTES

https://doi.org/10.36753/mathenot.1212331

11 (2) 104-111 (2023) - Research Article

ISSN: 2147-6268

c©MSAEN

Statistical Convergence of Spliced Sequences in Terms

of Power Series on Topological Spaces

Sevcan Demirkale and Emre Taş*

Abstract
In the present paper, P−distributional convergence which is defined by power series method has been
introduced. We give equivalent expressions for P−distributional convergence of spliced sequences.
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1. Preliminaries

Results of the ordinary summability theory in topological setting can not be obtained in the lack of addition
operator. Hence summability theory has been studied in topological spaces under some assumptions. In this
context some convergences such as Abel-statistical convergence and Abel distributional convergence have been
introduced in topological spaces. From another perspective Osikiewicz [1] has introduced the concept of spliced
sequences. And then this concept has been studied by Ünver [2] and Ünver and et al. [3] in topological spaces.
Also Yurdakadim and et al. [4] have generalized this concept by using bounded sequences instead of convergent
sequences. On the other hand spliced sequences have been studied from a different perspective in [5]. In the
present paper, we introduce P -distributional convergence which generalizes Abel distributional convergence in
the Hausdorff topological space. We also give equivalent expressions for P -distributional convergence of spliced
sequences. Furthermore, we show that convergence of a bounded ∞-spliced sequence via power series method can
be represented in terms of Bochner integral in Banach spaces.
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Definition 1.1. If the limit

δ (G) := lim
n→∞

1

n+ 1
|{j ≤ n : j ∈ G }|

exists then it is said to be the natural density of the subset G ⊂ N0 = {0} ∩ N. Here by |.|, we denote the cardinality
of elements of enclosed set. If for every ǫ > 0, δ (Gǫ) = 0 where Gǫ = {j ∈ N0 : |xj − L| ≥ ǫ } then it is said that
x = (xj) converges statistically to L [6–8].

Definition 1.2. Let (pj) be a real sequence such that p0 > 0, p1, p2, ... ≥ 0 and p(t) :=

∞
∑

j=0

pjt
j has radius of

convergence R with 0 < R ≤ ∞,

CP :=







x = (xj) | Px(t) :=
∞
∑

j=0

pjt
jxj has radius of convergence ≥ R and Px ∈ Cp







.

The functional P − lim : CP → R defined by

P − limx = lim
0<t→R−

1

p(t)

∞
∑

j=0

pjt
jxj

is called a power series method and x is said to be P -convergent [9], where

Cp :=

{

f : (−R,R) → R | lim
0<t→R−

1

p(t)
f(t) exists

}

.

Now consider x = (1,−1, 1,−1, ...), R = ∞, p (t) = et and for j ≥ 0, pj = 1
j! . Then we immediately see that

lim
t→∞

1

et

∞
∑

j=0

xjt
j

j!
= lim

t→∞

1

et

∞
∑

j=0

(−1)
j
tj

j!
= lim

t→∞

1

et
e−t = 0.

Hence while the sequence x = (xj) is P -convergent to 0, it does not converge in the ordinary sense. This illustrates
us that ordinary convergence is not as useful as power series method.

If limx = l implies P − limx = l, then it is said that the method P is regular. A power series method P is regular
if and only if for any j ∈ N0

lim
0<t→R−

pjt
j

p(t)
= 0

holds [9].

Definition 1.3. Let P be regular and G ⊂ N0. If the limit

δP (G) := lim
0<t→R−

1

p(t)

∑

j∈G

pjt
j

exists then it is said to be the P -density of G [10].

Definition 1.4. The sequence x = (xj) of real numbers P -statistically converges to L if for every ǫ > 0, δP (Gǫ) = 0
that is for any ǫ > 0,

lim
0<t→R−

1

p(t)

∑

j∈Gǫ

pjt
j = 0

is satisfied [10].

A criteria has been given for P -statistical convergence in [11].
Now, we introduce P -statistical convergence in a Hausdorff topological space (X, τ).
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Definition 1.5. Consider a Hausdorff topological space (X, τ). The sequence x = (xj) in X is P -statistically
convergent to α ∈ X if for any open set H that contains α

lim
0<t→R−

1

p(t)

∑

xj /∈H

pjt
j = 0

holds.

Definition 1.6. Consider a Hausdorff topological space (X, τ) and the Borel sigma field σ(τ) on (X, τ). Let F :
σ(τ) → [0, 1] be a set function such that F (X) = 1 and if H0, H1, ... are pairwise disjoint sets in σ(τ) then

F (
∞
⋃

j=0

Hj) =
∞
∑

j=0

F (Hj)

holds. Then F is said to be a distribution on σ(τ) [2].

Definition 1.7. Consider a distribution F on σ(τ) and a nonnegative summability matrix A = (anj) such that
whose each row adds up to one. Let x = (xj) be a sequence in X and ∂H be the boundary of H . Then the sequence
x is said to be A-distributionally convergent to F if for all H ∈ σ(τ) with F (∂H) = 0 we have ([2])

lim
n→∞

∑

xj∈H

anj = F (H).

The next definition is power series version of the above one and Abel distributional convergence [2].

Definition 1.8. Consider a distribution F on σ(τ) and a sequence x = (xj) in X . Let ∂H be the boundary of H .
Then the sequence x is said to be P -distributionally convergent to F if for any H ∈ σ(τ) with F (∂H) = 0, we have

lim
0<t→R−

1

p(t)

∑

xj∈H

pjt
j = F (H)

where ∂H is the boundary of H .

Definition 1.9. Let T be a fixed positive integer. A T−partition of N0 consists of infinite sets Ei = {vi(j)} for

i = 0, 1, ..., T − 1 such that
T−1
⋃

i=0

Ei = N0 and Ei ∩ Ej = ∅ for all i 6= j. An ∞−partition of N0 consists of a countably

infinite number of infinite sets Ei = {vi(j)} for i ∈ N0 such that
∞
⋃

i=0

Ei = N0 and Ei ∩ Ej = ∅ for all i 6= j.

Definition 1.10. Let {Ei : i = 0, 1, ..., T − 1} be a fixed T−partition of N0 and x(i) = (x
(i)
j ) be a sequence in X with

for i = 0, 1, ..., T − 1, lim
j→∞

x
(i)
j = αi. If k ∈ Ei, then k = vi(j) for some j. Define x = (xk) by xk = xvi(j) = x

(i)
j . Then

x is called a T − splice on {Ei : i = 0, 1, ..., T − 1} with limit points α0, α1, ..., αT−1 [1].

Definition 1.11. Let {Ei : i ∈ N0} be a fixed ∞ −partition of N0, consider a sequence x(i) = (x
(i)
j ) in X with

lim
j→∞

x
(i)
j = αi, i ∈ N0. If k ∈ Ei, then k = vi(j) for some j. Define x = (xk) by xk = xvi(j) = x

(i)
j . Then it is said that

x is an ∞− splice on {Ei : i ∈ N0} with limit points α0, α1, ..., αT , ... [1].

From [3], it is useful to recall the following

Proposition 1.1. Consider a Banach space (X, ‖.‖) and a nonnegative regular summability matrix A = (anj) such that each

row adds up to one and an ∞−partition of N, {Ei = {vi(j)} : i ∈ N}. If δA(Ei) exists for i ∈ N and
∞
∑

i=1

δA(Ei) = 1 then for

every bounded ∞− spliced sequence x = (xj) on {Ei : i ∈ N}

lim
n→∞

∞
∑

j=1

anjxj =

∫

X

tdF, (1.1)
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where the integral in (1.1) is the Bochner integral and

F (H) =
∑

αi∈H

δA(Ei), H ∈ σ(τ)

is a distribution.

2. Statistical convergence of spliced sequences in terms of power series

In this section, we aim to characterize P -statistical convergence in topological spaces and also obtain equivalent
expressions of P -distributional convergence of spliced sequences. The convergence of a bounded ∞-spliced
sequence via power series method is also represented in terms of Bochner integral in Banach spaces.

The next theorem characterizes P -statistical convergence in topological spaces.

Theorem 2.1. Consider X being a Hausdorff topological space and a sequence x = (xj) in X . The following assessments are
equivalent:

• (i) x is P -statistically convergent to α ∈ X .

• (ii) x is P -distributionally convergent to F : σ (τ) → [0, 1] defined by

F (H) =

{

0 , α /∈ H
1 , α ∈ H

.

Proof. Assume that x is P -statistically convergent to α. So for every open set H which contains α we get

lim
0<t→R−

1

p(t)

∑

xj /∈H

pjt
j = 0.

First, let us give the following notations that we will need to complete the proof and use in the remainder of the
paper.

Consider D = {(zn) ⊂ R : ∀n ∈ N0, 0 < zn < R and lim
n→∞

zn = R} and let

C =

{

C(z) = (cnk) : cnk =
1

p(zn)
pjz

j
n

}

,

where

p(t) :=

∞
∑

j=0

pjt
j .

Hence for any z ∈ D we get

lim
n→∞

1

p(zn)

∑

xj /∈H

pjz
j
n = 0.

This limit shows that for any C (z) ∈ C, the sequence x is C (z)-statistically convergent to α. According to
Proposition 1 of [3], for any C (z) ∈ C, x is C (z)-distributionally convergent to F . This completes the proof.

Conversely assume that x is P -distributionally convergent to F . So for any C (z) ∈ C, x is C (z)-distributionally
convergent to F . Again according to Proposition 1 of [3], x is C (z)-statistically convergent to α for any C (z) ∈ C.
This implies x is P -statistically convergent to α.

The next theorem deals with P -distributional convergence of finite spliced sequences.

Theorem 2.2. Consider X being a Hausdorff topological space and a T−partition of N0, {Ei : i = 0, 1, ..., T − 1}. Then the
following assessments are equivalent:

• (a) For each i = 0, 1, ..., T − 1, δP (Ei) exists.
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• (b) There exist s0, s1, ..., sT−1 ∈ [0, 1] such that
T−1
∑

i=0

si = 1 and any T − spliced sequence on {Ei : i = 0, 1, ..., T − 1}

with limit points α0, α1, ..., αT−1 is P -distributionally convergent to the distribution F : σ(τ) → [0, 1] where

F (H) =
∑

0≤i≤T−1
αi∈H

si, for all H ∈ σ(τ).

• (c) There exist s0, s1, ..., sT−1 ∈ [0, 1] such that
T−1
∑

i=0

si = 1 and the T−splice of x(0), x(1), ..., x(T−1) on {Ei : i = 0, 1, ..., T − 1}

where x(i) = (αi, αi, ...) is a constant sequence and is P -distributionally convergent to the distribution F : σ(τ) →
[0, 1] where

F (H) =
∑

0≤i≤T−1
αi∈H

si, for all H ∈ σ(τ).

Proof. (a) =⇒ (b) : Assume that δP (Ei) exists for any i = 0, 1, ..., T − 1 and set si = δP (Ei) for i = 0, 1, ..., T − 1.
Since {Ei : i = 0, 1, ..., T − 1} is a T−partition of N0, it is obvious that

1 =

T−1
∑

i=0

δP (Ei) =

T−1
∑

i=0

pi.

Let F : σ(τ) → [0, 1] be defined as follows

F (H) =
∑

0≤i≤T−1
αi∈H

pi, for all H ∈ σ(τ).

Obviously one can see that F is a distribution on σ(τ).
For each i = 0, 1, ..., T −1 by the existence of δP (Ei), we observe that for any C(z) ∈ C and any i = 0, 1, ..., T −1,

δC(z)(Ei) exists and equals to δP (Ei). Since for each i = 0, 1, ..., T −1, si = δP (Ei) = δC(z)(Ei) and for any C(z) ∈ C

from Theorem 1 of [3] , x is obviously C(z)-distributionally convergent to F i.e. for any z ∈ D and for all H ∈ σ(τ)
with F (∂H) = 0

lim
n→∞

1

p(zn)

∑

xj∈H

pjz
j
n = F (H)

holds and implies

lim
0<t→R−

1

p(t)

∑

xj∈H

pjt
j = F (H).

Then the sequence x is P -distributionally convergent to F.
(b) =⇒ (c) : Since for each i = 0, 1, ..., T − 1, x(i) = (αi, αi, ...) is convergent, the proof can be obtained

immediately.
(c) =⇒ (a) : Consider the sequence x which is the T -spliced of x(0), x(1), ..., x(T−1) on {Ei : i = 0, 1, ..., T − 1}

where x(i) = (αi, αi, ...) is a constant sequence and is P -distributionally convergent to the distribution F and let

s0, s1, ..., sT−1 ∈ [0, 1] such that
T−1
∑

i=0

si = 1. Then for any C(z) ∈ C, x is C(z)-distributionally convergent to F.

According to Theorem 1 of [3] for any i = 0, 1, ..., T − 1 and for every C(z) ∈ C, δC(z)(Ei) exists and equals to si
which implies

lim
n→∞

1

p(zn)

∑

xj∈Ei

pjz
j
n = si.

Thus for each i = 0, 1, ..., T − 1, we have

δP (Ei) = lim
0<t→R−

1

p(t)

∑

xj∈Ei

pjt
j = si.

This completes the proof.
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The following result deals with P -distributional convergence of ∞−spliced sequences.

Theorem 2.3. Consider a Hausdorff topological space X and an ∞−partition of N0, {Ei = {vi(j)} : i ∈ N0}. Then δP (Ei)

exists for all i ∈ N0 and
∞
∑

i=0

δP (Ei) = 1 if and only if there exist si ∈ [0, 1] for i ∈ N0 such that
∞
∑

i=0

si = 1 and any

∞−splice sequence on {Ei : i ∈ N0} with limit points α0, α1, α2, ... is P -distributionally convergent to the distribution F :
σ(τ) → [0, 1] where for all H ∈ σ(τ)

F (H) =
∑

αi∈H

si.

Proof. Assume that δP (Ei) exists for any i ∈ N0. Hence for any C(z) ∈ C and for all i ∈ N0, δC(z)(Ei) exists and
equals to δP (Ei). Hence for any C(z) ∈ C and for each i ∈ N0, we get

∞
∑

i=0

δC(z)(Ei) = 1.

According to Theorem 2 of [3], for any C(z) ∈ C we get that every ∞− spliced sequence x = (xk) on {Ei : i ∈ N0}
with limit points α0, α1, α2, ... is C(z)-distributionally convergent to the distribution F : σ(τ) → [0, 1] where for all
H ∈ σ(τ)

F (H) =
∑

αi∈H

δC(z)(Ei) =
∑

αi∈H

δP (Ei),

i.e.
lim
n→∞

1

p(zn)

∑

xj∈H

pjz
j
n = F (H)

holds for every H ∈ σ(τ) with F (∂H) = 0 and for any z ∈ D. We have

lim
0<t→R−

1

p(t)

∑

xj∈H

pjt
j = F (H)

which means that x is P -distributionally convergent to F .

For sufficiency, let si ∈ [0, 1] for i ∈ N0 such that
∞
∑

i=0

si = 1 and consider every ∞ − spliced sequence on

{Ei : i ∈ N0} with limit points α0, α1, α2, ... is P -distributionally convergent to F. Then

lim
0<t→R−

1

p(t)

∑

xj∈H

pjt
j = F (H)

holds for all H ∈ σ(τ) with F (∂H) = 0. So for any H ∈ σ(τ) with F (∂H) = 0 and for each z ∈ D, we have

lim
n→∞

1

p(zn)

∑

xj∈H

pjz
j
n = F (H). (2.1)

Then from Theorem 2 of [3] and by (2.1) for each C(z) ∈ C and for all i ∈ N0, δC(z)(Ei) exists and equals to si with
∞
∑

i=0

si = 1. Therefore for any z ∈ D and for each i ∈ N0

lim
n→∞

1

p(zn)

∑

j∈Ei

pjz
j
n = si

which implies

δP (Ei) = lim
0<t→R−

1

p(t)

∑

j∈Ei

pjt
j = si

for all i ∈ N0. Hence δP (Ei) exists for all i ∈ N0 and
∞
∑

i=0

δP (Ei) = 1.
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In the next theorem the convergence of a bounded ∞-spliced sequence via power series method is represented
by Bochner integral in Banach spaces.

Theorem 2.4. Consider a Banach space (X, ‖.‖) and an ∞−partition of N0, {Ei = {vi(j)} : i ∈ N0}. If δP (Ei) exists for

each i ∈ N0 and
∞
∑

i=0

δP (Ei) = 1 then for every bounded ∞−spliced sequence x = (xj) on {Ei = {vi(j)} : i ∈ N0}

lim
0<t→R−

1

p (t)

∞
∑

j=0

pjt
jxj =

∫

X

tdF (2.2)

where the integral in (2.2) is the Bochner integral and

F (H) =
∑

αi∈H

δP (Ei), for every H ∈ σ(τ)

is a distribution.

Proof. Let δP (Ei) exists for all i ∈ N0 and
∞
∑

i=0

δP (Ei) = 1. Hence for any C(z) ∈ C and for each i ∈ N0, δC(z)(Ei)

exists and equals to δP (Ei) with
∞
∑

i=0

δC(z)(Ei) = 1. Then from Proposition 1.1, we obtain for every bounded

∞− spliced sequence x = (xj) on {Ei = {vi(j)} : i ∈ N0}, for each C(z) ∈ C

lim
n→∞

1

p(zn)

∞
∑

j=0

pjz
j
nxj =

∫

X

tdF (2.3)

where F is defined by
F (H) =

∑

αi∈H

δC(z)(Ei) =
∑

αi∈H

δP (Ei). (2.4)

Hence from (2.3) and (2.4), we obtain

lim
0<t→R−

1

p(t)

∞
∑

j=0

pjt
jxj =

∫

X

tdF.

This completes the proof.
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ADDRESS: Kırşehir Ahi Evran University, Faculty of Science and Arts, Department of Mathematics, Kırşehir,
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