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RESEARCH ARTICLE

On the holonomic systems for the Gauss hypergeometric function and its
confluent family of a matrix argument

H. Kimura1*

1Kumamoto University, School of Science and Technology, Department of mathematics, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

ABSTRACT
We investigate the several special functions defined by a matrix integral on the Hermitian matrix space of size n. They are the
matrix argument analogues of the Gauss hypergeometric, Kummer’s confluent hypergeometric, the Bessel, the Hermite-Weber
and Airy functions which play important roles in the multivariate statistical analysis and the random matrix theory. We give the
integral representations for them as functions of eigenvalues of the matrix argument by using the result of Harish-Chandra and
Itzykson-Zuber, and give the systems of differential equations for them. We show that these system are holonomic and have the
holonomic rank 2𝑛 using the theory of Gröbner basis.

Mathematics Subject Classification (2020): 33C70, 33C80

Keywords: hypergeometric function, matrix integral, holonomic system, Gröbner basis

1. INTRODUCTION

In this paper, we are concerned with the special functions of a matrix argument defined by an integral on the space of complex
Hermitian matrices or normal matrices. One of the most important classes of classical special functions may be the Gauss
hypergeometric function (HGF) and its confluent family, namely, Kummer’s confluent HGF, Bessel function, Hermite-Weber
function and Airy function. For example, Gauss, Kummer and Bessel functions are given by the power series

2𝐹1 (𝑎, 𝑏, 𝑐; 𝑥) =
∞∑︁
𝑚=0

(𝑎)𝑚 (𝑏)𝑚
(𝑐)𝑚𝑚!

𝑥𝑚,

1𝐹1 (𝑎, 𝑐; 𝑥) =
∞∑︁
𝑚=0

(𝑎)𝑚
(𝑐)𝑚𝑚!

𝑥𝑚,

0𝐹1 (𝑐 + 1;−𝑥) =
∞∑︁
𝑚=0

(−1)𝑚
(𝑐 + 1)𝑚𝑚!

𝑥𝑚,

respectively, where 𝑎, 𝑏, 𝑐 ∈ C, 𝑥 is the complex variable and (𝑎)𝑚 = Γ(𝑎 + 𝑚)/Γ(𝑎) is the so-called Pochhammer’s symbol
defined by the gamma function Γ(𝑎). In this paper we consider and study the matrix argument analogues of these classical HGF
family. The matrix argument analogues of Gauss, Kummer and Bessel are studied in connection with the multivariate statistical
analysis Muirhead (1982) and with the analysis on symmetric cones Faraut and A. Koranyi (1994). We also want to add in this list
the matrix argument analogues of Hermite-Weber and Airy functions, which have been studied in Inamasu and Kimura, (2021).

Let us explain our motivation of our study. The above mentioned classical HGF family is sometimes displayed schematically as

Bessel
↗ ↘

Gauss → Kummer Airy,
↘ ↗

Hermite − Weber

where each arrow implies some kind of limiting process called confluence. These functions are studied by using various aspects
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of the functions: the power series expressions, the integral representations, the differential equations, the contiguity relations.
Here we focus on the aspects of differential equations and integral representations. The differential equations and the integral
representations for them are given as follows.

Differential equations:

Gauss : 𝑥(1 − 𝑥)𝑦′′ + {𝑐 − (𝑎 + 𝑏 + 1)𝑥}𝑦′ − 𝑎𝑏𝑦 = 0,
Kummer : 𝑥𝑦′′ + (𝑐 − 𝑥)𝑦′ − 𝑎𝑦 = 0,

Bessel : 𝑥𝑦′′ + (𝑐 + 1)𝑦′ + 𝑦 = 0,
Hermite-Weber : 𝑦′′ − 𝑥𝑦′ + 𝑐𝑦 = 0,

Airy : 𝑦′′ − 𝑥𝑦 = 0.

Integral representations:

2𝐹1 (𝑎, 𝑏, 𝑐; 𝑥) =
Γ(𝑐)

Γ(𝑎)Γ(𝑐 − 𝑎)

∫ 1

0
𝑡𝑎−1 (1 − 𝑡)𝑐−𝑎−1 (1 − 𝑡𝑥)−𝑏𝑑𝑡

1𝐹1 (𝑎, 𝑐; 𝑥) =
Γ(𝑐)

Γ(𝑎)Γ(𝑐 − 𝑎)

∫ 1

0
𝑡𝑎−1 (1 − 𝑡)𝑐−𝑎−1𝑒𝑥𝑡𝑑𝑡,

0𝐹1 (𝑐 + 1;−𝑥) =
∫
𝐶

𝑡𝑐−1𝑒𝑥𝑡−
1
𝑡 𝑑𝑡,

𝐻 (𝑐; 𝑥) =
∫
𝐶

𝑡−𝑐−1𝑒𝑥𝑡−
1
2 𝑡

2
𝑑𝑡,

𝐴𝑖(𝑥) =
∫
𝐶

𝑒𝑥𝑡−
1
3 𝑡

3
𝑑𝑡,

where 𝐶 is an appropriate path in the complex 𝑡-plane. Note that we took the path
−→
01 as the path of integration for the Gauss’ case

and the Kummer’s case so that the integrals give the power series expressions. If one takes another appropriate paths of integration,
we get various solutions to the differential equations (see Iwasaki et al. (1991)). We should comment on the Bessel equation. In
many literatures, it has the form 𝑧2𝑤′′ + 𝑧𝑤′ + (𝑧2 − 𝑐2)𝑤 = 0. If one perform, for this equation, the change of unknown 𝑤 ↦→ 𝑦

by 𝑤 = 𝑧𝑐𝑦 and then the change of independent variable 𝑧 ↦→ 𝑥 by 𝑥 = 𝑧2/4, we get the differential equation we gave in the list.
The Gauss HGF and its confluent family appear in many research fields of mathematics and mathematical physics and play

important roles. For example, it is known that the Gauss, Kummer, Hermite-Weber, Bessel and Airy functions appear as particular
solutions of the Painlevé equations 𝑃6, 𝑃5, 𝑃4, 𝑃3 and 𝑃2, respectively Iwasaki et al. (1991).

It is also known that they are understood as simple cases of Gelfand’s HGF on the complex Grassmannian manifold Gr(𝑟, 𝑁),
the set of 𝑟-dimensional subspaces in C𝑁 . Roughly speaking, Gelfand’s HGF on Gr(𝑟, 𝑁) is defined as follows. First we consider
the maximal abelian subgroup 𝐻𝜆 of GL(𝑁) obtained as the centralizer of a regular element 𝑎 of GL(𝑁), where 𝑎 is in the Jordan
normal form and its cell structure is described by the partition 𝜆 of 𝑁 . Then Gelfand’s HGF of type 𝜆 on Gr(𝑟, 𝑁) is defined as the
Radon transform of a character of the universal covering group �̃�𝜆. In this context, the Gauss, Kummer, Bessel, Hermite-Weber and
Airy functions are identified with Gelfand’s HGFs on Gr(2, 4) corresponding to the partitions (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1)
and (4), respectively.

Taking into account of these facts, we think it is natural to study the extension of classical HGF family to the functions of a
matrix argument including those of the Hermite-Weber and Airy functions. It should be commented that the Airy function of
a matrix argument, defined by a Hermitian matrix integral in Section 2.2, already played an important role in the resolution of
Witten’s conjecture on the 2-dimensional quantum gravity by M. Kontsevich Kontsevich (1992).

In Inamasu and Kimura, (2021), we discussed the relation of the HGFs of a matrix argument, defined by the integrals on the
spaceℋ(𝑛) of Hermitian matrices, to some semi-classical orthogonal polynomials and to the polynomial solutions to the quantum
Painlevé systems (see also Nagoya (2011)). We stated in Inamasu and Kimura, (2021) a conjecture on the explict form of the
systems of partial differential equations characterizing the Hermite-Weber and Airy functions of a matrix argument. We give the
answer (Theorem 3.1) to this conjecture deriving the systems of differential equations for a matrix argument analogue of the Gauss
and its confluent family defined by the matrix integrals (Definition 2.1). It should be mentioned that the differential equations for
the matrix argument analogues of Gauss, Kummer and Bessel were obtained in Muirhead (1970) by J. Muirhead. He handled the
functions given by the series expansion in terms of zonal polynomials and derived the differential equations characterizing them.
Our approach is different from his. We treat the functions defined by the integrals with various possible choices of domain of
integration in deriving the differential equations. On the other hand, the functions treated by Muirhead correspond to the integrals
with a particular choice of domain of integration, see Proposition 2.8. Since we use the matrix integrals on ℋ(𝑛) or on the space
of normal matrices to define the HGFs of a matrix argument, we call them the HGFs of matrix integral type.

Another main result of this paper is Theorem 5.1 on the holonomicity of the systems and on their holonomic ranks which give
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the dimension of the solution space for the systems at a generic point. This theorem is proved by computing a Gröbner basis for
the ideal in the ring of differential operators generated by the differential operators characterizing the HGFs.

This paper is organized as follows. In Section 2, we introduce the HGFs defined by an integral on the Hermitian matrix or
normal matrix space. We give the expressions of HGFs as the functions of eigenvalues of the variable matrix. The main tools are
the Harish-Chandra and Itsykson-Zuber integral formulas. In Section 3, we give the systems of differential equations for the HGFs
of matrix integral type as the functions of eigenvalues of the matrix argument (Theorem 3.1). Section 4 is devoted to the proof of
this theorem. In Section 5, we discuss the holonomicity and the holonomic rank of the systems (Theorem 5.1).

2. HGF OF MATRIX INTEGRAL TYPE

2.1. Integrals on Hermitian matrix space

Let ℋ(𝑛) be the set of 𝑛 × 𝑛 complex Hermitian matrices. It is a real vector space of dimension 𝑛2. For 𝑌 = (𝑌𝑖 𝑗 ) ∈ ℋ(𝑛), let 𝑑𝑌
denote the volume element on ℋ(𝑛), which is the usual Euclidean volume element

𝑑𝑌 =

𝑛∧
𝑖=1

𝑑𝑌𝑖𝑖

∧
𝑖< 𝑗

(
𝑑Re(𝑌𝑖 𝑗 ) ∧ 𝑑Im(𝑌𝑖 𝑗 )

)
,

where we fix some order of indices in the right hand side.
The matrix integral version of the gamma function and the beta function are defined by

Γ𝑛 (𝑎) =
∫
𝑌>0

|𝑌 |𝑎−𝑛etr(−𝑌 ) 𝑑𝑌,

𝐵𝑛 (𝑎, 𝑏) :=
∫

0<𝑌<𝐼
|𝑌 |𝑎−𝑛 |𝐼 − 𝑌 |𝑏−𝑛 𝑑𝑌,

respectively, where𝑌 ∈ ℋ(𝑛), |𝑌 | is the determinant of𝑌 , tr𝑌 is the trace of𝑌 , etr(𝑌 ) := exp( tr (𝑌 )) and the integral is taken on the
set of positive definite Hermitian matrices𝑌 > 0 for the gamma function and on the subset ofℋ(𝑛) satisfying𝑌 > 0 and 𝐼 −𝑌 > 0
for the beta function. The gamma integral converges for Re(𝑎) > 𝑛− 1 and the beta integral for Re(𝑎) > 𝑛− 1,Re(𝑏) > 𝑛− 1, and
they define holomorphic functions there.

Proposition. (see Faraut and A. Koranyi (1994)) The following formulas hold.
(i) Γ𝑛 (𝑎) = 𝜋

𝑛(𝑛−1)
2

∏𝑛
𝑖=1 Γ(𝑎 + 𝑖 − 1).

(ii) 𝐵𝑛 (𝑎, 𝑏) = Γ𝑛 (𝑎)Γ𝑛 (𝑏)
Γ𝑛 (𝑎+𝑏) .

2.2. HGF of matrix integral type

We introduced the family of HGFs of matrix integral type in Inamasu and Kimura, (2021). We recall them.

Definition 2.1. For 𝑋 ∈ ℋ(𝑛), put

𝐼𝐺 (𝑎, 𝑏, 𝑐; 𝑋) =
∫
𝐶

|𝑌 |𝑎−𝑛 |𝐼 − 𝑌 |𝑐−𝑎−𝑛 |𝐼 − 𝑋𝑌 |−𝑏 𝑑𝑌,

𝐼𝐾 (𝑎, 𝑐; 𝑋) =
∫
𝐶

|𝑌 |𝑎−𝑛 |𝐼 − 𝑌 |𝑐−𝑎−𝑛etr(𝑋𝑌 ) 𝑑𝑌

𝐼𝐵 (𝑐; 𝑋) =
∫
𝐶

|𝑌 |𝑐−𝑛etr(𝑋𝑌 − 𝑌−1) 𝑑𝑌,

𝐼𝐻𝑊 (𝑐; 𝑋) =
∫
𝐶

|𝑌 |−𝑐−𝑛etr(𝑋𝑌 − 1
2
𝑌2) 𝑑𝑌,

𝐼𝐴(𝑋) =
∫
𝐶

etr(𝑋𝑌 − 1
3
𝑌3) 𝑑𝑌,

where 𝐶 is an appropriate domain of integration in ℋ(𝑛) or in the space of normal matrices of size 𝑛 for which the differentiation
with respect to the entries of 𝑋 can be interchanged with the integration.

Comparing the above integrals with the integral representations for the classical hypergeometric family in the introduction, one
may recognize that they are extensions of the classical HGF family to functions with a matrix argument. In fact, Muirhead treated
in Muirhead (1970) the extension of Gauss and Kummer to the functions of a matrix argument expressed by the series in terms of

3
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zonal polynomials. They are denoted by 2𝐹1 (𝑎, 𝑏, 𝑐; 𝑋) and 1𝐹1 (𝑎, 𝑐; 𝑋) and have the integral representations:

2𝐹1 (𝑎, 𝑏, 𝑐; 𝑋) =
Γ𝑛 (𝑐)

Γ𝑛 (𝑎)Γ𝑛 (𝑐 − 𝑎)

∫
0<𝑌<𝐼

|𝑌 |𝑎−𝑛 |𝐼 − 𝑌 |𝑐−𝑎−𝑛 |𝐼 − 𝑋𝑌 |−𝑏 𝑑𝑌,

1𝐹1 (𝑎, 𝑐; 𝑋) =
Γ𝑛 (𝑐)

Γ𝑛 (𝑎)Γ𝑛 (𝑐 − 𝑎)

∫
0<𝑌<𝐼

|𝑌 |𝑎−𝑛 |𝐼 − 𝑌 |𝑐−𝑎−𝑛etr(𝑋𝑌 ) 𝑑𝑌 .

It should be mentioned on the choice of domains of integration 𝐶 for the integrals in Definition 2.1. We required that 𝐶 is chosen
so that the differentiation with respect to the entries of 𝑋 can be interchanged with the integration, and that we can apply the
Stokes theorem. For example, to define the Airy function of matrix integral type, we consider the integral in the space of normal
matrices. In this case, taking into account that a normal matrix is a matrix which is transformed to a diagonal matrix with complex
eigenvalues by conjugating with a unitary matrix, we see in Proposition 2.6 that the matrix integral can be reduced to the integral
on the space of eigenvalues. Then we may take the domain of integration 𝐶 in the normal matrix space which, after a reduction of
the integral, becomes an 𝑛-cycle of a locally finite homology group of the space of eigenvalues 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ C𝑛 on which
the integrand decreases to 0 exponentially when |𝑦 | → ∞. See Hien (2007) for this kind of homology groups.

Remark 2.2. The matrix integrals in Definition 2.1 define functions of the eigenvalues 𝑥1, . . . , 𝑥𝑛 of 𝑋 , see the next subsection.

2.3. Integrals on the eigenvalues

For the HGFs of matrix integral type, we want to rewrite them to the integrals on the space of eigenvalues 𝑦 = (𝑦1, . . . , 𝑦𝑛) of
𝑌 ∈ ℋ(𝑛). To this end we need the following integral formulas . Let 𝒰(𝑛) denote the group of unitary matrices of size 𝑛.

Proposition 2.3. (Weyl integration formula) We have∫
𝑓 (𝑌 )𝑑𝑌 = 𝜋

𝑛(𝑛−1)
2 (

𝑛∏
𝑝=1

𝑝!)−1
∫

𝑓 (𝑔𝑦𝑔∗)Δ(𝑦)2𝑑𝑦𝑑𝑔,

where 𝑌 ∼ 𝑦 = diag(𝑦1, . . . , 𝑦𝑛) by 𝑌 = 𝑔𝑦𝑔∗ with 𝑔 ∈ 𝒰(𝑛), Δ(𝑦) = ∏
𝑖< 𝑗 (𝑦𝑖 − 𝑦 𝑗 ), 𝑑𝑦 = 𝑑𝑦1 · · · 𝑑𝑦𝑛, and 𝑑𝑔 is the normalized

Haar measure on the unitary group 𝒰(𝑛).

We also need the following results due to Harish-Chandra and Itzykson-Zuber. We refer to Balantekin (2000); Bleher and
Kuĳlaars (2004); Deift, (2000); Harnad and Orlov (2007); Mehta (1991) for these formulas.

Proposition 2.4. Let 𝐴, 𝐵 be normal matrices of size 𝑛 diagonalized as

𝐴 ∼ diag(𝑎1, . . . , 𝑎𝑛), 𝐵 ∼ diag(𝑏1, . . . , 𝑏𝑛),

and assume that 𝑎𝑖 ≠ 𝑎 𝑗 , 𝑏𝑖 ≠ 𝑏 𝑗 for 𝑖 ≠ 𝑗 . For 𝑡 ∈ C, we have

∫
𝒰(𝑛)

(det(1 − 𝑡𝐴𝑔𝐵𝑔∗))−𝛼𝑑𝑔 =

𝑛−1∏
𝑝=1

𝑝!
(𝛼 − 𝑛 + 1)𝑝

det[(1 − 𝑡𝑎𝑖𝑏 𝑗 )−𝛼+𝑛−1]
Δ(𝑎)Δ(𝑏) .

Proposition 2.5. Let 𝐴, 𝐵 be as in Proposition 2.4. For 𝑡 ∈ C, we have

∫
𝒰(𝑛)

exp[𝑡 tr (𝐴𝑔𝐵𝑔∗)]𝑑𝑔 =
©­«
𝑛−1∏
𝑝=1

𝑝!ª®¬ det(𝑒𝑡𝑎𝑖𝑏 𝑗 )
Δ(𝑎)Δ(𝑏) .

By applying Propositions 2.3, 2.4 to the integrals in Definition 2.1, we obtain the following result.

Proposition 2.6. Assume that 𝑋 ∈ ℋ(𝑛) has distinct eigenvalues 𝑥1, . . . , 𝑥𝑛. Then we have

4
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𝐼𝐺 (𝑎, 𝑏, 𝑐; 𝑋) = 𝐶0

∫
𝐷

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 · det
(
(1 − 𝑥 𝑗 𝑦𝑘)−𝑏+𝑛−1

) Δ(𝑦)
Δ(𝑥) 𝑑𝑦,

𝐼𝐾 (𝑎, 𝑐; 𝑋) = 𝐶1

∫
𝐷

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 · det(𝑒𝑥 𝑗 𝑦𝑘 )Δ(𝑦)
Δ(𝑥) 𝑑𝑦,

𝐼𝐵 (𝑐; 𝑋) = 𝐶1

∫
𝐷

𝑛∏
𝑖=1

𝑦𝑐−𝑛𝑖 𝑒−1/𝑦𝑖 det (𝑒𝑥 𝑗 𝑦𝑘 ) Δ(𝑦)
Δ(𝑥) 𝑑𝑦,

𝐼𝐻𝑊 (𝑐; 𝑋) = 𝐶1

∫
𝐷

𝑛∏
𝑖=1

𝑦−𝑐−𝑛𝑖 𝑒−
1
2 𝑦

2
𝑖 det (𝑒𝑥 𝑗 𝑦𝑘 ) Δ(𝑦)

Δ(𝑥) 𝑑𝑦,

𝐼𝐴(𝑋) = 𝐶1

∫
𝐷

𝑛∏
𝑖=1

𝑒−
1
3 𝑦

3
𝑖 det (𝑒𝑥 𝑗 𝑦𝑘 ) Δ(𝑦)

Δ(𝑥) 𝑑𝑦,

where 𝐶0 = 𝜋
𝑛(𝑛−1)

2 (𝑛!
∏𝑛−1
𝑝=1 (𝑏 − 𝑛 + 1)𝑝)−1, 𝐶1 = 𝜋

𝑛(𝑛−1)
2 (𝑛!)−1, and 𝐷 is a twisted 𝑛-cycle of the homology group defined by the

integrand.

Proof. We show the assertion for 𝐼𝐺 (𝑎, 𝑏, 𝑐; 𝑋) for the sake of completeness of presentation. We apply the Weyl integration
formula to 𝑓 (𝑌 ) = |𝑌 |𝑐1 |𝐼 − 𝑌 |𝑐2 |𝐼 − 𝑋𝑌 |−𝑏 with 𝑐1 = 𝑎 − 𝑛, 𝑐2 = 𝑐 − 𝑎 − 𝑛. Note that

𝑓 (𝑔𝑦𝑔∗) = |𝑔𝑦𝑔∗ |𝑐1 |𝐼 − 𝑔𝑦𝑔∗ |𝑐2 |𝐼 − 𝑋𝑔𝑦𝑔∗ |−𝑏

= |𝑦 |𝑐1 |𝐼 − 𝑦 |𝑐2 |𝐼 − 𝑋𝑔𝑦𝑔∗ |−𝑏

=

𝑛∏
𝑖=1

𝑦
𝑐1
𝑖
(1 − 𝑦𝑖)𝑐2 · |𝐼 − 𝑋𝑔𝑦𝑔∗ |−𝑏 .

Putting this in the Weyl formula and using Proposition 2.4 for 𝑡 = 1, we have

𝐼𝐺 (𝑎, 𝑏, 𝑐; 𝑋) = 𝜋
𝑛(𝑛−1)

2 (
𝑛∏
𝑝=1

𝑝!)−1
∫
𝐷

(∫
𝒰(𝑛)

|𝐼 − 𝑋𝑔𝑦𝑔∗ |−𝑏𝑑𝑔
) 𝑛∏
𝑖=1

𝑦
𝑐1
𝑖
(1 − 𝑦𝑖)𝑐2Δ(𝑦)2𝑑𝑦

= 𝐶0

∫
𝐷

det
(
(1 − 𝑥 𝑗 𝑦𝑘)−𝑏+𝑛−1)
Δ(𝑥)Δ(𝑦)

𝑛∏
𝑖=1

𝑦
𝑐1
𝑖
(1 − 𝑦𝑖)𝑐2Δ(𝑦)2𝑑𝑦.

= 𝐶0

∫
𝐷

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 · det
(
(1 − 𝑥 𝑗 𝑦𝑘)−𝑏+𝑛−1

) Δ(𝑦)
Δ(𝑥) 𝑑𝑦.

The expressions for the other HGFs can be obtained in a similar way by using Proposition 2.5.

Remark 2.7. For the Airy integral 𝐼𝐴(𝑋), we can take an 𝑛-cycle 𝐷 in the rapidly decay homology group Hien (2007). Let 𝛾1, 𝛾2
be the paths in C as in Figure 1. Then 𝐷𝑖1 ,...,𝑖𝑛 = 𝛾𝑖1 × · · · × 𝛾𝑖𝑛 for 𝑖1, . . . , 𝑖𝑛 ∈ {1, 2} gives an 𝑛-cycle and there are 2𝑛 choices.

Now the following statement is easily deduced from Proposition 2.6.

Proposition 2.8. (1) For 2𝐹1 (𝑎, 𝑏, 𝑐; 𝑋), we assume that 𝑋 ∈ ℋ(𝑛) has distinct eigenvalues 𝑥1, . . . , 𝑥𝑛. Then we have

2𝐹1 (𝑎, 𝑏, 𝑐; 𝑋) = 𝐶2

∫
(0,1)𝑛

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 · det
(
(1 − 𝑥 𝑗 𝑦𝑘)−𝑏+𝑛−1

) Δ(𝑦)
Δ(𝑥) 𝑑𝑦

= 𝑛!𝐶2

∫
(0,1)𝑛

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 (1 − 𝑥𝑖𝑦𝑖)−𝑏+𝑛−1Δ(𝑦)
Δ(𝑥) 𝑑𝑦,

where 𝐶2 =
Γ𝑛 (𝑐)

Γ𝑛 (𝑎)Γ𝑛 (𝑐−𝑎)𝐶0.
(2) For 1𝐹1 (𝑎, 𝑏, 𝑐; 𝑋), we assume that 𝑋 ∈ ℋ(𝑛) has distinct eigenvalues 𝑥1, . . . , 𝑥𝑛. Then we have

1𝐹1 (𝑎, 𝑐; 𝑋) = 𝐶3

∫
(0,1)𝑛

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛 · det(𝑒𝑥 𝑗 𝑦𝑘 )Δ(𝑦)
Δ(𝑥) 𝑑𝑦

= 𝑛!𝐶3

∫
(0,1)𝑛

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛𝑒𝑥𝑖 𝑦𝑖
Δ(𝑦)
Δ(𝑥) 𝑑𝑦,

where 𝐶3 =
Γ𝑛 (𝑐)

Γ𝑛 (𝑎)Γ𝑛 (𝑐−𝑎)𝐶1.
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Figure 1.Figure 1

Proof. We show (2). The first representation for 1𝐹1 (𝑎, 𝑐; 𝑋) is obvious by Propostion 2.6. We show the second one for 1𝐹1. Put
𝑈 (𝑦) :=

∏𝑛
𝑖=1 𝑦

𝑎−𝑛
𝑖

(1 − 𝑦𝑖)𝑐−𝑎−𝑛 and consider the expansion

det(𝑒𝑥 𝑗 𝑦𝑘 ) =
∑︁
𝜎∈𝔖𝑛

(sgn𝜎)𝑒𝑥1𝑦𝜎 (1) · · · 𝑒𝑥𝑛𝑦𝜎 (𝑛) ,

where 𝔖𝑛 is the symmetric group of degree 𝑛. Then we have

Δ(𝑥)
𝐶3

1𝐹1 (𝑎, 𝑐; 𝑋) =
∑︁
𝜎∈𝔖𝑛

∫
(0,1)𝑛

(sgn𝜎)𝑈 (𝑦)
𝑛∏
𝑖=1

𝑒𝑥𝑖 𝑦𝜎 (𝑖)Δ(𝑦)𝑑𝑦.

Consider the integral in the right hand side for any fixed 𝜎 ∈ 𝔖𝑛 and make a change of variables 𝑦 → 𝑦′ defined by 𝑦′
𝑖
=

𝑦𝜎 (𝑖) (𝑖 = 1, . . . , 𝑛). Note that, by the change 𝑦 → 𝑦′, the function 𝑈 (𝑦) and the domain of integration (0, 1)𝑛 are invariant, and
Δ(𝑦′) = (sgn𝜎)Δ(𝑦). Hence the integrals in the right hand side are all equal to∫

(0,1)𝑛

𝑛∏
𝑖=1

𝑦𝑎−𝑛𝑖 (1 − 𝑦𝑖)𝑐−𝑎−𝑛𝑒𝑥𝑖 𝑦𝑖Δ(𝑦)𝑑𝑦.

This establishes the second representation for 1𝐹1.

3. SYSTEM OF DIFFERENTIAL EQUATIONS FOR HGF

We give the systems of differential equations satisfied by the family of HGFs of matrix integral type given in Definition 2.1. We
assume that the domain of integration 𝐶 for these integrals is chosen so that the interchange of derivation with respect to 𝑋 and
the integration with respect to 𝑌 is allowed and the Stokes theorem can be applied. Let 𝜕𝑖 denote the partial derivation 𝜕

𝜕𝑥𝑖
.

Theorem 3.1. The HGF 𝐼∗ (𝑋) (∗ = 𝐺, 𝐾, 𝐵, 𝐻𝑊, 𝐴) satisfies, as a function of eigenvalues of X, the following system of differential
equations S∗.

Gauss 𝑆𝐺 :

𝑥𝑖 (1 − 𝑥𝑖)𝜕2
𝑖 𝐹 + {𝑐 − (𝑛 − 1) − (𝑎 + 𝑏 + 1 − (𝑛 − 1))𝑥𝑖}𝜕𝑖𝐹

+
∑︁
𝑗 (≠𝑖)

𝑥𝑖 (1 − 𝑥𝑖)𝜕𝑖𝐹 − 𝑥 𝑗 (1 − 𝑥 𝑗 )𝜕 𝑗𝐹
𝑥𝑖 − 𝑥 𝑗

− 𝑎𝑏𝐹 = 0, 1 ≤ 𝑖 ≤ 𝑛.

Kummer S𝐾 :

𝑥𝑖𝜕
2
𝑖 𝐹 + {𝑐 − (𝑛 − 1) − 𝑥𝑖}𝜕𝑖𝐹 +

∑︁
𝑗 (≠𝑖)

𝑥𝑖𝜕𝑖𝐹 − 𝑥 𝑗𝜕 𝑗𝐹
𝑥𝑖 − 𝑥 𝑗

− 𝑎𝐹 = 0, 1 ≤ 𝑖 ≤ 𝑛.

Bessel S𝐵:

𝑥𝑖𝜕
2
𝑖 𝐹 + {𝑐 + 1}𝜕𝑖𝐹 +

∑︁
𝑗 (≠𝑖)

𝑥𝑖𝜕𝑖𝐹 − 𝑥 𝑗𝜕 𝑗𝐹
𝑥𝑖 − 𝑥 𝑗

+ 𝐹 = 0, 1 ≤ 𝑖 ≤ 𝑛.
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Hermite-Weber S𝐻𝑊 :

𝜕2
𝑖 𝐹 − 𝑥𝑖𝜕𝑖𝐹 +

∑︁
𝑗 (≠𝑖)

𝜕𝑖𝐹 − 𝜕 𝑗𝐹
𝑥𝑖 − 𝑥 𝑗

+ 𝑐𝐹 = 0, 1 ≤ 𝑖 ≤ 𝑛. (1)

Airy S𝐴:

𝜕2
𝑖 𝐹 +

∑︁
𝑗 (≠𝑖)

𝜕𝑖𝐹 − 𝜕 𝑗𝐹
𝑥𝑖 − 𝑥 𝑗

− 𝑥𝑖𝐹 = 0, 1 ≤ 𝑖 ≤ 𝑛. (2)

The proof of the theorem is given in the next section.
As a particular case of Theorem 3.1, we have the following result, which was given by Muirhead in Muirhead (1970).

Proposition 3.2. (1) 2𝐹1 (𝑎, 𝑏, 𝑐; 𝑋), as a function of eigenvalues of 𝑋, is characterized as the holomorphic solution 𝐹 to the
system S𝐺 which is symmetric in the variables and satisfies 𝐹 (0) = 1.

(2) 1𝐹1 (𝑎, 𝑐; 𝑋), as a function of eigenvalues of 𝑋, is characterized as the holomorphic solution 𝐹 to the system S𝐾 , which is
symmetric in the variables and satisfies 𝐹 (0) = 1.

Once we get the system of differential equations S∗ (∗ = 𝐺, 𝐾, 𝐵, 𝐻𝑊, 𝐴), we can consider it as defined on C𝑛. In Theorem 5.1
of the last section, we show that these systems are holonomic on the Zariski open set Ω∗ ⊂ C𝑛 and their holonomic rank is 2𝑛,
namely the systems are equivalent to the completely integrable Pfaffian systems of rank 2𝑛.

4. PROOF OF THEOREM 3.1

In this section, we use𝑌𝑖 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛), the entries of matrix integration variable𝑌 , as the independent variables of the real space
ℋ(𝑛) instead of 𝑌𝑖𝑖 ,Re(𝑌𝑖 𝑗 ), Im(𝑌𝑖 𝑗 ) (1 ≤ 𝑖 < 𝑗 ≤ 𝑛). Note that, since

Re(𝑌𝑖 𝑗 ) =
𝑌𝑖 𝑗 + 𝑌 𝑗𝑖

2
, Im(𝑌𝑖 𝑗 ) =

𝑌𝑖 𝑗 − 𝑌 𝑗𝑖
2
√
−1

, (1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛),

we have

𝑑𝑌 =

𝑛∧
𝑖=1

𝑑𝑌𝑖𝑖

∧
𝑖< 𝑗

(√
−1
2
𝑌𝑖 𝑗 ∧ 𝑌 𝑗𝑖

)
.

4.1. Lemmas

Let 𝑋 = (𝑋𝑖 𝑗 ) ∈ ℋ(𝑛) be diagonalized as 𝑥 = 𝑈𝑋𝑈†, 𝑥 = diag(𝑥1, . . . , 𝑥𝑛) by a unitary matrix 𝑈, where 𝑈† is the hermitian
conjugate of 𝑈, namely 𝑈† = 𝑡�̄�. Assume that 𝑥1, . . . , 𝑥𝑛 are distinct. Note that 𝑥 and 𝑈 depends on 𝑋 . The following lemmata
are known (Adler and Moerbeke (1992), p50). For the sake of completeness of presentation, we give their proof.

Lemma 4.1. The following equalities hold.
𝜕𝑥𝛼

𝜕𝑋𝑖 𝑗
= 𝑈𝛼𝑖𝑈

†
𝑗 𝛼
, (3)

(𝑥𝛼 − 𝑥𝛽)
(
𝜕𝑈

𝜕𝑋𝑖 𝑗
𝑈†

)
𝛼𝛽

= 𝑈𝛼𝑖𝑈
†
𝑗𝛽
, if 𝛼 ≠ 𝛽. (4)

Proof. Differentiate the both sides of 𝑥 = 𝑈𝑋𝑈† with respect to 𝑋𝑖 𝑗 . Using the identity

𝜕𝑈

𝜕𝑋𝑖 𝑗
𝑈† +𝑈 𝜕𝑈†

𝜕𝑋𝑖 𝑗
= 0, (5)

which comes from𝑈𝑈† = 𝐼, we have

𝜕𝑥

𝜕𝑋𝑖 𝑗
=

(
𝜕𝑈

𝜕𝑋𝑖 𝑗
𝑈†

)
𝑥 +𝑈𝐸𝑖 𝑗𝑈† + 𝑥

(
𝑈
𝜕𝑈†

𝜕𝑋𝑖 𝑗

)
=

(
𝜕𝑈

𝜕𝑋𝑖 𝑗
𝑈†

)
𝑥 +𝑈𝐸𝑖 𝑗𝑈† − 𝑥

(
𝜕𝑈

𝜕𝑋𝑖 𝑗
𝑈†

)
, (6)

where 𝐸𝑖 𝑗 is the (𝑖, 𝑗) matrix unit, namely the 𝑛 × 𝑛 matrix whose only non-zero entry is 1 at the (𝑖, 𝑗)-entry. Comparing the
(𝛼, 𝛼)-entry of both sides of (6), we get (3) and comparing the (𝛼, 𝛽)-entry with 𝛼 ≠ 𝛽, we get (4).
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Lemma 4.2. For (𝛼, 𝛽) with 1 ≤ 𝛼, 𝛽 ≤ 𝑛, we have the equalities:∑︁
𝑖, 𝑗

𝑈
†
𝑖𝛽

𝜕𝑥𝛼

𝜕𝑋𝑖 𝑗
𝑈𝛽 𝑗 = 𝛿𝛼𝛽 . (7)

∑︁
𝑖, 𝑗 ,𝑘

𝑈
†
𝑖𝛽

𝜕2𝑥𝛼
𝜕𝑋𝑖 𝑗𝜕𝑋 𝑗𝑘

𝑈𝛽𝑘 =

{ 1
𝑥𝛼−𝑥𝛽 , if 𝛼 ≠ 𝛽,∑
𝛾≠𝛼

1
𝑥𝛼−𝑥𝛾 , if 𝛼 = 𝛽.

(8)

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝑙𝑞

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

=


1

𝑥𝑙−𝑥𝑠 , if 𝛼 = 𝑙, 𝑙 ≠ 𝑠,

− 1
𝑥𝑙−𝑥𝑠 , if 𝛼 = 𝑠, 𝑙 ≠ 𝑠,

0, otherwise.
(9)

Proof. From the equality (3) of Lemma 4.1, we have∑︁
𝑖, 𝑗

𝑈
†
𝑖𝛽

𝜕𝑥𝛼

𝜕𝑋𝑖 𝑗
𝑈𝛽 𝑗 =

∑︁
𝑖, 𝑗

𝑈
†
𝑖𝛽
𝑈𝛼𝑖𝑈

†
𝑗 𝛼
𝑈𝛽 𝑗 = 𝛿𝛼𝛽𝛿𝛽𝛼 = 𝛿𝛼𝛽 .

To show the second equality, differentiate the both sides of 𝜕𝑥𝛼
𝜕𝑋𝑖 𝑗

= 𝑈𝛼𝑖𝑈
†
𝑗 𝛼

with respect to 𝑋 𝑗𝑘 and obtain 𝜕2𝑥𝛼
𝜕𝑋𝑖 𝑗𝜕𝑋 𝑗𝑘

=
𝜕𝑈𝛼𝑖

𝜕𝑋 𝑗𝑘
𝑈

†
𝑗 𝛼

+

𝑈𝛼𝑖
𝜕𝑈

†
𝑗𝛼

𝜕𝑋 𝑗𝑘
. Denote the left hand side of (8) as 𝐴(𝛼, 𝛽). Then

𝐴(𝛼, 𝛽) =
∑︁
𝑖, 𝑗 ,𝑘

𝑈
†
𝑖𝛽

𝜕𝑈𝛼𝑖

𝑋 𝑗𝑘
𝑈

†
𝑗 𝛼
𝑈𝛽𝑘 +

∑︁
𝑖, 𝑗 ,𝑘

𝑈
†
𝑖𝛽
𝑈𝛼𝑖

𝜕𝑈
†
𝑗 𝛼

𝜕𝑋 𝑗𝑘
𝑈𝛽𝑘

=
∑︁
𝑗 ,𝑘

(
𝜕𝑈

𝜕𝑋 𝑗𝑘
𝑈†

)
𝛼𝛽

𝑈
†
𝑗 𝛼
𝑈𝛽𝑘 + 𝛿𝛼𝛽

∑︁
𝑗 ,𝑘

𝜕𝑈
†
𝑗 𝛼

𝜕𝑋 𝑗𝑘
𝑈𝛽𝑘 =: 𝐴1 (𝛼, 𝛽) + 𝐴2 (𝛼, 𝛽).

In the case 𝛼 ≠ 𝛽, the contribution to 𝐴 comes only from 𝐴1. Using the equality (4) of Lemma 4.1, we have

𝐴1 (𝛼, 𝛽) =
∑︁
𝑗 ,𝑘

1
𝑥𝛼 − 𝑥𝛽

𝑈𝛼 𝑗𝑈
†
𝑘𝛽
𝑈

†
𝑗 𝛼
𝑈𝛽𝑘 =

1
𝑥𝛼 − 𝑥𝛽

.

In the case 𝛼 = 𝛽, using (5) and𝑈†
𝑗 𝛼
𝑈𝛼𝑖 = 𝛿𝑖 𝑗 −

∑
𝛾≠𝛼𝑈

†
𝑗𝛾
𝑈𝛾𝑖 , we have

𝐴1 (𝛼, 𝛼) = −
∑︁
𝑗 ,𝑘

(
𝑈
𝜕𝑈†

𝜕𝑋 𝑗𝑘

)
𝛼𝛼

𝑈
†
𝑗 𝛼
𝑈𝛼𝑘 = −

∑︁
𝑖, 𝑗 ,𝑘

𝑈𝛼𝑖
𝜕𝑈

†
𝑖𝛼

𝜕𝑋 𝑗𝑘
𝑈

†
𝑗 𝛼
𝑈𝛼𝑘

=
∑︁
𝛾≠𝛼

∑︁
𝑖, 𝑗 ,𝑘

𝜕𝑈
†
𝑖𝛼

𝜕𝑋 𝑗𝑘
𝑈

†
𝑗𝛾
𝑈𝛾𝑖𝑈𝛼𝑘 − 𝐴2 (𝛼, 𝛼).

Hence using the identity (5) and Lemma 4.1, we have

𝐴(𝛼, 𝛼) = 𝐴1 (𝛼, 𝛼) + 𝐴2 (𝛼, 𝛼)

=
∑︁
𝛾≠𝛼

∑︁
𝑗 ,𝑘

(
𝑈
𝜕𝑈†

𝜕𝑋 𝑗𝑘

)
𝛾𝛼

𝑈
†
𝑗𝛾
𝑈𝛼𝑘 = −

∑︁
𝛾≠𝛼

∑︁
𝑗 ,𝑘

(
𝜕𝑈

𝜕𝑋 𝑗𝑘
𝑈†

)
𝛾𝛼

𝑈
†
𝑗𝛾
𝑈𝛼𝑘

= −
∑︁
𝛾≠𝛼

1
𝑥𝛾 − 𝑥𝛼

∑︁
𝑗 ,𝑘

𝑈𝛾 𝑗𝑈
†
𝑘𝛼
𝑈

†
𝑗𝛾
𝑈𝛼𝑘 = −

∑︁
𝛾≠𝛼

1
𝑥𝛾 − 𝑥𝛼

.

To obtain the equality (9), differentiate the both sides of 𝜕𝑥𝛼
𝜕𝑋𝑝𝑞

= 𝑈𝛼𝑝𝑈
†
𝑞𝛼 with respect to 𝑋𝑎𝑏 to get

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

=
𝜕𝑈𝛼𝑝

𝜕𝑋𝑎𝑏
𝑈†
𝑞𝛼 +𝑈𝛼𝑝

𝜕𝑈
†
𝑞𝛼

𝜕𝑋𝑎𝑏
.
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Denote the left hand side of (9) as 𝐴(𝛼, 𝑙, 𝑠). Then

𝐴(𝛼, 𝑙, 𝑠) =
∑︁

𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝑙𝑞

(
𝜕𝑈𝛼𝑝

𝜕𝑋𝑎𝑏
𝑈†
𝑞𝛼 +𝑈𝛼𝑝

𝜕𝑈
†
𝑞𝛼

𝜕𝑋𝑎𝑏

)
=

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝑙𝑞

𝜕𝑈𝛼𝑝

𝜕𝑋𝑎𝑏
𝑈†
𝑞𝛼 +

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝑙𝑞𝑈𝛼𝑝

𝜕𝑈
†
𝑞𝛼

𝜕𝑋𝑎𝑏

=
∑︁
𝑎,𝑏,𝑞

𝑈
†
𝑎𝑙
𝑈𝑠𝑏𝑈𝑙𝑞

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈†

)
𝛼𝑠

𝑈†
𝑞𝛼 +

∑︁
𝑎,𝑏, 𝑝

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝛼𝑝

(
𝑈
𝜕𝑈†

𝜕𝑋𝑎𝑏

)
𝑙𝛼

=
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏𝛿𝑙𝛼

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈†

)
𝛼𝑠

+
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏𝛿𝛼𝑠

(
𝑈
𝜕𝑈†

𝜕𝑋𝑎𝑏

)
𝑙𝛼

= 𝐴1 (𝛼, 𝑙, 𝑠) + 𝐴2 (𝛼, 𝑙, 𝑠).

Let us compute the first term 𝐴1. In the case 𝛼 ≠ 𝑙, this term vanishes. So assume 𝛼 = 𝑙. When 𝑙 ≠ 𝑠, we have

𝐴1 (𝑙, 𝑙, 𝑠) =
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈†

)
𝑙𝑠

=
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏

1
𝑥𝑙 − 𝑥𝑠

𝑈𝑙𝑎𝑈
†
𝑏𝑠

=
1

𝑥𝑙 − 𝑥𝑠
.

Let us compute the term 𝐴2 . In the case 𝛼 ≠ 𝑠, this term vanishes. So assume 𝛼 = 𝑠. When 𝑙 ≠ 𝑠, we have

𝐴2 (𝑠, 𝑙, 𝑠) =
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏𝛿𝛼𝑠

(
𝑈
𝜕𝑈†

𝜕𝑋𝑎𝑏

)
𝑙𝛼

= −
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑠𝑏

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈†

)
𝑙𝑠

= − 1
𝑥𝑙 − 𝑥𝑠

.

When 𝛼 = 𝑙 = 𝑠, we have

𝐴(𝑙, 𝑙, 𝑙) =
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑙𝑏

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈†

)
𝑙𝑙

+
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑙𝑏

(
𝑈
𝜕𝑈†

𝜕𝑋𝑎𝑏

)
𝑙𝑙

=
∑︁
𝑎,𝑏

𝑈
†
𝑎𝑙
𝑈𝑙𝑏

(
𝜕𝑈

𝜕𝑋𝑎𝑏
𝑈† +𝑈 𝜕𝑈†

𝜕𝑋𝑎𝑏

)
𝑙𝑙

= 0.

Thus we have proved the equality (9).

4.2. Gauss case

In the Gauss case, we put

𝐹 (𝑋) =
∫
𝐶

|𝑌 |𝑐1 |𝐼 − 𝑌 |𝑐2 |𝐼 − 𝑋𝑌 |𝑐3𝑑𝑌 =

∫
𝐶

exp 𝑓 (𝑌 )𝑑𝑌, 𝑋,𝑌 ∈ ℋ(𝑛), (10)

where 𝑐1 = 𝑎 − 𝑛, 𝑐2 = 𝑐 − 𝑎 − 𝑛, 𝑐3 = −𝑏,

𝑓 (𝑌 ) = 𝑐1 log |𝑌 | + 𝑐2 log |𝐼 − 𝑌 | + 𝑐3 log |𝐼 − 𝑋𝑌 |,

and 𝐶 is the domain of integration explained in the last paragraph of Section 2.2. By virtue of this choice of 𝐶, we can interchange
the operations of differentiation with respect to 𝑋𝑖 𝑗 and integration with respect to 𝑌 . In the following we will not write 𝐶 in the
integrals for the sake of simplicity. For a function 𝑔(𝑌 ) of 𝑌 , we use the notation:

⟨𝑔⟩ :=
∫

𝑔(𝑌 ) exp 𝑓 𝑑𝑌 .

Lemma 4.3. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

𝜕 𝑓

𝜕𝑌 𝑗𝑖
= 𝑐1 (𝑌−1)𝑖 𝑗 − 𝑐2

(
(𝐼 − 𝑌 )−1

)
𝑖 𝑗
− 𝑐3

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗
, (11)

𝜕 𝑓

𝜕𝑋 𝑗𝑖
= −𝑐3

(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗
. (12)
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Proof. We see that

𝜕 𝑓

𝜕𝑌 𝑗𝑖
=

𝜕

𝜕𝑌 𝑗𝑖
(𝑐1 log |𝑌 | + 𝑐2 log |𝐼 − 𝑌 | + 𝑐3 log |𝐼 − 𝑋𝑌 |)

= 𝑐1
1
|𝑌 |

𝜕 |𝑌 |
𝜕𝑌 𝑗𝑖

+ 𝑐2
1

|𝐼 − 𝑌 |
𝜕 |𝐼 − 𝑌 |
𝜕𝑌 𝑗𝑖

+ 𝑐3
1

|𝐼 − 𝑋𝑌 |
𝜕 |𝐼 − 𝑋𝑌 |
𝜕𝑌 𝑗𝑖

= 𝑐1
1
|𝑌 |𝐶 𝑗𝑖 (𝑌 ) − 𝑐2

1
|𝐼 − 𝑌 |𝐶 𝑗𝑖 (𝐼 − 𝑌 ) + 𝑐3

1
|𝐼 − 𝑋𝑌 |

𝑛∑︁
𝑘=1

(−𝑋𝑘 𝑗 )𝐶𝑘𝑖 (𝐼 − 𝑋𝑌 ),

where 𝐶 𝑗𝑖 (𝑌 ) is the ( 𝑗 , 𝑖)-cofactor of |𝑌 |, and we used 𝜕
𝜕𝑌𝑗𝑖

(𝑋𝑌 )𝑘𝑖 = 𝑋𝑘 𝑗 to compute the last term. Then noting that 1
|𝑌 |𝐶 𝑗𝑖 (𝑌 ) =

(𝑌−1)𝑖 𝑗 , we get (11). The equality (12) is shown in a similar way.

Lemma 4.4. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

−𝑐3

〈(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
=

𝜕𝐹

𝜕𝑋 𝑗𝑖
, (13)

−𝑐3

〈(
(𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
=

∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎
− 𝛿𝑖 𝑗𝑐3𝐹. (14)

Proof. Differentiate the both sides of (10) with respect to 𝑋 𝑗𝑖 and use (12) to obtain

𝜕𝐹

𝜕𝑋 𝑗𝑖
=

∫
𝜕 𝑓

𝜕𝑋 𝑗𝑖
exp 𝑓 (𝑌 )𝑑𝑌 =

〈
𝜕 𝑓

𝜕𝑋 𝑗𝑖

〉
= −𝑐3

〈(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
.

The second equality follows from∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎
=

∑︁
𝑎

𝑋𝑖𝑎 (−𝑐3)
〈(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑎 𝑗

〉
= −𝑐3

∑︁
𝑎

〈
𝑋𝑖𝑎

(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑎 𝑗

〉
= −𝑐3

〈(
𝑋𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
= −𝑐3

〈(
(𝐼 − (𝐼 − 𝑋𝑌 )) (𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
= −𝑐3

〈
(𝐼 − 𝑋𝑌 )−1

𝑖 𝑗

〉
+ 𝑐3𝛿𝑖 𝑗𝐹.

Put

𝜔 = exp 𝑓 (𝑌 ) 𝑑𝑌, 𝜔𝑖 𝑗 = 𝑖𝜕/𝜕𝑌𝑖 𝑗 𝑑𝑌, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (15)

where 𝑖𝜕/𝜕𝑌𝑖 𝑗 is the inner derivation with the vector field 𝜕/𝜕𝑌𝑖 𝑗 .

Lemma 4.5. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have〈
𝑐2

(
(𝐼 − 𝑌 )−1

)
𝑖 𝑗

〉
=

∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖
+ 𝛿𝑖 𝑗 (𝑐1 + 𝑐2 + 𝑛)𝐹 (16)

and〈(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

tr
(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
+ (𝑐1 + 𝑛)

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖 𝑗
− 𝑐2

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑌 )−1

)
𝑖 𝑗

−𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
= 0. (17)

Proof. To obtain the equality (16), consider 𝜂𝑖 𝑗 =
∑𝑛
𝑘=1𝑌𝑖𝑘 exp 𝑓 (𝑌 ) 𝜔 𝑗𝑘 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then using Lemma 4.3,

𝑑𝜂𝑖 𝑗 =

(
𝑛∑︁
𝑘=1

𝜕𝑌𝑖𝑘

𝜕𝑌 𝑗𝑘
+

𝑛∑︁
𝑘=1

𝑌𝑖𝑘
𝜕 𝑓

𝜕𝑌 𝑗𝑘

)
𝜔

=

{
𝑛𝛿𝑖 𝑗 +

𝑛∑︁
𝑘=1

𝑌𝑖𝑘

(
𝑐1 (𝑌−1)𝑘 𝑗 − 𝑐2 ((𝐼 − 𝑌 )−1)𝑘 𝑗 − 𝑐3

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑘 𝑗

)}
𝜔

=

{
(𝑐1 + 𝑐2 + 𝑛)𝛿𝑖 𝑗 − 𝑐2 ((𝐼 − 𝑌 )−1)𝑖 𝑗 − 𝑐3

(
𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

}
𝜔.
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Since
∫
𝑑𝜂𝑖 𝑗 = 0 by virtue of the Stokes theorem, using (13) we have〈

𝑐2

(
(𝐼 − 𝑌 )−1

)
𝑖 𝑗

〉
= −𝑐3

〈(
𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
+ 𝛿𝑖 𝑗 (𝑐1 + 𝑐2 + 𝑛)𝐹

=
∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖
+ 𝛿𝑖 𝑗 (𝑐1 + 𝑐2 + 𝑛)𝐹.

To obtain the equality (17), put 𝜂𝑖 𝑗 =
∑𝑛
𝑘=1

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
𝑖𝑘

exp 𝑓 (𝑌 ) 𝜔 𝑗𝑘 and compute its exterior derivative. We have

𝑑𝜂𝑖 𝑗 =

(
𝑛∑︁
𝑘=1

𝜕

𝜕𝑌 𝑗𝑘

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
𝑖𝑘
+

𝑛∑︁
𝑘=1

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
𝑖𝑘

𝜕 𝑓

𝜕𝑌 𝑗𝑘

)
𝜔. (18)

Noting that

𝜕 (𝐼 − 𝑋𝑌 )−1

𝜕𝑌 𝑗𝑘
= (𝐼 − 𝑋𝑌 )−1

(
𝑛∑︁
𝑎=1

𝑋𝑎 𝑗𝐸𝑎𝑘

)
(𝐼 − 𝑋𝑌 )−1,

the first terms of (18) are computed as

𝑛∑︁
𝑘=1

𝜕

𝜕𝑌 𝑗𝑘

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
𝑖𝑘

=

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

tr
(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
+ 𝑛

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖 𝑗
. (19)

Using (11), the second terms of (18) are computed as

𝑛∑︁
𝑘=1

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌

)
𝑖𝑘

𝜕 𝑓

𝜕𝑌 𝑗𝑘

= 𝑐1

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖 𝑗
− 𝑐2

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑌 )−1

)
𝑖 𝑗

− 𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗
. (20)

Then the equality (17) follows from (18),(19),(20) and
∫
𝑑𝜂𝑖 𝑗 = 0.

We shall derive the system of differential equations for 𝐹 from (17). So it is necessary to compute

𝐴𝑖 𝑗 := 𝑐2

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑌 )−1

)
𝑖 𝑗

〉
,

𝐵𝑖 𝑗 := 𝑐3

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
.

To compute 𝐴𝑖 𝑗 , note that

(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑌 )−1 = −(𝐼 − 𝑋𝑌 )−1 + (𝐼 − 𝑌 )−1.

Then from (14) and (16) we have

𝑐3𝐴𝑖 𝑗 =

〈
−𝑐2𝑐3

(
(𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
+

〈
𝑐2𝑐3

(
(𝐼 − 𝑌 )−1

)
𝑖 𝑗

〉
= 𝑐2

(∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎
− 𝛿𝑖 𝑗𝑐3𝐹

)
+ 𝑐3

(∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖
+ 𝛿𝑖 𝑗 (𝑐1 + 𝑐2 + 𝑛)𝐹

)
= 𝑐2

∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎
+ 𝑐3

∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖
+ 𝛿𝑖 𝑗 (𝑐1 + 𝑛)𝑐3𝐹. (21)

To compute 𝐵𝑖 𝑗 , note that〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
=

∑︁
𝑎

𝑋𝑎 𝑗

∑︁
𝑏

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑏𝑎

〉
.
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Taking this into account, we differentiate
〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
with respect to 𝑋𝑎𝑏 and get

𝜕

𝜕𝑋𝑎𝑏

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

=

(
(𝐼 − 𝑋𝑌 )−1 (

∑︁
𝑘

𝑌𝑏𝑘𝐸𝑎𝑘) (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)
)
𝑖𝑏

−
(
(𝐼 − 𝑋𝑌 )−1𝐸𝑎𝑏

)
𝑖𝑏

= (𝐼 − 𝑋𝑌 )−1
𝑖𝑎

(
𝑌 (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑏𝑏

− (𝐼 − 𝑋𝑌 )−1
𝑖𝑎 .

Using (12) we have

𝜕

𝜕𝑋𝑎𝑏

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
=

〈
(𝐼 − 𝑋𝑌 )−1

𝑖𝑎

(
𝑌 (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑏𝑏

− (𝐼 − 𝑋𝑌 )−1
𝑖𝑎

− 𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

(
𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑏𝑎

〉
.

Then ∑︁
𝑎

𝑋𝑎 𝑗

∑︁
𝑏

𝜕

𝜕𝑋𝑎𝑏

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
=

∑︁
𝑎

𝑋𝑎 𝑗

〈
(𝐼 − 𝑋𝑌 )−1

𝑖𝑎 tr
(
𝑌 (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
− 𝑛(𝐼 − 𝑋𝑌 )−1

𝑖𝑎

− 𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1

)
𝑖𝑎

〉
=

〈(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

tr
(
𝑌 (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
− 𝑛

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

− 𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)𝑌 (𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
.

Thus we have

𝐵𝑖 𝑗 = −
∑︁
𝑎

𝑋𝑎 𝑗

∑︁
𝑏

𝜕

𝜕𝑋𝑎𝑏

〈(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
− 𝑛

〈(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
+

〈(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

tr
(
𝑌 (𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)〉
.

Hence the relation (17) becomes∑︁
𝑎

𝑋𝑎 𝑗

∑︁
𝑏

𝜕

𝜕𝑋𝑎𝑏

〈
𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
+

〈
(𝑐1 + 𝑛)𝑐3

(
(𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑗

〉
−

〈
𝑐1𝑐3

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
− 𝑐3𝐴𝑖 𝑗 = 0. (22)

We assert that this relation gives the differential equations for 𝐹.

Lemma 4.6. The function 𝐹, defined by (10), satisfies the differential equations

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞
𝜕2𝐹

𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞
+

∑︁
𝑏,𝑝

𝑋𝑖 𝑗 (𝐼 − 𝑋)𝑝𝑏
𝜕𝐹

𝜕𝑋𝑝𝑏

− 𝑐3
∑︁
𝑎,𝑏

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑖𝑏
𝜕𝐹

𝜕𝑋𝑎𝑏
− (𝑐1 + 𝑛)

∑︁
𝑝,𝑞

𝑋𝑝 𝑗𝑋 𝑖𝑞
𝜕𝐹

𝜕𝑋𝑝𝑞

+ (𝑐1 + 𝑐2 + 𝑛)
∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎
+ 𝑐3

∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖
+ (𝑐1 + 𝑛)𝑐3𝑋𝑖 𝑗𝐹 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (23)

Proof. We express all the terms in (22) in terms of 𝐹 and its derivatives. The first term in (22) is computed as follow. From (14),
we have 〈

𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
= −

∑︁
𝑝

(𝐼 − 𝑋)𝑝𝑏

(∑︁
𝑞

𝑋𝑖𝑞
𝜕𝐹

𝜕𝑋𝑝𝑞
− 𝛿𝑖 𝑝𝑐3𝐹

)
.
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Differentiate the both sides with respect to 𝑋𝑎𝑏. Then, from the right hand side, we have

−
∑︁
𝑝

(𝐼 − 𝑋)𝑝𝑏

(∑︁
𝑞

𝑋𝑖𝑞
𝜕2𝐹

𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞
+ 𝛿𝑖𝑎

𝜕𝐹

𝜕𝑋𝑝𝑏
− 𝛿𝑖 𝑝𝑐3

𝜕𝐹

𝜕𝑋𝑎𝑏

)
+

(∑︁
𝑞

𝑋𝑖𝑞
𝜕𝐹

𝜕𝑋𝑎𝑞
− 𝛿𝑖𝑎𝑐3𝐹

)
.

Hence we have∑︁
𝑎

𝑋𝑎 𝑗

∑︁
𝑏

𝜕

𝜕𝑋𝑎𝑏

〈
𝑐3

(
(𝐼 − 𝑋𝑌 )−1 (𝐼 − 𝑋)

)
𝑖𝑏

〉
= −

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞
𝜕2𝐹

𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞
−

∑︁
𝑏,𝑝

𝑋𝑖 𝑗 (𝐼 − 𝑋)𝑝𝑏
𝜕𝐹

𝜕𝑋𝑝𝑏

+ 𝑐3
∑︁
𝑎,𝑏

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑖𝑏
𝜕𝐹

𝜕𝑋𝑎𝑏
+

∑︁
𝑎,𝑏,𝑞

𝑋𝑎 𝑗𝑋𝑖𝑞
𝜕𝐹

𝜕𝑋𝑎𝑞
− 𝑛𝑋𝑖 𝑗𝑐3𝐹.

Then using (14), (21) and 〈
𝑐3

(
(𝐼 − 𝑋𝑌 )−1𝑋

)
𝑖 𝑗

〉
= −

∑︁
𝑝

𝑋𝑝 𝑗

〈
−𝑐3

(
(𝐼 − 𝑋𝑌 )−1

)
𝑖 𝑝

〉
= −

∑︁
𝑝,𝑞

𝑋 𝑝 𝑗𝑋𝑖𝑞
𝜕𝐹

𝜕𝑋𝑝𝑞
+ 𝑋 𝑖 𝑗𝑐3𝐹,

we obtain the differential equations (23) from (22).

Theorem 3.1 for the Gauss HGF of matrix integral type is the following.

Proposition 4.7. As a function of eigenvalues 𝑥1, . . . , 𝑥𝑛 of 𝑋 , 𝐼𝐺 (𝑎, 𝑏, 𝑐; 𝑋) satisfies the system

𝑥𝑙 (1 − 𝑥𝑙)
𝜕2𝐹

𝜕𝑥2
𝑙

+
∑︁
𝛼≠𝑙

𝑥𝑙 (1 − 𝑥𝑙) 𝜕𝐹𝜕𝑥𝑙 − 𝑥𝛼 (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

+ {(𝑐 − (𝑛 − 1)) − (𝑎 + 𝑏 + 1 − (𝑛 − 1))𝑥𝑙}
𝜕𝐹

𝜕𝑥𝑙
− 𝑎𝑏𝐹 = 0, 1 ≤ 𝑙 ≤ 𝑛. (24)

We give the proof of this proposition. Take any 1 ≤ 𝑙 ≤ 𝑛 and fix it. Multiply the both sides of (23) by 𝑈†
𝑗𝑙
𝑈𝑙𝑖 and take a sum

for 𝑖, 𝑗 = 1, . . . , 𝑛. We compute the term which comes from the first term of the left hand side of (23):

𝐼 :=
∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
· ©­«

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞
𝜕2𝐹

𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

ª®¬ ·𝑈𝑙𝑖 .
Noting that

𝜕𝐹

𝜕𝑋𝑝𝑞
=

∑︁
𝛼

𝜕𝑥𝛼

𝜕𝑋𝑝𝑞

𝜕𝐹

𝜕𝑥𝛼
,

𝜕2𝐹

𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞
=

∑︁
𝛼

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

𝜕𝐹

𝜕𝑥𝛼
+

∑︁
𝛼,𝛽

𝜕𝑥𝛼

𝜕𝑋𝑝𝑞

𝜕𝑥𝛽

𝜕𝑋𝑎𝑏

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽
,

we write 𝐼 as 𝐼 = 𝐼1 + 𝐼2 with

𝐼1 =
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽

∑︁
𝑖, 𝑗 ,𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑗𝑙
𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞

𝜕𝑥𝛼

𝜕𝑋𝑝𝑞

𝜕𝑥𝛽

𝜕𝑋𝑎𝑏
𝑈𝑙𝑖 ,

𝐼2 =
∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑗𝑙
𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

𝑈𝑙𝑖 .
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For 𝐼1, using the equality (3) of Lemma 4.1 and 𝑥 = 𝑈𝑋𝑈†, we have

𝐼1 =
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽

∑︁
𝑖, 𝑗 ,𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑗𝑙
𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞𝑈𝛼𝑝𝑈†

𝑞𝛼𝑈𝛽𝑎𝑈
†
𝑏𝛽
𝑈𝑙𝑖

=
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽

(∑︁
𝑗 ,𝑎

𝑈𝛽𝑎𝑋𝑎 𝑗𝑈
†
𝑗𝑙

) ©­«
∑︁
𝑝,𝑏

𝑈𝛼𝑝 (𝐼 − 𝑋)𝑝𝑏𝑈†
𝑏𝛽

ª®¬
(∑︁
𝑖,𝑞

𝑈𝑙𝑖𝑋𝑖𝑞𝑈
†
𝑞𝛼

)
=

∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽
(𝛿𝛽𝑙𝑥𝑙) (𝛿𝛼𝛽 (1 − 𝑥𝛼)) (𝛿𝑙𝛼𝑥𝑙)

= 𝑥2
𝑙 (1 − 𝑥𝑙)

𝜕2𝐹

𝜕𝑥2
𝑙

.

Next we compute 𝐼2. Note that, from 𝑋 = 𝑈†𝑥𝑈, we have 𝑋𝑎 𝑗 =
∑
𝑟 𝑈

†
𝑎𝑟𝑥𝑟𝑈𝑟 𝑗 , etc. By virtue of (9) of Lemma 4.2 we have

𝐼2 =
∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑖, 𝑗 ,𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑗𝑙
𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑝𝑏𝑋𝑖𝑞

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

𝑈𝑙𝑖

=
∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑖, 𝑗 ,𝑎,𝑏, 𝑝,𝑞

∑︁
𝑟 ,𝑠,𝑢

𝑈
†
𝑗𝑙
𝑈†
𝑎𝑟𝑥𝑟𝑈𝑟 𝑗𝑈

†
𝑝𝑠 (1 − 𝑥𝑠)𝑈𝑠𝑏𝑈†

𝑖𝑢
𝑥𝑢𝑈𝑢𝑞

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

𝑈𝑙𝑖

= 𝑥2
𝑙

∑︁
𝛼,𝑠

𝜕𝐹

𝜕𝑥𝛼
(1 − 𝑥𝑠)

∑︁
𝑎,𝑏, 𝑝,𝑞

𝑈
†
𝑎𝑙
𝑈†
𝑝𝑠𝑈𝑠𝑏𝑈𝑙𝑞

𝜕2𝑥𝛼
𝜕𝑋𝑎𝑏𝜕𝑋𝑝𝑞

= 𝑥2
𝑙

{∑︁
𝛼≠𝑙

𝜕𝐹

𝜕𝑥𝑠
(1 − 𝑥𝛼)

−1
𝑥𝑙 − 𝑥𝛼

+ 𝜕𝐹

𝜕𝑥𝑙

∑︁
𝑠≠𝑙

(1 − 𝑥𝑠)
1

𝑥𝑙 − 𝑥𝑠

}
= 𝑥2

𝑙

∑︁
𝛼≠𝑙

(1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝑙 − (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

.

= 𝑥2
𝑙

∑︁
𝛼≠𝑙

(1 − 𝑥𝑙) 𝜕𝐹𝜕𝑥𝑙 − (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

+ (𝑛 − 1)𝑥2
𝑙

𝜕𝐹

𝜕𝑥𝑙

Thus we have

𝐼 = 𝑥𝑙

{
𝑥𝑙 (1 − 𝑥𝑙)

𝜕2𝐹

𝜕𝑥2
𝑙

+ 𝑥𝑙
∑︁
𝛼≠𝑙

(1 − 𝑥𝑙) 𝜕𝐹𝜕𝑥𝑙 − (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

+ (𝑛 − 1)𝑥𝑙
𝜕𝐹

𝜕𝑥𝑙

}
. (25)

To compute the contribution, which comes from the other terms of the left hand side of (23), we need the following lemma, which
can be shown in a similar way as above using Lemma 4.2.

Lemma 4.8. We have ∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
· ©­«

∑︁
𝑏,𝑝

𝑋𝑖 𝑗 (𝐼 − 𝑋)𝑝𝑏
𝜕𝐹

𝜕𝑋𝑝𝑏

ª®¬ ·𝑈𝑙𝑖 = 𝑥𝑙 ·
∑︁
𝛼

(𝐼 − 𝑥𝛼)
𝜕𝐹

𝜕𝑥𝛼
, (26)

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(∑︁
𝑎,𝑏

𝑋𝑎 𝑗 (𝐼 − 𝑋)𝑖𝑏
𝜕𝐹

𝜕𝑋𝑎𝑏

)
·𝑈𝑙𝑖 = 𝑥𝑙 (1 − 𝑥𝑙)

𝜕𝐹

𝜕𝑥𝑙
. (27)

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(∑︁
𝑎,𝑏

𝑋𝑎 𝑗𝑋𝑖𝑏
𝜕𝐹

𝜕𝑋𝑎𝑏

)
·𝑈𝑙𝑖 = 𝑥2

𝑙

𝜕𝐹

𝜕𝑥𝑙
(28)

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(∑︁
𝑎

𝑋𝑖𝑎
𝜕𝐹

𝜕𝑋 𝑗𝑎

)
·𝑈𝑙𝑖 = 𝑥𝑙

𝜕𝐹

𝜕𝑥𝑙
, (29)

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(∑︁
𝑎

𝑋𝑎 𝑗
𝜕𝐹

𝜕𝑋𝑎𝑖

)
·𝑈𝑙𝑖 = 𝑥𝑙

𝜕𝐹

𝜕𝑥𝑙
, (30)

By the help of (25) and Lemma 4.8, we can derive from (23) the equation
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𝑥𝑙 (1 − 𝑥𝑙)
𝜕2𝐹

𝜕𝑥2
𝑙

+ 𝑥𝑙
∑︁
𝛼≠𝑙

(1 − 𝑥𝑙) 𝜕𝐹𝜕𝑥𝑙 − (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

+ (𝑛 − 1)𝑥𝑙
𝜕𝐹

𝜕𝑥𝑙

+
∑︁
𝛼

(1 − 𝑥𝛼)
𝜕𝐹

𝜕𝑥𝛼
− 𝑐3 (1 − 𝑥𝑙)

𝜕𝐹

𝜕𝑥𝑙
− (𝑐1 + 𝑛)𝑥𝑙

𝜕𝐹

𝜕𝑥𝑙

+ (𝑐1 + 𝑐2 + 𝑐3 + 𝑛)
𝜕𝐹

𝜕𝑥𝑙
+ (𝑐1 + 𝑛)𝑐3𝐹 = 0.

Using ∑︁
𝛼

(1 − 𝑥𝛼)
𝜕𝐹

𝜕𝑥𝛼
=

∑︁
𝛼≠𝑙

𝑥𝑙 − 𝑥𝛼
𝑥𝑙 − 𝑥𝛼

(1 − 𝑥𝛼)
𝜕𝐹

𝜕𝑥𝛼
+ (1 − 𝑥𝑙)

𝜕𝐹

𝜕𝑥𝑙
,

=
∑︁
𝛼≠𝑙

𝑥𝑙 (1 − 𝑥𝛼)
𝑥𝑙 − 𝑥𝛼

𝜕𝐹

𝜕𝑥𝛼
−

∑︁
𝛼≠𝑙

𝑥𝛼 (1 − 𝑥𝛼)
𝑥𝑙 − 𝑥𝛼

𝜕𝐹

𝜕𝑥𝛼
+ (1 − 𝑥𝑙)

𝜕𝐹

𝜕𝑥𝑙
,

we obtain the differential equation

𝑥𝑙 (1 − 𝑥𝑙)
𝜕2𝐹

𝜕𝑥2
𝑙

+
∑︁
𝛼≠𝑙

𝑥𝑙 (1 − 𝑥𝑙) 𝜕𝐹𝜕𝑥𝑙 − 𝑥𝛼 (1 − 𝑥𝛼) 𝜕𝐹𝜕𝑥𝛼
𝑥𝑙 − 𝑥𝛼

+ {(𝑐1 + 𝑐2 + 𝑛 − 1) − (𝑐1 − 𝑐3 − 2)𝑥𝑙}
𝜕𝐹

𝜕𝑥𝑙
+ (𝑐1 + 𝑛)𝑐3𝐹 = 0.

Recovering the original parameters 𝑐1 = 𝑎 − 𝑛, 𝑐2 = 𝑐 − 𝑎 − 𝑛, 𝑐3 = −𝑏, we obtain the desired differential equations (24) and finish
the proof of Proposition 4.7.

4.3. Kummer case

We prove Theorem 3.1 for Kummer’s HGF of matrix integral type following the same line of thought as in the Gauss case. Put

𝐹 (𝑋) =
∫
𝐶

etr (𝑋𝑌 ) |𝑌 |𝑐1 |𝐼 − 𝑌 |𝑐2𝑑𝑌 =

∫
𝐶

exp 𝑓 (𝑌 )𝑑𝑌, 𝑋,𝑌 ∈ ℋ(𝑛), (31)

where 𝑐1 = 𝑎 − 𝑛, 𝑐2 = 𝑐 − 𝑎 − 𝑛, 𝐶 is a domain of integration which allows us to apply the Stokes theorem, and

𝑓 (𝑌 ) = tr (𝑋𝑌 ) + 𝑐1 log |𝑌 | + 𝑐2 log |𝐼 − 𝑌 |.

The usage of the symbol ⟨𝑔⟩ for a function 𝑔(𝑌 ) is the same as in the Gauss case. A simple computation shows the following.

Lemma 4.9. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

𝜕 𝑓

𝜕𝑋𝑖 𝑗
= 𝑌 𝑗𝑖 ,

𝜕 𝑓

𝜕𝑌𝑖 𝑗
= 𝑋 𝑗𝑖 + 𝑐1 (𝑌−1) 𝑗𝑖 + 𝑐2 ((𝐼 − 𝑌 )−1) 𝑗𝑖 .

Lemma 4.10. The function 𝐹, defined by (31), satisfies the differential equations∑︁
𝑘,𝑚

𝑋𝑘 𝑗
𝜕2𝐹

𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖
−

∑︁
𝑘

𝑋𝑘 𝑗
𝜕𝐹

𝜕𝑋𝑘𝑖
+ (𝑐1 + 𝑐2 + 𝑛)

𝜕𝐹

𝜕𝑋 𝑗𝑖

+ 𝛿𝑖 𝑗

{∑︁
𝑘

𝜕𝐹

𝜕𝑋𝑘𝑘
− (𝑐1 + 𝑛)𝐹

}
= 0. 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (32)

Proof. Let 𝜔 𝑗𝑘 , 𝜔 be those by (15) with 𝑓 (𝑌 ) in (31). Consider (𝑛2 − 1)-form

𝜂𝑖 𝑗 =

𝑛∑︁
𝑘=1

(𝑌 (𝐼 − 𝑌 ))𝑖𝑘 exp 𝑓 (𝑌 ) 𝜔 𝑗𝑘 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛
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and compute 𝑑𝜂𝑖 𝑗 . Using Lemma 4.9, we have

𝑑𝜂𝑖 𝑗 =

𝑛∑︁
𝑘=1

𝜕

𝜕𝑌 𝑗𝑘
(𝑌 (𝐼 − 𝑌 ))𝑖𝑘 𝜔 +

𝑛∑︁
𝑘=1

(𝑌 (𝐼 − 𝑌 ))𝑖𝑘
𝜕 𝑓

𝜕𝑌 𝑗𝑘
𝜔

=

𝑛∑︁
𝑘=1

(𝛿𝑖 𝑗 − 𝛿𝑖 𝑗𝑌𝑘𝑘 − 𝑌𝑖 𝑗 ) · 𝜔

+
𝑛∑︁
𝑘=1

(𝑌 (𝐼 − 𝑌 ))𝑖𝑘
(
𝑐1 (𝑌−1)𝑘 𝑗 − 𝑐2 ((𝐼 − 𝑌 )−1)𝑘 𝑗 + 𝑋𝑘 𝑗

)
𝜔

=
{
𝑛𝛿𝑖 𝑗 − 𝛿𝑖 𝑗 tr𝑌 − 𝑛𝑌𝑖 𝑗 + 𝑐1 (𝐼 − 𝑌 )𝑖 𝑗 − 𝑐2𝑌𝑖 𝑗 + (𝑌 (𝐼 − 𝑌 )𝑋)𝑖 𝑗

}
𝜔

=

{
(𝑐1 + 𝑛)𝛿𝑖 𝑗 − 𝛿𝑖 𝑗 tr𝑌 − (𝑐1 + 𝑐2 + 𝑛)𝑌𝑖 𝑗 +

∑︁
𝑘

𝑌𝑖𝑘𝑋𝑘 𝑗 −
∑︁
𝑘,𝑚

𝑌𝑖𝑚𝑌𝑚𝑘𝑋𝑘 𝑗

}
𝜔.

Then the Stokes theorem implies

(𝑐1 + 𝑛)𝛿𝑖 𝑗 ⟨1⟩ − 𝛿𝑖 𝑗
∑︁
𝑘

⟨𝑌𝑘𝑘⟩ − (𝑐1 + 𝑐2 + 𝑛)
〈
𝑌𝑖 𝑗

〉
+

∑︁
𝑘

𝑋𝑘 𝑗 ⟨𝑌𝑖𝑘⟩ −
∑︁
𝑘,𝑚

𝑋𝑘 𝑗 ⟨𝑌𝑖𝑚𝑌𝑚𝑘⟩ = 0. (33)

Since ⟨1⟩ = 𝐹 by definition and ⟨𝑌𝑎𝑏⟩ = 𝜕𝐹/𝜕𝑋𝑏𝑎 by virtue of Lemma 4.9, the equality (33) implies the differential equation (32).

Theorem 3.1 for the Kummer’s case is the following.

Proposition 4.11. As a function of eigenvalues 𝑥1, . . . , 𝑥𝑛 of 𝑋 , 𝐼𝐾 (𝑎, 𝑐; 𝑋) satisfies the differential equations

𝑥𝑙
𝜕2𝐹

𝜕𝑥2
𝑙

+ (𝑐 − 𝑛 + 1 − 𝑥𝑙)
𝜕𝐹

𝜕𝑥𝑙
+

∑︁
𝛼≠𝑙

𝑥𝑙
𝜕𝐹
𝜕𝑥𝑙

− 𝑥𝛼 𝜕𝐹
𝜕𝑥𝛼

𝑥𝑙 − 𝑥𝛼
− 𝑎𝐹 = 0, 1 ≤ 𝑙 ≤ 𝑛. (34)

Proof. For a fixed 1 ≤ 𝑙 ≤ 𝑛, multiply the both sides of (32) by 𝑈†
𝑗𝑙
𝑈𝑙𝑖 and take a sum over 𝑖, 𝑗 = 1, . . . , 𝑛. The terms containing

the second order derivatives are computed as follows. Since

𝜕2𝐹

𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖
=

∑︁
𝛼

𝜕2𝑥𝛼
𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

𝜕𝐹

𝜕𝑥𝛼
+

∑︁
𝛼,𝛽

𝜕𝑥𝛼

𝜕𝑋𝑚𝑖

𝜕𝑥𝛽

𝜕𝑋𝑘𝑚

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽
,

we have
∑
𝑖, 𝑗 𝑈

†
𝑗𝑙

(∑
𝑘,𝑚 𝑋𝑘 𝑗

𝜕2𝐹
𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

)
𝑈𝑙𝑖 = 𝐼1 + 𝐼2 with

𝐼1 =
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙

(∑︁
𝑘,𝑚

𝑋𝑘 𝑗
𝜕𝑥𝛼

𝜕𝑋𝑚𝑖

𝜕𝑥𝛽

𝜕𝑋𝑘𝑚

)
𝑈𝑙𝑖 ,

𝐼2 =
∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙

(∑︁
𝑘,𝑚

𝑋𝑘 𝑗
𝜕2𝑥𝛼

𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

)
𝑈𝑙𝑖 .

Using Lemma 4.1 and 𝑥 = 𝑈𝑋𝑈†, 𝐼1 is computed as

𝐼1 =
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽

∑︁
𝑖, 𝑗 ,𝑘,𝑚

𝑋𝑘 𝑗𝑈
†
𝑗𝑙
𝑈𝛼𝑚𝑈

†
𝑖𝛼
𝑈𝛽𝑘𝑈

†
𝑚𝛽
𝑈𝑙𝑖

=
∑︁
𝛼,𝛽

𝜕2𝐹

𝜕𝑥𝛼𝜕𝑥𝛽
𝛿𝑙𝛼𝛿𝛽𝛼

∑︁
𝑗 ,𝑘

𝑈𝛽𝑘𝑋𝑘 𝑗𝑈
†
𝑗𝑙
= 𝑥𝑙

𝜕2𝐹

𝜕𝑥2
𝑙

.

Noting that 𝑋𝑘 𝑗 =
∑
𝑝𝑈

†
𝑘𝑝
𝑥𝑝𝑈𝑝 𝑗 and using (8) of Lemma 4.2, 𝐼2 is computed as

𝐼2 =
∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑖, 𝑗 ,𝑘,𝑚

∑︁
𝑝

𝑈
†
𝑗𝑙
𝑈

†
𝑘𝑝
𝑥𝑝𝑈𝑝 𝑗

𝜕2𝑥𝛼
𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

𝑈𝑙𝑖

= 𝑥𝑙

∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

∑︁
𝑖,𝑘,𝑚

𝑈
†
𝑘𝑙

𝜕2𝑥𝛼
𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

𝑈𝑙𝑖 = 𝑥𝑙

∑︁
𝛼≠𝑙

1
𝑥𝛼 − 𝑥𝑙

(
𝜕𝐹

𝜕𝑥𝛼
− 𝜕𝐹

𝜕𝑥𝑙

)
.
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Thus we have ∑︁
𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(∑︁
𝑘,𝑚

𝑋𝑘 𝑗
𝜕2𝐹

𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖

)
·𝑈𝑙𝑖 = 𝑥𝑙

𝜕2𝐹

𝜕𝑥2
𝑙

+ 𝑥𝑙
∑︁
𝛼≠𝑙

1
𝑥𝛼 − 𝑥𝑙

(
𝜕𝐹

𝜕𝑥𝛼
− 𝜕𝐹

𝜕𝑥𝑙

)
. (35)

For the other terms of the first derivatives, contribution from the second term in (32) is already computed in (30), and that from
the rest is computed by using as ∑︁

𝑖, 𝑗

𝑈
†
𝑗𝑙
·
(
𝜕𝐹

𝜕𝑋 𝑗𝑖

)
·𝑈𝑙𝑖 =

𝜕𝐹

𝜕𝑥𝑙
, (36)

∑︁
𝑖, 𝑗

𝛿𝑖 𝑗𝑈
†
𝑗𝑙
·
(∑︁
𝑘

𝜕𝐹

𝜕𝑋𝑘𝑘

)
·𝑈𝑙𝑖 =

∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼
. (37)

Noting that
∑
𝑖, 𝑗 𝛿𝑖 𝑗𝑈

†
𝑗𝑙
𝑈𝑙𝑖 = 1, from the differential equation (32), we have

𝑥𝑙
𝜕2𝐹

𝜕𝑥2
𝑙

+ 𝑥𝑙
∑︁
𝛼≠𝑙

1
𝑥𝑙 − 𝑥𝛼

(
𝜕𝐹

𝜕𝑥𝑙
− 𝜕𝐹

𝜕𝑥𝛼

)
+

∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼

+ (𝑐1 + 𝑐2 + 𝑛 − 𝑥𝑙)
𝜕𝐹

𝜕𝑥𝑙
− (𝑐1 + 𝑛)𝐹 = 0.

Using 𝑐1 = 𝑎 − 𝑛, 𝑐2 = 𝑐 − 𝑎 − 𝑛 and ∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼
=

∑︁
𝛼≠𝑙

𝑥𝑙 − 𝑥𝛼
𝑥𝑙 − 𝑥𝛼

𝜕𝐹

𝜕𝑥𝛼
+ 𝜕𝐹

𝜕𝑥𝑙
,

we have the differential equation (34).

4.4. Bessel case

We prove Theorem 3.1 for the Bessel integral 𝐼𝐵 (𝑐; 𝑋). Put

𝐹 (𝑋) =
∫

etr
(
𝑋𝑌 − 𝑌−1

)
|𝑌 |𝑐−𝑛𝑑𝑌 =

∫
exp 𝑓 (𝑌 )𝑑𝑌, 𝑋,𝑌 ∈ ℋ(𝑛), (38)

where

𝑓 (𝑌 ) = tr (𝑋𝑌 − 𝑌−1) + (𝑐 − 𝑛) log |𝑌 |.

The usage of the symbol ⟨𝑔⟩ is same as above. The following lemma is now easy to show.

Lemma 4.12. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have
𝜕 𝑓

𝜕𝑋𝑖 𝑗
= ⟨𝑌 𝑗𝑖⟩,

𝜕 𝑓

𝜕𝑌𝑖 𝑗
= 𝑋 𝑗𝑖 + (𝑌−2) 𝑗𝑖 + (𝑐 − 𝑛) (𝑌−1) 𝑗𝑖 .

Lemma 4.13. The function 𝐹, defined by (38), satisfies the differential equations∑︁
𝑘,𝑚

𝑋𝑘 𝑗
𝜕2𝐹

𝜕𝑋𝑘𝑚𝜕𝑋𝑚𝑖
+ 𝑐 𝜕𝐹

𝜕𝑋 𝑗𝑖
+ 𝛿𝑖 𝑗

{∑︁
𝑘

𝜕𝐹

𝜕𝑋𝑘𝑘
+ 𝐹

}
= 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (39)

Proof. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, consider the (𝑛2 − 1)-form

𝜂𝑖 𝑗 =

𝑛∑︁
𝑘=1

(
𝑌2

)
𝑖𝑘

exp 𝑓 (𝑌 ) 𝜔 𝑗𝑘 ,

and compute 𝑑𝜂𝑖 𝑗 :

𝑑𝜂𝑖 𝑗 =

{
𝑛∑︁
𝑘=1

𝜕

𝜕𝑌 𝑗𝑘

(
𝑌2

)
𝑖𝑘
+

𝑛∑︁
𝑘=1

(
𝑌2

)
𝑖𝑘

𝜕 𝑓

𝜕𝑌 𝑗𝑘

}
𝜔

=

{
𝑛∑︁
𝑘=1

𝜕

𝜕𝑌 𝑗𝑘

(
𝑛∑︁
𝑚=1

𝑌𝑖𝑚𝑌𝑚𝑘

)
+

𝑛∑︁
𝑘=1

(
𝑌2

)
𝑖𝑘

(
𝑋𝑘 𝑗 + (𝑌−2)𝑘 𝑗 + (𝑐 − 𝑛) (𝑌−1)𝑘 𝑗

)}
𝜔

=

{
𝛿𝑖 𝑗

(
1 +

∑︁
𝑘

𝑌𝑘𝑘

)
+ 𝑐𝑌𝑖 𝑗 +

(
𝑌2𝑋

)
𝑖 𝑗

}
𝜔,
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where the usage of 𝜔 and 𝜔 𝑗𝑘 are similar as in the Kummer’s case. Then the Stokes theorem implies that∑︁
𝑘,𝑚

𝑋𝑘 𝑗 ⟨𝑌𝑖𝑚𝑌𝑚𝑘⟩ + 𝑐
〈
𝑌𝑖 𝑗

〉
+ 𝛿𝑖 𝑗

∑︁
𝑘

⟨𝑌𝑘𝑘⟩ + 𝛿𝑖 𝑗 ⟨1⟩ = 0. (40)

Since ⟨𝑌𝑎𝑏⟩ = 𝜕𝐹/𝜕𝑋𝑏𝑎 by virtue of Lemma 4.12, the equality (40) implies the differential equation (39).

Theorem 3.1 for the Bessel function of matrix integral type is the following.

Proposition 4.14. As a function of eigenvalues 𝑥1, . . . , 𝑥𝑛 of 𝑋 , the Bessel integral 𝐼𝐵 (𝑋) satisfies the differential equations

𝑥𝑙
𝜕2𝐹

𝜕𝑥2
𝑙

+ (𝑐 + 1) 𝜕𝐹
𝜕𝑥𝑙

+
∑︁
𝛼≠𝑙

𝑥𝑙
𝜕𝐹
𝜕𝑥𝑙

− 𝑥𝛼 𝜕𝐹
𝜕𝑥𝛼

𝑥𝑙 − 𝑥𝛼
+ 𝐹 = 0, 1 ≤ 𝑙 ≤ 𝑛. (41)

Proof. For a fixed 1 ≤ 𝑙 ≤ 𝑛, multiply the both sides of (39) by 𝑈†
𝑗𝑙
𝑈𝑙𝑖 and take a sum over 𝑖, 𝑗 = 1, . . . , 𝑛. Using the identities

(35), (36) and (37), we have from (39) the equation

𝑥𝑙
𝜕2𝐹

𝜕𝑥2
𝑙

+ 𝑐 𝜕𝐹
𝜕𝑥𝑙

+ 𝑥𝑙
∑︁
𝛼≠𝑙

1
𝑥𝑙 − 𝑥𝛼

(
𝜕𝐹

𝜕𝑥𝑙
− 𝜕𝐹

𝜕𝑥𝛼

)
+

∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼
+ 𝐹 = 0.

Rewriting it using ∑︁
𝛼

𝜕𝐹

𝜕𝑥𝛼
=

∑︁
𝛼≠𝑙

𝑥𝑙 − 𝑥𝛼
𝑥𝑙 − 𝑥𝛼

𝜕𝐹

𝜕𝑥𝛼
+ 𝜕𝐹

𝜕𝑥𝑙
,

we obtain the differential equation (41).

4.5. Hermite-Weber case

We prove Theorem 3.1 for the Hermite-Weber matrix integral 𝐼𝐻𝑊 (𝑐; 𝑋). Put

𝐹 (𝑋) =
∫
𝐶

|𝑌 |−𝑐−𝑛etr
(
𝑋𝑌 − 1

2
𝑌2

)
𝑑𝑌 =

∫
𝐶

exp 𝑓 (𝑌 )𝑑𝑌, 𝑋 ∈ ℋ(𝑛), (42)

where 𝐶 is a domain of integration as in the previous cases and

𝑓 (𝑌 ) = (−𝑐 − 𝑛) log |𝑌 | + tr (𝑋𝑌 − 1
2
𝑌2).

The usage of the symbol ⟨𝑔⟩ is the same as in the previous cases. The following lemma is shown easily.

Lemma 4.15. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have
𝜕 𝑓

𝜕𝑋𝑖 𝑗
= 𝑌 𝑗𝑖 ,

𝜕 𝑓

𝜕𝑌𝑖 𝑗
= (−𝑐 − 𝑛) (𝑌−1) 𝑗𝑖 + 𝑋 𝑗𝑖 − 𝑌 𝑗𝑖 . (43)

Lemma 4.16. The function 𝐹, defined by the integral (42), satisfies the differential equations∑︁
𝑘

𝜕2𝐹

𝜕𝑋 𝑗𝑘𝜕𝑋𝑘𝑖
−

∑︁
𝑘

𝑋𝑘 𝑗
𝜕

𝜕𝑋𝑘𝑖
𝐹 + 𝑐𝛿𝑖 𝑗𝐹 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (44)

Proof. For any pair (𝑖, 𝑗), define 𝜂𝑖 𝑗 =
∑𝑛
𝑘=1𝑌𝑖𝑘 exp 𝑓 (𝑌 ) 𝜔 𝑗𝑘 as in the previous cases. Then using Lemma 4.15, we have

𝑑𝜂𝑖 𝑗 =

{
𝑛∑︁
𝑘=1

𝜕𝑌𝑖𝑘

𝜕𝑌 𝑗𝑘
+

𝑛∑︁
𝑘=1

𝑌𝑖𝑘
𝜕 𝑓

𝜕𝑌 𝑗𝑘

}
𝜔

=

{
𝑛𝛿𝑖 𝑗 +

𝑛∑︁
𝑘=1

𝑌𝑖𝑘

(
(−𝑐 − 𝑛) (𝑌−1)𝑘 𝑗 + 𝑋𝑘 𝑗 − 𝑌𝑘 𝑗

)}
𝜔

=

{
−𝑐𝛿𝑖 𝑗 +

𝑛∑︁
𝑘=1

𝑌𝑖𝑘𝑋𝑘 𝑗 −
𝑛∑︁
𝑘=1

𝑌𝑖𝑘𝑌𝑘 𝑗

}
𝜔.

Since
∫
𝑑𝜂𝑖 𝑗 = 0 by the Stokes theorem, we have∑︁

𝑘

〈
𝑌𝑖𝑘𝑌𝑘 𝑗

〉
−

𝑛∑︁
𝑘=1

𝑋𝑘 𝑗 ⟨𝑌𝑖𝑘⟩ + 𝑐𝛿𝑖 𝑗 ⟨1⟩ = 0. (45)

Then we see that the identities (45) lead to the differential equations (44) since Lemma 4.15 implies 𝜕𝐹/𝜕𝑋𝑎𝑏 = ⟨𝑌𝑏𝑎 · 1⟩.
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Theorem 3.1 for the Hermite-Weber case is the following.

Proposition 4.17. As a function of eigenvalues 𝑥1, . . . , 𝑥𝑛, the Hermite-Weber integral 𝐼𝐻𝑊 (𝑋) satisfies

𝜕2𝐹

𝜕𝑥2
𝑙

− 𝑥𝑙
𝜕𝐹

𝜕𝑥𝑙
+

∑︁
𝛼≠𝑙

1
𝑥𝑙 − 𝑥𝛼

(
𝜕𝐹

𝜕𝑥𝑙
− 𝜕𝐹

𝜕𝑥𝛼

)
+ 𝑐𝐹 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (46)

Proof. We proceed as in the previous case. For a fixed 1 ≤ 𝑙 ≤ 𝑛, multiply the both sides of (44) by 𝑈†
𝑗𝑙
𝑈𝑙𝑖 and take a sum over

𝑖, 𝑗 = 1, . . . , 𝑛. Then we easily see that

∑︁
𝑖, 𝑗 ,𝑘

𝑈
†
𝑗𝑙
· 𝜕2𝐹

𝜕𝑋 𝑗𝑘𝜕𝑋𝑘𝑖
·𝑈𝑙𝑖 =

𝜕2𝐹

𝜕𝑥2
𝑙

+
∑︁
𝛼≠𝑙

1
𝑥𝑙 − 𝑥𝛼

(
𝜕𝐹

𝜕𝑥𝑙
− 𝜕𝐹

𝜕𝑥𝛼

)
.

For the second term in (44), we use (30). Then we obtain the differential equation (46) from (44).

4.6. Airy case

We prove Theorem 3.1 for the Airy integral 𝐼𝐴(𝑋). Put

𝐹 (𝑋) =
∫
𝐶

etr
(
𝑋𝑌 − 1

3
𝑌3

)
𝑑𝑌 =

∫
𝐶

exp 𝑓 (𝑌 )𝑑𝑌, 𝑋 ∈ ℋ(𝑛), (47)

where 𝐶 is a domain of integration explained in the last paragraph of Section 2.2 and

𝑓 (𝑌 ) = tr
(
𝑋𝑌 − 1

3
𝑌3

)
.

By virtue of this choice of 𝐶, we can interchange the operations of differentiation with respect to 𝑋𝑖 𝑗 integration with respect to
𝑌 . See also Remark 2.7. The usage of the symbol ⟨𝑔⟩ is the same as in the previous cases. The following lemma is easy.

Lemma 4.18. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

𝜕 𝑓

𝜕𝑋𝑖 𝑗
= 𝑌 𝑗𝑖 , ⟨(𝑌2) 𝑗𝑖⟩ − ⟨𝑋 𝑗𝑖⟩ = 0. (48)

Lemma 4.19. The function 𝐹 satisfies the differential equations∑︁
𝑘

𝜕2𝐹

𝜕𝑋𝑖𝑘𝜕𝑋𝑘 𝑗
− 𝑋 𝑗𝑖𝐹 = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (49)

Proof. The equation (49) follows from Lemma 4.18 and
(
𝑌2)

𝑗𝑖
=

∑
𝑘 𝑌 𝑗𝑘𝑌𝑘𝑖 .

Theorem 3.1 for the Airy integral is the following, whose proof is similar to that for Proposition 4.17 and is omitted.

Proposition 4.20. As a function of eigenvalues 𝑥1, . . . , 𝑥𝑛 of 𝑋 , the Airy integral 𝐼𝐴(𝑋) satisfies the differential equation

𝜕2𝐹

𝜕𝑥2
𝑙

+
∑︁
𝛼≠𝑙

1
𝑥𝑙 − 𝑥𝛼

(
𝜕𝐹

𝜕𝑥𝑙
− 𝜕𝐹

𝜕𝑥𝛼

)
− 𝑥𝑙𝐹 = 0, 1 ≤ 𝑙 ≤ 𝑛.

5. HOLONOMICITY OF THE SYSTEM FOR HGF

Theorem 5.1. The system S∗ (∗ = 𝐺, 𝐾, 𝐵, 𝐻𝑊, 𝐴) is holonomic in Ω∗ ⊂ C𝑛 and is equivalent to the completely integrable
Pfaffian system of rank 2𝑛, where

Ω𝐺 = {𝑥 ∈ C𝑛 |
𝑛∏
𝑖=1

𝑥𝑖 (𝑥𝑖 − 1) · Δ(𝑥) ≠ 0},

Ω𝐾 = Ω𝐵 = {𝑥 ∈ Ω |
𝑛∏
𝑖=1

𝑥𝑖 · Δ(𝑥) ≠ 0},

Ω𝐻𝑊 = Ω𝐴 = {𝑥 ∈ Ω | Δ(𝑥) ≠ 0}.
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We prove the theorem in detail for the systems S𝐻𝑊 ,S𝐴 by using the theory of Gröbner basis.
Let C[𝑥] be the ring of polynomials in 𝑥 = (𝑥1, . . . , 𝑥𝑛) and let 𝑅 be the localization of C[𝑥] by Δ =

∏
𝑖< 𝑗 (𝑥𝑖 − 𝑥 𝑗 ), namely

𝑅 = { 𝑓 /Δ𝑚 | 𝑓 ∈ C[𝑥], 𝑚 ∈ Z≥0} which is also denoted as C[𝑥]Δ. We denote by 𝐷 the ring of differential operators in 𝑥 with
coefficients in 𝑅. Any 𝑃 ∈ 𝐷 can be expressed uniquely in the so-called normal form

𝑃 =
∑︁
𝛼

𝑎𝛼 (𝑥)𝜕𝛼 =
∑︁
𝛼

𝑎𝛼 (𝑥)𝜕𝛼1
1 · · · 𝜕𝛼𝑛𝑛 , 𝑎𝛼 (𝑥) ∈ 𝑅,

where
∑
𝛼 is a finite sum with respect to multi-indices 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛≥0. To this 𝑃 ∈ 𝐷 we associate its symbol:

𝜎(𝑃) =
∑︁
𝛼

𝑎𝛼 (𝑥)𝜉𝛼 =
∑︁
𝛼

𝑎𝛼 (𝑥)𝜉𝛼1
1 · · · 𝜉𝛼𝑛𝑛 ∈ 𝑅[𝜉] .

For 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛≥0, let |𝛼 | denote the sum 𝛼1 + · · · + 𝛼𝑛.
Let us fix an order in the set of monomials {𝑎𝛼 (𝑥)𝜕𝛼} in 𝐷 as follows. Firstly, we use the lexicographic order as a monomial

order ≺𝑙𝑒𝑥 in C[𝜉], namely, 𝜉𝛼 ≺𝑙𝑒𝑥 𝜉𝛽 means that either |𝛼 | < |𝛽 | holds or |𝛼 | = |𝛽 | and the most left nonzero member of
(𝛽1 − 𝛼1, . . . , 𝛽𝑛 − 𝛼𝑛) is > 0. Using ≺𝑙𝑒𝑥 , define the order in 𝐷 as

𝑎𝛼 (𝑥)𝜕𝛼 ≺ 𝑏𝛽 (𝑥)𝜕𝛽 ⇔ 𝜉𝛼 ≺𝑙𝑒𝑥 𝜉𝛽 .

For 𝑃 ∈ 𝐷, the initial term in≺ (𝑃) is the symbol of the greatest monomial in 𝑃 with respect to the order ≺. For 𝑃,𝑄 ∈ 𝑅 with
in≺ (𝑃) = 𝑎(𝑥)𝜉𝛼, in≺ (𝑄) = 𝑏(𝑥)𝜉𝛽 , let 𝛾 = (max(𝛼1, 𝛽1), . . . ,max(𝛼𝑛, 𝛽𝑛)) ∈ Z𝑛≥0. Then S-pair sp(𝑃,𝑄) for 𝑃,𝑄 is defined by

sp(𝑃,𝑄) = 𝑏(𝑥)𝜕𝛾−𝛼𝑃 − 𝑎(𝑥)𝜕𝛾−𝛽𝑄.

Let ℐ be a left ideal of 𝐷. By in≺ (ℐ) we denote the ideal of 𝑅[𝜉] generated by {in≺ (𝑃) | 𝑃 ∈ ℐ}. Let { 𝑓1, . . . , 𝑓𝑑} be
a generator of the ideal ℐ. It should be noted that {in≺ ( 𝑓1), . . . , in≺ ( 𝑓𝑑)} does not necessarily generate in≺ (ℐ), in general.
A generator 𝐺 = {𝑔1, . . . , 𝑔𝑚} of ℐ is said to be a Gröbner basis for ℐ if (in≺ (𝑔1), . . . , in≺ (𝑔𝑚)) generates in≺ (ℐ), namely
in≺ (ℐ) = ⟨in≺ (𝑔1), . . . , in≺ (𝑔𝑚)⟩ . We can apply the Buchberger’s algorithm to find a Gröbner basis for a given left ideal ℐ of
𝐷.

5.1. Hermite-Weber

Consider the system of differential equations S𝐻𝑊 for the Hermite-Weber function 𝐼𝐻𝑊 (𝑐, 𝑋) and put

𝐿𝑖 = 𝜕
2
𝑖 − 𝑥𝑖𝜕𝑖 +

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) + 𝑐, 1 ≤ 𝑖 ≤ 𝑛.

Let ℐ𝐻𝑊 ⊂ 𝐷 be the left ideal with the generator 𝐺𝐻𝑊 = {𝐿1, . . . , 𝐿𝑛}.

Proposition 5.2. 𝐺𝑊𝐻 is a Gröbner basis of the left ideal ℐ𝐻𝑊 .

Proof. It is enough to show that, for any pair 𝐿𝑖 , 𝐿 𝑗 (𝑖 ≠ 𝑗), the S-pair sp(𝐿𝑖 , 𝐿 𝑗 ) ≡ 0 after applying the division algorithm of
Buchberger using 𝐺𝑊𝐻 . Since the largest term of 𝐿𝑖 is 𝜕2

𝑖
, we have

sp(𝐿𝑖 , 𝐿 𝑗 ) = 𝜕2
𝑗 𝐿𝑖 − 𝜕2

𝑖 𝐿 𝑗

= 𝜕2
𝑗

©­«𝜕2
𝑖 − 𝑥𝑖𝜕𝑖 +

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) + 𝑐ª®¬
− 𝜕2

𝑖

©­«𝜕2
𝑗 − 𝑥 𝑗𝜕 𝑗 +

∑︁
𝑘 (≠ 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘) + 𝑐ª®¬
= 𝐴 + 𝐵 + 𝐶 + 𝐷,

where

𝐴 = −𝑥𝑖𝜕𝑖𝜕2
𝑗 + 𝑥 𝑗𝜕 𝑗𝜕2

𝑖 ,

𝐵 = 𝜕2
𝑗 ·

1
𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗 ) − 𝜕2
𝑖 ·

1
𝑥 𝑗 − 𝑥𝑖

(𝜕 𝑗 − 𝜕𝑖),

𝐶 =
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘)𝜕2

𝑗 −
1

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)𝜕2

𝑖

}
,

𝐷 = 𝑐(𝜕2
𝑗 − 𝜕2

𝑖 ).
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We carry out a reduction of 𝐴, 𝐵, 𝐶, 𝐷 by the division algorithm using the generator 𝐺𝑊𝐻 . Noting that

𝜕2
𝑖 = 𝐿𝑖 + 𝑥𝑖𝜕𝑖 −

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) − 𝑐, (50)

we have

𝐴 ≡ −𝑥𝑖𝜕𝑖
𝑥 𝑗𝜕 𝑗 −

∑︁
𝑘 (≠ 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘) − 𝑐
 + 𝑥 𝑗𝜕 𝑗

𝑥𝑖𝜕𝑖 −
∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) − 𝑐


=
∑︁
𝑘 (≠𝑖, 𝑗 )

{
𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
𝜕𝑖 (𝜕 𝑗 − 𝜕𝑘) −

𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
𝜕 𝑗 (𝜕𝑖 − 𝜕𝑘)

}
+ 𝑥𝑖

{
1

𝑥 𝑗 − 𝑥𝑖
𝜕𝑖 (𝜕 𝑗 − 𝜕𝑖) +

1
(𝑥 𝑗 − 𝑥𝑖)2 (𝜕 𝑗 − 𝜕𝑖)

}
− 𝑥 𝑗

{
1

𝑥𝑖 − 𝑥 𝑗
𝜕 𝑗 (𝜕𝑖 − 𝜕 𝑗 ) +

1
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )

}
,

+ 𝑐(𝑥𝑖𝜕𝑖 − 𝑥 𝑗𝜕 𝑗 ),

and

𝐵 ≡ 1
𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗 )𝜕2
𝑗 +

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )𝜕 𝑗 +

2
(𝑥𝑖 − 𝑥 𝑗 )3 (𝜕𝑖 − 𝜕 𝑗 )

− 1
𝑥 𝑗 − 𝑥𝑖

(𝜕 𝑗 − 𝜕𝑖)𝜕2
𝑖 −

2
(𝑥 𝑗 − 𝑥𝑖)2 (𝜕 𝑗 − 𝜕𝑖)𝜕𝑖 −

2
(𝑥 𝑗 − 𝑥𝑖)3 (𝜕 𝑗 − 𝜕𝑖)

=
1

𝑥𝑖 − 𝑥 𝑗
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕2

𝑗 − 𝜕2
𝑖 ) −

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕

2
𝑗 − 𝜕2

𝑖 )

=:
1

𝑥𝑖 − 𝑥 𝑗
𝐵1 −

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕

2
𝑗 − 𝜕2

𝑖 ).

To compute 𝐵1, we use

𝜕2
𝑗 − 𝜕2

𝑖 = 𝐿 𝑗 − 𝐿𝑖 + 𝑥 𝑗𝜕 𝑗 − 𝑥𝑖𝜕𝑖 +
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}

and we have

𝐵1 ≡ (𝜕𝑖 − 𝜕 𝑗 )
𝑥 𝑗𝜕 𝑗 − 𝑥𝑖𝜕𝑖 +

∑︁
𝑘 (≠𝑖, 𝑗 )

(
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
)

= 𝑥 𝑗 (𝜕𝑖 − 𝜕 𝑗 )𝜕 𝑗 − 𝑥𝑖 (𝜕 𝑗 − 𝜕𝑖)𝜕𝑖 − (𝜕 𝑗 + 𝜕𝑖)

+
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘)2 (𝜕𝑖 − 𝜕𝑘)

}
−

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥 𝑗 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕 𝑗 − 𝜕𝑘) +

1
(𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
.

Similarly, we compute 𝐶. Using (50) we have

𝐶 ≡
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘)
𝑥 𝑗𝜕 𝑗 −

∑︁
ℓ (≠ 𝑗 )

1
𝑥 𝑗 − 𝑥ℓ

(𝜕 𝑗 − 𝜕ℓ) − 𝑐


−
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
𝑥𝑖𝜕𝑖 −

∑︁
ℓ (≠𝑖)

1
𝑥𝑖 − 𝑥ℓ

(𝜕𝑖 − 𝜕ℓ) − 𝑐


=
∑︁
𝑘 (≠𝑖, 𝑗 )

{
𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘)𝜕 𝑗 −

𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)𝜕𝑖

}
− 𝑐

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}
+ 𝐶1,
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where

𝐶1 = −
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘)
∑︁
ℓ (≠ 𝑗 )

1
𝑥 𝑗 − 𝑥ℓ

(𝜕 𝑗 − 𝜕ℓ)

+
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
∑︁
ℓ (≠𝑖)

1
𝑥𝑖 − 𝑥ℓ

(𝜕𝑖 − 𝜕ℓ).

In 𝐶1, we consider separately the cases ℓ = 𝑖, 𝑘 in the first part and the cases ℓ = 𝑗 , 𝑘 in the second part. Thus

𝐶1 = −
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘)
1

𝑥 𝑗 − 𝑥𝑖
(𝜕 𝑗 − 𝜕𝑖)

−
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘)
1

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)

−
∑︁
𝑘 (≠𝑖, 𝑗 )

∑︁
ℓ (≠𝑖, 𝑗 ,𝑘 )

1
(𝑥𝑖 − 𝑥𝑘) (𝑥 𝑗 − 𝑥ℓ)

(𝜕𝑖 − 𝜕𝑘) (𝜕 𝑗 − 𝜕ℓ)

+
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
1

𝑥𝑖 − 𝑥 𝑗
(𝜕𝑖 − 𝜕 𝑗 )

+
∑︁
𝑘 (≠𝑖, 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘)

+
∑︁
𝑘 (≠𝑖, 𝑗 )

∑︁
ℓ (≠𝑖, 𝑗 ,𝑘 )

1
(𝑥 𝑗 − 𝑥𝑘) (𝑥𝑖 − 𝑥ℓ)

(𝜕 𝑗 − 𝜕𝑘) (𝜕𝑖 − 𝜕ℓ).

Reducing 𝐶1 to the normal form we have

𝐶1 = − 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}
(𝜕𝑖 − 𝜕 𝑗 )

+
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
+ 1
𝑥 𝑗 − 𝑥𝑘

}
1

(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )

−
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

(𝑥𝑖 − 𝑥𝑘)2 (𝑥 𝑗 − 𝑥𝑘)
(𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘) (𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
, (51)

and we get the normal form of 𝐶. Collecting the terms in 𝐴,𝐶, 𝐷 containing 𝑐 as a coefficient, we see that they are equal to
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𝑐(𝐿 𝑗 − 𝐿𝑖) and is 0 after applying the division algorithm. Also summing up all the other terms in 𝐴, 𝐵, 𝐶, we have

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
∑︁
𝑘 (≠𝑖, 𝑗 )

{
𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
𝜕𝑖 (𝜕 𝑗 − 𝜕𝑘) −

𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
𝜕 𝑗 (𝜕𝑖 − 𝜕𝑘)

}
+ 𝑥𝑖

{
1

𝑥 𝑗 − 𝑥𝑖
𝜕𝑖 (𝜕 𝑗 − 𝜕𝑖) +

1
(𝑥 𝑗 − 𝑥𝑖)2 (𝜕 𝑗 − 𝜕𝑖)

}
− 𝑥 𝑗

{
1

𝑥𝑖 − 𝑥 𝑗
𝜕 𝑗 (𝜕𝑖 − 𝜕 𝑗 ) +

1
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )

}
+ 1
𝑥𝑖 − 𝑥 𝑗

{
𝑥 𝑗 (𝜕𝑖 − 𝜕 𝑗 )𝜕 𝑗 − 𝑥𝑖 (𝜕 𝑗 − 𝜕𝑖)𝜕𝑖 − (𝜕 𝑗 + 𝜕𝑖)

}
+ 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘)2 (𝜕𝑖 − 𝜕𝑘)

}
− 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥 𝑗 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕 𝑗 − 𝜕𝑘) +

1
(𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
+ 2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕

2
𝑖 − 𝜕2

𝑗 )

+
∑︁
𝑘 (≠𝑖, 𝑗 )

{
𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘)𝜕 𝑗 −

𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)𝜕𝑖

}
− 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}
(𝜕𝑖 − 𝜕 𝑗 )

+
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
+ 1
𝑥 𝑗 − 𝑥𝑘

}
1

(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )

−
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

(𝑥𝑖 − 𝑥𝑘)2 (𝑥 𝑗 − 𝑥𝑘)
(𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘) (𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
.

This reduces to

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
1

(𝑥𝑖 − 𝑥 𝑗 )2

2(𝜕2
𝑖 − 𝜕2

𝑗 ) − 2(𝑥𝑖𝜕𝑖 − 𝑥 𝑗𝜕 𝑗 ) +
∑︁
𝑘 (≠𝑖, 𝑗 )

(
1

𝑥𝑖 − 𝑥𝑘
+ 1
𝑥 𝑗 − 𝑥𝑘

)
(𝜕𝑖 − 𝜕 𝑗 )


+

∑︁
𝑘 (≠𝑖, 𝑗 )

1
(𝑥𝑖 − 𝑥 𝑗 ) (𝑥 𝑗 − 𝑥𝑘) (𝑥𝑘 − 𝑥𝑖)

{
(𝜕𝑖 − 𝜕𝑘) + (𝜕 𝑗 − 𝜕𝑘)

}
=

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝐿𝑖 − 𝐿 𝑗 )

≡ 0.

by applying the division algorithm using 𝐺𝐻𝑊 . Thus we have shown that 𝐺𝐻𝑊 is a Gröbner basis for the ideal 𝐼𝐻𝑊 .

Since 𝐺𝐻𝑊 is the Gröbner basis of the ideal ℐ𝐻𝑊 and in≺ (𝐿𝑖) = 𝜉2
𝑖
, we see that ℐ𝐻𝑊 is a zero-dimensional ideal of 𝐷,

rank𝑅 (𝐷/ℐ𝐻𝑊 ) = rank𝑅 (𝑅[𝜉]/
〈
𝜉2

1 , . . . , 𝜉
2
𝑛

〉
) = 2𝑛 and

{𝜕𝑘1
1 𝜕

𝑘2
2 · · · 𝜕𝑘𝑛𝑛 | 𝑘1, . . . , 𝑘𝑛 = 0, 1}

gives a basis of 𝑅-free module 𝐷/ℐ𝐻𝑊 , where when 𝑘1 = · · · = 𝑘𝑛 = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for S𝐻𝑊 .

Proposition 5.3. The system S𝐻𝑊 is holonomic on C𝑛 \ 𝑆, 𝑆 = ∪𝑖< 𝑗 {𝑥𝑖 − 𝑥 𝑗 = 0} and the holonomic rank is 2𝑛.

5.2. Airy

We show the similar result for the system S𝐴 for the Airy integral 𝐼𝐴(𝑋) of matrix integral type. Put

𝐿𝑖 = 𝜕
2
𝑖 +

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) − 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

and let ℐ𝐴 ⊂ 𝐷 be the left ideal of 𝐷 with the generator 𝐺𝐴 = {𝐿1, . . . , 𝐿𝑛}.
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Proposition 5.4. The generator 𝐺𝐴 is a Gröbner basis of the left ideal ℐ𝐴.

Proof. For 𝑖 ≠ 𝑗 , let us compute the 𝑆-pair sp(𝐿𝑖 , 𝐿 𝑗 ) and show that sp(𝐿𝑖 , 𝐿 𝑗 ) ≡ 0 after carrying out the division algorithm
using 𝐺𝐴.

sp(𝐿𝑖 , 𝐿 𝑗 ) = 𝜕2
𝑗 𝐿𝑖 − 𝜕2

𝑖 𝐿 𝑗

= 𝜕2
𝑗

©­«𝜕2
𝑖 +

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) − 𝑥𝑖
ª®¬

− 𝜕2
𝑖

©­«𝜕2
𝑗 +

∑︁
𝑘 (≠ 𝑗 )

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘) − 𝑥 𝑗
ª®¬

= 𝐵 + 𝐶 + 𝐷,

where

𝐵 = 𝜕2
𝑗 ·

1
𝑥𝑖 − 𝑥 𝑗

(𝜕𝑖 − 𝜕 𝑗 ) − 𝜕2
𝑖 ·

1
𝑥 𝑗 − 𝑥𝑖

(𝜕 𝑗 − 𝜕𝑖),

𝐶 =
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘)𝜕2

𝑗 −
1

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)𝜕2

𝑖

}
,

𝐷 = −𝑥𝑖𝜕2
𝑗 + 𝑥 𝑗𝜕2

𝑖 .

Note that 𝐵,𝐶 has the same form as in the proof of Proposition 5.2. We make a reduction of 𝐵,𝐶 in a similar way. 𝐵 can be written
as

𝐵 =
1

𝑥𝑖 − 𝑥 𝑗
𝐵1 +

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕

2
𝑖 − 𝜕2

𝑗 ),

where 𝐵1 = (𝜕𝑖 − 𝜕 𝑗 ) (𝜕2
𝑗
− 𝜕2

𝑖
). Note that

𝜕2
𝑖 = 𝐿𝑖 −

∑︁
𝑘 (≠𝑖)

1
𝑥𝑖 − 𝑥𝑘

(𝜕𝑖 − 𝜕𝑘) + 𝑥𝑖 , (52)

we have

𝜕2
𝑗 − 𝜕2

𝑖 = 𝐿 𝑗 − 𝐿𝑖 +
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}
− (𝑥𝑖 − 𝑥 𝑗 ),

and see that

𝐵1 ≡ (𝜕𝑖 − 𝜕 𝑗 )


∑︁
𝑘 (≠𝑖, 𝑗 )

(
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
)
− (𝑥𝑖 − 𝑥 𝑗 )


=

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘)2 (𝜕𝑖 − 𝜕𝑘)

}
−

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥 𝑗 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕 𝑗 − 𝜕𝑘) +

1
(𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
− (𝑥𝑖 − 𝑥 𝑗 ) (𝜕𝑖 − 𝜕 𝑗 ) − 2.

Similarly we compute 𝐶 using (52) and get

𝐶 ≡ 𝐶1 +
∑︁
𝑘 (≠𝑖, 𝑗 )

(
𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)

)
,

where 𝐶1 is the same as in (51). For 𝐷 we have

𝐷 ≡ (𝜕𝑖 − 𝜕 𝑗 ) −
∑︁
𝑘 (≠𝑖, 𝑗 )

(
𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)

)
.
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Summing up 𝐵,𝐶, 𝐷, we have

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
2

(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕
2
𝑖 − 𝜕2

𝑗 ) − (𝜕𝑖 − 𝜕 𝑗 ) −
2

𝑥𝑖 − 𝑥 𝑗

+ 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘)2 (𝜕𝑖 − 𝜕𝑘)

}
− 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥 𝑗 − 𝑥𝑘
(𝜕𝑖 − 𝜕 𝑗 ) (𝜕 𝑗 − 𝜕𝑘) +

1
(𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
− 1
𝑥𝑖 − 𝑥 𝑗

∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

1
𝑥 𝑗 − 𝑥𝑘

(𝜕 𝑗 − 𝜕𝑘)
}
(𝜕𝑖 − 𝜕 𝑗 )

+
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

𝑥𝑖 − 𝑥𝑘
+ 1
𝑥 𝑗 − 𝑥𝑘

}
1

(𝑥𝑖 − 𝑥 𝑗 )2 (𝜕𝑖 − 𝜕 𝑗 )

−
∑︁
𝑘 (≠𝑖, 𝑗 )

{
1

(𝑥𝑖 − 𝑥𝑘)2 (𝑥 𝑗 − 𝑥𝑘)
(𝜕𝑖 − 𝜕𝑘) −

1
(𝑥𝑖 − 𝑥𝑘) (𝑥 𝑗 − 𝑥𝑘)2 (𝜕 𝑗 − 𝜕𝑘)

}
,

+ (𝜕𝑖 − 𝜕 𝑗 ) −
∑︁
𝑘 (≠𝑖, 𝑗 )

(
𝑥 𝑗

𝑥𝑖 − 𝑥𝑘
(𝜕𝑖 − 𝜕𝑘) −

𝑥𝑖

𝑥 𝑗 − 𝑥𝑘
(𝜕 𝑗 − 𝜕𝑘)

)
.

This reduces to

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
1

(𝑥𝑖 − 𝑥 𝑗 )2

2(𝜕2
𝑖 − 𝜕2

𝑗 ) − 2(𝑥𝑖 − 𝑥 𝑗 ) +
∑︁
𝑘 (≠𝑖, 𝑗 )

(
1

𝑥𝑖 − 𝑥𝑘
+ 1
𝑥 𝑗 − 𝑥𝑘

)
(𝜕𝑖 − 𝜕 𝑗 )


+

∑︁
𝑘 (≠𝑖, 𝑗 )

1
(𝑥𝑖 − 𝑥 𝑗 ) (𝑥 𝑗 − 𝑥𝑘) (𝑥𝑘 − 𝑥𝑖)

{
(𝜕𝑖 − 𝜕𝑘) + (𝜕 𝑗 − 𝜕𝑘)

}
=

2
(𝑥𝑖 − 𝑥 𝑗 )2 (𝐿𝑖 − 𝐿 𝑗 )

≡ 0

by the division algorithm using 𝐺𝐴. Thus we have shown that 𝐺𝐴 is a Gröbner basis for the ideal ℐ𝐴.

Since𝐺𝐴 is the Gröbner basis of the ideal ℐ𝐴 and in≺ (𝐿𝑖) = 𝜉2
𝑖
, we see that ℐ𝐴 is a zero-dimensional ideal of 𝐷, rank𝑅 (𝐷/ℐ𝐴) =

rank𝑅 (𝑅[𝜉]/
〈
𝜉2

1 , . . . , 𝜉
2
𝑛

〉
) = 2𝑛 and

{𝜕𝑘1
1 𝜕

𝑘2
2 · · · 𝜕𝑘𝑛𝑛 | 𝑘1, . . . , 𝑘𝑛 = 0, 1}

gives a basis of 𝑅-free module 𝐷/ℐ𝐴, where when 𝑘1 = · · · = 𝑘𝑛 = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for S𝐴.

Proposition 5.5. The Airy system S𝐴 is holonomic on C𝑛 \ 𝑆, 𝑆 = ∪𝑖< 𝑗 {𝑥𝑖 − 𝑥 𝑗 = 0} and its holonomic rank is 2𝑛.

5.3. Gauss, Kummer, Bessel

In this section, we give the reduced form of the S-polynomial sp(𝐿𝑖 , 𝐿 𝑗 ) for the systems S𝐺 ,S𝐾 ,S𝐵 for Gauss, Kummer and
Bessel without explicit computation. For the proof of these cases, we must modify the ring 𝑅 = C[𝑥]Δ, which is used in the cases
S𝐻𝑊 ,S𝐴, as

𝑅 = { 𝑓 /𝑔𝑚 | 𝑓 ∈ C[𝑥], 𝑚 ∈ Z≥0}

with 𝑔 =
∏𝑛
𝑖=1 𝑥𝑖 (𝑥𝑖 − 1) · Δ(𝑥) for the case S𝐺 and 𝑔 =

∏𝑛
𝑖=1 𝑥𝑖 · Δ(𝑥) for the cases S𝐾 ,S𝐵.

5.3.1. System S𝐺
Put

𝐿𝑖 = 𝑥𝑖 (1 − 𝑥𝑖)𝜕2
𝑖 + {𝑐 − (𝑛 − 1) − (𝑎 + 𝑏 + 1 − (𝑛 − 1))𝑥𝑖}𝜕𝑖

+
∑︁
𝑗 (≠𝑖)

𝑥𝑖 (1 − 𝑥𝑖)𝜕𝑖 − 𝑥 𝑗 (1 − 𝑥 𝑗 )𝜕 𝑗
𝑥𝑖 − 𝑥 𝑗

− 𝑎𝑏
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and 𝐺 = {𝐿1, . . . , 𝐿𝑛}. Then

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
2𝑥𝑖 (𝑥𝑖 − 1)𝑥 𝑗 (𝑥 𝑗 − 1)

(𝑥𝑖 − 𝑥 𝑗 )2 (𝐿𝑖 − 𝐿 𝑗 )

after applying the division algorithm using 𝐺.

5.3.2. System S𝐾
Put

𝐿𝑖 = 𝑥𝑖𝜕
2
𝑖 + {𝑐 − (𝑛 − 1) − 𝑥𝑖}𝜕𝑖 +

∑︁
𝑗 (≠𝑖)

𝑥𝑖𝜕𝑖 − 𝑥 𝑗𝜕 𝑗
𝑥𝑖 − 𝑥 𝑗

− 𝑎

and 𝐺𝐾 = {𝐿1, . . . , 𝐿𝑛}. Then

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
2𝑥𝑖𝑥 𝑗

(𝑥𝑖 − 𝑥 𝑗 )2 (𝐿𝑖 − 𝐿 𝑗 )

after applying the division algorithm using 𝐺𝐾 .

5.3.3. System S𝐵
Put

𝐿𝑖 = 𝑥𝑖𝜕
2
𝑖 + {𝑐 − 𝑛 + 1}𝜕𝑖 +

∑︁
𝑗 (≠𝑖)

𝑥𝑖𝜕𝑖 − 𝑥 𝑗𝜕 𝑗
𝑥𝑖 − 𝑥 𝑗

+ 1

and 𝐺𝐵 = {𝐿1, . . . , 𝐿𝑛}. Then

sp(𝐿𝑖 , 𝐿 𝑗 ) ≡
2𝑥𝑖𝑥 𝑗

(𝑥𝑖 − 𝑥 𝑗 )2 (𝐿𝑖 − 𝐿 𝑗 )

after applying the division algorithm using 𝐺𝐵.
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ABSTRACT
It is known that a hyperbolic Ricci soliton is one of the generalization of the Ricci solitons and it is a Riemannian manifold (𝑀, 𝑔)
furnished with a differentiable vector field 𝑈 on 𝑀 and two real numbers 𝜆 and 𝜇 ensuring 𝑅𝑖𝑐 + 𝜆𝐿𝑈𝑔 + 1

2𝐿𝑈 (𝐿𝑈𝑔) = 𝜇𝑔,

where 𝐿𝑈 denotes the Lie derivative with respect to the vector field 𝑋 on 𝑀 . Furthermore, hyperbolic Ricci solitons yield similar
solutions to hyperbolic Ricci flow. In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds endowed
with the Tanaka-Webster connection. We give some results for these manifolds when the potential vector field is a pointwise
collinear with the Reeb vector field and a concircular vector field.
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1. INTRODUCTION

The notion of hyperbolic Ricci flow was introduced in Kong and Liu (2007). Let 𝑔𝑖 𝑗 (𝑡) be a family of Riemannian metrics on a
Riemannian manifold (𝑀𝑛, 𝑔0). The hyperbolic Ricci flow is defined by

𝜕2𝑔𝑖 𝑗

𝜕𝑡2
= −2𝑅𝑖 𝑗

with 𝑔(0) = 𝑔0,
𝜕𝑔𝑖 𝑗

𝜕𝑡
= 𝑘𝑖 𝑗 , where 𝑘𝑖 𝑗 is a symmetric(0, 2)−type tensor field. A self-similar solution 𝑔(𝑡) of the hyperbolic Ricci

flow on 𝑀𝑛 is a hyperbolic Ricci soliton if there exists a 1-parameter family of diffeomorphisms 𝜌(𝑡) : 𝑀 → 𝑀 and a positive
function 𝜎(𝑡) such that

𝑔(𝑡) = 𝜎(𝑡)𝜌(𝑡)∗ (𝑔0).

If we differentiate above equation twice, we get

−2𝑅𝑖𝑐(𝑔(𝑡)) = 𝜎′′ (𝑡)𝜌(𝑡)∗ (𝑔0) + 2𝜎′ (𝑡)𝜌(𝑡)∗ (𝐿𝑋𝑔0) + 𝜎(𝑡)𝜌(𝑡)∗ (𝐿𝑋𝐿𝑋𝑔0)),

where 𝑅𝑖𝑐 is the Ricci curvature on 𝑀, 𝑋 is the time-dependent vector field and 𝐿 is the Lie derivative. The family of metrics are
said to be expanding, steady or shrinking if 𝜎′ is positive, zero or negative, respectively. Substituting 𝜎′′ (0) = −2𝜇, 𝜎(0) = 1
and 𝜎′ (0) = 𝜆 in the above equation, we get

𝑅𝑖𝑐(𝑔0) + 𝜆𝐿𝑋𝑔0 +
1
2
𝐿𝑋𝐿𝑋𝑔0 = 𝜇𝑔0

for some real constants 𝜆 and 𝜇. According to this equation, a hyperbolic Ricci soliton on a Riemannian manifold (𝑀, 𝑔) is defined
by

𝑅𝑖𝑐 + 𝜆𝐿𝑋𝑔 + 1
2
𝐿𝑋 (𝐿𝑋𝑔) = 𝜇𝑔. (1)

A hyperbolic Ricci soliton is called expanding, steady or shrinking if 𝜇 is negative, zero or positive, respectively. For recent papers
about hyperbolic Ricci solitons see Azami and Fasihi (2023), Azami and Fasihi (2024), Blaga and Özgür (2023), Faraji et al.
(2023).
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In this paper, we investigate hyperbolic Ricci solitons on nearly cosymplectic manifolds. The manifolds will be considered with
the Tanaka-Webster connection. The paper is organized as follows: In Section 2, we give some fundamental information about
nearly cosymplectic manifolds. In Section 3, we express some properties of cosymplectic manifolds satisfying Tanaka-Webster
connection. In the final section, we give our main results.

2. NEARLY COSYMPLECTIC MANIFOLDS

An 𝑛 = (2𝑘 + 1)−dimensional smooth manifold 𝑀 is called an almost contact metric manifold if it admits a (1, 1)−tensor field
𝜙, a contravariant vector field 𝜉, a 1-form 𝜂 and a Riemannian metric 𝑔 which fulfill, Blair (1976)

𝜙2 (𝑈) = −𝑈 + 𝜂(𝑈)𝜉, 𝜂(𝜉) = 1, 𝜙𝜉 = 0, 𝜂(𝜙𝑈) = 0, (2)

𝑔(𝜙𝑈, 𝜙𝑉) = 𝑔(𝑈,𝑉) − 𝜂(𝑈)𝜂(𝑉), 𝑔(𝜙𝑈,𝑉) = −𝑔(𝑈, 𝜙𝑉),
𝑔(𝑈, 𝜉) = 𝜂(𝑈), ∀𝑈,𝑉 ∈ 𝜒(𝑀). (3)

An almost contact metric manifold (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) is called a contact metric manifold if

𝑔(𝑈, 𝜙𝑉) = 𝑑𝜂(𝑈,𝑉).

An almost contact metric manifold (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) is said to be a nearly cosymplectic manifold if

(∇𝑈𝜙)𝑉 + (∇𝑉𝜙)𝑈 = 0, ∀𝑈,𝑉 ∈ 𝜒(𝑀).

For a nearly cosymplectic manifold, we have

∇𝜉 𝜉 = 0 and ∇𝜉𝜂 = 0.

On the other hand, for a (1, 1)−type tensor field 𝐻 which is defined as

∇𝑈𝜉 = 𝐻𝑈. (4)

It is known that 𝐻 is skew symmetric and anti-commutative with 𝜙. Moreover, 𝐻 satisfies 𝐻𝜉 = 0 and 𝜂 ◦ 𝐻 = 0 and fulfills the
following situations, Nicola et al. (2018):

(∇𝜉𝜙)𝑈 = 𝜙𝐻𝑈 =
1
3
(∇𝜉𝜙)𝑈 ,

𝑔((∇𝑈𝜙)𝑉, 𝐻𝑊) = 𝜂(𝑉)𝑔(𝐻2𝑈, 𝜙𝑊) − 𝜂(𝑈)𝑔(𝐻2𝑉, 𝜙𝑊),

(∇𝑈𝐻)𝑉 = 𝑔(𝐻2𝑈 ,𝑉)𝜉 − 𝜂(𝑉)𝐻2𝑈,

𝑡𝑟 (𝐻2) = constant,

𝑅(𝑉,𝑊)𝜉 = 𝜂(𝑉)𝐻2𝑊 − 𝜂(𝑊)𝐻2𝑉,

𝑆(𝜉,𝑊) = −𝜂(𝑊)𝑡𝑟 (𝐻2),

𝑆(𝜙𝑉,𝑊) = 𝑆(𝑉, 𝜙𝑊), 𝜙𝑄 = 𝑄𝜙,

𝑆(𝜙𝑉, 𝜙𝑊) = 𝑆(𝑉,𝑊) + 𝜂(𝑉)𝜂(𝑊)𝑡𝑟 (𝐻2).

3. NEARLY COSYMPLECTIC MANIFOLDS ADMITTING TANAKA-WEBSTER CONNECTION

Let (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) be an almost contact metric manifold. The Tanaka-Webster connection ∇̄ with respect to the Levi-Civita
connection ∇ is defined by

∇̄𝑈𝑉 = ∇𝑈𝑉 + (∇𝑈𝜂) (𝑉)𝜉 − 𝜂(𝑉)∇𝑈𝜉 − 𝜂(𝑈)𝜙𝑉, (5)

for all 𝑈,𝑉 ∈ 𝜒(𝑀), Tanno (1969). Using (3) and (4), we rewrite equation (5) as

∇̄𝑈𝑉 = ∇𝑈𝑉 + 𝑔(∇𝑈𝜉,𝑉)𝜉 − 𝜂(𝑉)𝐻𝑈 − 𝜂(𝑈)𝜙𝑉. (6)
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Putting 𝑉 = 𝜉 in (6) and using (2) and (4), we obtain

∇̄𝑈𝜉 = 0. (7)

Using (6), the Riemannian curvature tensor �̄� of the connection ∇̄ is given by

�̄�(𝑈,𝑉)𝑊 = 𝑅(𝑈,𝑉)𝑊 − 𝑔(𝑊, 𝐻𝑈)𝐻𝑉 − 𝑔(𝐻2𝑉,𝑊)𝜂(𝑈)𝜉 − 2𝑔(𝑉, 𝐻𝑈)𝜙𝑊𝜂(𝑈)𝜂(𝑊)𝜙𝐻𝑉
+𝑔(𝐻2𝑈,𝑊)𝜂(𝑉)𝜉 − 𝜂(𝑉) (∇𝑈𝜙)𝑊 − 𝜂(𝑉)𝑔(𝐻𝑈, 𝜙𝑊)𝜉 + 𝑔(𝑊, 𝐻𝑉)𝐻𝑈
+𝜂(𝑊)𝜂(𝑈)𝐻2𝑉 − 𝜂(𝑊)𝜂(𝑉)𝐻2𝑈 − 𝜂(𝑉)𝜂(𝑊)𝜙𝐻𝑈
+𝜂(𝑈) (∇𝑉𝜙)𝑊 + 𝜂(𝑈)𝑔(𝐻𝑉, 𝜙𝑊)𝜉. (8)

Taking contraction in (8), the Ricci tensor 𝑅𝑖𝑐 of the connection ∇̄ is given by

𝑅𝑖𝑐(𝑉,𝑊) = 𝑅𝑖𝑐(𝑉,𝑊) + 2𝑔(𝐻𝑉, 𝜙𝑊) − 𝜂(𝑉)𝑑𝑖𝑣(𝜙)𝑊 + 𝑔(𝑊, 𝐻𝑉)𝑡𝑟 (𝐻)
−𝜂(𝑊)𝜂(𝑉)𝑡𝑟 (𝐻2) − 𝜂(𝑉)𝜂(𝑊)𝑡𝑟 (𝜙𝐻) + 2𝑔(𝐻𝑊, 𝐻𝑉), (9)

where 𝑅𝑖𝑐 denotes the Ricci tensor of the Levi-Civita connection ∇. Contracting in (9), the scalar curvature 𝑟 is obtained as

𝑟 = 𝑟 − 𝑡𝑟 (𝐻2) (2𝑘 + 1),
where 𝑟 is the scalar curvature of the Levi-Civita connection ∇, Ayar (2022).

4. MAIN RESULTS

Before expressing our main results, we should remind definitions of the nearly quasi-Einstein manifolds and Einstein manifolds.

Definition 4.1. Let (𝑀, 𝑔) be a Riemannian manifold. If 𝑅𝑖𝑐 = 𝛼𝑔 + 𝛽𝐸 for some functions 𝛼 and 𝛽 on 𝑀 , where 𝐸 is a non-zero
tensor of type (0, 2), then the manifold (𝑀, 𝑔) is called a nearly quasi-Einstein manifold. If 𝛽 = 0, then the manifold (𝑀, 𝑔) is
said to be an Einstein manifold. Here, 𝑅𝑖𝑐 denotes the Ricci tensor of the Levi-Civita connection ∇.

Now, we can give our findings.

Theorem 4.2. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field 𝑋 is a pointwise collinear with 𝜉, then 𝑀 is a nearly-quasi Einstein manifold.

Proof. If the potential vector field 𝑋 is a pointwise collinear with 𝜉, then there exists a smooth function 𝑏 such that 𝑋 = 𝑏𝜉. Using
(7), we have

( �̄�𝑋𝑔) (𝑈,𝑉) = 𝑔(∇̄𝑈𝑋,𝑉) + 𝑔(∇̄𝑉𝑋,𝑈) (10)
= 𝑔(𝑈 (𝑏)𝜉 + 𝑏∇̄𝑈𝜉,𝑉) + 𝑔(𝑉 (𝑏)𝜉 + 𝑏∇̄𝑉𝜉,𝑈)
= 𝑈 (𝑏)𝜂(𝑉) +𝑉 (𝑏)𝜂(𝑈)
= 𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂(𝑈)

for all 𝑈,𝑉 ∈ 𝜒(𝑀), where ∇ denotes the gradient operator. The Lie derivative of (7) is given by

( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) = 𝑋𝐿𝑋𝑔(𝑈,𝑉) − 𝐿𝑋𝑔(𝐿𝑋𝑈,𝑉) − 𝐿𝑋𝑔(𝑈, 𝐿𝑋𝑉) (11)
= 𝑋 [𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂(𝑈)]

−[𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)]
−[𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) + 𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉)]

= 𝑋𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑈)𝑋𝜂(𝑉) + 𝑋𝑔(∇𝑏,𝑉)𝜂(𝑈)
+𝑔(∇𝑏,𝑉)𝑋𝜂(𝑈) − 𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) − 𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)
−𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) − 𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉).

Putting (10) and (11) in (1), we occur

𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉) − 𝜆( �̄�𝑋𝑔) (𝑈,𝑉) − 1
2
( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) (12)

= 𝜇𝑔(𝑈,𝑉) − 𝜆𝑔(∇𝑏,𝑈)𝜂(𝑉) − 𝜆𝑔(∇𝑏,𝑉)𝜂(𝑈)

−1
2
𝑋𝑔(∇𝑏,𝑈)𝜂(𝑉) − 1

2
𝑔(∇𝑏,𝑈)𝑋𝜂(𝑉) − 1

2
𝑋𝑔(∇𝑏,𝑉)𝜂(𝑈)

−1
2
𝑔(∇𝑏,𝑉)𝑋𝜂(𝑈) + 1

2
𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) + 1

2
𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)

+1
2
𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) + 1

2
𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉).
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Taking a non-vanishing (0, 2)−type tensor 𝐸 as

𝐸 (𝑈,𝑉) = −𝜆𝑔(∇𝑏,𝑈)𝜂(𝑉) − 𝜆𝑔(∇𝑏,𝑉)𝜂(𝑈) (13)

−1
2
[𝐻𝑒𝑠𝑠(𝑏) (𝑋,𝑈)𝜂(𝑉) − 𝐻𝑒𝑠𝑠(𝑏) (𝑋,𝑉)𝜂(𝑈) + (∇𝑈𝑋) (𝑏)𝜂(𝑉)

+(∇𝑉𝑋) (𝑏)𝜂(𝑈) +𝑉 (𝑏)𝑔(∇𝑈𝑋, 𝜉) +𝑈 (𝑏)𝑔(∇𝑈𝑋, 𝜉)] .

Equation (12) becomes

𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉) + 𝐸 (𝑈,𝑉).

This shows that 𝑀 is a nearly quasi-Einstein manifold with respect to the Tanaka-Webster connection ∇̄.

Proposition 4.3. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci
soliton. If the potential vector field is the Reeb vector field 𝜉, then 𝑀 is an Einstein manifold.

Proof. Taking 𝑏 = 1 in (13) shows that 𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉). This gives us 𝑀 is an Einstein manifold.

Theorem 4.4. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field is a concircular vector field 𝑋 , then

𝜇 = −2𝑡𝑟 (𝐻2) − 𝑡𝑟 (𝐻) + 2 𝑓 2 + 2𝜆 𝑓 .

Proof. It is known that if 𝑋 is concircular vector field on 𝑀, then there exists a smooth function 𝑓 such that

∇𝑈𝑋 = 𝑓𝑈 (14)

for all 𝑈 ∈ 𝜒(𝑀). Using (14), we obtain

( �̄�𝑋𝑔) (𝑈,𝑉) = 𝑔(∇̄𝑈𝑋,𝑉) + 𝑔(∇̄𝑉𝑋,𝑈) (15)
= 𝑔( 𝑓𝑈,𝑉) + 𝑔(𝑈, 𝑓𝑉)
= 2 𝑓 𝑔(𝑈,𝑉).

Using equation (15), we get

( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) = 𝑋�̄�𝑋𝑔(𝑈,𝑉) − �̄�𝑋𝑔( �̄�𝑋𝑈,𝑉) − �̄�𝑋𝑔(𝑈, �̄�𝑋𝑉) (16)
= 𝑋 (2 𝑓 𝑔(𝑈,𝑉)) − 2 𝑓 𝑔( �̄�𝑋𝑈,𝑉) − 2 𝑓 𝑔(𝑈, �̄�𝑋𝑉)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 𝑔(∇̄𝑋𝑈,𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑋𝑉)

−2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) + 2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) − 2 𝑓 𝑔(𝑈, ∇̄𝑋𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑉𝑋)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑉𝑋)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 4 𝑓 2𝑔(𝑈,𝑉).

Putting (15) and (16) in (1), we deduce

𝑅𝑖𝑐(𝑈,𝑉) + (𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 2𝑔(𝑈,𝑉) + 2𝜆 𝑓 𝑔(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉).

Substituting 𝑈 = 𝑉 = 𝜉 in (9), we obtain 𝜇 = −2𝑡𝑟 (𝐻2) − 𝑡𝑟 (𝐻) + 2 𝑓 2 + 2𝜆 𝑓 .

5. CONCLUSION

In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection
by considering the potential vector field as a pointwise collinear with the Reeb vector field and a concircular vector field. Our
results in the present work may provide an insight for further studies on hyperbolic Ricci solitons with respect to some other
connections.
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ABSTRACT
This research paper explores Parseval-Goldstein type relations concerning general integral operators. It investigates the continuity
properties of these operators and their adjoints over Lebesgue spaces. Through rigorous analysis, the study elucidates the intricate
connections between these operators and sheds light on their behaviour within functional spaces. By exploring the convergence and
stability of these relations, the paper contributes to a deeper understanding of integral operators behaviour and their implications
in various mathematical contexts. The paper also examines specific cases of the main index transforms, including the Kontorovich-
Lebedev transform, the Mehler-Fock transform of general order, the index 2𝐹1-transform, the Lebedev-Skalskaya transforms and
the index Whittaker transform, as well as operators with complex Gaussian kernels, contributing valuable insights into their
behaviour and applications.
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1. INTRODUCTION

We consider the integral operator given by

(F 𝑓 ) (𝑦) =
∫
𝐼

𝑓 (𝑥)𝐾 (𝑥, 𝑦)𝑑𝑥, 𝑦 ∈ 𝐼, (1)

where 𝐾 is a measurable complex-valued function 𝐾 : 𝐼 × 𝐼 → C (𝐼 denoting some open interval in R, possibly unbounded) over
the spaces 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 ≤ 𝑝 < ∞, and 𝐿∞ (𝐼), being �̃� (𝑥) a measurable function on 𝐼 which satisfies |𝐾 (𝑥, 𝑦) | ≤ �̃� (𝑥), for
all 𝑥, 𝑦 ∈ 𝐼.
We also consider the integral operator

(F ∗𝑔) (𝑥) =
∫
𝐼

𝑔(𝑦)𝐾 (𝑥, 𝑦)𝑑𝑦, 𝑥 ∈ 𝐼, (2)

over the space 𝐿1 (𝐼). In 1989, Yürekli Yürekli (1989) introduced a Parseval-Goldstein type theorem, elucidating the interconnection
between Laplace and Stieltjes transforms, and subsequently explored its ramifications. In 1992, Yürekli extended this investigation
to encompass the generalized Stieltjes transform Yürekli (1992). Building upon this foundation, various researchers have delved
into analogous connections amonxxg diverse integral transforms, leveraging Parseval-Goldstein type theorems, as evidenced by
works from several authors Albayrak and Dernek (2021); Albayrak (2024); Karataş et al. (2020). Parseval’s and Plancherel’s
theorems stand as cornerstone results in mathematics, establishing pivotal relationships between original functions and their
transforms, showcasing the preservation of energy or inner products under transformation Dernek et al. (2008, 2007); Yürekli
(1989).

The Parseval-Goldstein relations for integral transforms establish a crucial link between norms in the original domain and
their transformed counterparts, shedding light on the energy-preserving characteristics and inter-domain consistency of these
transforms. This profound analysis significantly contributes to understanding the fundamental properties and applications of
integral transforms in mathematical analysis Yürekli (1989, 1992); Albayrak and Dernek (2021); Albayrak (2024); Karataş et al.
(2020); Srivastava and Yürekli (1995). The present article delves into the study of Parseval-Goldstein type relations for integral
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operators over Lebesgue spaces.
The 𝐶𝑘𝑐 (R+), 𝑘 ∈ N, denotes as it is usual the space of compactly supported functions on R+ which are 𝑘-times differentiable
with continuity. The article is structured as follows: Section 1 presents an introduction about the general setting. Sections 2 and 3
delve into the continuity properties over Lebesgue spaces of both the integral operators and their adjoints. Section 4 establishes
Parseval-Goldstein type relations for these operators. Section 5 examines integral transforms characterized by kernels satisfying
specific conditions. Finally, Section 6 offers concluding remarks.

2. THE F TRANSFORM OVER THE SPACES 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 ≤ 𝑝 < ∞

Proposition 2.1. The next results hold
(i) The integral operator F given by (1) is a bounded linear operator from 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) into 𝐿∞ (𝐼). If 𝑓 ∈ 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) then

∥F 𝑓 ∥𝐿∞ (𝐼 ) ≤ ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) ,

furthermore if 𝐾 (𝑥, ·) is continuous for each 𝑥 ∈ 𝐼 then F 𝑓 is a continuous function on 𝐼. Moreover, the operator F is a continuous
map from 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) to the Banach space of bounded continuous functions on 𝐼.
(ii) The integral operator F given by (1) is a bounded linear operator from 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥) into 𝐿∞ (𝐼), 1 < 𝑝 < ∞, whenever∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞. Also if 𝑓 ∈ 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 < 𝑝 < ∞, then

∥F 𝑓 ∥𝐿∞ (𝐼 ) ≤ 𝑀 ∥ 𝑓 ∥𝐿𝑝 (𝐼,�̃� (𝑥 )𝑑𝑥 ) , for some 𝑀 > 0,

furthermore if 𝐾 (𝑥, ·) is continuous for each 𝑥 ∈ 𝐼 then F 𝑓 is a continuous function on 𝐼. Moreover, the operator F is a continuous
map from 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥) to the Banach space of bounded continuous functions on 𝐼.
(iii) The integral operator F given by (1) is a bounded linear operator from 𝐿∞ (𝐼) into 𝐿∞ (𝐼) whenever

∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞. Also if

𝑓 ∈ 𝐿∞ (𝐼) then

∥F 𝑓 ∥𝐿∞ (𝐼 ) ≤ 𝑀 ∥ 𝑓 ∥𝐿∞ (𝐼 ) , for some 𝑀 > 0,

furthermore if 𝐾 (𝑥, ·) is continuous for each 𝑥 ∈ 𝐼 then F 𝑓 is a continuous function on 𝐼. Moreover, the operator F is a continuous
map from 𝐿∞ (𝐼) to the Banach space of bounded continuous functions on 𝐼.

Proof. (i) Let 𝑦0 ∈ 𝐼 be arbitrary. Since the map 𝑦 → 𝐾 (𝑥, 𝑦) is continuous for each fixed 𝑥 ∈ 𝐼, we have

𝐾 (𝑥, 𝑦) → 𝐾 (𝑥, 𝑦0) as 𝑦 → 𝑦0.

Further, we have that |𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑦0) | | 𝑓 (𝑥) | is dominated by the integrable function 2�̃� (𝑥) | 𝑓 (𝑥) |. Therefore, by using
dominated convergence theorem, we get

| (F 𝑓 ) (𝑦) − (F 𝑓 ) (𝑦0) | ≤
∫
𝐼

| 𝑓 (𝑥) | |𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑦0) | 𝑑𝑥 → 0, 𝑎𝑠 𝑦 → 𝑦0.

Thus, F 𝑓 is a continuous function on 𝐼.
Since for each 𝑦 ∈ 𝐼

| (F 𝑓 ) (𝑦) | ≤
∫
𝐼

| 𝑓 (𝑥) | |𝐾 (𝑥, 𝑦) | 𝑑𝑥

≤
∫
𝐼

| 𝑓 (𝑥) |�̃� (𝑥)𝑑𝑥 = ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) , (3)

one has that F 𝑓 is a bounded function.
The linearity of the integral operator implies that the F integral operator is linear. Also from (3) we get that ∥F 𝑓 ∥𝐿∞ (𝐼 ) ≤
∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) and hence F : 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) → 𝐿∞ (𝐼) is a continuous linear map.
(ii) Observe that using Hölder’s inequality we have for 𝑦 ∈ 𝐼 and 1

𝑝
+ 1
𝑝′ = 1, 1 < 𝑝 < ∞,

| (F 𝑓 ) (𝑦) | ≤
∫
𝐼

| 𝑓 (𝑥) | |𝐾 (𝑥, 𝑦) | 𝑑𝑥

≤
∫
𝐼

| 𝑓 (𝑥) |�̃� (𝑥)𝑑𝑥

=

∫
𝐼

| 𝑓 (𝑥) |�̃� (𝑥)
1
𝑝 �̃� (𝑥)

1
𝑝′ 𝑑𝑥

≤
(∫
𝐼

| 𝑓 (𝑥) |𝑝�̃� (𝑥)𝑑𝑥
) 1

𝑝
(∫
𝐼

�̃� (𝑥)𝑑𝑥
) 1

𝑝′

= ∥ 𝑓 ∥𝐿𝑝 (𝐼,�̃� (𝑥 )𝑑𝑥 )

(∫
𝐼

�̃� (𝑥)𝑑𝑥
) 1

𝑝′

. (4)

34



Maan et. al, Parseval-Goldstein type theorems

Proceeding as in (i) one obtains (ii).
(iii) Observe that for 𝑦 ∈ 𝐼

| (F 𝑓 ) (𝑦) | ≤
∫
𝐼

| 𝑓 (𝑥) |�̃� (𝑥)𝑑𝑥

≤ esssup𝑥∈𝐼 | 𝑓 (𝑥) | ·
∫
𝐼

�̃� (𝑥)𝑑𝑥

= ∥ 𝑓 ∥𝐿∞ (𝐼 ) ·
∫
𝐼

�̃� (𝑥)𝑑𝑥. (5)

Thus similar to (i) one obtains (iii).

Proposition 2.2. The next results hold
(i) The integral operator F given by (1) is a bounded linear operator from 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) into 𝐿𝑞 (𝐼, 𝑤(𝑥)𝑑𝑥), 0 < 𝑞 < ∞, when
𝑤 is a measurable function on 𝐼 such that 𝑤 > 0 a.e. on 𝐼 and

∫
𝐼
𝑤(𝑥)𝑑𝑥 < ∞.

(ii) The integral operator F given by (1) is a bounded linear operator from 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 < 𝑝 < ∞, into 𝐿𝑞 (𝐼, 𝑤(𝑥)𝑑𝑥),
0 < 𝑞 < ∞, when

∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞,

∫
𝐼
𝑤(𝑥)𝑑𝑥 < ∞, being 𝑤 a measurable function on 𝐼 such that 𝑤 > 0 a.e. on 𝐼.

(iii) The integral operator F given by (1) is a bounded linear operator from 𝐿∞ (𝐼) into 𝐿𝑞 (𝐼, 𝑤(𝑥)𝑑𝑥), 0 < 𝑞 < ∞, when∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞,

∫
𝐼
𝑤(𝑥)𝑑𝑥 < ∞, being 𝑤 a measurable function on 𝐼 such that 𝑤 > 0 a.e. on 𝐼.

Proof. (i) Observe that from (3) for each 𝑦 ∈ 𝐼 one has

| (F 𝑓 ) (𝑦) | ≤ ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) .

Then, for 0 < 𝑞 < ∞, one has(∫
𝐼

| (F 𝑓 ) (𝑥) |𝑞𝑤(𝑥)𝑑𝑥
) 1

𝑞

≤ ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 )

(∫
𝐼

𝑤(𝑥)𝑑𝑥
) 1

𝑞

< ∞.

(ii) The proof is similar to (i) when one make use of (4) instead of (3).
(iii) The proof is similar to (i) when one make use of (5) instead of (3).

3. THE TRANSFORM F ∗ OVER THE SPACES 𝐿1 (𝐼)

Proposition 3.1. The integral operator F ∗ given by (2) is a bounded linear operator from 𝐿1 (𝐼) into 𝐿𝑞 (𝐼, 𝑤(𝑥)𝑑𝑥), 0 < 𝑞 < ∞,
when 𝑤 is a measurable function on 𝐼 such that 𝑤 > 0 a.e. on 𝐼 and �̃� ∈ 𝐿𝑞 (𝐼, 𝑤(𝑥)𝑑𝑥).

Proof. Observe that for each 𝑥 ∈ 𝐼

| (F ∗ 𝑓 ) (𝑥) | ≤
∫
𝐼

| 𝑓 (𝑦) | |𝐾 (𝑥, 𝑦) | 𝑑𝑦

≤
∫
𝐼

| 𝑓 (𝑦) |𝑑𝑦 · �̃� (𝑥).

Then, for 0 < 𝑞 < ∞, one has(∫
𝐼

| (F ∗ 𝑓 ) (𝑥) |𝑞 𝑤(𝑥)𝑑𝑥
) 1

𝑞

≤ ∥ 𝑓 ∥𝐿1 (𝐼 )

(∫
𝐼

(
�̃� (𝑥)

)𝑞
𝑤(𝑥)𝑑𝑥

) 1
𝑞

< ∞.

4. PARSEVAL-GOLDSTEIN TYPE THEOREMS

Theorem 4.1. For F and F ∗ given by (1) and (2), respectively, and 𝑔 ∈ 𝐿1 (𝐼), then the following Parseval-Goldstein type relation
holds ∫

𝐼

(F 𝑓 ) (𝑥)𝑔(𝑥)𝑑𝑥 =
∫
𝐼

𝑓 (𝑥) (F ∗𝑔) (𝑥)𝑑𝑥, (6)

whenever
(i) 𝑓 ∈ 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥),
or
(ii) 𝑓 ∈ 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 < 𝑝 < ∞, and

∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞,

or
(iii) 𝑓 ∈ 𝐿∞ (𝐼), and

∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞,
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where for all cases �̃� (𝑥) satisfies |𝐾 (𝑥, 𝑦) | ≤ �̃� (𝑥), for all 𝑥, 𝑦 ∈ 𝐼.

Proof. (i) In fact, from (3) and for each 𝑦 ∈ 𝐼 one has

| (F 𝑓 ) (𝑦) | ≤ ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) .

Therefore, ∫
𝐼

| (F 𝑓 ) (𝑦) | |𝑔(𝑦) |𝑑𝑦 ≤ ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) ∥𝑔∥𝐿1 (𝐼 ) .

Also, for each 𝑥 ∈ 𝐼

| (F ∗𝑔) (𝑥) | ≤
∫
𝐼

|𝑔(𝑦) | |𝐾 (𝑥, 𝑦) | 𝑑𝑦 ≤ �̃� (𝑥)∥𝑔∥𝐿1 (𝐼 ) .

Then ∫
𝐼

| 𝑓 (𝑥) | | (F ∗𝑔) (𝑥) |𝑑𝑥 ≤
∫
𝐼

| 𝑓 (𝑥) |�̃� (𝑥)𝑑𝑥∥𝑔∥𝐿1 (𝐼 )

= ∥ 𝑓 ∥𝐿1 (𝐼,�̃� (𝑥 )𝑑𝑥 ) ∥𝑔∥𝐿1 (𝐼 ) .

Thus, by using Fubini’s theorem one obtains the result (6).
(ii) The proof is similar to (i) making use of (4) instead of (3).
(iii) The proof is similar to (i) making use of (5) instead of (3).

Remark 4.2. From this result the operator F ∗ becomes the adjoint of the operator F over 𝐿 𝑝 (𝐼, �̃� (𝑥)𝑑𝑥), 1 ≤ 𝑝 < ∞, and
𝐿∞ (𝐼).

Assume that 𝐾 (·, 𝑦) ∈ 𝐶𝑛 (𝐼) for each 𝑦 ∈ 𝐼 and 𝐴𝑥 is a 𝑛-th differential operator such that

𝐴𝑥 (𝐾 (𝑥, 𝑦)) = 𝑃(𝑦)𝐾 (𝑥, 𝑦), (7)

for all 𝑥, 𝑦 ∈ 𝐼, where 𝑃 is a polynomial.
For 𝑘 ∈ N and 𝐾 (·, 𝑦) ∈ 𝐶𝑛𝑘 (𝐼) for each 𝑦 ∈ 𝐼, then

𝐴𝑘𝑥 (𝐾 (𝑥, 𝑦)) = [𝑃(𝑦)]𝑘𝐾 (𝑥, 𝑦),

where 𝐴𝑘𝑥 denotes the 𝑘-th power of the operator 𝐴𝑥 .
Denote 𝐴′

𝑥 be the adjoint of 𝐴𝑥 .
For 𝑓 ∈ 𝐶𝑛𝑘𝑐 (𝐼) and 𝐾 (·, 𝑦) ∈ 𝐶𝑛𝑘 (𝐼) for each 𝑦 ∈ 𝐼, 𝑘 ∈ N, one has(

F
(
𝐴

′
𝑥

𝑘
𝑓

))
(𝑦) = [𝑃(𝑦)]𝑘 (F 𝑓 ) (𝑦), 𝑦 ∈ 𝐼 .

Thus for 𝑄 being a polynomial of degree 𝑚 and 𝑓 ∈ 𝐶𝑛𝑚𝑐 (𝐼) and 𝐾 (·, 𝑦) ∈ 𝐶𝑛𝑚 (𝐼) for each 𝑦 ∈ 𝐼, 𝑚 ∈ N, then(
F

(
𝑄

(
𝐴

′
𝑥 𝑓

)))
(𝑦) = 𝑄 (𝑃(𝑦)) (F 𝑓 ) (𝑦), 𝑦 ∈ 𝐼 . (8)

Theorem 4.3. Set 𝐴𝑥 a 𝑛-th differential operator satisfying the equality (7) and denote by 𝐴′
𝑥 its adjoint. Let 𝑄 be a polynomial

of degree 𝑚 and 𝑓 ∈ 𝐶𝑛𝑚𝑐 (𝐼), 𝐾 (·, 𝑦) ∈ 𝐶𝑛𝑚 (𝐼) for each 𝑦 ∈ 𝐼. Then, for any 𝑔 ∈ 𝐿1 (𝐼), the following Parseval-Goldstein relation
holds ∫

𝐼

(F 𝑓 ) (𝑥)𝑔(𝑥)𝑄 (𝑃(𝑥)) 𝑑𝑥 =
∫
𝐼

(
𝑄

(
𝐴

′
𝑥 𝑓

))
(𝑥) (F ∗𝑔) (𝑥)𝑑𝑥.

Proof. The proof is an immediate consequence of relation (8) and (i) of Theorem 4.1, having into account that 𝐶𝑛𝑚𝑐 (𝐼) ⊆
𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥).

5. PARTICULAR CASES: THE MAIN INDEX TRANSFORMS AND THE OPERATORS WITH COMPLEX
GAUSSIAN KERNELS

In this section, we explore a range of integral transforms characterized by kernels that fulfill specific conditions. These conditions
play a crucial role in the properties and applications of these transforms, making them particularly noteworthy in studying Parseval-
Goldstein type relations in mathematical analyisis. Below, we present examples of integral transforms with kernels satisfying the
condition |𝐾 (𝑥, 𝑦) | ≤ �̃� (𝑥), for all 𝑥, 𝑦 ∈ 𝐼 and

∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞.

(i) For the Kontorovich-Lebedev transform González and Negrín (2019); Naylor (1990); Prasad A. and Mandal (2018); Srivastava
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et al. (2016); Yakubovich (2012); Maan and Negrín (2024) 𝐼 = (0,∞), �̃� (𝑥) = 𝐾0 (𝑥), where 𝐾0 (𝑥) is the modified Bessel
function of the third kind (or the Macdonald function) defined by (Erdélyi et al. 1953, p. 5, section 7.2.2., Entry 13) one has that∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞ and the differential operator is given by 𝐴𝑥 = 𝑥2𝐷2

𝑥 + 𝑥𝐷𝑥 − 𝑥2.
(ii) For the Mehler-Fock transform of general order 𝜇 with ℜ(𝜇) > −1

2 González and Negrín (2019, 2017); Lebedev (1949);
Srivastava et al. (2016); Yakubovich (2012); Maan and Negrín (2024) 𝐼 = (0,∞), �̃� (𝑥) = 𝑃−ℜ(𝜇)

− 1
2

(cosh 𝑥), where 𝑃−ℜ(𝜇)
− 1

2
(cosh 𝑥)

is the associated Legendre function of the first kind (Erdélyi et al. 1953, p. 122, section 3.2., Entry 3) one has that
∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞

and 𝐴𝑥 = (sinh 𝑥)−𝜇−1𝐷𝑥 (sinh 𝑥)2𝜇+1𝐷𝑥 (sinh 𝑥)−𝜇 as the differential operator.
(iii) For the index 2𝐹1-transform Hayek et al. (1992); Hayek and González (1993, 1994, 1997); Maan and Negrín (2024); Maan
et al. (2023) 𝐼 = (0,∞), ℜ(𝜇) > −1/2, 𝛼 ∈ C, �̃� (𝑥) = 𝑥ℜ(𝛼)

2𝐹1

(
ℜ(𝜇) + 1

2 ,ℜ(𝜇) + 1
2 ;ℜ(𝜇) + 1;−𝑥

)
, where 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧)

represents the Gauss hypergeometric function (Erdélyi et al. 1953, p. 56, section 2.1.1., Entry 2). Observe that
∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞ for

−1 < ℜ(𝛼) < −1 + ℜ(𝜇) + 1
2 and the differential operator as 𝐴𝑥 = 𝑥𝛼−𝜇 (𝑥 + 1)−𝜇𝐷𝑥𝑥𝜇+1 (𝑥 + 1)𝜇+1𝐷𝑥𝑥

−𝛼.
(iv) For the Lebedev-Skalskaya transforms Mandal and Prasad (2022); Mandal et al. (2022); Maan and Negrín (2024) 𝐼 =

(0,∞), �̃� (𝑥) =
√︁
𝜋
2
𝑒−𝑥√
𝑥

which
∫
𝐼
�̃� (𝑥)𝑑𝑥 < ∞ and 𝐴𝑥 = 𝑥2𝐷2

𝑥 + 2𝑥𝐷𝑥 − 𝑥(𝑥 − 1) as the differential operator for the Lebedev-

Skalskaya transform (ℜ 𝑓 ) (𝑦) =

∞∫
0
ℜ𝐾 1

2+𝑖𝑦
(𝑥) 𝑓 (𝑥)𝑑𝑥, and 𝐴𝑥 = 𝑥2𝐷2

𝑥 + 2𝑥𝐷𝑥 − 𝑥(𝑥 + 1) is the differential operator for the

Lebedev-Skalskaya transform (𝔉 𝑓 ) (𝑦) =
∞∫
0
𝔉𝐾 1

2+𝑖𝑦
(𝑥) 𝑓 (𝑥)𝑑𝑥. Here ℜ𝐾 1

2+𝑖𝑦
(𝑥) and 𝔉𝐾 1

2+𝑖𝑦
(𝑥) are the real and imaginary parts

of the Macdonald function 𝐾 1
2+𝑖𝑦

(𝑥), respectively (Erdélyi et al. 1953, p. 5, section 7.2.2., Entry 13).
(v) The operators with complex Gaussian kernels González and Negrín (2019, 2018); Negrín (1995) are given by

(F 𝑓 ) (𝑦) =
∫ ∞

−∞
𝑓 (𝑥) exp

{
−𝜖𝑥2 − 𝛽𝑦2 + 2𝛿𝑥𝑦 + 𝛾𝑥 + 𝜁 𝑦

}
𝑑𝑥, 𝑦 ∈ R, 𝜖 , 𝛽, 𝛿, 𝛾, 𝜁 ∈ C.

In this case 𝐼 = (−∞,∞) and𝐾 (𝑥, 𝑦) = exp
{
−𝜖𝑥2 − 𝛽𝑦2 + 2𝛿𝑥𝑦 + 𝛾𝑥 + 𝜁 𝑦

}
. Observe that: |𝐾 (𝑥, 𝑦) | ≤ exp

{
−ℜ𝜖𝑥2 −ℜ𝛽𝑦2 + 2ℜ𝛿𝑥𝑦 + ℜ𝛾𝑥 + ℜ𝜁 𝑦

}
.

And so, for ℜ𝛽 ≥ 0 and ℜ𝛿 = ℜ𝜁 = 0 one has |𝐾 (𝑥, 𝑦) | ≤ exp
{
−ℜ𝜖𝑥2 + ℜ𝛾𝑥

}
= �̃� (𝑥).

Thus for (i) one works in 𝐿1 (𝐼, �̃� (𝑥)𝑑𝑥) for ℜ𝛽 ≥ 0, ℜ𝛿 = ℜ𝜁 = 0.
For the cases (ii) and (iii) and being ℜ𝛽 ≥ 0, ℜ𝛿 = ℜ𝜁 = 0, one also needs

∫ ∞
−∞ �̃� (𝑥)𝑑𝑥 < ∞ which holds for ℜ𝜖 > 0.

Concerning the differential operator for the operators with complex Gaussian kernels observe that:

𝐷𝑥 (𝐾 (𝑥, 𝑦)) = 𝐷𝑥

(
exp

{
−𝜖𝑥2 − 𝛽𝑦2 + 2𝛿𝑥𝑦 + 𝛾𝑥 + 𝜁 𝑦

})
= (−2𝜖𝑥 + 2𝛿𝑦 + 𝛾) exp

{
−𝜖𝑥2 − 𝛽𝑦2 + 2𝛿𝑥𝑦 + 𝛾𝑥 + 𝜁 𝑦

}
Then

𝐷𝑥 (𝐾 (𝑥, 𝑦)) + 2𝜖𝑥𝐾 (𝑥, 𝑦) = (2𝛿𝑦 + 𝛾) 𝐾 (𝑥, 𝑦)

So, for this case we take the differential operator as 𝐴𝑥 = 𝐷𝑥 + 2𝜖𝑥.

Remark 5.1. In the case of index Whittaker transform Maan and Prasad (2022, 2024); Sousa et al. (2020, 2019) 𝐼 = (0,∞), �̃� (𝑥) =
𝑥𝑎Ψ(𝑎, 1; 𝑥)𝑥−2𝑎−1𝑒−𝑥 , 𝑎 > 0, where Ψ(𝑎, 1; 𝑥) is known as the Tricomi function Sousa et al. (2019). The convergence of the
integral

∫
𝐼
�̃� (𝑥)𝑑𝑥 is not assured for 𝑎 > 0.

6. CONCLUSIONS

The current research article extensively explores the continuity properties across Lebesgue spaces for integral transforms within a
general framework, including their adjoints. By placing a significant emphasis on Parseval-Goldstein relations, this study unveils
the energy-preserving characteristics and inter-domain consistency inherent in these transforms. Such a comprehensive analysis
greatly contributes to our comprehension of the fundamental properties and applications of these integral transforms within
mathematical analysis. The findings presented herein offer a systematic examination of various index integral transforms, such
as the Kontorovich-Lebedev transform, the Mehler-Fock transform of general order, the 2𝐹1-transform, the Lebedev-Skalskaya
transforms, and also the operators with complex Gaussian kernels.
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ABSTRACT
Character theory of finite groups have an important role in understanding the structure of finite groups. A number of previously
unresolved problems related to the structure of finite groups have been solved with the development of representation and character
theory. There are many articles in the literature on the relationships between the structure of finite groups and their irreducible
characters. Today, many researchers continue to study these relationships. Our purpose in this paper is to prove that for determining
some properties of the structure of a finite group 𝐺, it is enough to consider only strongly monolithic characters of 𝐺 instead of all
irreducible characters of 𝐺. We give relationships between the structure of 𝐺 and the vanishing elements, co-degrees of strongly
monolithic characters of 𝐺.

Mathematics Subject Classification (2020): 20C15

Keywords: strongly monolithic characters – vanishing elements – co-degree – solvable groups

1. INTRODUCTION

Let𝐺 be a finite group and 𝜒 ∈ Irr(𝐺), where Irr(𝐺) denotes the set of irreducible complex characters of𝐺. An irreducible charac-
ter 𝜒 of𝐺 is called a monolithic character of𝐺 if𝐺/ker𝜒 has only one minimal normal subgroup. Also, an irreducible character 𝜒
of 𝐺 is said to be monomial if it is induced from a linear character of some subgroup of 𝐺. An element 𝑔 ∈ 𝐺 is called a vanishing
element if there exists an irreducible character 𝜒 of 𝐺 such that 𝜒(𝑔) = 0. We know from Burnside’s theorem (Theorem 3.15) in
Isaacs (1976) that a nonlinear irreducible character of a finite group 𝐺 always vanishes on some conjugacy class of 𝐺. An element
𝑔 ∈ 𝐺 is non-vanishing if 𝜒(𝑔) ≠ 0 for every irreducible character 𝜒 of𝐺. It is known from Isaacs et all. (1999) that if𝐺 is solvable
and a non-vanishing element 𝑥 has odd order, then 𝑥 must lie in the Fitting subgroup F(𝐺). Later, Dolfi et all. proved in Dolfi et
all. (2010) that if 𝑥 is a non-vanishing element and the order of 𝑥 is coprime to 6, then 𝑥 ∈ F(𝐺). Erkoç et all. consider in Erkoç et
all. (2023) a smaller subset named the set of SM-vanishing conjugacy classes instead of the set of vanishing conjugacy classes of𝐺.

Firstly the co-degree of an irreducible character 𝜒 of 𝐺 was defined as |𝐺 |/𝜒(1) in Chillag and Herzog (1990). Then it has
been given in Qian et all. (2007) as the number cod(𝜒) =

|𝐺:ker𝜒 |
𝜒 (1) because it is very useful for inductive proofs of theorems

giving information about the structure of 𝐺. In Chen and Yang (2020), authors consider the co-degrees of monolithic, monomial
irreducible characters.

Motivated by above papers, we give some results about the relationships between the structure of a finite group and its strongly
monolitic characters.

2. PRELIMINARIES

In this paper, all groups under consideration are finite and all characters are complex characters. We use the standard notations
such as in Isaacs (1976). The definition of strongly monolithic character of a group have been first given in Erkoç et all. (2023).
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It is known from Proposition 2.3 in Erkoç et all. (2023) that linear characters of a group are not strongly monolithic. Thus,
abelian groups do not have strongly monolithic characters. However, a nonabelian group have at least one strongly monolithic
character. Also, every nonabelian solvable group has at least one monomial strongly monolithic character. The definition of a
strongly monolithic character of a group 𝐺 is the following:

Definition 2.1. ( Erkoç et all. 2023, Definition 2.2) Let 𝐺 be a group. An irreducible character 𝜒 of 𝐺 is called a monolithic
character if𝐺/ker𝜒 has only one minimal normal subgroup. A monolithic character 𝜒 of𝐺 is called a strongly monolithic character
if one of the following conditions is satisfied:

(i) 𝑍 (𝜒) = ker𝜒, where 𝑍 (𝜒) = {𝑔 ∈ 𝐺 | |𝜒(𝑔) | = 𝜒(1)},
(ii) 𝐺/ker𝜒 is a p-group whose commutator subgroup is its unique minimal normal subgroup.

Definition 2.2. ( Erkoç et all. 2023, Definition 2.2) Let 𝐺 be a group. An element 𝑔 in 𝐺 is called an SM-vanishing element of
𝐺 if there exists a strongly monolithic character 𝜒 of 𝐺 such that 𝜒(𝑔) = 0. The conjugacy class of such an element is called an
SM-vanishing conjugacy class of 𝐺. If 𝜒 is a monomial strongly monolithic character of 𝐺, then the conjugacy class of such an
element is called an MSM-vanishing conjugacy class of 𝐺.

Let Vansm (𝐺) be the set of SM-vanishing elements of 𝐺, that is,

Vansm (𝐺) = {𝑔 ∈ 𝐺 | 𝜒(𝑔) = 0 for some 𝜒 ∈ Irrsm (𝐺)} ,

where Irrsm (𝐺) is the set of all strongly monolithic characters of 𝐺.

Let 𝑔 be an element of a finite group 𝐺. If 𝜒(𝑔) ≠ 0 for every strongly monolithic character 𝜒 of 𝐺, then the element 𝑔 is called
an SM-nonvanishing element. If 𝜒(𝑔) ≠ 0 for every monomial strongly monolithic character 𝜒 of 𝐺, then the element 𝑔 is called
an MSM-nonvanishing element.

The following lemma and Theorem 2.4 will be useful when we prove Theorem 3.2. Actually, we know from Lemma 2.3 of
Isaacs et all. (1999) that if 𝑥 is a nonvanishing element in a finite group 𝐺, then 𝑥 fixes some member of each orbit of the action
of 𝐺 on Irr(𝑁) where 𝑁 ◁ 𝐺.

Lemma 2.3. Let 𝐺 be a solvable group with a unique minimal normal subgroup M and Φ(𝐺) = 1. Assume that 𝑥 ∈ 𝐺 is an
MSM-nonvanishing element of 𝐺. Then 𝑥 fixes an element in every 𝐺-orbit on Irr(𝑀).

Proof. 1𝑀 ≠ 𝜆 ∈ Irr(𝑀) and 𝑇 = 𝐼𝐺 (𝜆), where 𝐼𝐺 (𝜆) is the inertia group of 𝜆 in 𝐺. Since Φ(𝐺) = 1, there is a subgroup
𝐻 of 𝐺 such that 𝐺 = 𝑀𝐻 and 𝑀 ∩ 𝐻 = 1. We know from Problem 6.18 in Isaacs (1976) that there exists a linear character
𝜃 ∈ Irr(𝑇) such that 𝜃𝑀 = 𝜆. Let 𝜒 = 𝜃𝐺 . Then 𝜒 is a faithful irreducible character of 𝐺. Otherwise, we would have that
𝑀 ≤ ker𝜒 = ∩𝑔∈𝐺 (ker𝜃)𝑔 ≤ ker𝜃, which is a contradiction that 𝜃𝑀 = 𝜆 = 1. On the other hand, it is clear that Z(𝐺) = 1 since
Φ(𝐺) = 1. This implies that 𝜒 ∈ Irr(𝐺) is a monomial strongly monolithic character of 𝐺. Since 𝑥 ∈ 𝐺 is an MSM-nonvanishing
element of 𝐺, we get that 𝜒(𝑥) ≠ 0. By the definition of the induced character 𝜃𝐺 , there exists an element 𝑔 of 𝐺 such that 𝑥𝑔 ∈ 𝑇 .
Then 𝑥 stabilizes 𝜆𝑔−1 , and the proof is complete.

Theorem 2.4. ( Isaacs et all. 1999, Theorem 4.2) Let 𝐺 act faithfully and irreducibly on a finite vector space 𝑉 . Let 𝑥 ∈ F(𝐺) fix
an element in each orbit of 𝐺 on 𝑉 . Then 𝑥2 = 1.

3. MAIN RESULTS

It is known that an irreducible character of a group 𝐺 is called to be of 𝑞-defect zero if 𝑞 does not divide |𝐺 |/𝜒(1), where 𝑞 is
a prime number. We know from Theorem 8.17 in Isaacs (1976) that if 𝜒 is an irreducible character of 𝑞-defect zero of 𝐺, then
𝜒(𝑔) = 0 whenever 𝑞 divides the order of 𝑔 ∈ 𝐺.

Let 𝑁 ◁ 𝐺 and 𝜒 ∈ Irr(𝐺) such that 𝑁 ≤ ker𝜒. It is well-known that there exists a one-to-one correspondence between
irreducible characters of 𝐺/𝑁 and irreducible characters of 𝐺 with kernel containing 𝑁 . Thus, it is easy to see that 𝜒 is a strongly
monolithic character of𝐺 if and only if 𝜒 is a strongly monolithic character of𝐺/𝑁 . In the following theorem, we use the notation
𝑥𝐺 to denote the conjugacy class of 𝐺 containing 𝑥 ∈ 𝐺.

Theorem 3.1. Let 𝐺 be a finite group. If the set of SM-vanishing elements of 𝐺 are the union of at most three conjugacy classes
of 𝐺, then 𝐺 is solvable.

Proof. Let 𝐺 be a counterexample to the theorem with minimum possible order. Suppose that 𝐺 has two distinct minimal normal
subgroups 𝑀1 and 𝑀2. It is easy to see that the hypotheses of theorem are inherited by factor groups. Thus, both of 𝐺/𝑀1 and
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𝐺/𝑀2 are solvable groups by induction. Since 𝐺 is isomorphic to a subgroup of 𝐺/𝑀1 × 𝐺/𝑀2, we have a contradiction that 𝐺
is solvable. This implies that 𝐺 cannot have two distinct minimal normal subgroups. Now, let 𝑀 be the unique minimal normal
subgroup of 𝐺. Since 𝐺 is a counterexample, 𝑀 must be nonabelian and 𝑍 (𝐺) = 1. Therefore, there exists a nonabelian simple
group 𝑆 such that 𝑀 = 𝑆1 × · · · × 𝑆𝑘 where 𝑘 ≥ 1 and 𝑆𝑖 � 𝑆 for every 𝑖. First assume that 𝑆 has irreducible characters of 𝑞-defect
zero for every prime 𝑞 dividing the order of 𝑆. Thus, if 𝜃 is an irreducible character of 𝑞-defect zero of 𝑆, then 𝜓 := 𝜃 × · · · × 𝜃
is an irreducible character of 𝑞-defect zero of 𝑀 . It follows from Lemma 2.4 in Erkoç et all. (2023) that every element of 𝑀 of
order divisible by 𝑞 is an SM-vanishing element of 𝐺. We know that 2| |𝑀 |, because 𝑀 is a nonsolvable group. Also, there exist
distinct primes 𝑝 and 𝑞 such that 𝑝, 𝑞 ≥ 3 and 𝑝, 𝑞 ∈ 𝜋(𝑀). Hence, there exist 𝑥, 𝑦 and 𝑧 elements of 𝑆 such that |𝑥 | = 2, |𝑦 | = 𝑝
and |𝑧 | = 𝑞. Since 𝑥, 𝑦, 𝑧 ∈ Vansm (𝐺) and the set of SM-vanishing elements of 𝐺 are the union of at most three conjugacy classes
of 𝐺, we get that 𝜋(𝑀) = {2, 𝑝, 𝑞} and Vansm (𝐺) = 𝑥𝐺 ∪ 𝑦𝐺 ∪ 𝑧𝐺 . Then, 𝑀 must be a simple group. Otherwise, we would have
𝑘 ≥ 2. Without loss of generality, we may assume that 𝑦 ∈ 𝑆1 and 𝑧 ∈ 𝑆2. Thus, we would have that |𝑦𝑧 | = 𝑝𝑞. But this contradicts
with the hypothesis of theorem because (𝑦𝑧)𝐺 ∉ {𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺} and 𝑦𝑧 ∈ Vansm (𝐺). Since 𝑀 is non-cyclic simple group of order
divisible by exactly three primes, we obtain from Theorem 1 in Herzog (1968) that
𝑀 ∈ {𝑃𝑆𝐿 (2, 5), 𝑃𝑆𝐿(2, 8), 𝑃𝑆𝐿(2, 17), 𝑃𝑆𝐿(2, 7), 𝑃𝑆𝐿(2, 9), 𝑃𝑆𝐿(3, 3), 𝑈3 (3), 𝑈4 (2)}. Using the Atlas Conway et all.
(1985), we obtain the following table containing 𝑥𝑖 ∈ 𝑀 of distinct orders for 1 ≤ 𝑖 ≤ 4.

𝑀 |𝑥1 | |𝑥2 | |𝑥3 | |𝑥4 |

𝑃𝑆𝐿 (2, 7) 2𝐴 3𝐴 4𝐴 7𝐴
𝑃𝑆𝐿 (2, 9) 2𝐴 3𝐴 4𝐴 5𝐴
𝑃𝑆𝐿 (2, 8) 2𝐴 3𝐴 7𝐴 9𝐴
𝑃𝑆𝐿 (2, 17) 2𝐴 3𝐴 4𝐴 17𝐴
𝑃𝑆𝐿 (3, 3) 2𝐴 3𝐴 4𝐴 13𝐴
𝑈3 (3) 2𝐴 3𝐴 4𝐴 7𝐴
𝑈4 (2) 2𝐴 3𝐶 4𝐴 5𝐴

Therefore, 𝑀 cannot be groups in the list. Since 𝐶𝐺 (𝑀) = 1, we know that 𝐺 is almost simple group. Therefore, we get that
𝐺 � 𝐴5 or 𝐺 � 𝑆5. But this is a contradiction because the set of SM-vanishing elements of 𝐴5 or 𝑆5 are union of more than three
conjugacy classes of the group. Therefore, there exists a prime number 𝑞 dividing the order of 𝑆 such that 𝑆 does not have any
irreducible character of 𝑞-defect zero. It follows from Lemma 2.3 in Robati (2019) that there exist irreducible characters 𝜃1, 𝜃2,
𝜃3, 𝜃4 of 𝑆 which extend to Aut(𝑆) and elements 𝑥1, 𝑥2, 𝑥3, 𝑥4 of distinct order such that 𝜃𝑖 (𝑥𝑖) = 0 for 1 ≤ 𝑖 ≤ 4. Also, we have
from Lemma 5 in Bianchi et all. (2007) that 𝜃𝑖 × · · · × 𝜃𝑖 ∈ Irr(𝑀) extends to 𝐺 for 1 ≤ 𝑖 ≤ 4. Now, let 𝜓𝑖 ∈ Irr(𝐺) such that
(𝜓𝑖)𝑀 = 𝜃𝑖 × · · · × 𝜃𝑖 for 1 ≤ 𝑖 ≤ 4. It is clear that 𝜓𝑖 is a faithful irreducible character of 𝐺 for 1 ≤ 𝑖 ≤ 4. Otherwise, we would
have that 𝑀 ≤ ker𝜓𝑖 ∩ 𝑀 = ker(𝜓𝑖)𝑀 = ker(𝜃𝑖 × · · · × 𝜃𝑖) = 1 for 1 ≤ 𝑖 ≤ 4, which is a contradiction. Therefore, 𝜓𝑖 is a strongly
monolithic character of 𝐺 and 𝜓𝑖 (𝑥𝑖) = 0 for 1 ≤ 𝑖 ≤ 4. Since the elements 𝑥𝑖 are of distinct orders, 𝑥𝑖 elements lie in distinct
conjugacy classes of𝐺 for 1 ≤ 𝑖 ≤ 4 and so, the set of SM-vanishing elements of𝐺 are the union of at least four conjugacy classes
of 𝐺, which is a contradiction. This contradiction completes the proof. □

Now, we consider the semidirect product 𝐺 := 𝐻𝑒3 ⋊ 𝐶2 (SmallGroup (54, 8) in GAP) where 𝐶2 acts faithfully on 𝐻𝑒3. The
notations 𝐶2 and 𝐻𝑒3 denote a cyclic group of order 2 and a nonabelian group of order 27 of exponent 3, respectively. Since
1 < 𝑍 (𝐺), all faithful irreducible characters of 𝐺 are not strongly monolithic. 𝐺 has only four strongly monolithic characters of
degree 2. While the set of SM-vanishing elements of𝐺 are the union of three conjugacy classes of𝐺, the set of vanishing elements
of 𝐺 are the union of seven conjugacy classes of 𝐺. Thus, Theorem 3.1 generalizes [Robati (2019), Theorem 2.8].

Theorem 3.2. Let 𝐺 be a solvable group and 𝑥 be an element of odd order of 𝐺. If 𝜒(𝑥) ≠ 0 for all monomial strongly monolithic
character 𝜒 of 𝐺, then 𝑥 ∈ F(𝐺).

Proof. Let 𝐺 be a counterexample to the theorem with minimum possible order. By induction, 𝑥𝑁 ∈ F(𝐺/𝑁) for every nontrivial
normal subgroup 𝑁 of 𝐺 because 2 ∤ |𝑥𝑁 | and 𝜃 (𝑥𝑁) ≠ 0 for every monomial strongly monolithic character 𝜃 of 𝐺/𝑁 .
Suppose that 𝐺 has two distinct minimal normal subgroups 𝑀1 and 𝑀2. Then we know that 𝜑 : 𝐺 −→ 𝐺/𝑀1 ×𝐺/𝑀2, defined by
𝜑(𝑔) = (𝑔𝑀1, 𝑔𝑀2) for 𝑔 ∈ 𝐺, is an injective homomorphism. Hence, we get that 𝜑(𝑥) ∈ F(𝐺/𝑀1)×F(𝐺/𝑀2) = F(𝐺/𝑀1×𝐺/𝑀2)
and so, 𝜑(𝑥) ∈ 𝜑(𝐺) ∩ F(𝐺/𝑀1 ×𝐺/𝑀2) ≤ F(𝜑(𝐺)). Thus, we obtain that 𝑥 ∈ F(𝐺), which is a contradiction. This implies that
𝐺 cannot have two distinct minimal normal subgroups. Let 𝑀 be be the unique minimal normal subgroup of 𝐺. It is clear that
Φ(𝐺) = 1 because F(𝐺/Φ(𝐺)) = F(𝐺)/Φ(𝐺). It follows from Gaschütz Theorem (III, 4.5 in Huppert (1967)) that F(𝐺) = 𝑀

and so 𝐶𝐺 (𝑀) = 𝑀 . Now, let 𝑉 be the group of irreducible characters of 𝑀 . Then, 𝑉 is faithful and irreducible 𝐺/𝑀-module.
Also, we know from Lemma 2.3 that the element 𝑥𝑀 fixes some element of each orbit of 𝐺/𝑀 on 𝑉 . On the other hand, we see
that 𝑥𝑀 ∈ F(𝐺/𝑀) by the induction. Hence, we have from Teorem 2.4 that (𝑥𝑀)2 = 𝑥2𝑀 = 𝑀 and so, we obtain that 𝑥2 ∈ 𝑀 .
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Therefore, we conlude that 𝑥 ∈ 𝑀 = F(𝐺) because 𝑥 is an element of odd order of 𝐺, which is a contradiction. This contradiction
completes the proof. □

Let 𝐺 be a finite group and 𝑔 ∈ 𝐺. In Pang et all. (2016), authors prove that if the order of 𝑔𝐺′ ∈ 𝐺/𝐺′ does not divide
|Irr𝑚 (𝐺) |, then there exists 𝜒 in Irr𝑚 (𝐺) such that 𝜒(𝑔) = 0 where Irr𝑚 (𝐺) is the set of all irreducible monomial characters of 𝐺.
Similarly, we give the following theorem.

Theorem 3.3. Let 𝐺 be a finite group, 𝜒 be a nonlinear irreducible character of 𝐺 whose kernel is maximal among the kernels
of all nonlinear irreducible characters of 𝐺 and 𝑔 ∈ 𝐺. If the order of 𝑔𝑁 in 𝐺/𝑁 does not divide |Irr𝑠𝑚 (𝐺/ker𝜒) | where
𝑁 = 𝐺′ker𝜒, then 𝑔 is an SM-vanishing element of 𝐺.

Proof. Let 𝜒 be a nonlinear irreducible character of 𝐺 whose kernel is maximal among the kernels of all nonlinear irreducible
characters of 𝐺. We know from Corollary 2.6 in Erkoç et all. (2023) 𝜒 is a strongly monolithic character of 𝐺/ker𝜒. Furthermore
for any linear character 𝜆 of 𝐺/ker𝜒, 𝜒𝜆 is a strongly monolithic character of 𝐺/ker𝜒. Hence, 𝜆 permutes Irrsm (𝐺/ker𝜒). We get
that

Irrsm (𝐺/ker𝜒) = { 𝜃𝜆 | 𝜃 ∈ Irrsm (𝐺/ker𝜒) }.

This implies that ∏
𝜃∈Irrsm (𝐺/ker𝜒)

𝜃 (𝑔) =
∏

𝜃∈Irrsm (𝐺/ker𝜒)
(𝜃𝜆) (𝑔) = ©­«

∏
𝜃∈Irrsm (𝐺/ker𝜒)

𝜃 (𝑔)ª®¬𝜆(𝑔)𝑛,
where 𝑛 = |Irrsm (𝐺/ker𝜒) |. If 𝑔 is an SM-nonvanishing element of 𝐺, then by the above equality, 𝜆(𝑔)𝑛 = 1 for any linear

character 𝜆 of𝐺/ker𝜒. It follows that 𝑔𝑛ker𝜒 ∈ 𝐺′ker𝜒/ker𝜒. Then, we have that |𝑔𝑁 | divides |Irrsm (𝐺/ker𝜒) |, which contradicts
with our hypothesis. This contradiction completes the proof. □

Theorem 3.4. Let𝐺 be a solvable group and let 𝑝 be a prime divisor of |𝐺 |. If cod(𝜒) is a 𝑝′-number for every monomial strongly
monolithic character 𝜒 of 𝐺, then 𝐺 has a normal 𝑝-complement.

Proof. Let 𝐺 be a counterexample to the assertion with the minimal possible order. Since the hypotheses of the theorem are
inherited by factor groups, 𝐺 has a unique minimal normal subgroup 𝑀 . It follows that 𝐺/𝑀 has a normal 𝑝-complement
by induction. Since 𝐺 does not have a normal 𝑝-complement, 𝑝 must divide |𝑀 |. Thus, 𝑀 is elementary abelian 𝑝-subgroup.
Furthermore, we have Z(𝐺) = 1. Otherwise, a Hall 𝑝′-subgroup 𝐻 of 𝐺 would be normal since 𝑀𝐻 ⊴𝐺 and 𝐻 is a characteristic
subgroup of 𝑀𝐻. Moreover, we have from Lemma 1 (a) in Berkovich and Zhmud’ (1997) that Φ(𝐺) = 1. Then, there exists
a subgroup 𝐾 of 𝐺 such that 𝐺 = 𝑀𝐾 and 𝑀 ∩ 𝐾 = 1. Let 𝜆 be a nonprincipal character in Irr(𝑀). Write 𝑇 = I𝐺 (𝜆) as
the inertia group of 𝜆 in 𝐺. Notice that 𝑀 is complemented in 𝐺 and so is in 𝑇 . We get that 𝑇 = 𝑀I𝐾 (𝜆). It follows from
Problem 6.18 in Isaacs (1976) that 𝜆 extends to 𝑇 and so there exists a linear character 𝜃 ∈ Irr(𝑇) such that 𝜃𝑀 = 𝜆. This implies
that 𝜒 = 𝜃𝐺 is a monomial irreducible character of 𝐺. Thus, 𝜒 is a faithful irreducible character of 𝐺. Otherwise, we get that
𝑀 ≤ ker𝜒 =

⋂
𝑔∈𝐺

(ker𝜃)𝑔 ≤ ker𝜃. But this contradicts with 𝜃𝑀 = 𝜆 ≠ 1. Hence 𝜒 is a monomial strongly monolithic character of

𝐺, since Z(𝐺) = 1. By the assumption, we have that

cod(𝜒) = |𝐺 : ker𝜒 |
𝜒(1) =

|𝐺 |
𝜃𝐺 (1)

=
|𝐺 |

|𝐺 : 𝑇 | = |𝑇 | = |𝑀 |.|I𝐾 (𝜆) |

is a 𝑝′-number. This contradicts with the fact that 𝑀 is a 𝑝-group. The proof is complete. □
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ABSTRACT
This work presents a unique technique for the precise and efficient solution of Linear Fredholm integro-differential equations
(LFDEs), the technique is based on the Modification of Adomian Decomposition Method (MADM). The MADM extends the
well-known Adomian Decomposition Method (ADM) by integrating novel changes that improve convergence and computing
efficiency. The LFDEs are essential for simulating a wide range of phenomena in science and engineering. Because their analytical
solutions are frequently difficult to achieve, the development of efficient and trustworthy numerical approaches is required. We
present an introduction of the MADM method and its important characteristics emphasizing its capacity to handle a wide range of
LFDEs seen in scientific and engineering applications. We demonstrate the method’s usefulness in contrast to the true approach,
stressing its computational benefits and precision.

Mathematics Subject Classification (2020): 65R20, 45G15, 45B99, 45D99

Keywords: Fredholm Integro, differential Equations, Numerical Solutions, Computational Efficiency.

1. INTRODUCTION

Linear Fredholm integro-differential equations (IFDEs) are a type of mathematical model used to describe complicated events
including both differential and integral elements in a variety of scientific and engineering areas. These equations are critical for
understanding and forecasting real-world phenomena including heat conduction, diffusion, population dynamics, and electromag-
netic fields. Regardless of their importance, analytical solutions for linear Fredholm IFDEs are frequently elusive, necessitating
the development of strong numerical approaches. The Modified Adomian Decomposition Method builds upon the strengths of
the original ADM while incorporating innovative adjustments to overcome limitations in convergence behavior and stability.
The method involves decomposing the unknown function into a series of auxiliary functions and using a recursive scheme to
obtain successive approximations. According to Abdella and Ross (2020); Acar and Dascioglu (2019); Akyuz (2006); Amin
et all. (2020), integral equations are categorized into two primary categories based on the limits of integration: Fredholm and
Volterra integral equations. Ayinde, James, Ishaq and Oyedepo (2022); Bogdan and Madalina (2021); Buranay, Ozarslan and
Falahesar (2021), integro-differential equations are essential in both pure and practical mathematics, having numerous applica-
tions in mechanics, engineering, physics, and other fields. The behavior and evolution of many physical systems in many fields
of science and engineering, including viscoelasticity, evolutionary problems, fluid dynamics, population dynamics, and many
others, can be successfully modeled using Fredholm and Volterra type integrodifferential equations. Davaeeifar and Rashidainia
(2017); El-Hawary and El-Sheshtawy (2010); Hosry, Nakad and Bhalekar (2020); Lofti and Alipanah (2020); Kabiru et all. (2023);
Kamoh, Gyemang and Soomiyol (2019); Kurkou, Aslan, and Sezer (2017); Kabiru, Morufu and Muideen (2023); Maturi and
Simbawa (2020) derived the classical operational matrices and the unknown to be approximated by First Boubaker Polynomials,
with Newton-Cotes points serving as collocation points. Ming and Huanga (2017); Mishra et all. (2017) examine the existence,
uniqueness, and regularity features of solutions to generic Volterra functional integral equations with non-vanishing delalys, fo-
cusing on the local representation. Ogunniran et all. (2022) developed a discrete hybrid block approach and used relevant existing
concepts to test its stability, consistency, and convergence. Ogunrinde, Obayomi and Olayemi (2023); Ogunrinde et all. (2020)
discussed how the Fredholm integro-differential equation has numerous applications in science, engineering, and all aspects of
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human endeavors, including kinetic theory of gases, geophysics, communication theory, mathematical economics, queuing theory,
and hereditary phenomena in physics and biology. Oyedepo et all. (2023, 2022); Ramadan et all. (2016); Sabzevari (2019) pro-
posed a collocation computing approach for solving Volterra-Fredholm integro-differential equations using fourth kind chebyshev
polynomials as basis functions. According to Scathar et all. (2020); Shang and Han (2010), integral equations have applications
in a variety of domains, including mathematics, physics, and engineering. The analytical solution of integral equations is quite
complex, especially for application applications. Tunc (2021) investigated a linear system of integro-delay differential equations
with constant time retardation. Wazwaz (2011); Yuksel et all. (2012) defined an integral equation as one in which the unknown
function occurs within an integral sign.

2. DEFINITION OF TERMS

Integro-Differential Equations (IDEs): Integro-differential equations are a form of mathematical problem in which the derivatives
and integrals of an unknown function are both involved. Integral terms alter the connection between a function and its rate of
change in these equations, which are used to simulate a wide range of phenomena in numerous scientific and technical fields.
Fredholm Integro-Differential Equations (FIDEs): Fredholm integro-differential equations are a type of integro-differential
equation that involves the use of derivatives and integrals in a mathematical formulation. These equations are named after Erik
Ivar Fredholm, a Swedish mathematician who made substantial contributions to integral equations.
Linear Fredholm Integro-Differential Equations (LFIDEs): Linear Fredholm integro-differential equations are a type of integro-
differential equation in which the dependent variable and its derivatives are linear. These equations, which combine differential
and integral operators in a linear framework, are critical in describing a wide range of phenomena in numerous scientific and
engineering fields.
Adomian Decomposition Method (ADM): The Adomian Decomposition Method is a strong analytical approach for solving
nonlinear ordinary, partial differential, and integral problems. This approach, named after its originator, George Adomian, seeks
approximate solutions by decomposing a given nonlinear differential equation into an endless sequence of smaller terms that may
then be solved systematically.
Modified Adomian Decomposition Method (MADM): The Modified Adomian Decomposition Method improves and modifies
the original Adomian Decomposition Method (ADM). It is intended to overcome some constraints and improve the ADM’s
convergence behavior when used to specific sorts of problems. The MADM modifies the algorithm in order to improve its
efficiency and reliability for solving nonlinear ordinary and partial differential equations, as well as integral equations.

3. METHOD

To improve on the accuracies and subsequently the convergence of these approaches, we shall based our assumption on the
decomposition of the source term ℎ(𝑥) in Taylors series of the form

𝑠(𝑥) =
+∞∑︁
𝑗=0

ℎ𝑖 (𝑥) (1)

and the new recursive relation obtained as:

𝑦0 (𝑥) =𝑘0 (𝑥), (2)

𝑦1 (𝑥) =𝑘1 (𝑥) + 𝑘2 (𝑥) + 𝜆

∫ 𝑥

𝑎

ℎ(𝑥, 𝑡) (𝐿 (𝑢0 (𝑥)) + 𝐴0)) 𝑑𝑡, (3)

𝑦2 (𝑥) =𝑘3 (𝑥) + 𝑘4 (𝑥) + 𝜆

∫ 𝑥

𝑎

h(𝑥, 𝑡) (𝐿 (𝑢1 (𝑥)) + 𝐴1)) 𝑑𝑡, (4)

...

𝑦 𝑗+1 (𝑥) =𝑘2( 𝑗+1) (𝑥) + 𝑘2( 𝑗+1)−1 (𝑥) + 𝜆

∫ 𝑥

𝑎

h(𝑥, 𝑡)
(
𝐿 (𝑢 𝑗 (𝑥)) + 𝐴j)

)
𝑑𝑡. (5)

And subsequently the function 𝑢(𝑥) is obtained as

𝑦(𝑥) =
+∞∑︁
𝑗=0

𝑦 𝑗 (𝑥). (6)
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Assuming that the nonlinear function is 𝑃(𝑦(𝑥)) therefore, below are few of the Adomian polynomials.

𝐴=𝑃(𝑦0), (7)

𝐴1=𝑦1𝑃
′ (𝑦0), (8)

𝐴2=𝑦2𝑃
′ (𝑦0) +

1
2!
𝑦2

1𝑃
′′ (𝑦0) (9)

𝐴3=𝑦3𝑃
′ (𝑦0) + 𝑦1𝑦2𝑃

′′ (𝑦0) +
1
3!
𝑦3

1𝑃
′′′ (𝑦0), (10)

𝐴4=𝑦4𝑃
′ (𝑦0) +

(
1
2!
𝑦2

2 + 𝑦1𝑦3

)
𝑃′′ (𝑦0) +

1
2!
𝑦2

1𝑦2𝑃
′′′ (𝑦0) +

1
4
𝑦4

1𝑃
(𝑖𝑣) (𝑦0). (11)

Two important observations can be made here. First, 𝐴0 depends only on 𝑦0, 𝐴1 depends only on 𝑦0 and 𝑦1, 𝐴2 depends on 𝑦0, 𝑦1
and 𝑦2, and so on. Secondly, substituting these 𝐴 𝑗′ 𝑠 gives:

𝑃(𝑢) =𝐴0 + 𝐴1 + 𝐴2 + 𝐴3 + · · ·

=𝑃(𝑦0) + (𝑦1 + 𝑦2 + 𝑦3 + · · · )𝑃′ (𝑦0) +
1
2!

(𝑦2
1 + 2𝑦1𝑦2 + 2𝑦1𝑦3 + 𝑦2

2)𝑃
′′ (𝑦0)

+ 1
3!

(𝑦3
1 + 3𝑦2

1𝑦3 + 6𝑦1𝑦2𝑦3 + · · · )𝑃′′′ (𝑦0) + · · ·

=𝑃(𝑦0) + (𝑦 − 𝑦0)𝑃′ (𝑦0) +
1
2!

(𝑦 − 𝑦0)2𝑃′′ (𝑦0) + · · ·

4. NUMERICAL EXAMPLES

Example 1: Bogdan and Madalina (2021) Consider the eighth-order linear Fredholm integro-differential equation

𝑦 (8) (𝑥) = 𝑦 (𝑥) − 8𝑒𝑥 + 𝑥2 +
∫ 1

0
𝑥2𝑦′ (𝑡) 𝑑𝑡 (12)

Subject to the conditions 𝑦 (0) = 1, 𝑦′ (0) = 0, 𝑦′′ (0) = −1, 𝑦′′′ (0) = −2, 𝑦 (4) (0) = −3,
𝑦 (5) (0) = −4, 𝑦 (6) (0) = −5, and 𝑦 (7) (0) = −6.
The exact solution is 𝑦 (𝑥) = (1 − 𝑥) 𝑒𝑥
Using the new Modified Adomian Decomposition Method (MADM),
We transform each term in (12) to have the following∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦 (8) (𝑥) 𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

= 𝑦 (𝑥) + 1
840

𝑥7 + 1
144

𝑥6 + 1
30

𝑥5 + 1
8
𝑥4 + 1

3
𝑥3 + 1

2
𝑥2 − 1 (13)∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦 (𝑥) 𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 =

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (14)

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
8𝑒𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

= −8 − 8𝑥 − 4𝑥2 − 4
3
𝑥3 − 1

3
𝑥4 − 1

15
𝑥5 − 1

90
𝑥6 − 1

630
𝑥7 + 8𝑒𝑥 (15)∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑥2𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 =

1
1814400

𝑥10 (16)
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∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′ (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 =

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′ (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

Substitute the results of (13) – (4) into (12)
We have

𝑦 (𝑥) = 9 + 8𝑥 + 7
2𝑥

2 + 𝑥3 + 5
24𝑥

4 + 1
30𝑥

5 + 1
240𝑥

6 + 1
2520𝑥

7 + 1
1814400𝑥

10 − 8𝑒𝑥
+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0 𝑦 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1
0 𝑥2𝑦′ (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (17)

Let

𝑟 = 9 + 8𝑥 + 7
2
𝑥2 + 𝑥3 + 5

24
𝑥4 + 1

30
𝑥5 + 1

240
𝑥6 + 1

2520
𝑥7 + 1

1814400
𝑥10 − 8𝑒𝑥

Then
Expand taylor (r, x, 10)

= 1 − 1
2
𝑥2 − 1

3
𝑥3 − 1

8
𝑥4 − 1

30
𝑥5 − 1

144
𝑥6 − 1

840
𝑥7 − 1

5040
𝑥8 − 1

45360
𝑥9

And

𝑎0 = 1

𝑦0 (𝑡) = 1

𝑦′0 (𝑡) = 0

𝑔0 = −1
2
𝑥2 − 1

3
𝑥3

𝑎1 = 𝑔0 +
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦0 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′0 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (18)

𝑎1 = −1
2
𝑥2 − 1

3
𝑥3 + 1

40320
𝑥8

𝑦1 (𝑡) = −1
2
𝑡2 − 1

3
𝑡3 + 1

40320
𝑡8

𝑦′1 (𝑡) = −𝑡 − 𝑡2 + 1
5040

𝑡7

𝑔1 = −1
8
𝑥4 − 1

30
𝑥5

𝑎2 = 𝑔1 +
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦1 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′1 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (19)

47



Istanbul Journal of Mathematics

𝑎2 = −1
8
𝑥4 − 1

30
𝑥5 − 53759

73156608000
𝑥10 − 1

19958400
𝑥11 + 1

20922789888000
𝑥16

𝑦2 (𝑡) = −1
8
𝑡4 − 1

30
𝑡5 − 53759

73156608000
𝑡10 − 1

19958400
𝑡11 + 1

20922789888000
𝑡16

𝑦′2 (𝑡) = −1
2
𝑡3 − 1

6
𝑡4 − 53759

7315660800
𝑡9 − 1

1814400
𝑡10 + 1

1307674368000
𝑡15

𝑔2 = − 1
144

𝑥6 − 1
840

𝑥7

𝑎3 = 𝑔2 +
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦2 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′2 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (20)

𝑎3 = − 1
144𝑥

6 − 1
840𝑥

7 − 1
159667200𝑥

12 − 1
1556755200𝑥

13 − 53759
129071853907476480000𝑥

18

− 1
60822550204416000𝑥

19 + 1
620448401733239439360000𝑥

24 − 473255926999
5423187138969600000𝑥

10

𝑦3 (𝑡) = − 1
144 𝑡

6 − 1
840 𝑡

7 − 1
159667200 𝑡

12 − 1
1556755200 𝑡

13 − 53759
129071853907476480000 𝑡

18

− 1
60822550204416000 𝑡

19 + 1
620448401733239439360000 𝑡

24 − 473255926999
5423187138969600000 𝑡

10

𝑦′3 (𝑡) = − 1
24 𝑡

5 − 1
120 𝑡

6 − 1
13305600 𝑡

11 − 1
119750400 𝑡

12 − 53759
717065855041536000 𝑡

17

− 1
3201186852864000 𝑡

18 + 1
25852016738884976640000 𝑡

23 − 473255926999
54231871389696000 𝑡

0

𝑔3 = − 1
5040

𝑥8 − 1
45360

𝑥9

𝑎4 = 𝑔3 +
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0
𝑦3 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥

+
∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 𝑥

0

∫ 1

0
𝑥2𝑦′3 (𝑡) 𝑑𝑡𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 (21)

𝑎4 = − 1
5040𝑥

8 − 1
45360𝑥

9 − 1
17435658240𝑥

14 − 1
217945728000𝑥

15 − 1
810967336058880000𝑥

20

− 1
12772735542927360000𝑥

21 − 53759
8130355856312369613373440000000𝑥

26

− 1
5444434725209176080384000000𝑥

27 + 1
263130836933693530167218012160000000𝑥

32

− 473255926999
9568251416385920434176000000𝑥

18 − 25236784671012694969327
5628707900523948193873920000000𝑥

10

𝑦4 (𝑡) = − 1
5040 𝑡

8 − 1
45360 𝑡

9 − 1
17435658240 𝑡

14 − 1
217945728000 𝑡

15 − 1
810967336058880000 𝑡

20

− 1
12772735542927360000 𝑡

21 − 53759
8130355856312369613373440000000 𝑡

26

− 1
5444434725209176080384000000 𝑡

27 + 1
263130836933693530167218012160000000 𝑡

32

− 473255926999
9568251416385920434176000000 𝑡

18 − 25236784671012694969327
5628707900523948193873920000000 𝑡

10

(22)

𝑦𝑛 (𝑥) =
4∑︁
𝑗=0

𝑦 𝑗 (𝑥)

𝑦𝑛 (𝑥) = 1 − 1
2𝑥

2 − 1
3𝑥

3 − 1
8𝑥

4 − 1
30𝑥

5 − 1
144𝑥

6 − 1
840𝑥

7 − 1
5760𝑥

8 − 1
45360𝑥

9

− 4652673275517556384854127
5628707900523948193873920000000𝑥

10 − 1
19958400𝑥

11 − 1
159667200𝑥

12 − 1
1556755200𝑥

13

− 1
17435658240𝑥

14 − 1
217945728000𝑥

15 + 1
20922789888000𝑥

16 − 4458475107799
9568251416385920434176000000𝑥

18

− 1
60822550204416000𝑥

19 − 1
810967336058880000𝑥

20 − 1
12772735542927360000𝑥

21

+ 1
620448401733239439360000𝑥

24 − 53759
8130355856312369613373440000000𝑥

26

− 1
5444434725209176080384000000𝑥

27 + 1
263130836933693530167218012160000000𝑥

32

(23)
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Example 2: Oyedepo et all. (2023) Consider the fifth-order linear Fredholm integro-differential equation

𝑦𝑣 (𝑥) − 𝑥2𝑦′′′ (𝑥) − 𝑦′ (𝑥) − 𝑤𝑦 (𝑥) = 𝑤2 cos (𝑥) − 𝑥 sin (𝑥) +
∫ 1

−1
𝑦 (𝑡) 𝑑𝑡 (24)

Subject to the conditions 𝑦 (0) = 0, 𝑦′ (0) = 1, 𝑦′′ (0) = 0, 𝑦′′′ (0) = −1 and 𝑦𝑖𝑣 (0) = −1.
The exact solution is 𝑦 (𝑥) = sin (𝑥)
Using the new Modified Adomian Decomposition Method (MADM),
We obtained the following

𝑦0 (𝑥) = 𝑥 (25)

𝑦1 (𝑥) = −1
6
𝑥3 − 1

24
𝑥4 + 1

120
𝑥5 + 1

720
𝑤𝑥6 (26)

𝑦2 (𝑥) = 1
120𝑤

2𝑥5 +
(
− 1

5040𝑤
2 − 1

2520

)
𝑥7 + 1

113400𝑤𝑥
10 + 1

17280𝑥
9 − 13

40320𝑥
8 − 1

720𝑥
7

+ 1
39916800𝑤

2𝑥11 − 1
362880𝑤𝑥

9 − 1
40320𝑤𝑥

8 + 1
5

(
− 1

1440 + 1
60480𝑤

)
𝑥5

(27)

Then,

𝑦𝑛 (𝑥) =
2∑︁
𝑗=0

𝑦 𝑗 (𝑥)

𝑦𝑛 (𝑥) = 𝑥 − 1
6𝑥

3 − 1
24𝑥

4 + 1
120𝑥

5 + 1
720𝑤𝑥

6 + 1
120𝑤

2𝑥5 +
(
− 1

5040𝑤
2 − 1

2520

)
𝑥7 + 1

113400𝑤𝑥
10

+ 1
17280𝑥

9 − 13
40320𝑥

8 − 1
720𝑥

7 + 1
39916800𝑤

2𝑥11 − 1
362880𝑤𝑥

9 − 1
40320𝑤𝑥

8 + 1
5

(
− 1

1440 + 1
60480𝑤

)
𝑥5

(28)

When 𝑤 = 0,
We have

𝑦𝑛 (𝑥) = 𝑥 − 1
6
𝑥3 − 1

24
𝑥4 + 59

7200
𝑥5 − 1

560
𝑥7 − 13

40320
𝑥8 + 1

17280
𝑥9 (29)

Example 3: Ogunrinde, Obayomi and Olayemi (2023) Consider the third-order linear Fredholm integro-differential equation

𝑦′′′ (𝑥) = 6 + 𝑥 −
∫ 1

0
𝑥𝑦′ (𝑡) 𝑑𝑡 (30)

Subject to the conditions 𝑦 (0) = −1, 𝑦′ (0) = 1, and 𝑦′′ (0) = −2.
The exact solution is 𝑦 (𝑥) = 𝑥3 − 𝑥2 + 𝑥 − 1
Using the new Modified Adomian Decomposition Method (MADM),
We obtained the following

𝑦0 (𝑥) = −1 (31)

𝑦1 (𝑥) = 𝑥 − 𝑥2 (32)

𝑦2 (𝑥) = 𝑥3 + 1
8
𝑥4 (33)

𝑦3 (𝑥) = − 7
48

𝑥4 (34)

Then,

𝑦𝑛 (𝑥) =
3∑︁
𝑗=0

𝑦 𝑗 (𝑥)

𝑦𝑛 (𝑥) = −1 + 𝑥 − 𝑥2 + 𝑥3 − 1
48

𝑥4 (35)
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5. TABLES OF RESULTS

Table 1: Numerical Results for Example 1

x Exact MADM MADM_Error

0 1.000000 1.000000 0.00 E 00

0.1 0.994654 0.994654 0.00 E 00

0.2 0.977122 0.977122 1.73 E-13

0.3 0.944901 0.944901 1.01 E-11

0.4 0.895095 0.895095 1.82 E-10

0.5 0.824361 0.824361 1.72 E-09

0.6 0.728848 0.728848 1.08 E-08

0.7 0.604126 0.604126 5.09 E-08

0.8 0.445108 0.445108 1.96 E-07

0.9 0.245960 0.245961 6.45 E-07

1 0.000000 1.87 E-06 1.87 E-06

Figure 1.Graph of Comparison for Example 1

Table 2: Numerical Results for Example 2
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x Exact MADM MADM_Error

0 0.000000 0.000000 0.0000 E 00

0.1 0.099833 0.099829 4.1700 E-06

0.2 0.198669 0.198603 6.6700 E-05

0.3 0.295520 0.295183 3.3800 E-04

0.4 0.389418 0.388350 1.0680 E-03

0.5 0.479426 0.476812 2.6130 E-03

0.6 0.564642 0.559204 5.4380 E-03

0.7 0.644218 0.634090 1.0128 E-02

0.8 0.717356 0.699955 1.7401 E-02

0.9 0.783327 0.755195 2.8132 E-02

1 0.841471 0.798089 4.3382 E-02

Figure 2.Graph of Comparison for Example 2

Table 3: Numerical Results for Example 3
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X Exact MADM MADM_Error

0 -1.000 -1.00000 0.0000 E 00

0.1 -0.909 -0.90900 2.0800 E-06

0.2 -0.832 -0.83203 3.3300 E-05

0.3 -0.763 -0.76317 1.6900 E-04

0.4 -0.696 -0.69653 5.3300 E-04

0.5 -0.625 -0.62630 1.3020 E-03

0.6 -0.544 -0.54670 2.7000 E-03

0.7 -0.447 -0.45200 5.0020 E-03

0.8 -0.328 -0.33653 8.5330 E-03

0.9 -0.181 -0.19467 1.3669 E-02

1 0.000 -0.02083 2.0833 E-02

Figure 3.Graph of Comparison for Example 3

6. DISCUSSION OF RESULTS

The study of LFIDE findings using the Modified Adomian Decomposition Method demonstrates its efficacy in resolving problems
associated with older methodologies. The method’s improved convergence, stability, and adaptability make it an appealing tool
for academics and practitioners working on linear Fredholm integro-differential equation issues. The findings given here add to
the expanding body of knowledge on appropriate numerical strategies for solving complicated mathematical models in a variety
of scientific and engineering disciplines.
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7. CONCLUSION

The use of MADM to LFIDEs yields encouraging results, with enhanced accuracy and stability over standard approaches. The
method’s capacity to manage a wide spectrum of LFIDEs seen in scientific and engineering applications is emphasized, highlighting
its adaptability and dependability. This study’s numerical studies and comparisons give solid proof of the MADM’s effectiveness.
The convergence evaluations validate the method’s resilience in addressing LFIDEs, giving it a viable option for academics and
practitioners looking for accurate and efficient solutions to complicated issues in a variety of domains.
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