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RESEARCH ARTICLE

On the holonomic systems for the Gauss hypergeometric function and its
confluent family of a matrix argument

. * .
H. Kimura!™ @

I'Kumamoto University, School of Science and Technology, Department of mathematics, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

ABSTRACT

We investigate the several special functions defined by a matrix integral on the Hermitian matrix space of size n. They are the
matrix argument analogues of the Gauss hypergeometric, Kummer’s confluent hypergeometric, the Bessel, the Hermite-Weber
and Airy functions which play important roles in the multivariate statistical analysis and the random matrix theory. We give the
integral representations for them as functions of eigenvalues of the matrix argument by using the result of Harish-Chandra and
Itzykson-Zuber, and give the systems of differential equations for them. We show that these system are holonomic and have the
holonomic rank 2" using the theory of Grobner basis.

Mathematics Subject Classification (2020): 33C70, 33C80

Keywords: hypergeometric function, matrix integral, holonomic system, Grobner basis

1. INTRODUCTION

In this paper, we are concerned with the special functions of a matrix argument defined by an integral on the space of complex
Hermitian matrices or normal matrices. One of the most important classes of classical special functions may be the Gauss
hypergeometric function (HGF) and its confluent family, namely, Kummer’s confluent HGF, Bessel function, Hermite-Weber
function and Airy function. For example, Gauss, Kummer and Bessel functions are given by the power series

2F1(a,b,c;x) = Z (L(l();)n(i):n ",
(@)m o
lFl(aC'x)_Z(c) m' ’

-nm
oFi(c+1;—x) = %mx ,

respectively, where a, b,c¢ € C, x is the complex variable and (a),, = I'(a + m)/I"(a) is the so-called Pochhammer’s symbol
defined by the gamma function I'(a). In this paper we consider and study the matrix argument analogues of these classical HGF
family. The matrix argument analogues of Gauss, Kummer and Bessel are studied in connection with the multivariate statistical
analysis Muirhead (1982) and with the analysis on symmetric cones Faraut and A. Koranyi (1994). We also want to add in this list
the matrix argument analogues of Hermite-Weber and Airy functions, which have been studied in Inamasu and Kimura, (2021).
Let us explain our motivation of our study. The above mentioned classical HGF family is sometimes displayed schematically as

Bessel

/ N

Gauss — Kummer Airy,

N /

Hermite — Weber

where each arrow implies some kind of limiting process called confluence. These functions are studied by using various aspects
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of the functions: the power series expressions, the integral representations, the differential equations, the contiguity relations.
Here we focus on the aspects of differential equations and integral representations. The differential equations and the integral

representations for them are given as follows.
Differential equations:

Gauss :
Kummer :
Bessel :

Hermite-Weber :

x(1=x)y" +{c=(a+b+1)x}y —aby =0,
xy" +(c—-x)y —ay=0,
xy"+(c+1)y +y=0,

’

v’ —xy' +cy=0,

Airy : y”" —xy=0.
Integral representations:
I'(c) v ae _
F b,c;x) = —————— M1 =) (1 - x)"Pdr
2Fi(a, b, c;x) (@) (c—a) Jo ( ) ( x)
r 1
1Fi(a,c;x) = (c) 711 =) e gy,

I'(a)T'(c—a) Jo

oFi(c+1;-x) =/t°_1e”_%dt,
C

gl
H(c;x)z/t_‘ LeX=21" gy,
c

Ai(x)z/ex“%ﬁdt,
c

where C is an appropriate path in the complex 7-plane. Note that we took the path 01 as the path of integration for the Gauss’ case
and the Kummer’s case so that the integrals give the power series expressions. If one takes another appropriate paths of integration,
we get various solutions to the differential equations (see Iwasaki et al. (1991)). We should comment on the Bessel equation. In
many literatures, it has the form zZw” + zw” + (2% — ¢*)w = 0. If one perform, for this equation, the change of unknown w s y
by w = z°y and then the change of independent variable z — x by x = z%/4, we get the differential equation we gave in the list.

The Gauss HGF and its confluent family appear in many research fields of mathematics and mathematical physics and play
important roles. For example, it is known that the Gauss, Kummer, Hermite-Weber, Bessel and Airy functions appear as particular
solutions of the Painlevé equations Pg, Ps, P4, P3 and P,, respectively Iwasaki et al. (1991).

It is also known that they are understood as simple cases of Gelfand’s HGF on the complex Grassmannian manifold Gr(r, N),
the set of r-dimensional subspaces in CV . Roughly speaking, Gelfand’s HGF on Gr(r, N) is defined as follows. First we consider
the maximal abelian subgroup H, of GL(N) obtained as the centralizer of a regular element a of GL(N), where « is in the Jordan
normal form and its cell structure is described by the partition A of N. Then Gelfand’s HGF of type A on Gr(r, N) is defined as the
Radon transform of a character of the universal covering group H . In this context, the Gauss, Kummer, Bessel, Hermite-Weber and
Airy functions are identified with Gelfand’s HGFs on Gr(2,4) corresponding to the partitions (1,1,1,1),(2,1,1),(2,2),(3,1)
and (4), respectively.

Taking into account of these facts, we think it is natural to study the extension of classical HGF family to the functions of a
matrix argument including those of the Hermite-Weber and Airy functions. It should be commented that the Airy function of
a matrix argument, defined by a Hermitian matrix integral in Section 2.2, already played an important role in the resolution of
Witten’s conjecture on the 2-dimensional quantum gravity by M. Kontsevich Kontsevich (1992).

In Inamasu and Kimura, (2021), we discussed the relation of the HGFs of a matrix argument, defined by the integrals on the
space # (n) of Hermitian matrices, to some semi-classical orthogonal polynomials and to the polynomial solutions to the quantum
Painlevé systems (see also Nagoya (2011)). We stated in Inamasu and Kimura, (2021) a conjecture on the explict form of the
systems of partial differential equations characterizing the Hermite-Weber and Airy functions of a matrix argument. We give the
answer (Theorem 3.1) to this conjecture deriving the systems of differential equations for a matrix argument analogue of the Gauss
and its confluent family defined by the matrix integrals (Definition 2.1). It should be mentioned that the differential equations for
the matrix argument analogues of Gauss, Kummer and Bessel were obtained in Muirhead (1970) by J. Muirhead. He handled the
functions given by the series expansion in terms of zonal polynomials and derived the differential equations characterizing them.
Our approach is different from his. We treat the functions defined by the integrals with various possible choices of domain of
integration in deriving the differential equations. On the other hand, the functions treated by Muirhead correspond to the integrals
with a particular choice of domain of integration, see Proposition 2.8. Since we use the matrix integrals on # (n) or on the space
of normal matrices to define the HGFs of a matrix argument, we call them the HGFs of matrix integral type.

Another main result of this paper is Theorem 5.1 on the holonomicity of the systems and on their holonomic ranks which give
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the dimension of the solution space for the systems at a generic point. This theorem is proved by computing a Grobner basis for
the ideal in the ring of differential operators generated by the differential operators characterizing the HGFs.

This paper is organized as follows. In Section 2, we introduce the HGFs defined by an integral on the Hermitian matrix or
normal matrix space. We give the expressions of HGFs as the functions of eigenvalues of the variable matrix. The main tools are
the Harish-Chandra and Itsykson-Zuber integral formulas. In Section 3, we give the systems of differential equations for the HGFs
of matrix integral type as the functions of eigenvalues of the matrix argument (Theorem 3.1). Section 4 is devoted to the proof of
this theorem. In Section 5, we discuss the holonomicity and the holonomic rank of the systems (Theorem 5.1).

2. HGF OF MATRIX INTEGRAL TYPE
2.1. Integrals on Hermitian matrix space

Let % (n) be the set of n x n complex Hermitian matrices. It is a real vector space of dimension n?. For Y = (¥; i) € # (n),letdY
denote the volume element on # (n), which is the usual Euclidean volume element

n
dy = A dYi; A (dRe(Y;;) A dIm(Y;j)),
i=1 i<j
where we fix some order of indices in the right hand side.
The matrix integral version of the gamma function and the beta function are defined by

T,(a) = / Y% "etr(-Y) dY,
Y>0

Bu(a, b) :=/ Y| "1 -Y|P™" dy,
o<y<I

respectively, where Y € 7 (n), |Y|is the determinant of Y, trY is the trace of Y, etr(Y) := exp(tr (¥)) and the integral is taken on the
set of positive definite Hermitian matrices Y > 0 for the gamma function and on the subset of # (n) satisfyingY > 0Oand /-Y > 0
for the beta function. The gamma integral converges for Re(a) > n — 1 and the beta integral for Re(a) > n—1,Re(b) > n—1, and
they define holomorphic functions there.

Proposition. (see Faraut and A. Koranyi (1994)) The following formulas hold.

(i) Tp(a) = a5 [, T(a+i - 1).

(ii) By(a, b) = %

2.2. HGF of matrix integral type
We introduced the family of HGFs of matrix integral type in Inamasu and Kimura, (2021). We recall them.

Definition 2.1. For X € % (n), put
Ig(a,b,c;X) = /C Y| = Y|<¢ "I - XY|~? dy,
Ix(a,c;X) = /C Y|4 - Y|4 "etr(XY) dY
Ig(c; X) = /C [Y[¢"etr(XY — Y1) dY,
Inw(c; X) = /C Y| "¢ "etr(XY — %YZ) day,
IA(X) = /C etr(XY — %Y3)dY,

where C is an appropriate domain of integration in # (n) or in the space of normal matrices of size n for which the differentiation
with respect to the entries of X can be interchanged with the integration.

Comparing the above integrals with the integral representations for the classical hypergeometric family in the introduction, one
may recognize that they are extensions of the classical HGF family to functions with a matrix argument. In fact, Muirhead treated
in Muirhead (1970) the extension of Gauss and Kummer to the functions of a matrix argument expressed by the series in terms of
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zonal polynomials. They are denoted by ,F)(a, b, c; X) and | Fj(a, c; X) and have the integral representations:

() - —a- b
JFi(a,bye;X) = — 20 Y471 = Y|4 |1 — XY|™? av,
Fh(@)h(c —a) Jocy<r
. _ Fn((,‘) a-n c—-a-n
\Fi(a,c:X) = V|97 = Y|~ etr(XY) dY.

Ih(a)Th(c —a) Jov<r

It should be mentioned on the choice of domains of integration C for the integrals in Definition 2.1. We required that C is chosen
so that the differentiation with respect to the entries of X can be interchanged with the integration, and that we can apply the
Stokes theorem. For example, to define the Airy function of matrix integral type, we consider the integral in the space of normal
matrices. In this case, taking into account that a normal matrix is a matrix which is transformed to a diagonal matrix with complex
eigenvalues by conjugating with a unitary matrix, we see in Proposition 2.6 that the matrix integral can be reduced to the integral
on the space of eigenvalues. Then we may take the domain of integration C in the normal matrix space which, after a reduction of
the integral, becomes an n-cycle of a locally finite homology group of the space of eigenvalues y = (y1,...,y,) € C" on which
the integrand decreases to 0 exponentially when |y| — oo. See Hien (2007) for this kind of homology groups.

Remark 2.2. The matrix integrals in Definition 2.1 define functions of the eigenvalues x1, ..., x, of X, see the next subsection.

2.3. Integrals on the eigenvalues

For the HGFs of matrix integral type, we want to rewrite them to the integrals on the space of eigenvalues y = (yy,...,y,) of
Y € 7 (n). To this end we need the following integral formulas . Let % (n) denote the group of unitary matrices of size n.

Proposition 2.3. (Weyl integration formula) We have

n(n-1)

[ ray == o0 [ fleve)amiads,
p=1

where Y ~y = diag(y1,...,yn) by Y = gyg* with g € %(n), A(y) = [1;<;(yi —y;), dy = dy1- -~ dyn, and dg is the normalized
Haar measure on the unitary group % (n).

We also need the following results due to Harish-Chandra and Itzykson-Zuber. We refer to Balantekin (2000); Bleher and
Kuijlaars (2004); Deift, (2000); Harnad and Orlov (2007); Mehta (1991) for these formulas.

Proposition 2.4. Let A, B be normal matrices of size n diagonalized as
A ~ diag(ay, ...,a,), B~ diag(bi,...,b,),
and assume that a; # aj, b; # bj fori # j. Fort € C, we have

n-1 —a+n—1

- p! det[(1 —ta,-bj) ]

det(1 —tAgB dg =
/@z(n)( et(l ~1AgBg")) " dg ]l;[l (a—n+1), A(a)A(b)

Proposition 2.5. Let A, B be as in Proposition 2.4. For t € C, we have

'ﬁ | det(erabi)
123 wEYvIEY

* d = .
/%(n) exp[rtr (AgBg")]dg A(a)A(b)

p=1
By applying Propositions 2.3, 2.4 to the integrals in Definition 2.1, we obtain the following result.

Proposition 2.6. Assume that X € % (n) has distinct eigenvalues xy, . . ., x,. Then we have
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A(y) dy.

. — a-ng1 _ ,,.\c—a-n . —-b+n-1
Ig(a,b,C,X)—Co/Dl_[yi (1= 30 det (1 =301 ) T

. A
IK(a,c;X) = / l_[ya n(] _yi)c—a—n ~det(ex-/yk)%dy,

—n—1/yi ey AQY)

Ip(c;X) =Cy / yi e 1/i det (e¥7Yk) —==dy,
DL_][ ' A(x)
- 12 AQ)

Igw(c; X) =C / y;€eT 2% det (€M) —=—dy,
i D 1_1[ A(x)

S PRI ey AWY)
Ix(X)=C / e~ 37 det (e™%) ——=dy,
4 ‘ Drl[ A(x)

where Co = 71" =2 (n' H" (b n+1),)",Ci=n e (n))~!, and D is a twisted n-cycle of the homology group defined by the
integrand.

Proof. We show the assertion for I/ (a, b, c; X) for the sake of completeness of presentation. We apply the Weyl integration
formula to f(Y) = |Y|'|I = Y|2|I — XY|~? with ¢; = a — n, c2 = ¢ — a — n. Note that

f(gyg") = lgyg* 1|l — gyg"|* |1l — Xgyg*I™"
=y -y - Xgyg*| ™"

n
=] [yt =y 11 - xgye'I™".
i=1

Putting this in the Weyl formula and using Proposition 2.4 for ¢ = 1, we have

n n
n(n-1) _ O c C
Ig(a,b,c;X)=n"7 (l |P!) l/ ('/%( )|I—ngg | bdg)l_[yil(l—y,-) 2A(y)*dy
p=1 n i=1

D

det((l—xjyk)_h+n—l) n . o )
CO/D AX)A®) L_l[)’i (1=yi)?A(y)=dy.

= [Tty der (1 = a0t 2,
i=1

The expressions for the other HGFs can be obtained in a similar way by using Proposition 2.5.

Remark 2.7. For the Airy integral 74(X), we can take an n-cycle D in the rapidly decay homology group Hien (2007). Let y1, v
be the paths in C as in Figure 1. Then D;, =7y XX, foriy, ... i, € {1,2} gives an n-cycle and there are 2" choices.

Now the following statement is easily deduced from Proposition 2.6.

Proposition 2.8. (1) For ,F|(a, b, c; X), we assume that X € 7 (n) has distinct eigenvalues x1, . . ., x,,. Then we have

A(y)d

Fi(a,b,c;X) = a1 = y) A det ((1 - pan-t
2Fi(a,b,c; X) Cz/mnﬂy, (1=yi) e(( XjyK)~ )A(x) y

Ay)
=n!C2/ ya n(l_y)can(l_x )b+n1 d
o1 1_[ i A(x)
where C, = —rn(ar)'f_i?c_a) Co
(2) For Fi(a, b, c; X), we assume that X € I (n) has distinct eigenvalues x1, . . . ,x,,. Then we have
(y)
1Fi(a,c; X) = C; YT (1 = y)TT" - det(e xfy")
(0,1)" 1—[ A(x )
:n!C3/ ny“ T =y (y)d
o.n" A(x)
where C3 = —I“,,(al;'f'(nc()cfa) C
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Figure 1.Figure 1

Proof. We show (2). The first representation for | Fi(a, ¢; X) is obvious by Propostion 2.6. We show the second one for | Fj. Put
U(y) :== [T, y¢7"(1 = y;)°7“" and consider the expansion

det(exfyk) = Z (Sgng-)exlyﬂ'(l) e gxnyo'(n>’
e,

where &, is the symmetric group of degree n. Then we have

2 e = Y, . (e | e nacay.
i=1

Tgec,

Consider the integral in the right hand side for any fixed o € &, and make a change of variables y — y’ defined by y; =
Yoy (i =1,...,n). Note that, by the change y — y’, the function U(y) and the domain of integration (0, 1)" are invariant, and
A(y") = (sgno)A(y). Hence the integrals in the right hand side are all equal to

/. ﬂy“ (1= )OS A(y)dy.
0" ;

This establishes the second representation for | F.

3. SYSTEM OF DIFFERENTIAL EQUATIONS FOR HGF

We give the systems of differential equations satisfied by the family of HGFs of matrix integral type given in Definition 2.1. We
assume that the domain of integration C for these integrals is chosen so that the interchange of derivation with respect to X and

the integration with respect to Y is allowed and the Stokes theorem can be applied. Let d; denote the partial derivation %.

Theorem 3.1. The HGF I.(X) (x = G, K, B, HW, A) satisfies, as a function of eigenvalues of X, the following system of differential
equations S..

Gauss Sg :
xi(1=x)0F+{c—(n—1)—(a+b+1-(n—1)x;}6;F
Xi(1 =x;)0;F —x;(1 —x;)0;F
+ > A= )0F = U220 F e 1 <i<n,
£ Xi —Xj
J(#i)
Kummer Sk :
X;0;F —x;0;F
xiBiZF+{c—(n—l)—xi}6,~F+Zé— F=0, 1<i<n
X=X
J(#i)
Bessel Sp:
Xi0;F —x;0;F
x,62F+{c+1}6F+Z—] =0, l1<i<n
Xi —Xj

J(#i)
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Hermite-Weber Sy :

8:F — 0;F
ORF —xiGiF + Y ———+cF=0, l1<i<n (1)
jGy TN
Airy Sa:
8:F —;F
63F+Z;—xiF=0, l1<i<n. 2)
— Xi —Xj
J () J

The proof of the theorem is given in the next section.
As a particular case of Theorem 3.1, we have the following result, which was given by Muirhead in Muirhead (1970).

Proposition 3.2. (1) ,Fi(a, b, c; X), as a function of eigenvalues of X, is characterized as the holomorphic solution F to the
system Sg which is symmetric in the variables and satisfies F(0) = 1.

(2) 1F1(a,c; X), as a function of eigenvalues of X, is characterized as the holomorphic solution F to the system Sk, which is
symmetric in the variables and satisfies F(0) = 1.

Once we get the system of differential equations S, (x = G, K, B, HW, A), we can consider it as defined on C". In Theorem 5.1
of the last section, we show that these systems are holonomic on the Zariski open set Q. c C" and their holonomic rank is 2",
namely the systems are equivalent to the completely integrable Pfaffian systems of rank 2".

4. PROOF OF THEOREM 3.1

In this section, we use Y;; (1 < i, j < n), the entries of matrix integration variable Y, as the independent variables of the real space
# (n) instead of ¥;;,Re(Y;;),Im(Y;;) (1 <i < j < n). Note that, since
Yij +Yji

Y:: — Y
2 b} Im(Ylj) = 2 J

Re(Y;)) = ﬁ’

(I1<i<j<n),

we have

dy = /n\le/\ (gyu /\in).

4.1. Lemmas

Let X = (X;;) € #(n) be diagonalized as x = UXUT,x = diag(xy,...,x,) by a unitary matrix U, where U is the hermitian
conjugate of U, namely U T = 1. Assume that x|, . . ., x, are distinct. Note that x and U depends on X. The following lemmata
are known (Adler and Moerbeke (1992), p50). For the sake of completeness of presentation, we give their proof.

Lemma 4.1. The following equalities hold.

0Xxq

— i
aX” - Uaina,s (3)
ou .
(xa—xﬁ) (EUT)QB :U"iU;ﬁ’ ifa + B. “4)
Proof. Differentiate the both sides of x = UXU" with respect to X; 7. Using the identity
ou . oU"
—U"+U =0, 5
8X[j aX[' ( )
which comes from UUT = I, we have
0% _ (U i) s g, Ut +x (022
0X;;  \0X;; Y 0X;;
ou ou
- Ut x+UE;;U" - U, 6
(3Xij )x Y x(a ij ) ©

where E;; is the (i, /) matrix unit, namely the n X n matrix whose only non-zero entry is 1 at the (i, j)-entry. Comparing the
(@, a)-entry of both sides of (6), we get (3) and comparing the (a, B)-entry with a # 3, we get (4).




Istanbul Journal of Mathematics

Lemma 4.2. For (a,B) with 1 < «, B < n, we have the equalities:

ox
1 a _
Uy X, Upj =bap-
i,j

Ut %xq _0%a —xalxﬁ, ifa # 8,
Z BOXij0Xje | Syea i ifa=p
vyEa xa_xy, = pP.

1 o
; azxa, X1 —Xs° lf‘a—l,lis,
D, UiUpUsUia 5% = e fa=slzs,

@b.p-a b4 0, otherwise.

Proof. From the equality (3) of Lemma 4.1, we have
UT axaf _ UTU U‘]'U = §5. 08 =5
Z lﬁaX j_Z ipYaiVjoVUBj = %apOBa = Oap-
1)

To show the second equality, differentiate the both sides of g;" =U m-U;Q with respect to X jx and obtain

T

Ugim— 6X . Denote the left hand side of (8) as A(«, 8). Then
T
oU
T il
A(a,B) = Z Uig XmU Uﬁk+z i8 maX LUy
i,j,k i,j,k
¥
= U' U~aUﬁk+5 B —Uﬁk =ZA1((I,ﬁ)+A2(a’,ﬂ).

(ank g’ : ,Zk: 90Xk

In the case a # S, the contribution to A comes only from A;. Using the equality (4) of Lemma 4.1, we have

1
Ay(@,B) =) —— - UajUkﬁUjaUﬁk =

Tx Xa — X
In the case a = 3, using (5) and U;aUm- =0 — Zym U Uy,, we have
aut Ulg 4
Al(a,a)——Z(Uaxjk)a ZUQ, “Uj (U

J.k i,j,k

= Z Z aX‘ZU;yU Uk — As(a, ).

y#¥ai,j,k

Hence using the identity (5) and Lemma 4.1, we have

Ala,a) = A (a,a) + Ax(a,a)

IWNC axk) Var == 33 (5, 0) Ut

y#a j.k v#a j.k
1
=-23 ZU UlaUnUaF—Zx —
yEa Xy = Xa yta Y @

dxq :
% - = UQPU;(, with respect to X, to get

i
02xa _ aUﬂ/p U( +Uaanqa‘
3Xab3qu 0Xup 0Xaup

Xy
6X,‘j6Xjk

_ OUy;i
X1

U’r

)

®)

C))



H. Kimura, HGF of a matrix argument

Denote the left hand side of (9) as A(«a, 1, s). Then

AU, au. .,
Ala,l,s) = Z Ul U UspUg e LUS o + UQ,,GT"
a,b,p.q ab
au. U,
_ T ap T qa
= > ULULU; Ut gy Upe+ Y. ULULU; wUigUap g3
a,b,p.q a,b,p,q “
U 104l
- Z Ut UuaU; (—U) U+ Z ut Ut U (U—)
=S q qa 1Y ps—s ap
a,b,q “ 6X as a,b,p “ 6X“b la

ou
UZJAb&a(

104l
+ T
o U )as + Y Ul UspOas (U )

a,b a,b aXab la

=A|(a,l,5)+ Asx(a,l,s).

Let us compute the first term A;. In the case @ # [, this term vanishes. So assume @ = /. When [/ # s, we have

1
) Z UlaUl;S -

Let us compute the term A . In the case @ # s, this term vanishes. So assume @ = 5. When [ # s, we have

U’ 1
mu¢w=§t@mwm( ) § ( )=— :
a,b Is X] — Xs

When a = [ = s, we have

Al 1,s) = z@m*

a,b

ou + U’
— t i
AL = Z Ul U (ax ~U )” + > UL U, (UaX - )”
a a.b a

U’
Z Ulb ( U'+U ) =0.
0Xup i

Thus we have proved the equality (9).

4.2. Gauss case

In the Gauss case, we put

F(X):/ |Y|CI|I—Y|CZ|I—XY|C3dY=/expf(Y)a’Y, X,Y € Z(n), (10)
c c
where ci =a—-n,co=c—-a—-n,c3 =-b,

fY)=cilog|Y|+calog|l =Y|+c3log|l — XY,

and C is the domain of integration explained in the last paragraph of Section 2.2. By virtue of this choice of C, we can interchange
the operations of differentiation with respect to X;; and integration with respect to Y. In the following we will not write C in the
integrals for the sake of simplicity. For a function g(Y) of Y, we use the notation:

<m:/wmmvw.

Lemma 4.3. Forany 1 <i,j < n, we have

;TJ; =1 (Y i - ((I - Y)_l)u m e ((1 - XY)_IX)U" o
;}gl =—c3 (Y(I XY)~ )] 2
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Proof. We see that
of 8
Y, 0Yj;
Lo, Loyl 1 9|l -XY|
=CcC|— — C C
YWlay; " li-v| oy Nr=xy| vy

(c1log|Y|+cplog|l = Y|+ c3log|l — XY|)

:Cl

Y]

where Cj;(Y) is the (j,7)-cofactor of |Y|, and we used a%ﬁ(XY)ki = X, to compute the last term. Then noting that |71|Cj,-(Y) =

1 1 1 <
—Cji(¥) = er——Cji(I = V) + 30— 3 (=X1,/)Cua (I = XY),
ji(Y) 2y ji( )+c3|I—XY| kz}( k) Cri ( )

(Y‘l)[j, we get (11). The equality (12) is shown in a similar way.

Lemma 4.4. Forany 1 <i,j < n, we have

dF
—C3<<Y(I—XY)‘1)_j> == (13)
i Jji

—C3<((1 XY)" ) > me ——oyjesr. (14)

Proof. Differentiate the both sides of (10) with respect to X;; and use (12) to obtain

ar\ o
ax,, /axﬂ exp f(Y)dY = <axﬂ>_ C3<(Y(I XY) )ij>.

The second equality follows from

wa _me( C3)<(Y(I XY)~ ) _>=—C3Za:<xm (Y(I—XY)—I)aj>

S <(xy<1 - xy)-l)”> =3 <((1 —(I=XY) (I - XY)‘I)ij>

= s <(1 - XY)i_J-1> + 301, F.
Put
w=exp f(Y)dY, wij=iguey,dY, 1=<i,j<n, (15)
where ig/gy,; is the inner derivation with the vector field 9/9Y;;.

Lemma 4.5. Forany 1 <i,j < n, we have
<C2 (-0 > Zxa, ;XF +6i5(c1 +ca+n)F (16)
and
<((1—XY)_IX)._tr((I—XY)_l(I—X)Y)
ij
+(c1 +n) ((I—XY)_l(I—X))_.—cz ((I—XY)“(I—X)Y(I—Y)‘l)_.
ij i
—e3 ((1 —XxY)" ' - Xx)Y(I - XY)“X)H> 0. (17)
ij

Proof. To obtain the equality (16), consider n;; = >.3_, Yix exp f(Y) w;x for 1 < i, j < n. Then using Lemma 4.3,
& Yix L af
dn;j = —+ ) Yik—

{nawZYlk (cl(Y i = ea((1=1)"g = es (1= x1)7'X) j)}w

k=1

- {(cl +eatmoij—c((I=Y) V)i — 3 (Y(I - XY)‘IX)._} .
ij

10
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Since / dn;; = 0 by virtue of the Stokes theorem, using (13) we have
-1 _ -1
<cz (-1 )> =—c; <(Y(I—XY) X)> +61j(c1+ca+n)F
ij ij
oF
= aE XajaTai +(5ij(C1 +C) +n)F

To obtain the equality (17), putn;; = 27_, ((I - Xy)~'(1- X)Y)l.k exp f(Y) w;x and compute its exterior derivative. We have

[0 vyl S (07— vyl - of
dnu—(; 7, (-xn)ta X)Y)ik+;((1 X0 - xy) aY,-k)‘”‘ (18)
Noting that
(I - Xy)~! YRS 1
. =(I-XY X.iE, I-XY s
Y 1 ( ) ; JjEak ( )

the first terms of (18) are computed as

ik

n 6 B
];ayjk ((I—XY) l(I—X)Y)

L

= (7= x7)"'x) ,

tr ((1 —Xxy)"'(I- X)Y) +n ((1 —XxY)"\(I - X)) . (19)
Using (11), the second terms of (18) are computed as

of

Zn: ((I - X0)7H(I - X)Y)ik Y ji

k=1
= ¢ ((1 —Xxy)"'(- X))l_j —e ((1 —XxY)" ' -x)v(I - Y)‘l)

ij
e ((1 —XY)"' 1= X)Y(I - XY)-IX) )
ij
Then the equality (17) follows from (18),(19),(20) and / dn;; = 0.

We shall derive the system of differential equations for ' from (17). So it is necessary to compute
Aij = <((1 —XY)"' (1 - X)Y(I - Y)_l) _ > :
ij

B = c3 <((1 —XY)"\ (1 - X)Y(I - XY)‘IX) 4 > .
1]
To compute A;;, note that

(I-xXV)'U-xX)yy(-y)'=—-(I-xy)'+(1-v)"".
Then from (14) and (16) we have

C3Aij

<—czc3 ((1 _ Xy)—l)ij> + <CzC3 ((I —Y)—l)ij>

oF oF
=C ag Xiam_é‘ijch +c3 ag Xaj@+6,-j(c1+c2+n)F)
X oF + X oF +8;;(ci +n)csF 21
=c E jamo— t¢C E i +0ij(ci +n)c3F.
2 : Laana 3 s ajaXai ij\c1 3

To compute B;;, note that

<((1 —xY)" (- x)Y(I - XY)“X) >

ij

- Za: Xa,j Zbl <((1 —xY)" (1 - X))ib (Y(I - XY)—l)ba> .
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Taking this into account, we differentiate { ((/ — XY)~' (I - X)), ) with respect to X, and get

- ((1 - XY)’]Eab)ib

(I =XY)" ) YorEar) (I = X¥) ™' (1 = X)
k

= (1 - X)) (Y(I —Xy)"\(I - X))bb - (- XY);.

Using (12) we have

o ((a-xna-x), )
- <(1 — XY);]! (Y(I —xy)"'(- X))bb — (- xY);}
e ((1 —xy)~ (1 - X))ib (Y(I - XY)‘l)ba> .
Then

ZXaj Z a)% <((1 —xy)" ' - X))ib>

b
= X <(1 — XV (Y(I —xy)"\(I - X)) —n(I - XY);!

” e ((1 —XY)"' (= X)Y(I - XY)’l)ia>
_ <((1 - XY)‘]X)U r (Y(I —xy)" ' - X)) “n ((1 - XY)‘IX)U
pe ((1 —XY)"' (= X)Y(I - XY)‘IX)U> .
Thus we have

- _Za“xaj Zb: a)?j ((a-xn)a- X))l_b> —n <((1 - XY)‘IX)ij>

+ <((1 - XY)“X)U r (Y(I _xy)"'(- X))> .

Hence the relation (17) becomes

Za] X, Zb: a)(?j <C3 ((1 —XxY)"\I - X))l_b>

+ <(c1 + 1) ((1 - XY)‘l)ij> - <6’1C3 ((1 - XY)‘IX)

We assert that this relation gives the differential equations for F.

> —c3A;;=0. (22)

iy

Lemma 4.6. The function F, defined by (10), satisfies the differential equations

d*F dF
Z Xaj(I _X)priqm +ZXij(1 _X)pbﬁX_
ab,p.q ab bop pb
oF
_CSZXa](I X)lb (Cl+n)ZijquaX
oF
+(C]+62+n)ZX,a +C3ZXW8X +(ci+n)e3XijF =0, 1<i,j<n. (23)

Proof. We express all the terms in (22) in terms of F and its derivatives. The first term in (22) is computed as follow. From (14),
we have

(ex(0-xn'a-x) )= Z(I X)pb ZX”’@X SipesF .
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Differentiate the both sides with respect to X,;. Then, from the right hand side, we have

_Z(l - X)pb
p

Zx’qax ~8iqcaF |.

ab0Xpg " OXpb ax ab

d*F aF
quxiq % +6; — §ipC3 e

Hence we have

Zalxaj Zb: a)?j <C3 ((1 —XxyY)" (1 - X))l_b>

0*F oF
a,;[’,q “ po 8Xabaqu Z N P aXpb
oF
+C3ZXaj(I X)zb + Z Xanlq(9 nXijC3F.

Then using (14), (21) and

<c3 ((1 - XY)_IX)U> =->'X,; <—C3 ((1 - XY)‘I)ip>

p

OF
== Xp X,qa +XUC3F
p.q

we obtain the differential equations (23) from (22).

Theorem 3.1 for the Gauss HGF of matrix integral type is the following.

Proposition 4.7. As a function of eigenvalues x, ..., x, of X, Ig(a, b, c; X) satisfies the system
x(1 _xl)g_fl - xa(l - xa)aaTF
x(1 - x,)— >
a#l X~ Xa

+{(c—(n—1))—(a+b+1—(n—1))xl}g—z—abF:O, 1<i<n (24

We give the proof of this proposition. Take any 1 < / < n and fix it. Multiply the both sides of (23) by U;l Uj; and take a sum

fori,j =1,...,n. We compute the term which comes from the first term of the left hand side of (23):
. ; 8°F
r=>ul-| > Xaj (I = X)poXig 5w | Uni
i.j a,b,p.q av=pd

Noting that

dF =Z Oxa OF
0Xpq — 0Xpq 0xg’

°F xa  OF .\ dxq Oxg O°F
0Xap0Xpg 44 0XapdXpg Oxa L4 0Xpg OXap Oxo0x5°

we write I as I = I + I, with

d*F . 0xa Oxp
I = Ul Xoi(I = X) pp Xig —2 —2- Uy,
1 axa3Xﬁ i ‘;p . Jjl a]( )pb iq Bqu X b li
oF 8%x,
I, = Xoi(l = X) pp Xig ——2—Uy;.
2 Z Z ]( )pb qaxabaqu 1

abpq
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For I}, using the equality (3) of Lemma 4.1 and x = UXU", we have

0*F .
I = UtXa-I—X XioUqy UT UaUT Uy,
: ﬁaxaaxﬁi Zb: Jl J( )T’b qYapYqa¥Ba ppvl
»J,a,0,p,q
— Z EP 6xﬁ ZUﬁaXajU ZUQP(I X)prbﬁ ;UIIXIqua

_ (,Z,;; Bxaaxﬁ (6p1x1) (S ap (1 = xa)) (81ax1)

d°F
= X] 2(1 = x) —.
8x12

Next we compute /». Note that, from X = UTxU, we have X, i=2 Ulrxr Uy, etc. By virtue of (9) of Lemma 4.2 we have

oF - 8%x,
L= Ut Xoi (I = X) pp Xig ———2—Uj;
3 zjgpq i g lanabaXPq l
BF + 4 (92)(
= Ut UL x, U US (1 = x)UspU! xUpg ———2—Uy;
5 Zb: rZS: jYar*rYrj m( xs)Usp Uy, xu U qaxabaqu
i,j,a,b,p,q r.s.u
oF 8%x
2 T a
= — (1 - U Ul UgpUpg ——2—
x; QZ; axa( xs)a;pq wUpsUsbUlg 9Xar0X g
oF -1
:xlz{ a—(l—xa) Z(l Xs) — }
azl OYs s#l Xs
B (1—xa>g—;—<1—xa>a%
=X .
a#l
(1-x)%E - (1-x0)2E oF
_ 2 dx; OxXq 2
= 2, X| — Xq =D
a#l
Thus we have
IF
8*F (l_xl)a -(1-x Q)Bxa oF
I=x {xl(l —xl)— + X7 — +(n— l)xl (25)
l a#l X = Xa

To compute the contribution, which comes from the other terms of the left hand side of (23), we need the following lemma, which
can be shown in a similar way as above using Lemma 4.2.

Lemma 4.8. We have

oF oF
Q.U le,(l X)ob o Ui =310 ) (I =xa) 5= (26)
L,J p 4
. oF oF
e XaoiI = X)ip—1 U =x1(1 —x;)—. 27
,Z]-:U]l Zz; i( )baxab Ui = x( x’)axl 27
oF oF
t v, 2
Zuﬂ. > XajXav ax | Ui =45 (28)
i,j a,b
oF oF
UT . Xia_ . Ui = _— 29
zz ! ; 0X;a) T Mo 29
oF oF
;j jl ; ajaXai li xlaxl (30)

By the help of (25) and Lemma 4.8, we can derive from (23) the equation

14
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- - (gl o
i 2E
X1

xl(l —xl)— + X Z

l a#l x=

OF OF aF
# (0 w0 g —es(l =)o~ (e +mng
OF
+(c1+cy+c3+n)— + (¢ +n)c3F =0.
3xl

Using

oF oF
D(1=xg) == 3 == ( —xa> +(1—XZ)—I

a alxl

:Z)MG_F_ZM oF (1_x,)_

x| = Xa 0xq X] 0xq
we obtain the differential equation
OF
9%F xl(l_xl)a_xl_xa/(l xa/)axt
x(l=x)—+
l a#l M~ Xa

oF
+{(ci+cr+n—-1)—=(cy —c3 —2)x1}a—XI+(c1 +n)csF = 0.

Recovering the original parameters c; = a —n,c, = ¢ —a —n, c3 = —b, we obtain the desired differential equations (24) and finish
the proof of Proposition 4.7.

4.3. Kummer case

We prove Theorem 3.1 for Kummer’s HGF of matrix integral type following the same line of thought as in the Gauss case. Put

F(X) = / etr (XY) |Y|'|I - Y|?dY = / exp f(Y)dY, X,Y e I (n), 3D
c c

where c; =a —n,cy = ¢ —a —n, C is a domain of integration which allows us to apply the Stokes theorem, and
f¥Y)=t(XY)+cilog|Y|+crlog|l -Y]|.
The usage of the symbol (g) for a function g(Y) is the same as in the Gauss case. A simple computation shows the following.

Lemma 4.9. Forany 1 <i,j < n, we have

of _y. 9
oX;; U oYy

=Xji+a (Y Dji+e((I-Y) )

Lemma 4.10. The function F, defined by (31), satisfies the differential equations

oF oF
X Xkjim—
Z % O X m® Xt akaaxml Zk: kg Tt earngy
oF ..
+6;; {Zkl X (c1 +n)F} =0. 1<ij<n (32
Proof. Let w i, w be those by (15) with f(Y) in (31). Consider (n?® = 1)-form

n
nij= > (YU=Y)yexpf(wp, 1<ij<n
k=1

15
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and compute d7; ;. Using Lemma 4.9, we have

v 0 C of
i = 0, gy V=Dt ), (U =1y gy

n
= Z(éij = 0iYik = Yij) - w
k=1

+ 3 U=V (10 g = (T =1) iy + X ) @

k=1
= {ndij —6;jwY —n¥;;+c1(I-Y)ij —c2¥y + (Y(I -YV)X),;; }w

{(c1+n)5,j Sty - (c1+cz+n)Yu+ZYlka] ZY,mYmkxk,}

k,m

Then the Stokes theorem implies
(c1+n)d;;(1) — i Z Yik) = (cr + 2 +n) (Yij)
k
) Xag (Vi) = > Xij (Yim¥oui) = 0. (33)
k k,m

Since (1) = F by definition and (Y,p) = 0F /0 Xp, by virtue of Lemma 4.9, the equality (33) implies the differential equation (32).

Theorem 3.1 for the Kummer’s case is the following.

Proposition 4.11. As a function of eigenvalues x, ..., x, of X, Ik (a, c; X) satisfies the differential equations
OF
d*F xge
l—+(c n+1—x1)—+Z o - aax"—aF:O, 1<l<n. (34)

ox; X
Proof. For a fixed 1 <[ < n, multiply the both sides of (32) by U;.l U;; and take a sum over i, j = 1, ..., n. The terms containing
the second order derivatives are computed as follows. Since

d’F ?x, OF Oxq Oxg  O*F

- = _— 4+ s
BkaaXm,- p ﬁkaaXml- ﬁxa aB aXmi anm (9x(,6xﬁ

we have Zl] (kaXk]m) Ull —11+12 with
h=3 ) et S| SR e
"7 Ly axﬁ i O Xmi 0Xiem
8%x,
h= ax Z jl (Z K O X m® X i

Using Lemma 4.1 and x = UXU", I} is computed as

li’

Uj;.

I = Z XUl UamU},UpiU} 5Un

6xa(9x/g
0°F

_Z()x 7% 61“6ﬁ“ZUBkaJUjl lc’)_xlz.

Noting that Xz ; = 3, Uszp U, and using (8) of Lemma 4.2, I, is computed as

d°x
E E T -7 .
12 B c')x(, Ulekp pj an aXml Ull
i,j,k,m p

n 8%x, 1 oF OF
xlz Z klan 0 X i Yii XIZX(I — X ((3)6& - 6351).
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Thus we have

0°F d’F 1 OF OF
Ut Xpi———— |- Ui =x— + -—]. 35
Z | 2 X Xm0 Xy | T2 T 2, Xo — X (axa sz) G
L] k,m ) #1
For the other terms of the first derivatives, contribution from the second term in (32) is already computed in (30), and that from
the rest is computed by using as
oF oF
Ul —| Ui = —, 36
Z il (ax-i) BT ox (36)
ij 1
] oF oF
20U ey Ui= D5 (37)
iy X ki o OXa

Noting that 3}; ; 6;; U;lUli = 1, from the differential equation (32), we have

O%F 1 dF OF OF
ox;  Oxg

x2 £ x| —Xq — Ox o
oF
+(ci+cr+n—x;))— —(c1 +n)F =0.
Bxl

Usingcy =a—n,co=c—a—nand

oF le—xa oF oF
_ = —_—

~ 0xqy X|—Xq 0xoq Ox;

a#l

we have the differential equation (34).

4.4. Bessel case

We prove Theorem 3.1 for the Bessel integral Ig(c; X). Put

F(X) = / etr (XY - Y—l) Y| dY = / exp f(V)dY, X,Y € Z(n), (38)
where
fX) =tr (XY =Y Y+ (c-n)log|Y]|.
The usage of the symbol (g) is same as above. The following lemma is now easy to show.

Lemma 4.12. Forany 1 <1i,j < n, we have

af of ") -1
ax; " ¥ji), vy Xji+ (Y )ji+ (c—n) (Y™ )i
Lemma 4.13. The function F, defined by (38), satisfies the differential equations
9°F OF oF
Xii + +0;; +F; =0, 1<i,j<n. 39
kz,:n O X om0 X Caxji ! { = O Xk } b=n %9)

Proof. For 1 <i,j < n, consider the (n*> — 1)-form

n

nij = Z (Y2>ik exp f(Y) wjk,

k=1
and compute dn;:

v |
={ S ai-k (Zn: Y,-mYmk) +Zn: (v?), (ij+(Y_2)kj+(c—n)(Y_l)kj)}w
k

k=1
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where the usage of w and w j; are similar as in the Kummer’s case. Then the Stokes theorem implies that

D" Xy Yim¥oni) + € (Yi) + 81 > (Vaa) +6;(1) = 0, (40)
k,m k

Since (Yup) = 0F /0 Xp, by virtue of Lemma 4.12, the equality (40) implies the differential equation (39).

Theorem 3.1 for the Bessel function of matrix integral type is the following.

Proposition 4.14. As a function of eigenvalues x1, ..., x, of X, the Bessel integral Ig(X) satisfies the differential equations
OF OF
9*F aF Xigy =X
g e+ )y M+F=0, 1<i<n @1)
ox} e R

Proof. For afixed 1 </ < n, multiply the both sides of (39) by U L U;; and take a sum over i, j = 1, ..., n. Using the identities
(35), (36) and (37), we have from (39) the equation ‘

32 1 OF 0F OF
—_— - —+F=0.
6 2 +xlle—xa (ﬁxl 6xd)+ 0xgy *

Rewriting it using

ZBF _le—xa oF 8F
— 0xq £ X1 = Xa 0xq 6xl
we obtain the differential equation (41).

4.5. Hermite-Weber case

We prove Theorem 3.1 for the Hermite-Weber matrix integral Igw (c; X). Put

F(X) = /C |Y]|~¢"etr (XY - %Yz) dy = /Cexpf(Y)dY, X e #(n), (42)
where C is a domain of integration as in the previous cases and
f(Y) = (=c—n)log|¥| + tr (XY — %YZ).
The usage of the symbol (g) is the same as in the previous cases. The following lemma is shown easily.

Lemma 4.15. Forany 1 <i,j < n, we have
af of
=Y,
aXij aY
Lemma 4.16. The function F, defined by the integral (42), satisfies the differential equations
8°F
= 0Xjr0Xi

=(-c—-n)(Y~ )J,+XJ,—Y-1-. (43)

0
_ZXkJ_F+c5UF:O, ISl,an (44)
0 Xk

Proof. For any pair (i, j), define n;; = 3.7_, Yir exp f(Y) wjx as in the previous cases. Then using Lemma 4.15, we have
n n
0Yix of
dn;j = —+ ) Yyp——w
Y {kzl Y i ; Yk

= {néij +iYik ((—C - n)(Y_l)kj + Xy j —ij)}w

k=1
n n
= {_Céij + Z Yikaj — Z Yikij} w
k=1 k=1

Since / dn;j = 0 by the Stokes theorem, we have

D U¥aYag) = > Xay (Yia) + 6 (1) = 0. (45)

k k=1
Then we see that the identities (45) lead to the differential equations (44) since Lemma 4.15 implies 0F /0Xap = (Ypq - 1).

18
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Theorem 3.1 for the Hermite-Weber case is the following.

Proposition 4.17. As a function of eigenvalues xy, . . ., x,,, the Hermite-Weber integral Iyw (X) satisfies

0°F oF 1 OF OF
UL (___)+CF=0, L<ij<n (46)

6x12 ox; X|—Xxq \Ox;  O0xq

Proof. We proceed as in the previous case. For a fixed 1 < [/ < n, multiply the both sides of (44) by UJT.I Uj; and take a sum over
i,j=1,...,n Then we easily see that

d*F 0*F 1 oF OF
S PE Ly, PP L (o8 or)
Tt J ankani ﬁxlz X —Xq \Ox;  Oxgq

a#l

For the second term in (44), we use (30). Then we obtain the differential equation (46) from (44).

4.6. Airy case
We prove Theorem 3.1 for the Airy integral 74(X). Put

1
F0 = [ e (xy - §y3) ar= [ ewsmar. x e, 1)
c c
where C is a domain of integration explained in the last paragraph of Section 2.2 and
1
fY)=tr (XY - §1/3) )

By virtue of this choice of C, we can interchange the operations of differentiation with respect to X;; integration with respect to
Y. See also Remark 2.7. The usage of the symbol (g) is the same as in the previous cases. The following lemma is easy.

Lemma 4.18. Forany 1 <i,j < n, we have

af 2
—— =Y, Y9 — (X)) =0. 48
o =i () = () 48)
Lemma 4.19. The function F satisfies the differential equations
0*F
——— - X;F=0, 1<i,j<n 49
X 0Ky b= 49)

Proof. The equation (49) follows from Lemma 4.18 and (Y2)jl. =Y YirYui.

Theorem 3.1 for the Airy integral is the following, whose proof is similar to that for Proposition 4.17 and is omitted.

Proposition 4.20. As a function of eigenvalues x, . .., x, of X, the Airy integral 14(X) satisfies the differential equation
d*F 1 dF OF
all — ——|-xF=0, 1<i<n.
fre ;ﬂxz ~Xa (axz axa) 5 "

5. HOLONOMICITY OF THE SYSTEM FOR HGF

Theorem 5.1. The system S. (x = G,K,B,HW, A) is holonomic in Q. C C" and is equivalent to the completely integrable
Pfaffian system of rank 2", where

Qc = {reC" | | [xi(u—1)-AQ) # 0},
i=1

QK=QB={x€Q|Hxi-A(x)¢0},
i=1

Quw =Qa={x € Q| A(x) #0}.
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We prove the theorem in detail for the systems Sgw, Sa by using the theory of Grobner basis.

Let C[x] be the ring of polynomials in x = (x1,...,x,) and let R be the localization of C[x] by A = [],.;(x; — x;), namely
R={f/A"| f € C[x],m € Zs(} which is also denoted as C[x]s. We denote by D the ring of differential operators in x with
coeflicients in R. Any P € D can be expressed uniquely in the so-called normal form

P = Zad(x)a" = Zad(x)(?lm 0 ag(x) €R,

where 37, is a finite sum with respect to multi-indices a = (a1, . .., @,) € ZZ . To this P € D we associate its symbol:
T(P)= ) aa®)E® =) aa()E - £ € R[£].
a a
For a = (ai,...,an) € Z, let |a| denote the sum a; + - - - + @y.

Let us fix an order in the set of monomials {a,(x)0?} in D as follows. Firstly, we use the lexicographic order as a monomial
order <j.x in C[£], namely, é? <., £P means that either || < || holds or || = |B] and the most left nonzero member of
(B1—ais...,Bn — @) is > 0. Using <. , define the order in D as

aq(x)0% < bp(x)0P & £ <ex EP.
For P € D, the initial term in. (P) is the symbol of the greatest monomial in P with respect to the order <. For P,Q € R with
ing(P) = a(x)é?,in<(Q) = b(x)&P, let y = (max(ai, B1), . .., max(ay,, Bn)) € Z%)- Then S-pair sp(P, Q) for P, Q is defined by
sp(P,Q) = b(x)d? P — a(x)d” FQ.

Let ¥ be a left ideal of D. By in<(.¥) we denote the ideal of R[£] generated by {in<(P) | P € F}. Let {f1,..., fa} be
a generator of the ideal .#. It should be noted that {in<(f}),...,in<(fy)} does not necessarily generate in<(.¥), in general.
A generator G = {g1,...,8m} of 7 is said to be a Grobner basis for .7 if (in<(g;),...,in<(g;,)) generates in. (¥ ), namely
in<(F) = (in<(g1),...,in<(gm)) . We can apply the Buchberger’s algorithm to find a Grobner basis for a given left ideal .7 of
D.

5.1. Hermite-Weber

Consider the system of differential equations Sgw for the Hermite-Weber function /5w (¢, X) and put
1

Li=(9i2—x,-(9i+z )
k(#i) Xi

(O =) +c, 1<i<n

Let Fyw C D be the left ideal with the generator Gyw = {L1,...,Ly}.
Proposition 5.2. Gwy is a Grobner basis of the left ideal Fgw.

Proof. 1t is enough to show that, for any pair L;, L; (i # j), the S-pair sp(L;, L;) = 0 after applying the division algorithm of

Buchberger using Gwg. Since the largest term of L; is 6i2, we have
13

sp(Li,Lj) = 07L; — 07 L;

1
=70 —xidi+ Y, ——— (B = dh) +c
Ky Tk

1
— |} -x0,+ Y. (8, — ) +¢

Keej) N Tk
=A+B+C+D,
where
_ 2 2
A= —xiaiaj +)Cj(9j(9i s
1 1
B=07- (8 — ;) - d?- (9; = ),
Xi —Xj Xj—Xi
1 1
C= { (0 — )0 - (9; - ak)aiz} ;
k(7 KT XK A

D =c(8;-87).




H. Kimura, HGF of a matrix argument

We carry out a reduction of A, B, C, D by the division algorithm using the generator Gwpg. Noting that

02 = L +x;0; — Z L(ai — &) —c, (50)
N
k(#i)
we have
1
= —x;0; x,@ - (6j—8k)—c +xj(9j x;0; — -C
h Kz N
k(:#l] { }
+ 0;(0; — ;) + ! ———(0; -0} - ! —09;(0; - 9;) + ! (0; — 9))
Xi j\Oi = 0j) + ———=0; = 0j)(,
Xj =X (xj —x1)? xi—x; 7 T (xi - xp)? !
+ c(xial- —xjaj),
and
B= (0; = 0,)07 + #(a~—a‘)a~+#(a—a~)
_x-—xj (i —xp)? T -t
2
- (8 = 000} — ———=(0; — )0 - ————(9; - )
xj—xi? (7 —x;)2 (xj=x)3
_ 1 . a2 o
Cxmx o (xi_xj)z(aj %
1 2
= B - 3% — 8?).
Xi — Xj ! (xi—xj)z( J l)

To compute B, we use

1
907 =Lj—Li+x;0; —xid + ) { —H(a,—ak)}

k(#i,j)

and we have

B = (6, —aj) Xjaj —xial- + Z (Xi —
k(#i,j)

=x;(0; — 0;)0; — x;(0; — 0:); — (0; + 9;)

+ 1_6 -
DREE 0
k(#i,j)

1
(x; — Xk)2 @ - Bk)}

1
- -0 — (0, - k)¢ -
k(#i,)) {x o+ (x; _xk)z( ! k)}

Similarly, we compute C. Using (50) we have

C= P )Cjaj— Z . ((9 —85)—c
k(71,5 ¥ T Xk e
() — &) xla—z —c
k(i) ~T TNk ezi) !
57 J
k(i,j) "

1 1
(0; = Ox) - (3j—t9k)}+C1,
Xk — Xk

e {
k(zig) VX T
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where

Cl = 0 —63)
Kz~ (@
+ Z
k(#i,5) A f(;ez)

In Cy, we consider separately the cases £ = i, k in the first part and the cases £ = j, k in the second part. Thus

Cl== ), =0~ 00) T (8= )

k(i) YTk

- T — (0, =)
k(z0,)) k

1

- > D (8; = 3 (3; - 3)

Gy e (= x) (g = xe)
1 1

+ ——(0j — ) ——(9: = 9))
Gy X Xk Xi =X

+ (6; - 3k) (51' — Ok)
k(i) N TRk

I
+ (0 — 0k)(0; — Or).
k(;jmg; o (¥ =¥ = xe)

Reducing C; to the normal form we have

1 1
Cl:_xi—x~ Z { —

X
T k(i) V!

1
- (9; - 5k)} (0; - 0))

1 1 1
{x-—x T —x ;(x-—x-)z(ai_aj)
k(zij) k J k i J
1

1
_k;;,){(xi—xkﬁ(xj—xk) =00~ o e @00

(D

and we get the normal form of C. Collecting the terms in A, C, D containing ¢ as a coefficient, we see that they are equal to
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c(Lj - L;) and is O after applying the division algorithm. Also summing up all the other terms in A, B, C, we have

X X
sp(Li, Lj) = E { : _lx 0i(0j = O) = —— _Jx 9;(9; - 3k)}
k(zig) Tk Pk

+xi{ ! 6i(6j—6i)+;(6j—6i)}

Xj— X (xj —x;)?

— X { : 9;(0; = 9;) + L _@- 3;)}

Xi = Xj (x; —x;)?
1
+ ——— {x;(0 = 0)0; = xi(3; ~ 8)3: — (8 + &)}
i = Xj
1 1 1
+ oy Z { T (3i—3j)(3i—3k)—ﬁ(6i—6k)}
xi— xS L = (x; — xx)
—_ 1 Z { 1 (64—0')(6'_6)4';(6'—8)}
Xi _.Xj k(#i,)) )Cj — Xk ' ! ! * (xj —xk)2 / k
2
— (3-8
* (xi_xj)z( r o)
X; xX;
+ : ; _j (61' - 8k)aj T (aj - 6k)ai}
k(zi) Tk Xj = Xk
1 1 1
e S @)~ ——— (8~ ) | (8~ 9))
Xi=xj At i = Xj = Xk

1 1 1
+ + (0; — 9))
k(:tzi;j) {x" BRI ”Ck; (i = xj)? !
1 1
- (0i — k) —
v { (i = x1)%(x; — x) (x; = xp) (xj — x1)?

(9; - Bk)} .

This reduces to

_ L 02— 0% - 20— 10, ! SRV
PULi L)) = (s 12000 =0 =2 =0 + 3 (Xi_Xkerj_Xk)(al o)
k(#i,)
1
* 0 — ) + (9 - d
k(:tzi,:j) (i =) (o = xp) Oek = xi) {01 =90+ (9 - 30}
2

= — Ll_L
(xi—xj)z( J)

=0.
by applying the division algorithm using G gw. Thus we have shown that G gw is a Grobner basis for the ideal /gy .

Since Ggyw is the Grobner basis of the ideal fgw and in<(L;) = 51.2, we see that Fgw is a zero-dimensional ideal of D,
rankg (D / Fgw) = rankR(R[f]/< 12, e ,f,%)) =2"and

(00105 - 9f | ki, k= 0,1}

gives a basis of R-free module D/ #gw, where when k| = - - - = k, = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for Sgw.

Proposition 5.3. The system Syw is holonomic on C" \ S, § = U, ;j{x; — x; = 0} and the holonomic rank is 2".

5.2. Airy

We show the similar result for the system S4 for the Airy integral /4(X) of matrix integral type. Put
1
Li=dl+ ) ——@-d)-x, 1<i<n,
L Xi T Xk
k(#i)
and let ¥4 C D be the left ideal of D with the generator G4 = {Ly,...,Ly}.
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Proposition 5.4. The generator G 4 is a Grébner basis of the left ideal F4.

Proof. For i # j, let us compute the S-pair sp(L;, L;) and show that sp(L;, L;) = 0 after carrying out the division algorithm

using G 4.
sp(Li, Lj) = 87L; — 0} L,
= 07|07 i — Ok) = Xi
K
- o7 a2+Z (0} = )~
K T
=B+C+D,
where
1
B=9;- (9 = ),
Xi — j j—xi
c= > { ! L -4 )32}
= P — L= j — Ok)O; (>
k(zij) Tk b

2 a0
D——x,8j+x]8i.

Note that B, C has the same form as in the proof of Proposition 5.2. We make a reduction of B, C in a similar way. B can be written

as
1 2

Xi = Xj (xi = x;)?

(87 - 07).

where B] = (0; — Bj)(ﬁjg - 61.2). Note that

we have

a? 62—L—L+Z{

k(#i,j)

}— (x; = xj),

and see that

Bi=(0-0p)1 > (—(a o) -

k(#i,j)

1
= 31- _a
k(;}) {‘x ( i_-xk)Z( k)}

(j_ak)}

T (0j - 3k)) - (x; = xj)

1
- ~(8 =) (05 =9 + 3
TS o

- (xi —Xj)(ai — 6,) - 2.
Similarly we compute C using (52) and get

cc1+2(

k(#i,j)

Xi
Ok) — (9; - 3k)) ,
Xj— Xk

where Cj is the same as in (51). For D we have

D=@-d)- > ( 2

k(#i,7)

’i’Xk(a, —ak)).

(52)
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Summing up B, C, D, we have

sp(Li, Lj) = W( =05~ @i=9)) - Xi = X;
N .1 {—(a 8,)(9 - ) — —— 2(ai_6k)}
Xi —Xj k(%)) X ( i_xk)
1 1
_ 8 —9;)(d; — -9
Xi — Xj k() {xj—xk( J)( k)+( )2( k)}

1 1 1
— {._ (@—&)—T(aj—ak)}(ai—a,-)
Xi — X k(# ) Xi — Xk Xj— Xk

1 1
" Z>{ '_xk}(x_x)2( ~9)

k(#i,j
- { ! (0; — ) — 1 (9; -9 )}
o =202y -0 oGy -0
+(0; - 0)) - k(;”) (x —-0k) — T (0j - 6k)) .

This reduces to

. ) = 2 92y o 1 1 s
(LinLy) = s 12000 - 9) — 2 xj)+k;,)(xi—xk+xj_xk)(al ")
1
0;—0 0:—0
+k;)( —x;)(xj —xp) (Xk — xp) {( k) + (9 k)}
2
=m(L,~—L,)

=0
by the division algorithm using G 4. Thus we have shown that G 4 is a Grobner basis for the ideal #4.

Since G 4 is the Grobner basis of the ideal 4 and inL (L;) = &7, we see that %, is a zero-dimensional ideal of D, rankg (D /.%4) =
rankg (R[£]/(€2,...,€2)) = 2" and

{01105 - 9% | kyy ok = 0,1}

gives a basis of R-free module D /.4, where when k| = --- = k,, = 0, above element is understood to be 1. Thus we have shown
the following proposition and completed the proof of Theorem 5.1 for S4.

Proposition 5.5. The Airy system Sy is holonomic on C* \ S, § = U;<;j{x; — x; = 0} and its holonomic rank is 2".

5.3. Gauss, Kummer, Bessel

In this section, we give the reduced form of the S-polynomial sp(L;, L j) for the systems Sg, Sk, Sp for Gauss, Kummer and
Bessel without explicit computation. For the proof of these cases, we must modify the ring R = C[x]a, which is used in the cases
Suw,Sa, as

R={f/g" | f €Clx],m € Z50}
with g = [T, x;(x; = 1) - A(x) for the case S and g = []}-, x; - A(x) for the cases Sk, Sp.

5.3.1. System Sg
Put
Li=xi(1-x)d?+{c—(n—=1)=(a+b+1—(n—1)x;};

+ Z xi(l—xi)ﬁi—xj(l—xj)o"'j —ab

x,-—xj

J(#)
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and G ={Ly,...,L,}. Then
in(xl- - l)xj(xj - 1)

sp(L;, L) = (Li—Lj)
! (xi = xj)? !
after applying the division algorithm using G.
5.3.2. System Sk
Put
Xi0; —x;0;
Li=x;0} +{c—(n—1)—x;}0; + Z ﬁ—a
IC
and Ggx ={Ly,...,L,}. Then
(LiLj) = —5(L-Ly)
Sp{Li, Lj) = (xi _xj)2 i J

after applying the division algorithm using Gg.

5.3.3. System Sp

Put
x;0; —x;0;
Li:x,-()i2+{c—n+1}6,~+ZM+l
X=X
J(#0)
and Gg ={Ly,...,L,}. Then
(Lol = — (1, 1))
sp(Li,L;) = —9 (L, —L;
A (xi—xpr

after applying the division algorithm using G p.
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Some characterizations of hyperbolic Ricci solitons on nearly cosymplectic
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ABSTRACT

It is known that a hyperbolic Ricci soliton is one of the generalization of the Ricci solitons and it is a Riemannian manifold (M, g)
furnished with a differentiable vector field U on M and two real numbers A and u ensuring Ric + ALyg + %LU(LUg) = ug,
where Ly denotes the Lie derivative with respect to the vector field X on M. Furthermore, hyperbolic Ricci solitons yield similar
solutions to hyperbolic Ricci flow. In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds endowed
with the Tanaka-Webster connection. We give some results for these manifolds when the potential vector field is a pointwise
collinear with the Reeb vector field and a concircular vector field.

Mathematics Subject Classification (2020): 53B21 53C25

Keywords: hyperbolic Ricci soliton, nearly cosymplectic manifold, Tanaka, Webster connection

1. INTRODUCTION

The notion of hyperbolic Ricci flow was introduced in Kong and Liu (2007). Let g;;(¢) be a family of Riemannian metrics on a
Riemannian manifold (M, g9). The hyperbolic Ricci flow is defined by

azgi j

EZ
with g(0) = go, % = k;;, where k;; is a symmetric(0, 2)—type tensor field. A self-similar solution g () of the hyperbolic Ricci
flow on M,, is a hyperbolic Ricci soliton if there exists a 1-parameter family of diffeomorphisms p(¢) : M — M and a positive
function o (¢) such that

(1) = o (1)p(1)*(0)-

If we differentiate above equation twice, we get

—2Ric(g(1)) = o (1)p(1)*(go) + 207 (1)p(1)" (Lxgo) + (1) p(1)*(Lx Lx80))s

where Ric is the Ricci curvature on M, X is the time-dependent vector field and L is the Lie derivative. The family of metrics are
said to be expanding, steady or shrinking if o’ is positive, zero or negative, respectively. Substituting o’ (0) = —2u, o(0) = 1
and 0’ (0) = A in the above equation, we get
. 1
Ric(g0) +ALxgo + 5 LxLxgo = 1go

for some real constants A and u. According to this equation, a hyperbolic Ricci soliton on a Riemannian manifold (M, g) is defined
by

1
Ric+ALxg + §Lx(Lxg) = pg. )]

A hyperbolic Ricci soliton is called expanding, steady or shrinking if i is negative, zero or positive, respectively. For recent papers
about hyperbolic Ricci solitons see Azami and Fasihi (2023), Azami and Fasihi (2024), Blaga and Ozgiir (2023), Faraji et al.
(2023).
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In this paper, we investigate hyperbolic Ricci solitons on nearly cosymplectic manifolds. The manifolds will be considered with
the Tanaka-Webster connection. The paper is organized as follows: In Section 2, we give some fundamental information about
nearly cosymplectic manifolds. In Section 3, we express some properties of cosymplectic manifolds satisfying Tanaka-Webster

connection. In the final section, we give our main results.

2. NEARLY COSYMPLECTIC MANIFOLDS

An n = (2k + 1)—dimensional smooth manifold M is called an almost contact metric manifold if it admits a (1, 1)—tensor field

¢, a contravariant vector field &, a 1-form n and a Riemannian metric g which fulfill, Blair (1976)

¢$*(U) = -U +n(U)¢, n(¢) = 1, ¢ =0, n(¢U) =0,

g(oU, V)
g(U,¢)

An almost contact metric manifold (M, g, 7, &, ¢) is called a contact metric manifold if

g(U,V) —=n(U)n(V), g(¢U,V) = —g(U, ¢V),
n(U), YU,V € y(M).

g, ¢V) =dn(U,V).
An almost contact metric manifold (M, g, 7, &, ¢) is said to be a nearly cosymplectic manifold if
(Vud)V + (Vyp)U =0, YU,V € xy(M).
For a nearly cosymplectic manifold, we have
Vegé=0and Ven = 0.
On the other hand, for a (1, 1)—type tensor field H which is defined as
Vyé =HU.

@

3

“

It is known that H is skew symmetric and anti-commutative with ¢. Moreover, H satisfies H¢ = 0 and 7 o H = 0 and fulfills the

following situations, Nicola et al. (2018):
(Ved)U = 6HU = 5 (Ve)U.
g((Vug)V, HW) = n(V)g(H*U, ¢W) = n(U)g(H*V, W),
(VuH)V = g(H*U ,V)é - n(V)H*U,
tr(H?) = constant,
R(V,W)é = n(V)H*W —n(W)H?V,
S(& W) = —n(W)tr(H),
S(V, W) = S(V,¢W), ¢Q = 09,

S(¢V, pW) = S(V, W) +n(V)n(W)tr(H?).

3. NEARLY COSYMPLECTIC MANIFOLDS ADMITTING TANAKA-WEBSTER CONNECTION

Let (M, g, n, &, ¢) be an almost contact metric manifold. The Tanaka-Webster connection V with respect to the Levi-Civita

connection V is defined by

VoV = VyV + (Vun) (V)€ =n(V)Vué - n(U)¢V,
forall U,V € y (M), Tanno (1969). Using (3) and (4), we rewrite equation (5) as

VuV = VyV +g(Vué, V)é = n(V)HU —n(U)¢V.

29
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Putting V = £ in (6) and using (2) and (4), we obtain
Vyé =0. (7
Using (6), the Riemannian curvature tensor R of the connection V is given by
R(U,VW = R(U,V)W —g(W,HU)HV — g(H*V,W)n(U)& - 2g(V, HU)¢Wn(U)n(W)¢pHV
+g(H*U, W)n(V)é = n(V)(Vu¢)W - n(V)g(HU, ¢W)é + g(W, HV)HU
(W)U H?V = n(W)n(V)H?U = (V)(W)pHU

+n(U)(Vv@)W +n(U)g(HV, pW)<. ®)
Taking contraction in (8), the Ricci tensor Ric of the connection V is given by
Ric(V,W) = Ric(V,W)+2g(HV,¢W) —n(V)div(¢)W + g(W, HV)tr(H)
—n(W)n(V)ir(H?) = n(V)n(W)ir (¢H) +2g(HW, HV), ©

where Ric denotes the Ricci tensor of the Levi-Civita connection V. Contracting in (9), the scalar curvature 7 is obtained as
F=r—tr(H)(2k + 1),

where r is the scalar curvature of the Levi-Civita connection V, Ayar (2022).

4. MAIN RESULTS
Before expressing our main results, we should remind definitions of the nearly quasi-Einstein manifolds and Einstein manifolds.

Definition 4.1. Let (M, g) be a Riemannian manifold. If Ric = ag + BE for some functions @ and 8 on M, where E is a non-zero
tensor of type (0, 2), then the manifold (M, g) is called a nearly quasi-Einstein manifold. If 8 = 0, then the manifold (M, g) is
said to be an Einstein manifold. Here, Ric denotes the Ricci tensor of the Levi-Civita connection V.

Now, we can give our findings.

Theorem 4.2. Let M be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field X is a pointwise collinear with &, then M is a nearly-quasi Einstein manifold.

Proof. If the potential vector field X is a pointwise collinear with &, then there exists a smooth function b such that X = b&. Using
(7), we have
g(VuX,V) +g(VyX,U) (10)
= g(U(b)E+bVyE, V) +g(V(D)E +bVvE, U)
= U(b)n(V)+V(b)n(U)
= g(Vb,U)n(V) +g(Vb,V)n(U)
forall U,V € y(M), where V denotes the gradient operator. The Lie derivative of (7) is given by
(Lx o Lx)g(U.V) = XLxg(U.V)-Lxg(LxU.V) - Lxg(U.LxV) (an
= X[g(Vb,U)n(V) +g(Vb,V)n(U)]
~[g(Vb, LxU)n(V) + g(Vb,V)n(LxU)]
~[8(Vb, LxV)n(U) + g(Vb, U)n(LxV)]
= Xg(Vb,U)n(V) +g(Vb,U)Xn(V) + Xg(Vb,V)n(U)
+g(Vb,V)Xn(U) = g(Vb, LxU)n(V) - g(Vb,V)n(LxU)
—g(Vb, LxV)n(U) - g(Vb,U)n(LxV).

Putting (10) and (11) in (1), we occur

Ric(U,V) = ug(U.V) = ALxg)(U,V) - 5 (Lx 0 L)z(U. V) (12)

= ug(U,V) = g(Vb,U)n(V) = 4g(Vb, V)n(U)
~3X8(Vh,U(V) = 38(Vb,U)Xn(V) - 3 Xg(Vb,V)n(U)

S8 (Th,VIX(U) + 38(Vb, LxUn(V) + 38(Vb,Vin(LxU)

1 _ 1 i}
+§g(Vb, LxV)n(U) + Eg(Vb, U)n(LxV).
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Taking a non-vanishing (0, 2)—type tensor E as
EWU,V) = -4g(Vb,U)n(V) - ag(Vb,V)n(U) (13)
—% [Hess(b)(X,U)n(V) = Hess(b)(X,V)n(U) + (VuX)(b)n(V)
+(VyX)(b)n(U) +V(b)g(VuX,€) + U(b)g(VuX, &)].
Equation (12) becomes
Ric(U,V) = ug(U,V) + E(U,V).
This shows that M is a nearly quasi-Einstein manifold with respect to the Tanaka-Webster connection V.

Proposition 4.3. Let M be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci
soliton. If the potential vector field is the Reeb vector field &, then M is an Einstein manifold.

Proof. Taking b = 1 in (13) shows that Ric(U, V) = ug(U, V). This gives us M is an Einstein manifold.

Theorem 4.4. Let M be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field is a concircular vector field X, then

w=—=2tr(H?) —tr(H) + 2% + 24f.

Proof. 1t is known that if X is concircular vector field on M, then there exists a smooth function f such that

VuX = fU (14)
for all U € y(M). Using (14), we obtain
(Lxg)(U,V) = g(VuX,V)+g(VvX,U) (15)
= g(fU,V)+g(U, fV)
= 2fg(U,V).

Using equation (15), we get
(Lx o Lx)g(U,V) = XLxg(U,V)-Lxg(LxU,V) - Lxg(U,LxV) (16)
= X(2fg(U,V)) -2fg(LxU,V) - 2fg(U, LxV)
= 2X[)g(U,V)+2fg(VxU,V) +2fg(U,VxV)
-2fg(VuX,V) +2fg(VuX,V) = 2fg(U,VxV) +2fg(U. Vv X)
= 2(Xf)g(U.V)+2fg(VuX,V) +2fg(U,VyX)
= 2XN)g(U.V) +4f%g(U.V).
Putting (15) and (16) in (1), we deduce
Ric(U,V) + (Xf)g(U,V) +2f2g(U, V) +21fg(U,V) = ug(U, V).
Substituting U = V = & in (9), we obtain p = —2tr(H?) — tr(H) + 2f* + 21 f.

5. CONCLUSION

In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection
by considering the potential vector field as a pointwise collinear with the Reeb vector field and a concircular vector field. Our
results in the present work may provide an insight for further studies on hyperbolic Ricci solitons with respect to some other
connections.
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ABSTRACT

This research paper explores Parseval-Goldstein type relations concerning general integral operators. It investigates the continuity
properties of these operators and their adjoints over Lebesgue spaces. Through rigorous analysis, the study elucidates the intricate
connections between these operators and sheds light on their behaviour within functional spaces. By exploring the convergence and
stability of these relations, the paper contributes to a deeper understanding of integral operators behaviour and their implications
in various mathematical contexts. The paper also examines specific cases of the main index transforms, including the Kontorovich-
Lebedev transform, the Mehler-Fock transform of general order, the index , F;-transform, the Lebedev-Skalskaya transforms and
the index Whittaker transform, as well as operators with complex Gaussian kernels, contributing valuable insights into their
behaviour and applications.

Mathematics Subject Classification (2020): 44A15, 46E30, 47G10

Keywords: Integral operators, weighted Lebesgue spaces, Parseval-Goldstein relations, index transforms, Gaussian kernels

1. INTRODUCTION

We consider the integral operator given by

(FP)(y) = /, FK (). y € 1, )

where K is a measurable complex-valued function K : I X I — C (I denoting some open interval in R, possibly unbounded) over
the spaces L” (1, K(x)dx), 1 < p < oo, and L* (), being K (x) a measurable function on I which satisfies |K (x, y)| < K(x), for
all x,y e l.

We also consider the integral operator

(Fro)x) = /, g(VK(x.y)dy, x € I, @

over the space L' (1). In 1989, Yiirekli Yiirekli (1989) introduced a Parseval-Goldstein type theorem, elucidating the interconnection
between Laplace and Stieltjes transforms, and subsequently explored its ramifications. In 1992, Yiirekli extended this investigation
to encompass the generalized Stieltjes transform Yiirekli (1992). Building upon this foundation, various researchers have delved
into analogous connections amonxxg diverse integral transforms, leveraging Parseval-Goldstein type theorems, as evidenced by
works from several authors Albayrak and Dernek (2021); Albayrak (2024); Karatas et al. (2020). Parseval’s and Plancherel’s
theorems stand as cornerstone results in mathematics, establishing pivotal relationships between original functions and their
transforms, showcasing the preservation of energy or inner products under transformation Dernek et al. (2008, 2007); Yiirekli
(1989).

The Parseval-Goldstein relations for integral transforms establish a crucial link between norms in the original domain and
their transformed counterparts, shedding light on the energy-preserving characteristics and inter-domain consistency of these
transforms. This profound analysis significantly contributes to understanding the fundamental properties and applications of
integral transforms in mathematical analysis Yiirekli (1989, 1992); Albayrak and Dernek (2021); Albayrak (2024); Karatas et al.
(2020); Srivastava and Yiirekli (1995). The present article delves into the study of Parseval-Goldstein type relations for integral
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operators over Lebesgue spaces.

The C¥(R,), k € N, denotes as it is usual the space of compactly supported functions on R, which are k-times differentiable
with continuity. The article is structured as follows: Section 1 presents an introduction about the general setting. Sections 2 and 3
delve into the continuity properties over Lebesgue spaces of both the integral operators and their adjoints. Section 4 establishes
Parseval-Goldstein type relations for these operators. Section 5 examines integral transforms characterized by kernels satisfying
specific conditions. Finally, Section 6 offers concluding remarks.

2. THE ¥ TRANSFORM OVER THE SPACES L” (I, K(x)dx), 1 < p < o
Proposition 2.1. The next results hold
(i) The integral operator F given by (1) is a bounded linear operator from L' (I, K (x)dx) into L™ (I). If f € L'(1, K(x)dx) then
NF flleeay < WFILrrg (x)ax)s
furthermore if K(x, -) is continuous for each x € I then ¥ f is a continuous function on I. Moreover, the operator ¥ is a continuous
map from L' (I, K (x)dx) to the Banach space of bounded continuous functions on I.
(ii) The integral operator F given by (1) is a bounded linear operator from LP (I, K (x)dx) into L*(I), 1 < p < oo, whenever
/1 K(x)dx < co. Also if f € LP(I, K(x)dx), 1 < p < oo, then
F flle=ay < MIfllLe (1, (x)ax)» Jor some M > 0,

furthermore if K(x, -) is continuous for each x € I then ¥ f is a continuous function on 1. Moreover, the operator ¥ is a continuous
map from LP (I, K (x)dx) to the Banach space of bounded continuous functions on I.

(iii) The integral operator ¥ given by (1) is a bounded linear operator from L™ (I) into L™ (I) whenever fI K(x)dx < 0. Also if
f e L®(1) then

IF fll=) < M fllL=(1), for some M >0,

Sfurthermore if K (x, -) is continuous for each x € I then F f is a continuous function on 1. Moreover, the operator F is a continuous
map from L= (1) to the Banach space of bounded continuous functions on I.

Proof. (i) Let yo € I be arbitrary. Since the map y — K (x, y) is continuous for each fixed x € I, we have
K(x,y) = K(x,yo) as y = yo.

Further, we have that |K(x,y) — K(x, yo)||f(x)| is dominated by the integrable function 2K (x)|f(x)|. Therefore, by using
dominated convergence theorem, we get

(FHG) = (FH o)l < /Ilf(X)I |K(x,y) = K(x,y0)| dx — 0, as y —= yo.

Thus, F f is a continuous function on /.
Since foreachy € 1

I(F DI

IA

/1 £ K (x. )] d

IA

/, FOIR = 11l 1.8 o 3)

one has that ¥ f is a bounded function.

The linearity of the integral operator implies that the # integral operator is linear. Also from (3) we get that [|F f|lr~) <
ANl L (7.% (x)ax) @nd hence F : L' (1, K (x)dx) — L*(I) is a continuous linear map.

(ii) Observe that using Holder’s inequality we have for y € I and % + 1% =1, 1<p<oo,

NI < [IrlKey)a
< [rwikeas
= [k R ax
< ( /I |f<x>|P1%<x>dx)’l' ( /, ze<x>dx)”l'

AN e (1. (x)ax) (/IK(X)dX)p : (4)
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Proceeding as in (i) one obtains (ii).
(iii) Observe that for y € 1

(FH I

IA

/, £ ()R () dx

IN

esssupe; |£ ()] /I R(x)dx

ey - [ Koo )
I
Thus similar to (i) one obtains (iii).

Proposition 2.2. The next results hold

(i) The integral operator F given by (1) is a bounded linear operator from L' (I, K (x)dx) into L9(I, w(x)dx), 0 < g < oo, when
w is a measurable function on I such that w > 0 a.e. on I and /1 w(x)dx < oo,

(ii) The integral operator F given by (1) is a bounded linear operator from LP (I,K(x)dx), 1 < p < oo, into L9 (I, w(x)dx),
0 < g < co, when fl K (x)dx < oo, /1 w(x)dx < oo, being w a measurable function on I such that w > 0 a.e. on I.

(iii) The integral operator F given by (1) is a bounded linear operator from L™ (I) into L1(I,w(x)dx), 0 < g < oo, when
f, K(x)dx < oo, fl w(x)dx < oo, being w a measurable function on I such that w > 0 a.e. on I.

Proof. (i) Observe that from (3) for each y € I one has
I(FLIYDDN <M (1,8 (x)ax)-

A

Then, for 0 < g < oo, one has

1
q

110k oy ( / w(x)dx) <o

IA

( /I (F ) () [ wx)dx])

(ii) The proof is similar to (i) when one make use of (4) instead of (3).
(iii) The proof is similar to (i) when one make use of (5) instead of (3).

3. THE TRANSFORM 7* OVER THE SPACES L!(/)

Proposition 3.1. The integral operator F* given by (2) is a bounded linear operator from L' (I) into L9 (I, w(x)dx), 0 < g < oo,
when w is a measurable function on I such that w > 0 a.e. on I and K € L9 (I, w(x)dx).

Proof. Observe that for each x € 1

I(F 1) ()]

IA

/, O K (x.y)] dy

A

< /, FO)ldy - R ().

Then, for 0 < g < oo, one has

1
q

(/II(T*f)(x)I"W(x)dx)q < MAlleray (/I(K(X))q W(X)dx) < co.

4. PARSEVAL-GOLDSTEIN TYPE THEOREMS

Theorem 4.1. For ¥ and F* given by (1) and (2), respectively, and g € L' (1), then the following Parseval-Goldstein type relation
holds

Jnwewa= [ s o, ©)
1 1

whenever

() f € L'(1, R(x)dx),

or

(i) f € LP(1, K (x)dx), 1 < p < o0, and [, K(x)dx < o,

or

(iii) f € L>(I), and [, K (x)dx < oo,
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where for all cases K (x) satisfies |K(x,y)| < K(x), forall x,y € I.
Proof. (i) In fact, from (3) and for each y € I one has
I(FLIYDDN <M (1,& (x)ax)-

Therefore,

/1 (FAONEOY < 1l it g oram el

Also, for each x €

(P21 < [IsoIK I dy < Kl
Then

Jirwnorowia < [ireR@dglL0

= AL 2. & (xyax 18N L1 ()

Thus, by using Fubini’s theorem one obtains the result (6).
(ii) The proof is similar to (i) making use of (4) instead of (3).
(iii) The proof is similar to (i) making use of (5) instead of (3).

Remark 4.2. From this result the operator 7* becomes the adjoint of the operator ¥ over L” (I, K(x)dx), 1 < p < oo, and
L*(I).

Assume that K(-,y) € C"(I) for each y € I and A is a n-th differential operator such that
Ax (K(x,y)) = P(y)K(x,y), (M

for all x, y € I, where P is a polynomial.
For k € N and K (-, y) € C" (1) for each y € I, then

A (K(x,y) = [P()]*K (x,y),

where AX denotes the k-th power of the operator A,.
Denote A’, be the adjoint of A.
For f € C"(I) and K(-,y) € C"*(I) foreach y € I, k € N, one has

r k
(7 (4.7)) 0 = POI*F N, ye 1.
Thus for Q being a polynomial of degree m and f € C™(I) and K(-,y) € C""([) foreach y € I, m € N, then

(7 (e (421))) 0 =2 POGN (FNG). yel. ®)

Theorem 4.3. Set A, a n-th differential operator satisfying the equality (7) and denote by A;C its adjoint. Let Q be a polynomial
of degree m and f € C"™(I), K(-,y) € C"™(I) for each y € I. Then, for any g € L'(I), the following Parseval-Goldstein relation
holds

[ nmemerw = [(o(4)) g w.

Proof. The proof is an immediate consequence of relation (8) and (i) of Theorem 4.1, having into account that C™(I) C
L'(I, K (x)dx).

5. PARTICULAR CASES: THE MAIN INDEX TRANSFORMS AND THE OPERATORS WITH COMPLEX
GAUSSIAN KERNELS

In this section, we explore a range of integral transforms characterized by kernels that fulfill specific conditions. These conditions
play a crucial role in the properties and applications of these transforms, making them particularly noteworthy in studying Parseval-
Goldstein type relations in mathematical analyisis. Below, we present examples of integral transforms with kernels satisfying the
condition |K (x, y)| < K(x), forall x, y € I and fl K(x)dx < .

(i) For the Kontorovich-Lebedev transform Gonzélez and Negrin (2019); Naylor (1990); Prasad A. and Mandal (2018); Srivastava
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et al. (2016); Yakubovich (2012); Maan and Negrin (2024) I = (0,), K(x) = Ko(x), where Ko(x) is the modified Bessel
function of the third kind (or the Macdonald function) defined by (Erdélyi et al. 1953, p. 5, section 7.2.2., Entry 13) one has that
fl K (x)dx < oo and the differential operator is given by A, = x>D2 +xD, — x°.

(ii) For the Mehler-Fock transform of general order u with R(u) > _71 Gonzdlez and Negrin (2019, 2017); Lebedev (1949);

Srivastava et al. (2016); Yakubovich (2012); Maan and Negrin (2024) I = (0, «), K(x) = P:z{(m (coshx), where P:z{(”) (coshx)

is the associated Legendre function of the first kind (Erdélyi et al. 1953, p. 122, section 3.2., lzintry 3) one has that fl ;? (x)dx < o0
and A, = (sinhx)"#~! D, (sinhx)***! D (sinh x) "# as the differential operator.

(iii) For the index , F-transform Hayek et al. (1992); Hayek and Gonzdlez (1993, 1994, 1997); Maan and Negrin (2024); Maan
etal. (2023) I = (0,00), R(u) > —1/2, a € C, R(x) = x¥(@),F, (%(u) + 1R+ LR () + 1;—x) , where »F) (a, b: ¢: 7)
represents the Gauss hypergeometric function (Erdélyi et al. 1953, p. 56, section 2.1.1., Entry 2). Observe that fl K(x)dx < oo for
-1 <R(a) <-1+R(u) + % and the differential operator as A, = x®#(x + 1) "D x"**! (x + 1)**1 D x~2.

(iv) For the Lebedev-Skalskaya transforms Mandal and Prasad (2022); Mandal et al. (2022); Maan and Negrin (2024) I =

(0,0), K(x) =& % which /1 K(x)dx < oo and Ay = x>D% + 2xD, — x(x — 1) as the differential operator for the Lebedev-

Skalskaya transform (Rf)(y) = f RK 1 (x)f(x)dx, and A, = x*D2 +2xD, — x(x + 1) is the differential operator for the
0

+iy
(o]

Lebedev-Skalskaya transform (& f) (y) = f &K Liiy (x) f(x)dx. Here RK Liiy (x) and FK Liiy (x) are the real and imaginary parts
0

of the Macdonald function K Liiy (x), respectively (Erdélyi et al. 1953, p. 5, section 7.2.2., Entry 13).
(v) The operators with complex Gaussian kernels Gonzdlez and Negrin (2019, 2018); Negrin (1995) are given by

(F ) =‘[mf(x)exp{—exz—ﬁy2+26xy+yx+§’y}dx, y€R,¢B,6,y, €C.

Inthiscase I = (—o0, 00) and K (x,y) = exp {—ex? — By* + 26xy + yx + {y}. Observe that: |K (x, y)| < exp {-Rex? — RBy? + 2Rsxy + Ry.
And so, for RB > 0 and Ré = R¢ = 0 one has |K (x,y)| < exp {~Rex? + Ryx} = K(x).

Thus for (i) one works in L' (I, K(x)dx) for RS > 0, Ré = R = 0.

For the cases (ii) and (iii) and being RB > 0, RS = R = 0, one also needs f_ O:o K (x)dx < oo which holds for Re > 0.

Concerning the differential operator for the operators with complex Gaussian kernels observe that:

D, (K(x,y)) = Dx(exp{—ex2—,8y2+25xy+yx+§y})

(—2ex + 26y +y) exp {—ex2 — By +26xy +yx + {y}

Then
Dy (K(x,y)) +2exK(x,y) = (20y +y) K(x,y)
So, for this case we take the differential operator as Ay = D + 2ex.

Remark 5.1. In the case of index Whittaker transform Maan and Prasad (2022, 2024); Sousa et al. (2020, 2019) [ = (0, o0), K(x) =
xY(a, l;x)x_z"_le_x, a > 0, where ¥(a, 1;x) is known as the Tricomi function Sousa et al. (2019). The convergence of the
integral fI K (x)dx is not assured for a > 0.

6. CONCLUSIONS

The current research article extensively explores the continuity properties across Lebesgue spaces for integral transforms within a
general framework, including their adjoints. By placing a significant emphasis on Parseval-Goldstein relations, this study unveils
the energy-preserving characteristics and inter-domain consistency inherent in these transforms. Such a comprehensive analysis
greatly contributes to our comprehension of the fundamental properties and applications of these integral transforms within
mathematical analysis. The findings presented herein offer a systematic examination of various index integral transforms, such
as the Kontorovich-Lebedev transform, the Mehler-Fock transform of general order, the ,F-transform, the Lebedev-Skalskaya
transforms, and also the operators with complex Gaussian kernels.
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ABSTRACT

Character theory of finite groups have an important role in understanding the structure of finite groups. A number of previously
unresolved problems related to the structure of finite groups have been solved with the development of representation and character
theory. There are many articles in the literature on the relationships between the structure of finite groups and their irreducible
characters. Today, many researchers continue to study these relationships. Our purpose in this paper is to prove that for determining
some properties of the structure of a finite group G, it is enough to consider only strongly monolithic characters of G instead of all
irreducible characters of G. We give relationships between the structure of G and the vanishing elements, co-degrees of strongly
monolithic characters of G.
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Keywords: strongly monolithic characters — vanishing elements — co-degree — solvable groups

1. INTRODUCTION

Let G be a finite group and y € Irr(G), where Irr(G) denotes the set of irreducible complex characters of G. An irreducible charac-
ter y of G is called a monolithic character of G if G /kery has only one minimal normal subgroup. Also, an irreducible character y
of G 1is said to be monomial if it is induced from a linear character of some subgroup of G. An element g € G is called a vanishing
element if there exists an irreducible character y of G such that y(g) = 0. We know from Burnside’s theorem (Theorem 3.15) in
Isaacs (1976) that a nonlinear irreducible character of a finite group G always vanishes on some conjugacy class of G. An element
g € G isnon-vanishing if y(g) # O for every irreducible character y of G. Itis known from Isaacs et all. (1999) that if G is solvable
and a non-vanishing element x has odd order, then x must lie in the Fitting subgroup F(G). Later, Dolfi et all. proved in Dolfi et
all. (2010) that if x is a non-vanishing element and the order of x is coprime to 6, then x € F(G). Erkog et all. consider in Erkoc et
all. (2023) a smaller subset named the set of SM-vanishing conjugacy classes instead of the set of vanishing conjugacy classes of G.

Firstly the co-degree of an irreducible character y of G was defined as |G|/x(1) in Chillag and Herzog (1990). Then it has
been given in Qian et all. (2007) as the number cod(y) = |GXIZT)X | because it is very useful for inductive proofs of theorems
giving information about the structure of G. In Chen and Yang (2020), authors consider the co-degrees of monolithic, monomial

irreducible characters.

Motivated by above papers, we give some results about the relationships between the structure of a finite group and its strongly
monolitic characters.

2. PRELIMINARIES

In this paper, all groups under consideration are finite and all characters are complex characters. We use the standard notations
such as in Isaacs (1976). The definition of strongly monolithic character of a group have been first given in Erkog et all. (2023).
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It is known from Proposition 2.3 in Erkoc et all. (2023) that linear characters of a group are not strongly monolithic. Thus,
abelian groups do not have strongly monolithic characters. However, a nonabelian group have at least one strongly monolithic
character. Also, every nonabelian solvable group has at least one monomial strongly monolithic character. The definition of a
strongly monolithic character of a group G is the following:

Definition 2.1. ( Erkog et all. 2023, Definition 2.2) Let G be a group. An irreducible character y of G is called a monolithic
character if G /ker y has only one minimal normal subgroup. A monolithic character y of G is called a strongly monolithic character
if one of the following conditions is satisfied:

(1) Z(x) =kery, where Z(x) ={g € G | |x(8)| = x(1)},
(i) G/kery is a p-group whose commutator subgroup is its unique minimal normal subgroup.

Definition 2.2. ( Erkoc et all. 2023, Definition 2.2) Let G be a group. An element g in G is called an SM-vanishing element of
G if there exists a strongly monolithic character y of G such that y(g) = 0. The conjugacy class of such an element is called an
SM-vanishing conjugacy class of G. If y is a monomial strongly monolithic character of G, then the conjugacy class of such an
element is called an MSM-vanishing conjugacy class of G.

Let Vangy, (G) be the set of SM-vanishing elements of G, that is,
Vang,(G) = {g € G | x(g) =0 for some y € Irrg,, (G)},

where Irrg, (G) is the set of all strongly monolithic characters of G.

Let g be an element of a finite group G. If y(g) # O for every strongly monolithic character y of G, then the element g is called
an SM-nonvanishing element. If y(g) # 0 for every monomial strongly monolithic character y of G, then the element g is called
an MSM-nonvanishing element.

The following lemma and Theorem 2.4 will be useful when we prove Theorem 3.2. Actually, we know from Lemma 2.3 of
Isaacs et all. (1999) that if x is a nonvanishing element in a finite group G, then x fixes some member of each orbit of the action
of G on Irr(N) where N < G.

Lemma 2.3. Let G be a solvable group with a unique minimal normal subgroup M and ®(G) = 1. Assume that x € G is an
MSM-nonvanishing element of G. Then x fixes an element in every G-orbit on Irr(M).

Proof. 1)y # 2 € Irr(M) and T = I (1), where I (A1) is the inertia group of A in G. Since ®(G) = 1, there is a subgroup
H of G such that G = MH and M N H = 1. We know from Problem 6.18 in Isaacs (1976) that there exists a linear character
0 € Irr(T) such that 8y, = A. Let y = 69. Then y is a faithful irreducible character of G. Otherwise, we would have that
M < kery = Ngeg(ker)® < ker6, which is a contradiction that ), = A = 1. On the other hand, it is clear that Z(G) = 1 since
®(G) = 1. This implies that y € Irr(G) is a monomial strongly monolithic character of G. Since x € G is an MSM-nonvanishing
element of G, we get that y(x) # 0. By the definition of the induced character #, there exists an element g of G such that x¢ € T.
Then x stabilizes A8 71, and the proof is complete.

Theorem 2.4. ( Isaacs et all. 1999, Theorem 4.2) Let G act faithfully and irreducibly on a finite vector space V. Let x € F(G) fix
an element in each orbit of G on'V. Then x> = 1.

3. MAIN RESULTS

It is known that an irreducible character of a group G is called to be of g-defect zero if ¢ does not divide |G|/x (1), where g is
a prime number. We know from Theorem 8.17 in Isaacs (1976) that if y is an irreducible character of g-defect zero of G, then
x(g) = 0 whenever ¢ divides the order of g € G.

Let N <« G and y € Irr(G) such that N < kery. It is well-known that there exists a one-to-one correspondence between
irreducible characters of G /N and irreducible characters of G with kernel containing N. Thus, it is easy to see that y is a strongly
monolithic character of G if and only if y is a strongly monolithic character of G /N. In the following theorem, we use the notation
x to denote the conjugacy class of G containing x € G.

Theorem 3.1. Let G be a finite group. If the set of SM-vanishing elements of G are the union of at most three conjugacy classes
of G, then G is solvable.

Proof. Let G be a counterexample to the theorem with minimum possible order. Suppose that G has two distinct minimal normal
subgroups M| and M. It is easy to see that the hypotheses of theorem are inherited by factor groups. Thus, both of G/M; and
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G /M, are solvable groups by induction. Since G is isomorphic to a subgroup of G/M; X G /M,, we have a contradiction that G
is solvable. This implies that G cannot have two distinct minimal normal subgroups. Now, let M be the unique minimal normal
subgroup of G. Since G is a counterexample, M must be nonabelian and Z(G) = 1. Therefore, there exists a nonabelian simple
group S such that M = Sy X --- X Sx where k > 1 and S; = § for every i. First assume that § has irreducible characters of g-defect
zero for every prime g dividing the order of S. Thus, if 8 is an irreducible character of g-defect zero of S, then ¢y := 6 X --- x 6
is an irreducible character of g-defect zero of M. It follows from Lemma 2.4 in Erkog et all. (2023) that every element of M of
order divisible by ¢ is an SM-vanishing element of G. We know that 2||M|, because M is a nonsolvable group. Also, there exist
distinct primes p and ¢ such that p, g > 3 and p, g € 7(M). Hence, there exist x, y and z elements of S such that |x| =2, |y| = p
and |z| = g. Since x, y, z € Vang, (G) and the set of SM-vanishing elements of G are the union of at most three conjugacy classes
of G, we get that 7(M) = {2, p, q} and Vang,(G) = x% U y© U z%. Then, M must be a simple group. Otherwise, we would have
k > 2. Without loss of generality, we may assume that y € S| and z € S;. Thus, we would have that |yz| = pg. But this contradicts
with the hypothesis of theorem because (yz)© ¢ {x¢,y®,z%} and yz € Vang,(G). Since M is non-cyclic simple group of order
divisible by exactly three primes, we obtain from Theorem 1 in Herzog (1968) that

M e {PSL(2,5), PSL(2,8), PSL(2,17), PSL(2,7), PSL(2,9), PSL(3,3), Us3(3), Us(2)}. Using the Atlas Conway et all.
(1985), we obtain the following table containing x; € M of distinct orders for 1 <i < 4.

M el el sl el

PSL(2,7) 24 3A 4A A
PSL(2,9) 24 3A 4A S5A
PSL(2,8) 24 3A TA 94
PSL(2,17) 24 3A 4A 17A
PSL(3,3) 24 3A 4A 13A
Us(3) 24 3A 4A A
Us(2) 24 3C 4A 54

Therefore, M cannot be groups in the list. Since Cg (M) = 1, we know that G is almost simple group. Therefore, we get that
G = As or G = Ss. But this is a contradiction because the set of SM-vanishing elements of As or S5 are union of more than three
conjugacy classes of the group. Therefore, there exists a prime number g dividing the order of S such that S does not have any
irreducible character of g-defect zero. It follows from Lemma 2.3 in Robati (2019) that there exist irreducible characters 61, 6,,
03, 84 of S which extend to Aut(S) and elements x1, x5, x3, x4 of distinct order such that 6;(x;) = 0 for 1 <i < 4. Also, we have
from Lemma 5 in Bianchi et all. (2007) that 6; X --- X 6; € Irr(M) extends to G for 1 < i < 4. Now, let y; € Irr(G) such that
Widpm =60; x---x0; for 1 <i < 4. Itis clear that y; is a faithful irreducible character of G for 1 < i < 4. Otherwise, we would
have that M < kery; N M = ker(y;)pr = ker(6; X ---x 6;) = 1for 1 <i <4, which is a contradiction. Therefore, ¥; is a strongly
monolithic character of G and y;(x;) = 0 for 1 < i < 4. Since the elements x; are of distinct orders, x; elements lie in distinct
conjugacy classes of G for 1 < i < 4 and so, the set of SM-vanishing elements of G are the union of at least four conjugacy classes
of G, which is a contradiction. This contradiction completes the proof. O

Now, we consider the semidirect product G := Hes = C; (SmallGroup (54, 8) in GAP) where C; acts faithfully on Hes. The
notations C, and Hes denote a cyclic group of order 2 and a nonabelian group of order 27 of exponent 3, respectively. Since
1 < Z(G), all faithful irreducible characters of G are not strongly monolithic. G has only four strongly monolithic characters of
degree 2. While the set of SM-vanishing elements of G are the union of three conjugacy classes of G, the set of vanishing elements
of G are the union of seven conjugacy classes of G. Thus, Theorem 3.1 generalizes [Robati (2019), Theorem 2.8].

Theorem 3.2. Let G be a solvable group and x be an element of odd order of G. If x (x) # 0 for all monomial strongly monolithic
character y of G, then x € F(G).

Proof. Let G be a counterexample to the theorem with minimum possible order. By induction, xN € F(G/N) for every nontrivial
normal subgroup N of G because 2 t |xN| and 6(xN) # O for every monomial strongly monolithic character 6 of G/N.
Suppose that G has two distinct minimal normal subgroups M| and M;. Then we know that ¢ : G — G /M) X G /M5, defined by
w(g) = (gMy, gM,) for g € G,isaninjective homomorphism. Hence, we getthat ¢(x) € F(G/M|)XF(G/M;) = F(G/MxG | M)
and so, ¢p(x) € o(G) NF(G/M| X G/M;) < F(¢(G)). Thus, we obtain that x € F(G), which is a contradiction. This implies that
G cannot have two distinct minimal normal subgroups. Let M be be the unique minimal normal subgroup of G. It is clear that
®(G) = 1 because F(G/®(G)) = F(G)/®(G). It follows from Gaschiitz Theorem (III, 4.5 in Huppert (1967)) that F(G) = M
and so Cg(M) = M. Now, let V be the group of irreducible characters of M. Then, V is faithful and irreducible G /M-module.
Also, we know from Lemma 2.3 that the element xM fixes some element of each orbit of G/M on V. On the other hand, we see
that xM € F(G/M) by the induction. Hence, we have from Teorem 2.4 that (xM)> = x>M = M and so, we obtain that x> € M.
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Therefore, we conlude that x € M = F(G) because x is an element of odd order of G, which is a contradiction. This contradiction
completes the proof. O

Let G be a finite group and g € G. In Pang et all. (2016), authors prove that if the order of gG’ € G/G’ does not divide
|Irr,,, (G)], then there exists y in Irr,,, (G) such that y(g) = 0 where Irr,,,(G) is the set of all irreducible monomial characters of G.
Similarly, we give the following theorem.

Theorem 3.3. Let G be a finite group, x be a nonlinear irreducible character of G whose kernel is maximal among the kernels
of all nonlinear irreducible characters of G and g € G. If the order of gN in G/N does not divide |Irrs,, (G [kery)| where
N = G’kery, then g is an SM-vanishing element of G.

Proof. Let y be a nonlinear irreducible character of G whose kernel is maximal among the kernels of all nonlinear irreducible
characters of G. We know from Corollary 2.6 in Erkog et all. (2023) y is a strongly monolithic character of G /kery. Furthermore
for any linear character A of G /kery, x4 is a strongly monolithic character of G /kery. Hence, A permutes Irrgy, (G /kery). We get
that

Irrg (G /kery) = {04 0 € Irrgn (G /kery) }.

This implies that

[T o= T[] woe=[ T[] "

O€lrrym (G /kery) O €lrryy (G /kery) O €lrrym (G /kery)

where n = |Irrgy, (G /kery)|. If g is an SM-nonvanishing element of G, then by the above equality, A(g)" = 1 for any linear
character A of G /kery. It follows that g"kery € G’kery /kery. Then, we have that |gN| divides |Irrgy, (G /kery)|, which contradicts
with our hypothesis. This contradiction completes the proof. O

Theorem 3.4. Let G be a solvable group and let p be a prime divisor of |G|. If cod(x) is a p’-number for every monomial strongly
monolithic character y of G, then G has a normal p-complement.

Proof. Let G be a counterexample to the assertion with the minimal possible order. Since the hypotheses of the theorem are
inherited by factor groups, G has a unique minimal normal subgroup M. It follows that G/M has a normal p-complement
by induction. Since G does not have a normal p-complement, p must divide |M|. Thus, M is elementary abelian p-subgroup.
Furthermore, we have Z(G) = 1. Otherwise, a Hall p’-subgroup H of G would be normal since MH < G and H is a characteristic
subgroup of M H. Moreover, we have from Lemma 1 (a) in Berkovich and Zhmud’ (1997) that ®(G) = 1. Then, there exists
a subgroup K of G such that G = MK and M N K = 1. Let A be a nonprincipal character in Irr(M). Write T = I () as
the inertia group of A in G. Notice that M is complemented in G and so is in 7. We get that T = Mg (2). It follows from
Problem 6.18 in Isaacs (1976) that A extends to 7" and so there exists a linear character 8 € Irr(T) such that 8, = A. This implies
that y = 6% is a monomial irreducible character of G. Thus, y is a faithful irreducible character of G. Otherwise, we get that

M < kery = () (kerf)® < ker. But this contradicts with 6, = 1 # 1. Hence y is a monomial strongly monolithic character of
geG

G, since Z(G) = 1. By the assumption, we have that

|G : kery| |G| |G|

() " 6S(1) 1G:T] IT| = |M].[Ix ()]

is a p’-number. This contradicts with the fact that M is a p-group. The proof is complete. O

cod(x) =
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ABSTRACT

This work presents a unique technique for the precise and efficient solution of Linear Fredholm integro-differential equations
(LFDEs), the technique is based on the Modification of Adomian Decomposition Method (MADM). The MADM extends the
well-known Adomian Decomposition Method (ADM) by integrating novel changes that improve convergence and computing
efficiency. The LFDE:s are essential for simulating a wide range of phenomena in science and engineering. Because their analytical
solutions are frequently difficult to achieve, the development of efficient and trustworthy numerical approaches is required. We
present an introduction of the MADM method and its important characteristics emphasizing its capacity to handle a wide range of
LFDEs seen in scientific and engineering applications. We demonstrate the method’s usefulness in contrast to the true approach,
stressing its computational benefits and precision.

Mathematics Subject Classification (2020): 65R20, 45G15, 45B99, 45D99

Keywords: Fredholm Integro, differential Equations, Numerical Solutions, Computational Efficiency.

1. INTRODUCTION

Linear Fredholm integro-differential equations (IFDEs) are a type of mathematical model used to describe complicated events
including both differential and integral elements in a variety of scientific and engineering areas. These equations are critical for
understanding and forecasting real-world phenomena including heat conduction, diffusion, population dynamics, and electromag-
netic fields. Regardless of their importance, analytical solutions for linear Fredholm IFDEs are frequently elusive, necessitating
the development of strong numerical approaches. The Modified Adomian Decomposition Method builds upon the strengths of
the original ADM while incorporating innovative adjustments to overcome limitations in convergence behavior and stability.
The method involves decomposing the unknown function into a series of auxiliary functions and using a recursive scheme to
obtain successive approximations. According to Abdella and Ross (2020); Acar and Dascioglu (2019); Akyuz (2006); Amin
et all. (2020), integral equations are categorized into two primary categories based on the limits of integration: Fredholm and
Volterra integral equations. Ayinde, James, Ishaq and Oyedepo (2022); Bogdan and Madalina (2021); Buranay, Ozarslan and
Falahesar (2021), integro-differential equations are essential in both pure and practical mathematics, having numerous applica-
tions in mechanics, engineering, physics, and other fields. The behavior and evolution of many physical systems in many fields
of science and engineering, including viscoelasticity, evolutionary problems, fluid dynamics, population dynamics, and many
others, can be successfully modeled using Fredholm and Volterra type integrodifferential equations. Davaeeifar and Rashidainia
(2017); El-Hawary and El-Sheshtawy (2010); Hosry, Nakad and Bhalekar (2020); Lofti and Alipanah (2020); Kabiru et all. (2023);
Kamoh, Gyemang and Soomiyol (2019); Kurkou, Aslan, and Sezer (2017); Kabiru, Morufu and Muideen (2023); Maturi and
Simbawa (2020) derived the classical operational matrices and the unknown to be approximated by First Boubaker Polynomials,
with Newton-Cotes points serving as collocation points. Ming and Huanga (2017); Mishra et all. (2017) examine the existence,
uniqueness, and regularity features of solutions to generic Volterra functional integral equations with non-vanishing delalys, fo-
cusing on the local representation. Ogunniran et all. (2022) developed a discrete hybrid block approach and used relevant existing
concepts to test its stability, consistency, and convergence. Ogunrinde, Obayomi and Olayemi (2023); Ogunrinde et all. (2020)
discussed how the Fredholm integro-differential equation has numerous applications in science, engineering, and all aspects of
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human endeavors, including kinetic theory of gases, geophysics, communication theory, mathematical economics, queuing theory,
and hereditary phenomena in physics and biology. Oyedepo et all. (2023, 2022); Ramadan et all. (2016); Sabzevari (2019) pro-
posed a collocation computing approach for solving Volterra-Fredholm integro-differential equations using fourth kind chebyshev
polynomials as basis functions. According to Scathar et all. (2020); Shang and Han (2010), integral equations have applications
in a variety of domains, including mathematics, physics, and engineering. The analytical solution of integral equations is quite
complex, especially for application applications. Tunc (2021) investigated a linear system of integro-delay differential equations
with constant time retardation. Wazwaz (2011); Yuksel et all. (2012) defined an integral equation as one in which the unknown
function occurs within an integral sign.

2. DEFINITION OF TERMS

Integro-Differential Equations (IDEs): Integro-differential equations are a form of mathematical problem in which the derivatives
and integrals of an unknown function are both involved. Integral terms alter the connection between a function and its rate of
change in these equations, which are used to simulate a wide range of phenomena in numerous scientific and technical fields.
Fredholm Integro-Differential Equations (FIDEs): Fredholm integro-differential equations are a type of integro-differential
equation that involves the use of derivatives and integrals in a mathematical formulation. These equations are named after Erik
Ivar Fredholm, a Swedish mathematician who made substantial contributions to integral equations.

Linear Fredholm Integro-Differential Equations (LFIDEs): Linear Fredholm integro-differential equations are a type of integro-
differential equation in which the dependent variable and its derivatives are linear. These equations, which combine differential
and integral operators in a linear framework, are critical in describing a wide range of phenomena in numerous scientific and
engineering fields.

Adomian Decomposition Method (ADM): The Adomian Decomposition Method is a strong analytical approach for solving
nonlinear ordinary, partial differential, and integral problems. This approach, named after its originator, George Adomian, seeks
approximate solutions by decomposing a given nonlinear differential equation into an endless sequence of smaller terms that may
then be solved systematically.

Modified Adomian Decomposition Method (MADM): The Modified Adomian Decomposition Method improves and modifies
the original Adomian Decomposition Method (ADM). It is intended to overcome some constraints and improve the ADM’s
convergence behavior when used to specific sorts of problems. The MADM modifies the algorithm in order to improve its
efficiency and reliability for solving nonlinear ordinary and partial differential equations, as well as integral equations.

3. METHOD

To improve on the accuracies and subsequently the convergence of these approaches, we shall based our assumption on the
decomposition of the source term A (x) in Taylors series of the form

s(x) =) hi() M
j=0
and the new recursive relation obtained as:
yo(x) =ko(x), )
y1(x) =k1(x) + k2(x) + /l/ h(x,t) (L(uo(x)) + Ag)) dt, (3)
y2(x) =k3(x) + kq(x) + /1/ h(x, 1) (L(u1(x)) + Ay)) dt, 4)
Vi1 (X) =ka(je1) (%) + kaje1y-1(x) + /1/ h(x, 1) (L(u;(x)) + Aj)) dt. (5)

And subsequently the function u(x) is obtained as

() =D v, ©6)
j=0
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Assuming that the nonlinear function is P(y(x)) therefore, below are few of the Adomian polynomials.

A=P(y9),

A1=y1P (yo),

4 1 17
Ar=y,P (yo)+5y%P (o)
’ 7 1 3 prrr
A3=y3P"(yo) + y1y2P ()’0)+§y1P (vo0),

1 1 1244 1
Ay=y4P’ (yo)+( y2+y1y3)P (yo)+ ylsz (yo)+ el TP (y9).

N
®)

©))

(10)

(11)

Two important observations can be made here. First, Ag depends only on yo, A; depends only on y( and y;, A, depends on yo, y;

and y», and so on. Secondly, substituting these A s gives:

P(u) =A0+A1+A2+A3+~"

4 1 ’’
=P(yo) + 1 +y2+y3+---)P'(yo) + 5@% +2y1y2 +2y1y3 + ¥3)P” (¥0)
1 177
+§(yf+3y%y3+6y1y2y3+-~-)P (yo) +- -+

=P(30) + (v = 30 (70) + 37 (v = y0) P (o) + -

4. NUMERICAL EXAMPLES

Example 1: Bogdan and Madalina (2021) Consider the eighth-order linear Fredholm integro-differential equation
1
y® (x) = y (x) — 8e* +x? +/ X%y’ (1) dt
0

Subject to the conditions y (0) = 1,y (0) = 0, y” (0) = —1, y"”" (0) = =2, y¥ (0) = -3,
y® (0) = —4, y©® (0) = -5, and y7 (0) = -6

The exact solution is y (x) = (1 — x) e*

Using the new Modified Adomian Decomposition Method (MADM),

We transform each term in (12) to have the following

/ / / / / / / / ® (x) dxdxdxdxdxdxdxdx

1 1
—y(x)+%x +m +%}C +§x +§X +§x

X X P P X X X X
/ / / / / / / / v (x) dxdxdxdxdxdxdxdx =
o Jo Jo Jo Jo Jo Jo Jo
X X X X X X X X
/ / / / / / / / y (t) dtdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo

////////Sexdxdxdxdxdxdxdxdx

4.1 1 |
m g gr-atodp3_La Lis e 17,4
S ) M T

I g
X axdaxaxaxaxax X = ——X
o Jo Jo Jo Jo Jo Jo Jo 1814400

(12)

(13)

(14)

15)

(16)
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X X X X x X X X 1
/ / / / / / / / / x%y’ (1) dtdxdxdxdxdxdxdxdx =
0 0 0 0 0 0 0 0 0
X X X X x X X x 1
/ / / / / / / / / x%y’ (1) dtdxdxdxdxdxdxdxdx
0 0 0 0 0 0 0 0 0

Substitute the results of (13) — (4) into (12)

‘We have

y(x)=9+8x+ x2 +x3 4+ 54x4 + 30x5 + 240x6 + 2520)57 + 1814400x10 8e*

/0 /0 /0 /0 /0 /0 /0 /0 y (¢) dtdxdxdxdxdxdxdx

R LY L2y (1) dedxdxdrdxdxdxdxdx
Let
7 5 1 1 1 1
=948x+—x+x+ —xt+ X"+ —x0+ x+ 10 _ e~
d NE YT T30 220" 2520t T isiaaoot ¢

Then

Expand taylor (r, x, 10)
1, 15 1, 1 5 1 1 5 1 1 9

=1 - —x"=-=x"=-=x"=- — - x - —

2% T3 T8 T30 T1aat T 840" T 5040" T 353607
And

a0=1
yo(r) =1

yo (1) =

X X X X X X X X
ai =go+/ / / / / / / / vo (t) dtdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo
X X X X X X X X 1
+ / / / / / / / / / x2y}, (1) dtdxdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo Jo

1 1 1
a;=——= —x?— -3+ 8

¥ 73% Ta0320"

8

1 2 1 3
t) =—=t"— =t t
yilt)==31"= 31"+ 15350

1
’ 2 7
f)=—t—1"+——t
i (1) * 5040
_ by 1
s1=7g% 730"

P X P P X X X X
a =g +/ / / / / / / / v (¢) dtdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo
X X X x X X x X 1
+ / / / / / / / / / X2y (1) dtdxdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo Jo

47

a7)

(18)

19)
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a4 = —lx4 _ ixs _ 53759 10 _ 1 I 1 16
S 30 73156608000 19958400 20922789888000

() = —lt4 _ s 53759 o 1 Ay 1 /16
Y2 = el 730" T 731566080000 19958400° T 20922789888000
N=—=1——1* - T t t
V2 (1) = =31 = et~ T315660800"  1814400° 1307674368000
_ 1 e 1 4
82771t T ga0”

X X X X X X X X
az=gx+ / / / / / / / / v (1) dtdxdxdxdxdxdxdx
o Jo Jo Jo Jo Jo Jo Jo
x x X X X X X X 1
+/ / / / / / / / / xzy'2 (t) dtdxdxdxdxdxdxdxdx (20)
o Jo Jo Jo Jo Jo Jo Jo Jo

da=— L6 17 112 13 53759 18

3714 840 159667200 1556755200 120071853907476480000

_ i 19 4 1 24 473255926099 10
60822550204416000 620448401733239439360000 5423187138969600000

(1) = L6 L/ _ 112 |13 53759 /18
Y3\ ="14 840 159667200 1556755200 120071853007476480000
1 1 24 473755926999 10

_ 19 _
08275502044T60000 T 6304484017332394393600000  — 5423187138969600000
P15 16 1 1112 53759 17
Y3 (1) = =528 = 751" — T3305600¢ 197504000~ 717065853041536000°
5 1 RE 1 (23 _ 473355936000 0
3301186852864000 75852016738854976640000 34231871389696000

_ 1 8 1 9
£ 7 75040" T 45360"

X X X X X X X X
as = g3 +/ / / / / / / / v3 (t) dtdxdxdxdxdxdxdx
0 0 0 0 0 0 0 0
X X x X X X X x 1
+/ / / / / / / / / xzyg () dtdxdxdxdxdxdxdxdx 21
0 0 0 0 0 0 0 0 0

_ 1 .8 1 .9 _ 1 14 _ 1 15 _ 1 20
as = 50401x 45360); : 17435658240 53759217945728000" 9 810967336058880000"
12772735542927360000x 81303558563]2369613373440000000x “
5444434725209176080384000000x + 263130836933693530167218012160000000x
473255926999 18 _ 7 253 10

X 3678467101269496932 X
"~ 0568251416385920434176000000 5628707900523948 193873920000000

1.8 ) i i ! 20

ya (1) = 5040’ 45360t 174356582403t 0 217945728000’ ~ 310967336058880000
12772735542927360000t 8130355856312%69613373440000000t 22)
— ST R0 - + TR 0167218012160000%00 e

473255926999 [18 25236784671012694969327 t
T 9568251416385920434176000000 5628707900523948193873920000000

4
Y () =y, (%)
j=0

_ 12 1.3 _14_ 1.5 1 . 6_ 1.7 1 .8 _1 .9
yn(x)=1- 30 T 38 T 1Y T 40X T 57600° T 75360°
46526732755 17556384854127___ 10 1 11 1 12 _ 1 13

5628707900523948193873920000000 ~ 19958400 159667200x ~ 15%6755200"
1 14 16 4458475107799 18

]7435658240x 2197945728000x ] + 20922789(5)%88000]( 9568251416385920434176000000x (23)
608225502044 16000" 81 %967336058880000x 53759 127727355429273660000 x
620448401733239439360000 x 813035585631236961 3373440000000x

T 5444434725209 1760803 84000000% T 2631 30836933693530 T67218012160000000”

+
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Example 2: Oyedepo et all. (2023) Consider the fifth-order linear Fredholm integro-differential equation

1
y(x) - 2 "(x) =y (x) —wy(x) = w? cos (x) — xsin (x) + / y (¢) dt (24)
-1

Subject to the conditions y (0) = 0, y’ (0) = 1, y”” (0) = 0, y"’ (0) = —1 and y*" (0) = —1.
The exact solution is y (x) = sin (x)

Using the new Modified Adomian Decomposition Method (MADM),

We obtained the following

yo (x) =x (25)

yi(x) = 6x 24x +120 +720wx (26)

2.5 12 | 0, 1 _9_ 13 .8_ 1.7
2 (x) = W +( 5040 " 2520)x * a0t TR0t T 303200 T 0%
L2 1 o_ 1 .8 1(__1 1 5 @7
+39916800 W X T 362880 "X ~ 30320 "X +5< 1440+60480w)x
Then,
2
ya(x) =y, (x)
7=0
e 13 14 1.5 160 Loos (C 10 1\, 7, 1 10
Y (%) =X = G207 = 2 + X7 + g WT + W +( 5040 " 2520))‘ + 13300 WX 28)
|9 13 .8 _ 1 20l 9 § . 1(__1 i 5
+r70Y — gm0 — Tt * otesn X e WY~ qmsm v +5( 1440+60480W)x
When w =0,
We have

1, 1, 59 1 , 13 4 1
S N B LA B S S R S S 2
Y () =x = e = S Y T 560" T 20320° T 17280° (29

Example 3: Ogunrinde, Obayomi and Olayemi (2023) Consider the third-order linear Fredholm integro-differential equation

1
Yy (x)=6+x— / xy’ (t) dt (30)
0

Subject to the conditions y (0) = —1, y’ (0) = 1, and y”’ (0) = —

The exact solutionis y (x) = x> —x2 +x — 1

Using the new Modified Adomian Decomposition Method (MADM),
We obtained the following

yo (x) = -1 (31)

yi(x)=x-x* (32)
3,14

v (x) =x° + gx (33)
7 4

y3 (x) = T (34)

Then,

3
Y () =D y; ()
j=0

1
yn(x) ==14+x- xz+x3—&x4 (35)
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5. TABLES OF RESULTS

Table 1: Numerical Results for Example 1

X Exact MADM  MADM_Error
0 1.000000  1.000000 0.00 E 00
0.1 0.994654 0.994654 0.00 E 00
0.2 0.977122 0977122 1.73 E-13
0.3 0.944901 0.944901 1.01 E-11
0.4 0.895095 0.895095 1.82 E-10
0.5 0.824361 0.824361 1.72 E-09
0.6 0.728848 0.728848 1.08 E-08
0.7 0.604126 0.604126 5.09 E-08
0.8 0.445108 0.445108 1.96 E-07
0.9 0.245960 0.245961 6.45 E-07
1 0.000000 1.87 E-06 1.87 E-06
Comparison of Mathods for Example 1
1 ‘I} —p— __"b-f_ T T T T T T T
EL
09rf _’"ﬁ._x
1 <
08
.
0.7 :
.
06 ®
051
b.,
047 '
03F \
—p— Exact ®
02 “— MADM \
01
0 L L A i A I Il 'l I
0 01 02 0.3 04 05 06 07 08 09

Table 2: Numerical Results for Example 2

Figure 1.Graph of Comparison for Example 1
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X Exact MADM  MADM_Error

0  0.000000 0.000000  0.0000 E 00

0.1 0.099833 0.099829  4.1700 E-06
0.2 0.198669 0.198603  6.6700 E-05
0.3 0.295520 0.295183  3.3800 E-04
04 0.389418 0.388350  1.0680 E-03
0.5 0479426 0.476812  2.6130 E-03
0.6 0.564642 0.559204  5.4380 E-03

0.7 0.644218 0.634090 1.0128 E-02

0.8 0.717356  0.699955  1.7401 E-02

09 0.783327 0.755195  2.8132 E-02

1 0.841471 0.798089  4.3382 E-02

Comparison of Mathods for Example 2

0.9 T

0.7

06 [

05 1

BF/ —fp— Exact
—E— MADM

0.2F

0.1F & :

0(1 i I L L I I i A |
0 01 0.2 03 04 05 0.6 0.7 08 09 1

Figure 2.Graph of Comparison for Example 2

Table 3: Numerical Results for Example 3
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X Exact MADM MADM_Error
0 -1.000 -1.00000  0.0000E 00
0.1 -0.909 -0.90900  2.0800 E-06
02 -0.832 -0.83203  3.3300 E-05
0.3 -0.763 -0.76317  1.6900 E-04
04 -0.696 -0.69653  5.3300 E-04
0.5 -0.625 -0.62630  1.3020 E-03
0.6 -0.544 -0.54670  2.7000 E-03
0.7 -0.447 -0.45200  5.0020 E-03
0.8 -0.328 -0.33653  8.5330 E-03
09 -0.181 -0.19467  1.3669 E-02
1 0.000 -0.02083  2.0833 E-02

Comparison of Mathods for Example 3

0 T
— Exact
D1t O MADM

04F

05T

-+

06

0 01 0.2

03

04 05

0.6 0.7

Figure 3.Graph of Comparison for Example 3

6. DISCUSSION OF RESULTS

The study of LFIDE findings using the Modified Adomian Decomposition Method demonstrates its efficacy in resolving problems
associated with older methodologies. The method’s improved convergence, stability, and adaptability make it an appealing tool
for academics and practitioners working on linear Fredholm integro-differential equation issues. The findings given here add to
the expanding body of knowledge on appropriate numerical strategies for solving complicated mathematical models in a variety

of scientific and engineering disciplines.

08

09
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7. CONCLUSION

The use of MADM to LFIDEs yields encouraging results, with enhanced accuracy and stability over standard approaches. The
method’s capacity to manage a wide spectrum of LFIDEs seen in scientific and engineering applications is emphasized, highlighting
its adaptability and dependability. This study’s numerical studies and comparisons give solid proof of the MADM’s effectiveness.
The convergence evaluations validate the method’s resilience in addressing LFIDESs, giving it a viable option for academics and
practitioners looking for accurate and efficient solutions to complicated issues in a variety of domains.
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