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• Valdés, Juan Eduardo Nápoles - Universidad Nacional del Nordeste, Argentina

• Veeresha, Pundikala - Christ University, India

• Weber, Gerhard-Wilhelm - Poznan University of Technology, Poland

• Xu, Changjin - Guizhou University of Finance and Economics, China

• Yang, Xiao-Jun - China University of Mining and Technology, China

• Yuan, Sanling - University of Shanghai for Science and Technology, China

iii



Scientific Managing Editor

Fırat Evirgen
Balıkesir University, Balıkesir / TÜRKİYE
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Fatma Özlem Coşar
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Abstract

Tuberculosis (TB) remains a formidable global health challenge, demanding effective control strategies
to alleviate its burden. In this study, we introduce a comprehensive mathematical model to unravel
the intricate dynamics of TB transmission and assess the efficacy and cost-effectiveness of diverse
intervention strategies. Our model meticulously categorizes the total population into seven distinct
compartments, encompassing susceptibility, vaccination, diagnosed infectious, undiagnosed infectious,
hospitalized, and recovered individuals. Factors such as susceptible individual recruitment, the impact
of vaccination, immunity loss, and the nuanced dynamics of transmission between compartments are
considered. Notably, we compute the basic reproduction number, providing a quantitative measure
of TB transmission potential. Through this comprehensive model, our study aims to offer valuable
insights into optimal control measures for TB prevention and control, contributing to the ongoing
global efforts to combat this pressing health challenge.
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1 Introduction

Tuberculosis (TB) is a highly infectious disease caused by the bacterium Mycobacterium tubercu-
losis. It primarily affects the lungs but can also target other organs such as the kidneys, spine, and
brain. TB is a significant global health concern, with a long history of affecting humanity. Despite
the advances in healthcare, it remains a major cause of morbidity and mortality worldwide. In
this introduction, we will provide an overview of the epidemiology of tuberculosis, including
disease burden, transmission, symptoms, and control measures [1, 2].
Tuberculosis is one of the top 10 causes of death worldwide, accounting for significant morbidity
and mortality. According to the World Health Organization (WHO), in 2020, an estimated 10
million people fell ill with TB, and 1.5 million died from the disease. Approximately 95% of TB
deaths occur in low- and middle-income countries, with sub-Saharan Africa and Asia bearing
the highest burden. The disease disproportionately affects vulnerable populations, such as those
living with HIV, malnourished individuals, and those with compromised immune systems. TB is
primarily transmitted through the air when an infected individual coughs, sneezes, speaks, or
sings, releasing droplets containing the bacteria. People in close contact with an active TB patient,
especially in crowded and poorly ventilated settings, are at higher risk of contracting the infection.
It is worth noting that not everyone exposed to the bacteria becomes infected. Factors such as
the infectiousness of the source case, duration of exposure, proximity, and individual immunity
contribute to the likelihood of transmission [3, 4].
The clinical presentation of TB can vary depending on the site of infection and the individual’s
immune response. Pulmonary tuberculosis, the most common form, often presents with symptoms
such as persistent cough, chest pain, weight loss, fatigue, night sweats, and hemoptysis (coughing
up blood). Extra-pulmonary TB can affect various organs, leading to symptoms specific to those
sites. However, some individuals may remain asymptomatic, referred to as latent TB infection,
with no signs of active disease but carrying the bacteria and being at risk of developing active TB in
the future [5, 6]. The control of TB relies on a comprehensive approach that includes early detection,
prompt treatment, and preventive interventions. Key strategies involve active case finding
through targeted screening and improved diagnostic techniques. The introduction of GeneXpert
and other rapid molecular tests has greatly enhanced the detection of TB and drug-resistant
strains. Treatment primarily consists of a combination of antibiotics administered over a specified
duration to ensure a cure and prevent the emergence of drug resistance. Furthermore, preventive
measures such as isoniazid preventive therapy (IPT) for individuals with latent TB infection and
Bacillus Calmette-Guérin (BCG) vaccination in certain populations have demonstrated efficacy in
reducing the risk of TB transmission and progression. Strengthening health systems, ensuring
access to quality healthcare services, and addressing social determinants of TB are critical for
effective control and elimination efforts [7, 8]. Mathematical models have become valuable tools
in understanding the dynamics and control of tuberculosis (TB) epidemics. These models provide
insights into the complex interactions between various factors involved in TB transmission,
the impact of control measures, and the potential outcomes of different interventions. This
introduction discusses the existing mathematical models used to study TB, highlighting their
contributions and key findings. In recent years, numerous studies have utilized mathematical
models to explore effective strategies for disease control within populations [9–23]. Within the
realm of tuberculosis, several models have been developed and investigated to enhance our
understanding of transmission dynamics and control measures [24–28]. For instance, Yang et
al. [24] explored the role of partial therapy in tuberculosis transmission, shedding light on its
implications. Zhang et al. [25] studied a dynamical tuberculosis model that considered both
infected and non-infected compartments. Egonmwan and Daniel developed a model to determine
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the rate of treatment and its impact on infected individuals, [26]. Investigations into the stability
of tuberculosis with partial treatment were conducted by Ullah et al. [27]. Additionally, Intan
et al. [28] investigated tuberculosis transmission by incorporating a latent group and assessing
the effects of vaccine administration. While these deterministic models have provided valuable
insights, there remains a gap in understanding the role of vaccination, contact rates, vaccine
efficacy, and coverage rates in disease control. Vaccination has long been recognized as a highly
effective preventive strategy against various diseases, including tuberculosis. It plays a crucial
role in protecting populations from infection and reducing the potential for community-wide
transmission. Therefore, considering these factors in disease modelling is essential for developing
robust control strategies. Further contributions to the dynamics of tuberculosis models can
be found in studies such as [29–37]. These investigations have expanded our knowledge of TB
dynamics, including the disease’s global stability and the impact of heterogeneity on its dispersion.
In this study, we aim to address the aforementioned research gap by developing a mathemat-
ical model for tuberculosis that incorporates vaccination, contact rates, vaccine efficiency, and
coverage rates. By considering these factors, we can gain a more comprehensive understanding
of the dynamics and control of tuberculosis in the population and ultimately contribute to the
development of effective strategies for disease prevention and control. The novelty of this study
lies in the comprehensive integration of various epidemiological factors within a structured com-
partmental model for Tuberculosis (TB) transmission. Specifically, the model incorporates detailed
compartments representing vaccinated individuals, diagnosed and undiagnosed infectious cases,
exposed individuals, hospitalizations, and recovered individuals. This granularity allows for
a nuanced analysis of TB dynamics, considering the different states of infection and treatment.
Additionally, the study introduces the concept of immunity loss in vaccinated individuals over
time, providing a realistic perspective on the long-term efficacy of TB vaccination programs. The
differentiation between diagnosed and undiagnosed cases, along with the varying progression
rates between these states and the hospitalization phase, adds complexity to the model, making
it more reflective of real-world scenarios. Furthermore, the consideration of distinct death rates
for diagnosed and undiagnosed infectious individuals, along with additional disease-induced
mortality in the hospitalized class, adds a layer of realism to the outcomes of the model. Overall,
the study’s novelty lies in its detailed and multifaceted approach, capturing the complexities of TB
transmission, vaccination dynamics, and disease progression, which provides a robust foundation
for understanding and potentially optimizing TB control strategies.

2 Model formulation

In this section, we develop a new model that describes the disease transmission between each com-
partment based on the health status of individuals in the population under consideration. In the
present work, we consider seven distinct populations. S(t) represents susceptible individuals not
exposed to TB infection, V(t) represents vaccinated individuals against TB infection, E(t) exposed
individuals to TB infection but not infectious, ID represents diagnosed infectious individuals,
those in this category have been infected with TB and diagnosed in the hospital. IU undiagnosed
infectious, those in this class have been infected with TB but not diagnosed in the hospital. H(t)
represent the hospitalised class and R(t) represents recovered individuals. The susceptible popula-
tion is increased due to the daily recruitment rate Π, susceptible individuals received vaccination
against TB infection at a constant rate ρ, and lose immunity at a rate τ. We assume that individuals
vaccinated against TB infection lose immunity after a period of time and can be infected after
effective contact with diagnosed and undiagnosed infectious individuals at a reduced rate of 1-ε
so that the force of infection for the vaccinated individuals is at the rate β(1 − ε)(zID + IU + zH)V
where z represent the reduction in the infection rate in undiagnosed infectious individuals. We



Peter et al. | 241

Figure 1. Schematic illustration of the TB model. For illustration suitability, we defined λ1 = β(zID + IU + zH)
and λ2 = β(1 − ε)(zID + IU + zH)

also assume that only diagnosed, undiagnosed and hospitalised individuals can transfer the
infection, thus, the force of infection is given as β(1 − ε)(zID + IU + zH)S. There is a fraction k of
individuals who are diagnosed with TB and 1 − k undiagnosed, where ϕ is the progression rate to
infectious, θ represent progression rate from undiagnosed class to diagnosed infectious class, η the
progression rate from diagnosed infectious to hospitalised class. Individuals in the hospitalised
class recover through hospital treatment at a rate γ1 and γ2 represent the natural recovery rate of
individuals in the undiagnosed class. The parameter µ represents the natural death rate in all the
compartments, we assume that the disease-induced death rates in IU and ID occur at equal rates
δ1, while additional death due to the disease occurs in H at a rate δ2 with δ1 > δ2.
The above illustration gives a clear picture of the disease dynamics and this can also be represented
in a system differential equations in (1), while the model’s compartmental flow diagram is shown
in Figure 1. Moreover, the description of model variables (compartments) are given in Table 1.

dS
dt

= Π + τV − βS(zID + IU + zH)− (µ + ρ)S,

dV
dt

= ρS − β(1 − ε)(zID + IU + zH)− (µ + τ)V,

dE
dt

= βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − (ϕ + µ)E,

dID
dt

= kϕE + θ IU − (µ + δ1 + η)ID,

dIU
dt

= (1 − k)ϕE − (θ + µ + δ1 + γ2)IU ,

dH
dt

= η ID − (µ + δ2 + γ1)H,

dR
dt

= γ2 IU + γ1H − µR.

(1)



242 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 238–255

Table 1. Description of the model variables

Variable Description
S Susceptible class
V Vaccinated class
E Exposed humans
ID Diagnosed infectious class
IU Undiagnosed infectious class
H Hospitalised class
R Recovered class

3 Model analysis

Fundamental properties of the TB model

It should be noted that all the parameters used for the TB model are non-negative since the model
depicts human population dynamics. On this note, it is called to show that all the seven state
variables of the proposed model are non-negative at all times.

Positivity and boundedness of solutions
It is easy to show that, from the first differential equation of model (1), the differential inequality
in (2) is satisfied

dS
dt

+ [β(zID + IU + zH) + (ρ + µ)]S > 0. (2)

The integrating factor related to the differential inequality (2) is

exp
{
(ρ + µ)t +

∫ t

0
(β(ID(w̃) + zIU(w̃) + H(w̃))dw̃)

}
.

The use of this integrating factor in (2) leads to

d
dt

[
S(t) exp

{
−[(ρ + µ)t +

∫ t

0
(β(zID(w̃) + IU(w̃) + zH(w̃))dw̃)]

}]
> 0,

so that

S(t) ≥ S(0) exp
{
−[(ρ + µ)t +

∫ t

0
(β(zID(w̃) + IU(w̃) + zH(w̃))dw̃)]

}
> 0,

for all time time t > 0. The other six state variables V, E, ID, IU, H and R can be shown using a
similar approach. Thus, the solution set {S, V, E, ID, IU , H, R} is non-negative for all time t. This
leads to claiming the following result:

Theorem 1 Every solutions of the TB model (1), expressed by the set {S, V, E, ID, IU , H, R}, with non-
negative initial conditions S(0), V(0), E(0), ID(0), IU(0), H(0), R(0), remain non-negative for all time
t > 0.

Moreover, it is sufficient to analyze the transmission dynamics of TB described by model (1) in a
biologically feasible region defined by

Ψ =

{
(S, V, E, ID, IU , H, R) ∈ R7

+ : S + V + E + ID + IU + H + R ≤ Π
µ

}
. (3)
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Following the ideas of the authors in [38–45], we can demonstrate that the region Ψ in (3) is
non-negative invariant. Thus, the solution of the model is contained in the region Ψ meaning that
the proposed TB model is well-posed.

Existence and stability analysis of equilibria

TB model (1) is rigorously analyzed with respect to the equilibrium points in this part. At steady
state, the TB model (1) becomes

Π + τV − βS(zID + IU + zH)− m1S = 0,

ρS − m2V − β(1 − ε)(zID + IU + zH)V = 0,

βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − m3E = 0,

kϕE + θ IU − m4 ID = 0,

(1 − k)ϕE − m5 IU = 0,

η ID − m6H = 0,

γ2 IU + γ1H − µR = 0,

(4)

where m1 = (µ + ρ), m2 = (µ + τ), m3 = (ϕ + µ), m4 = (µ + δ1 + η), m5 = (θ + µ + δ1 + γ2),
and m6 = (µ + δ2 + γ1).

Disease-free equilibrium

The disease-free equilibrium (DFE) of the TB model (1) is obtained by setting E = ID = IU = H = 0
in system (4). Thus, DFE, denoted by Ω1, of model (1) is given by

Ω1 = (S∗, V∗, E∗, I∗D, I∗U , H∗, R∗) =

(
m2Π

µ(ρ + τ + µ)
,

ρΠ
µ(ρ + τ + µ)

, 0, 0, 0, 0, 0
)

. (5)

Effective reproduction number

To calculate the effective (or control) reproduction number of model (1), the popular next-
generation operator method and notation studied in depth by [46] is employed. Assume that
x = {E, ID, IU , H} is the set of infected compartments. Then, the subsystem describing the dynam-
ics of these compartments is extracted from the TB model (1), and is given by

dE
dt

= βS(zID + IU + zH) + β(1 − ε)(zID + IU + zH)V − (ϕ + µ)E,

dID
dt

= kϕE + θ IU − (µ + δ1 + η)ID,

dIU
dt

= (1 − k)ϕE − (θ + µ + δ1 + γ2)IU ,

dH
dt

= η ID − (µ + δ2 + γ1)H.

(6)

It follows from (6) that

dx
dt

= F − V ,
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where

F =


βS(zID + IU + zH) + β(1 − ε)V(zID + IU + zH)

0
0
0

 , (7)

and

V =


m3E

m4 ID − κϕE − θ IU
m5 IU − (1 − κ)ϕE

m6H − η ID

 . (8)

From (7), the matrix F of new infection terms is derived as

F =


0 β[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)
zβ[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)
β[m2+(1−ε)ρ]Π

µ(ρ+τ+µ)

0 0 0 0
0 0 0 0
0 0 0 0

 .

Similarly, the matrix V of the transition terms and its inverse V−1 are obtained from (8) as

V =


m3 0 0 0
−κϕ m4 −θ 0

−(1 − κ)ϕ 0 m5 0
0 −η 0 m6

 ,

V−1 =


1

m3
0 0 0

ϕ(m5κ+θ(1−κ))
m3m4m5

1
m4

θ
m4m5

0
(1−κ)ϕ
m3m5

0 1
m5

0
ηϕ(m5κ+θ(1−κ))

m3m4m5m6

η
m4m6

ηθ
m4m5m6

1
m6

 .

Thus,

Re = G
(

FV−1
)
=

βϕΠ[m2 + (1 − ε)ρ]{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
, (9)

where G represents the spectral radius of the next generation matrix FV−1. Following Theorem 2
in [46], the result in Lemma 1 holds which states that: The disease-free equilibrium, Ω1, of the TB
model (1) is locally asymptotically stable (LAS) in Ψ if Re < 1 and unstable if Re > 1.

Endemic equilibrium

Let the endemic equilibrium (EE) of the TB model (1) be defined by

Ω2 = (S∗∗, V∗∗, E∗∗, I∗∗D , I∗∗U , H∗∗, R∗∗) . (10)
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Assume further that, in the steady state system (4), the force of infection at the endemic state is
defined by

λ∗∗ = β (zI∗∗D + I∗∗U + zH∗∗) . (11)

Then, solving the steady state system (4) with the hypothesis that E ̸= 0, ID ̸= 0, IU ̸= 0, and
H ̸= 0, we obtain

S∗∗ =
Π[m2 + (1 − ε)λ∗∗]

{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

V∗∗ =
ρΠ

{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

E∗∗ =
Π{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

I∗∗D =
Πϕ[m5κ + θ(1 − κ)]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

I∗∗U =
Π(1 − κ)ϕ{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m5{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

H∗∗ =
Πϕη[m5κ + θ(1 − κ)]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5m6{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
,

R∗∗ =
Πϕ[m4m6(1 − κ)γ2 + ηγ1[m5κ + θ(1 − κ)]]{[m2 + (1 − ε)λ∗∗] + (1 − ε)ρ}λ∗∗

m3m4m5m6µ{(λ∗∗ + m1)[m2 + (1 − ε)λ∗∗]− ρτ}
.

(12)

Now, using the results of I∗∗D , I∗∗U , and H∗∗ from (12) in the force of infection (11) and simplifying
yields the quadratic equation satisfied by the endemic equilibria of the TB model (1), and is given
by

n1 (λ
∗∗)2 + n2λ∗∗ + n3 = 0, (13)

where

n1 = (1 − ε)m3m4m5m6,

n2 = m3m4m5m6[m2 + (1 − ε)m1]

−β(1 − ε)Πϕ{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]},

n3 = m3m4m5m6µ(ρ + τ + µ) (1 −Re) .

Thus, the endemic equilibrium Ω2 of the TB model (1) is derived from (13) for a non-negative
values of λ∗∗ and substituting back into the components of Ω2 in (12). Thus, to obtain the required
solutions of (13), we arrive at the following assumptions: n1 is always positive, while n2 and n3
may be positive or negative depending on the signs of Re. That is,

n1 > 0, n2 =

{
> 0,

< 0,
and n3 =

{
> 0 if Re < 1,

< 0 if Re > 1.
(14)

From (14), the five cases below are obtained:

Case I: If Re < 1, then n3 > 0 so that (13) has two non-negative roots when n2 < 0.
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Case II: If Re < 1, then n3 > 0 so that (13) has no non-negative roots (2 negative roots) when
n2 < 0.

Case III: If Re > 1, then n3 < 0 so that (13) has one non-negative root when n2 > 0.
Case IV: If Re > 1, then n3 < 0 so that (13) also has one non-negative root when n2 < 0.
Case V: When Re = 1, Eq. (13) reduces to (n1λ∗∗ + n2) λ∗∗ = 0. The trivial solution λ∗∗ = 0

coincides with the disease-free equilibrium Ω1, while the non-trivial solution λ∗∗ = −n2
n1

is a
non-negative root when n2 < 0 and negative root (which is meaningless in the biological sense)
when n2 > 0.

Consequently, the existence of the endemic equilibrium of model (1) is summarized as follows:

Theorem 2 The TB model has:

i. an endemic equilibrium provided that if n2 > 0 or n2 < 0 and Re > 1,
ii. double endemic equilibria provided that if n2 < 0 and Re < 1,

iii. no endemic equilibrium otherwise whenever Re < 1.

The backward bifurcation has been studied subject to some TB models and those of other infectious
diseases’ dynamics (For more details, see [47–49]). It points to a possible coexistence of equilibria
when the effective reproduction number is less than unity, in which case conditions of a backward
bifurcation at a disease-free and endemic equilibrium condition are satisfied. To rule out this
possibility and ensure the existence of a unique endemic equilibrium point for TB model (1), let
the vaccine efficacy, denoted by ε, be set to 1. Hence, the quadratic equation (13) becomes

n2λ∗∗ + n3 = 0, (15)

so that n2 = m2m3m4m5m6, and n3 = m3m4m5m6µ(ρ + τ + µ) (1 −Re|ε=1), where

Re|ε=1 =
βΠϕm2{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
. (16)

It can be seen that n2 > 0 and n3 ≥ 0 whenever Re|ε=1 ≤ 1. It follows from (15) that λ∗∗ = −n3
n2

≤
0 at Re|ε=1 ≤ 1. Therefore, the TB model (1), with ε = 1, has no positive (endemic) equilibrium
at Re|ε=1 ≤ 1. On the other hand, n3 < 0 at Re|ε=1 > 1, so that λ∗∗ = −n3

n2
> 0. Thus, the TB

model (1), with ε = 1, has a unique positive (endemic) equilibrium when Re|ε=1 > 1. This result
is summarized as follows:

Theorem 3 The TB model (1) in the absence of imperfect vaccine (ε = 1) has no endemic equilibrium
whenever Re|ε=1 ≤ 1, and a unique endemic equilibrium exists if Re|ε=1 > 1.

Global asymptotic dynamics of equilibria

Global stability of Ω1

Theorem 4 The given disease-free equilibrium Ω1 in (5) of TB model (1) in the absence of imperfect vaccine
(ε = 1) is globally asymptotically stable in the feasible region Ψ if Re|ε=1 < 1.

Proof Consider the following Lyapunov functional U(E(t), ID(t), IU(t), H(t)) for TB model (1)
with ε = 1 defined by

U = b1E + b2 ID + b3 IU + b4H, (17)
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where

b1 = 1,

b2 =
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)
,

b3 =
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ
,

b4 =
βm2Π

m6µ(ρ + τ + µ)
.

Obviously, U(0) = 0, and U(E(t), ID(t), IU(t), H(t)) > 0, ∀ (E(t), ID(t), IU(t), H(t)) ̸= 0, imply-
ing that U is positive definite. Furthermore, the time derivative of the Lyapunov functional (17)
along the solution path of the TB model (1) is obtained as

dU

dt
=

dE
dt

+
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)

dID
dt

+

[
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ

]
dIU
dt

+
βm2Π

m6µ(ρ + τ + µ)

dH
dt

= [βS(ID + zIU + H)− m3E] +
βm2Π(m6 + η)

m4m6µ(ρ + τ + µ)
[κϕ + θ IU − m4 ID]

+

[
m3

(1 − κ)ϕ
−

βm2Πϕκ(m6 + η)

m4m6µ(ρ + τ + µ)(1 − κ)ϕ

]
[(1 − κ)ϕE − m5 IU ] +

βm2Π
m6µ(ρ + τ + µ)

[η ID − m6H] .

(18)

Since S ≤ S∗ = m2Π
µ(ρ+τ+µ)

in the positively-invariant region Ψ, then by further simplification of
(18), we get

dU

dt
≤

[
βzS∗ +

βS∗(m6 + η)θ

m4m6
+

βS∗κϕ(m6 + η)m5

m4m6(1 − κ)ϕ
−

m3m5

(1 − κ)ϕ

]
IU

=

[
βS∗{zm4m6(1 − κ)ϕ + θ(m6 + η)(1 − κ)ϕ + κϕ(m6 + η)m5}

m4m6(1 − κ)ϕ
−

m3m5

(1 − κ)ϕ

]
IU

=
m3m5

(1 − κ)ϕ

[
βm2Πϕ{m6[m5κ + θ(1 − κ)] + zm4m6(1 − κ) + η[m5κ + θ(1 − κ)]}

m3m4m5m6µ(ρ + τ + µ)
− 1

]
IU

=
m3m5

(1 − κ)ϕ
(Re|ε=1 − 1) IU .

Since the variables and parameters of the TB model (1) are non-negative, it implies that dU
dt ≤ 0 if

and only if Re|ε=1 ≤ 1, and E = ID = IU = H = 0. Thus, by LaSalle’s invariance principle [50],

(E, ID, IU , H) → (0, 0, 0, 0) as t → ∞. (19)

It therefore follows from the first and second equations of TB model (1) that lim
t→∞ (S(t), V(t)) =(

m2Π
µ(ρ+τ+µ)

, ρΠ
µ(ρ+τ+µ)

)
, while lim

t→∞ R(t) = 0 from the last equation of the model. Therefore, every

solution that starts in Ψ converges to Ω1 as t → ∞ whenever Re|ε=1 ≤ 1.

4 Numerical simulation

In this section, we run a numerical simulation using the formulated model described in system (1)
to examine TB dynamics under different control interventions. We first investigate the impact of
vaccination as a preventive intervention in mitigating the burden of TB in the human population.
This was achieved by simulating the impact of the vaccination rate of TB-susceptible individuals
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with different levels of vaccine efficacy. Following this, the impact of the detection rate of TB
infection, the hospitalization rate of diagnosed TB-infectious individuals, and the recovery rate of
hospitalized individuals were examined to understand the impact of these control interventions
on mitigating TB burden in the populace. The combination of all aforementioned interventions
was then simulated to explore the optimum impact on the control of tuberculosis in the human
population. The values of parameters used for simulation are given in Table 2.

Table 2. Model parameter values and description

Parameter Description Value Source
Π Recruitment rate 5 [51]
ρ Vaccination rate 0.1 - 0.98 [51]
τ Vaccine wane rate 0.067 [51]
ε Vaccine efficacy rate 0 - 1 [51]
β Effective contact rate 0.6501 [51]
µ Natural death rate 0.0148 [51]
η Progression rate from diagnosed infectious to hospitalised class 0.60 Assumed
δ1 TB induced death rate 0.10 [51]
δ2 TB induced death rate 0.05 Assumed
θ Progression rate from undiagnosed to diagnosed infectious class 0.45 Assumed

γ1 Rate of recovery after hospital treatment 0.01 [51]
γ2 Natural recovery rate of undiagnosed infectious 0.005 Assumed
z Reduction in infectious rate for diagnosed and hospitalized infectious 0.5 Assumed
k fraction of individuals who are diagnosed of TB 0.40 Assumed
ϕ Progression rate to infectious 0.00375 [51]

The total TB infected population in Figure 2, Figure 3, and Figure 4 are in thousand. It is observed
that the variation in parameters remains around the mean level. We assume a decrease of 50%
from the baseline value for parameters with variation. Important Notice: If the value of the
associated variable is smaller or larger than the parameter value at the lower boundary (0 or 1),
then no significant perturbation in vaccination rates has been associated with higher relative and
absolute autism rates. The high point of the associated variable exceeds approximately 100% more
than the parameter value at the lower boundary of the variable. Therefore, in Figure 2, vaccination
policymakers are depicted assuming vaccination rates should be set at low (ρ = 0.25), medium (ρ
= 0.50), or high (ρ = 1.00), while vaccine efficacy remains either low (ε The rates of detection of TB
infection, hospitalization of an infectious individual after diagnosis, recovery, and case fatality
among diagnosed TB infectious individuals were varied at three levels of scenarios—low, medium,
and high. The detection rate of TB-infection was varied at levels: θ = low = 0.225, θ = medium
= 0.45, Aggregate simulated active TB infectious population consists of undiagnosed infectious
population and diagnosed infectious population in addition to hospitalized infectious population
in this simulation. Throughout the simulation, we defined the total TB infectious population as the
sum of both the undiagnosed infectious population, the diagnosed infectious population, and the
hospitalized infectious population. This is justified because both undiagnosed infectious humans,
diagnosed infectious humans, and hospitalized infectious humans can transmit the disease as
presented in the force of infection of the developed model (1).

In Figure 2, we simulate the impact of vaccination as a preventive intervention in mitigating the
burden of TB in the human population. This was carried out by examining different levels of
vaccination rates of TB-susceptible humans and TB vaccine efficacy simultaneously. The result
shows that a high level of vaccination rate with a corresponding high vaccine efficacy leads
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to a higher reduction in the total TB-infectious human population. This result implies that, to
effectively reduce the tuberculosis burden in the human population, a higher vaccine efficacy with
a higher rate of vaccination against the disease is required. Furthermore, this result suggests that
while vaccine development is contingent on different factors, efforts should be made to ensure
the development of vaccines with higher efficacy is highly prioritized to obtain optimum results
in preventing disease spread. Also, to attain a high vaccination rate against tuberculosis, efforts
should be made towards awareness and educational campaigns to ensure people are educated on
the need for vaccination against the deadly disease especially in the developing regions.

While vaccination is a preventive intervention against tuberculosis, several control intervention
strategies are also used in mitigating the spread of tuberculosis including but not limited to
hospitalization of infected individuals for treatment. Based on this fact, in Figure 3 we examine
the impact of the detection rate of TB infection, hospitalization rate of diagnosed TB-infectious
individuals, and recovery rate of hospitalized individuals to understand the impact of these control
interventions on mitigating TB burden in the populace. As expected, the result shows that a high
level of detection rate of TB infection, a high level of hospitalization rate of diagnosed TB-infectious
individuals, and a high level of recovery rate of hospitalized individuals due to treatment resulted
in a higher reduction in the total TB-infectious human in the populace. The result suggests
that efforts should be made to facilitate the resources in detecting TB-infectious individuals
and the hospitalization of diagnosed humans for effective treatment. This will contribute to
the reduction of tuberculosis transmission in the human population. In Figure 4, we combined
different interventions (vaccination rate of TB-susceptible humans, TB vaccine efficacy, detection
rate of TB infection, hospitalization rate of diagnosed TB-infectious individuals, and recovery
rate of hospitalized individuals) to examine the optimum impact they have on the control of
tuberculosis in the human population. The result shows that a high level of vaccination rate of
TB-susceptible humans, a high level of TB vaccine efficacy, a high level of detection rate of TB
infection, a high level of hospitalization rate of diagnosed TB-infectious individuals, and a high
level of recovery rate of hospitalized individuals due to treatment resulted into a huge reduction
in the total TB-infectious human in the populace when compared with a single intervention usage.
The overall result suggests that, by combining several intervention strategies, the TB burden can
be reduced faster and more effectively when compared to a single usage of intervention.
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Figure 2. Numerical simulation of TB model (1), illustrating the impact of varying vaccination rates ρ and
vaccine efficacy ε on the dynamics and final sizes of the total TB infectious human population. Baseline
parameter values are set as follows: ρ=Low=0.25, ρ=Medium=0.50, and ρ=High=1.00; and ε=Low=0.245,
ε=Medium=0.490, and ε=High=0.980
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Figure 3. Numerical simulations of the TB model illustrate the impact of varying levels of the detection
rate of TB infection, θ, the hospitalization rate of diagnosed TB-infected individuals, η, and the recovery
rate of hospitalized individuals, γ1, on the dynamics and final sizes of the total TB infectious human popu-
lation. Baseline parameter values are set as follows: θ=Low=0.225, θ=Medium=0.450, and θ=High=0.900;
η=Low=0.30, η=Medium=0.60, and η=High=1.20; and γ1=Low=0.005, γ1=Medium=0.01, and γ1=High=0.02
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Figure 4. Numerical simulation of TB model, illustrating the impact of varying vaccination rates ρ, vaccine
efficacy ε, TB infection detection rate θ, hospitalization rate of diagnosed TB-infected individuals η, and
recovery rate of hospitalized individuals γ1 on the dynamics and final sizes of the total TB infectious
human population. Baseline parameter values are set as follows: ρ=Low=0.25, ρ=Medium=0.50, and
ρ=High=1.00; ε=Low=0.245, ε=Medium=0.490, and ε=High=0.980; θ=Low=0.225, θ=Medium=0.450, and
θ=High=0.900; η=Low=0.30, η=Medium=0.60, and η=High=1.20; and γ1=Low=0.005, γ1=Medium=0.01,
and γ1=High=0.02

5 Conclusion

The mathematical model presented in this study investigates the dynamics of tuberculosis (TB),
considering detected, undetected, and hospitalized individuals. The numerical simulations
focus on the impact of diverse control interventions. The study evaluates the effectiveness of
vaccination as a preventive measure, highlighting the crucial role of high vaccine efficacy and
the need for increased vaccination rates, especially in developing regions. Additionally, the
investigation explores the influence of detecting infections, hospitalizing diagnosed individuals,
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and promoting recovery in the hospitalized population. The results demonstrate that higher rates
of detection, hospitalization, and recovery significantly reduce the total TB-infectious human
population. Importantly, combining multiple interventions, including vaccination, yields a more
substantial reduction compared to individual measures. The study underscores the importance of
a comprehensive strategy involving various control measures for efficient and rapid TB burden
reduction, providing valuable insights for healthcare practitioners and policymakers.
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Abstract
In this paper, we study a three-dimensional discrete-time model to describe the behavior of cancer cells
in the presence of healthy cells and HIV-infected cells. Based on the Caputo-like difference operator,
we construct the fractional-order biological system. This study’s significance lies in developing a
new approach to presenting a biological dynamical system. Since the qualitative analysis related to
existence, uniqueness, and stability is almost the same as can be found in numerous existing papers,
and comparing this study to other research, constructing a biological discrete system using the Caputo
difference operator can be particularly important. Using powerful tools of nonlinear theory such as
phase plots, bifurcation diagrams, Lyapunov exponent spectrum, and the 0-1 test, we establish that
the proposed system can exhibit different biological states, including stable, periodic, and chaotic
behaviors. Here, the route leading to chaos is period-doubling bifurcation. Furthermore, the level
of chaos in the system is quantified using C0 complexity and approximate entropy algorithms. The
stabilization or suppression of chaotic motions in the fractional-order system is presented, where
an efficient controller is designed based on the stability theory of the discrete-time fractional-order
systems. Numerical simulations are provided to validate the theoretical results derived in this research
paper.

Keywords: Fractional-order; discrete chaos; HIV-1 model; bifurcation diagram; chaos control

AMS 2020 Classification: 26A33; 34H10; 35B41; 37D45; 37G35

1 Introduction

In recent years, the modeling of infectious diseases has become an important topic that has been
studied to describe the mechanisms by which disease spreads and then to predict the future
behavior of the disease. The goal of this study is to find solutions and strategies to fight and
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control epidemics and diseases such as cancers and immunodeficiency disease [1]. Mathematical
systems can be used to design new experiments by formulating hypotheses about the spread
and dynamics of disease. In particular, nowadays, mathematical models of HIV-1 have been
extensively studied by researchers around the world to show the interactions between healthy
cells, infected cells, and cancer cells. There are many existing reviews of HIV-1 models that
describe the coexistence of HIV-infected cells with cancer cells, see [2–5]. Our contribution is to
construct a discrete fractional-order model that describes the interactions between these cells, and
then to control the constructed system via an effective fractional-order controller.
Recently, discrete-time systems have been more commonly used than continuous-time systems to
study biological and epidemiological models because discrete-time systems are easier to compute
and numerically simulate [6]. In fact, fractional calculus is a broad field in modern mathematics
that allows us to investigate and describe a new phenomenon modeled with fractional-order equa-
tions. To our best knowledge, the first idea of the fractional derivative is associated with Leibniz
when he discussed the possibility of the construction of a fractional derivative in correspondence
with Bernoulli and Wallis in 1695 [7]. Then, the complete definition of such fractional derivative
was not established until the 19th century as a result of the works of Letnikov, Grunwald, Liouville,
Riemann, etc [8]. It should be noted that Letnikov established the first exact theoretical formu-
lation of the fractional derivation. Today, many types of fractional derivatives exist, with and
without singular kernels. With singular kernels, we have the well-known fractional derivatives,
Caputo fractional derivative [9] and Riemann-Liouville fractional derivative [10]. Without singular
kernels, we have two categories: fractional derivative with the exponential kernel which is the
Caputo-Fabrizio fractional derivative [11], and fractional derivative with Mittag-Leffler kernel
which is called as Atangana-Baleanu fractional derivative [12].
Modeling biological systems with fractional derivatives becomes an important topic due to the
involvement of memory and hereditary properties in the study of the interaction between cancer
cells and HIV-infected cells [13]. The non-integer models incorporate all prior information from
the past due to the memory effect, then we can understand well the dynamics of the model and
predict the spread of the disease [14]. The topics of stability of the equilibrium points, existence
and uniqueness, positivity and boundedness of the solution in the fractional order cancer models
are discussed in detail in [15–20]. Several numerical solutions to solve fractional-order biological
systems are proposed in [21–23].
Nowadays, among several fractional derivatives that exist, the Riemann-Liouville derivative
and the Caputo derivative are the most commonly used [24]. Today, many systems in physics,
chemistry, biology, epidemiology, neurology, viscoelasticity, cryptography, cardiology, etc. have
been studied and developed using fractional calculus theory [25].
On the side of discrete dynamical systems, Diaz and Osler published in 1974 the first concept
of a fractional difference operator defined as a generalization of the binomial formula for the
nth-order difference operator ∆n [26]. Furthermore, Atici et al. introduced the fractional nabla
difference operator, which is analogous to the forward fractional difference proposed by Miller and
Ross in 1989 [27]. Then, Abdeljawad introduced the Caputo fractional delta and nabla difference
operators [28]. Recently, Abdeljawad et al. derived the delta and nabla discrete formulas for
fractional integral and derivative, adopting the binomial theorem [29].
Discrete fractional calculus allows us to study systems in biology and ecology using fractional-
order equations to get better results and understand the interactions between species. Another
advantage of this theory is the speed of calculations with high precision. Additionally, it consumes
minimal computer resources [30]. While discrete fractional calculus offers benefits such as high
flexibility and robustness, it also poses challenges related to nonlinearity and complexity when
we numerically solve a fractional-order system. Furthermore, this theory’s analytical tools have
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limitations in determining the convergence and stability of numerical schemes. Using numerical
methods and approximations to solve a fractional-order equation can lead to significant errors
[31].
Recently, there has been great interest shown in the literature on chaotic dynamical systems due
to their important applications in practice. A chaotic system is defined as a dynamical system
that displays what is called sensitive dependence on initial conditions [32]. A small change in
the initial state of a chaotic system may lead to completely different outcomes. In nonlinear
dynamical analysis, a chaotic system has at least one positive Lyapunov exponent, in which the
Lyapunov exponent is a numerical quantity that measures the rate of convergence and divergence
of neighboring trajectories in nonlinear dynamical system [33].
In the current paper, we report a 3-D discrete-time fractional-order HIV-1 model involving AIDS-
related cancer cells. This model can exhibit chaotic dynamics for some parameter values. By
employing theoretical results and numerical simulations, we can show the chaotic behavior of the
proposed system, which is a popular phenomenon in nonlinear dynamical systems. In Section 2,
basic notions related to discrete fractional calculus are introduced. In Section 3, the discrete
fractional-order system is constructed based on the Caputo-like delta difference operator. In
Section 4, the dynamics of the fractional-order system are analyzed in both commensurate and
non-commensurate fractional-order using powerful tools in nonlinear dynamic analysis such as
phase portraits, bifurcation diagrams, maximum Lyapunov exponent, dynamical maps, etc. In
Section 5, the complexity of the fractional-order system is measured by the 0-1 test, C0 complexity,
and approximate entropy algorithms. In Section 6, a suitable control scheme for stabilizing the
chaotic dynamics in the fractional-order system is constructed. In Section 7, the data analysis and
discussion have been presented. Section 8 contains the conclusions.

2 Mathematical background

In this section, we give some results of discrete fractional calculus, which helped us build this
manuscript.

Definition 1 [27] Consider the real-valued function ϕ(τ) : Nα → R with Nα = N0 + {α} =

{α, α + 1, α + 2, . . .} where α ∈ R. Let ν > 0, the νth-order fractional sum of ϕ(τ) is defined as

∆−ν
α ϕ(τ) =

1
Γ(ν)

τ−ν∑
ξ=α

(τ − ξ − 1)(ν−1)ϕ(ξ), (1)

where the falling factorial τ(ν) is expressed using the Γ-function as

τ(ν) =
Γ(τ + 1)

Γ(τ + 1 − ν)
= τ (τ − 1) . . . (τ − ν + 1) . (2)

Definition 2 [28] Let ϕ(τ) : Nα+(m−ν) → R a real-valued function and ν /∈ N, the Caputo-like discrete
fractional difference operator of ϕ(τ) is defined as

C∆ν
αϕ(τ) = ∆−(m−ν)

α ∆mϕ(τ) =
1

Γ(m − ν)

τ−(m−ν)∑
ξ=α

(τ − ξ − 1)(m−ν−1)∆m
ξ ϕ(ξ), (3)

where ν /∈ N, m = [ν] + 1 and τ ∈ Nα+(m−ν).

By adopting the following theorem, we can define the numerical solution of a discrete fractional-
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order system.

Theorem 1 [34] Given the following Caputo-type discrete initial value problem{ C∆ν
αϕ(τ) = ψ(τ + ν − 1, ϕ(τ + ν − 1)),

∆kϕ(α) = ϕk, m = [ν] + 1, k = 0, 1, 2, . . . , m − 1,
(4)

then the unique solution of problem (4) is given by

ϕ(τ) = ϕ0(τ) +
1

Γ(ν)

τ−ν∑
ξ=α+(m−ν)

(τ − ξ − 1)(ν−1)ψ(ξ + ν − 1, ϕ(ξ + ν − 1)), τ ∈ Nα+m, (5)

where

ϕ0(τ) =
m−1∑
k=0

(τ − α)(k)

Γ(k + 1)
∆kϕ(α) =

m−1∑
k=0

(τ − α)(k)

k!
∆kϕ(α). (6)

The next theorem allows us to construct a stability condition for an equilibrium point of a discrete
fractional-order system in the case of commensurate fractional order.

Theorem 2 [35] For the discrete commensurate fractional-order system

C∆ν
αS(τ) = BW(τ + ν − 1), (7)

where W(τ) = (w1(τ), w2(τ), . . . , wn(τ))
T, B ∈ Rn×n, and τ ∈ N(α−ν)+1, the zero equilibrium point

of (7) is asymptotically stable if

λj ∈
{

z0 ∈ C : |z0| <

(
2 cos

| arg z0|− π

2 − ν

)ν

and | arg z0| > ν
π

2

}
, j = 1, 2, . . . , n, (8)

where λj is an eigenvalue of the matrix B and ν ∈ (0, 1).

3 Discrete fractional-order HIV-1 model

Recently, Lou et al. [36] proposed a three-dimensional continuous-time HIV-1 system with cancer
cells related to AIDS, which is described by the following dynamics:

dC
dt = C

[
α1

(
1 − C+S+R

µ

)
− δ1S

]
,

dS
dt = S

[
α2

(
1 − C+S+R

µ

)
− ηδ1C − δ2R

]
,

dR
dt = R (δ2S − ϱ) ,

(9)

where C represents the number of cancer cells, S represents the number of healthy cells, and
R represents the number of HIV-infected cells. α1, α2, µ, δ1, δ2, η, and ϱ are constant positive
parameters. Here α1 and α2 represent the rate at which cancer cells proliferate uncontrollably and
the healthy cells’ inherent growth rate respectively, with always α1 > α2, then the cancer cells
reproduce faster than the healthy cells. δ1 represents the immune system’s capacity to eliminate
cancerous cells, δ2 represents the rate coefficient of infection, µ represents the effective carrying
capacity of the system, the rate in which cancer cells destroy immune cells is represented by η, ϱ

represents the killing impact on the infected cells.
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In order to enrich the study of the system described in (9) and to contribute to the field of modeling
using the techniques of fractional calculus, the fractional-order version of system (9) is given as
[37] 

CDν1 C(t) = C
[
α1

(
1 − C+S+R

µ

)
− δ1S

]
,

CDν2 S(t) = S
[
α2

(
1 − C+S+R

µ

)
− ηδ1C − δ2R

]
,

CDν3 R(t) = δ2SR − ϱR,

(10)

where ν1, ν2, and ν3 are the fractional-orders such that νi ∈ (0, 1) for i = 1, 2, 3, and CDν is the
Caputo fractional derivative defined in [38].

Definition 3 The Caputo fractional derivative of order ν ∈ R+ of a continuous function g(t) : [t0,+∞[→
R is defined as

CDν
t0

g(t) =
1

Γ(m − ν)

∫ t

t0

g(m)(s)
(t − s)ν+1−m ds, (11)

where t > t0, m − 1 < ν ≤ m, and m = ⌈ν⌉.

For ν1 = ν2 = ν3 = ν = 0.98 and the parameter values listed in Table 1 under the initial conditions
(C(0), S(0), R(0)) = (678, 452, 0.25), the attractor of the commensurate fractional-order system
(10) is shown in Figure 1(a). In addition, when (ν1, ν2, ν3) = (0.96, 0.97, 0.98), the attractor of the
non-commensurate fractional-order system (10) is shown in Figure 1(b).

Table 1. Parameter values of the continuous-time fractional-order system (10)

Parameter Value
α1 0.1785
α2 0.03
δ1 0.0001
δ2 0.0005
η 0.01
µ 1500
ϱ 0.3

To simplify the study, we nondimensionalize the system (9) in order to obtain the scaled system.
We set

u =
C
µ

, v =
S
µ

, w =
R
µ

, τ = α1t, (12)

where the new parameters are given by

b12 =
µδ1

α1
, b23 =

δ2µ

α1
, b22 =

ηδ1µ

α1
, b31 =

δ2µ

α1
, r =

α2

α1
, b32 =

ϱ

α1
. (13)
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(a) commensurate fractional-order (b) non-commensurate fractional-order

Figure 1. Phase portrait of the fractional-order system (10)

Hence, the nondimensionalized system can be expressed as
du
dτ = u (1 − (u + v + w))− b12uv,
dv
dτ = rv (1 − (u + v + w))− b22uv − b23vw,
dw
dτ = b31vw − b32w.

(14)

We can obtain the discrete fractional-order HIV-1 model with cancer cells related to AIDS by
substituting the fractional derivatives CDνi with the Caputo-like discrete fractional difference
operator C∆νi

α as follows

C∆ν1
α u(τ) = u(τ + ν1 − 1)(1 − (u(τ + ν1 − 1) + v(τ + ν1 − 1) + w(τ + ν1 − 1))

− b12u(τ + ν1 − 1)v(τ + ν1 − 1),
C∆ν2

α v(τ) = rv(τ + ν2 − 1) (1 − (u(τ + ν2 − 1) + v(τ + ν2 − 1) + w(τ + ν2 − 1)))

− b22u(τ + ν2 − 1)v(τ + ν2 − 1)− b23v(τ + ν2 − 1)w(τ + ν2 − 1),
C∆ν3

α w(τ) = b31v(τ + ν3 − 1)w(τ + ν3 − 1)− b32w(τ + ν3 − 1).

(15)

For simplification, we will replace u, v, and w by x, y, and z, respectively. Using Theorem 1 with
α = 0, the numerical solution of the discrete fractional-order system (15) is given by

x(n) = x(0) +
1

Γ(ν1)

n∑
s=1

Γ(n − s + ν1)

Γ(n − s + 1)
(x(s − 1)(1 − (x(s − 1) + y(s − 1) + z(s − 1)))

− b12x(s − 1)y(s − 1)),

y(n) = y(0) +
1

Γ(ν2)

n∑
s=1

Γ(n − s + ν2)

Γ(n − s + 1)
(ry(s − 1)(1 − (x(s − 1) + y(s − 1) + z(s − 1)))

− b22x(s − 1)y(s − 1)− b23y(s − 1)z(s − 1)),

z(n) = z(0) +
1

Γ(ν3)

n∑
s=1

Γ(n − s + ν3)

Γ(n − s + 1)
(b31y(s − 1)z(s − 1)− b32z(s − 1)) ,

(16)
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where x(n), y(n), and z(n) represent the number of cancer cells, healthy cells, and HIV-infected
cells respectively.b12, b22, b23, b31, b32, and r are constant positive parameters.

4 Dynamics of the fractional-order discrete system

This section focuses on the analysis of the dynamics of the discrete fractional-order HIV-1 model
with cancer cells related to AIDS (15) in both commensurate and non-commensurate fractional
orders.

Case 1. Commensurate fractional-order

Existence and stability of equilibria
In this part, we study the existence and stability of equilibria in the fractional-order system (15).
The equilibrium points of the fractional-order system (15) are the solutions of the following system
of equations: 

x (1 − (x + y + z))− b12xy = 0,
ry (1 − (x + y + z))− b22xy − b23yz = 0,
b31yz − b32z = 0.

(17)

If we assume that b22 ̸= b23, the equilibrium points of (15) are:

F0 = (0, 0, 0) , F1 = (1, 0, 0) , F2 = (0, 1, 0) , F3 =

(
0,

b32

b31
,

−3r
r + b23

)
,

F4 =

(
rb12

rb12 + b22b12 + b22
,

b22

rb12 + b22b12 + b22
, 0
)

,

F5 =

(
b31b23 − (b23b12 + rb12 + b23)b32

b31(b23 − b22)
,

b32

b31
,
(rb12 + b22b12 + b22)b32 − b31b22

b31(b23 − b22)

)
.

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, the fixed points and the
corresponding eigenvalues are shown in Table 2.

Table 2. Equilibria of the fractional-order discrete system (15)

Fixed points Eigenvalues
F0 λ1 = 1, λ2 = 3.4, λ3 = −0.04
F1 λ1 = −1, λ2 = −0.08, λ3 = −0.04
F2 λ1 = −3.4, λ2 = −1.08, λ3 = −0.03
F3 λ1 = 0.0299, λ2 = −13.6299, λ3 = −0.3288
F4 λ1 = −1.5569, λ2 = 0.039, λ3 = −0.0378
F5 λ1 = −30.4586, λ2 = 0.8061, λ3 = 0.0353

The equilibrium points F0, F3, F4, F5 have real positive eigenvalue, then the condition arg(λj) > ν π
2

is not achieved. Based on Theorem 2, the equilibrium points F0, F3, F4, and F5 are unstable. Also,
the equilibrium point F2 is unstable. We found that the corresponding eigenvalues are λ1 = −3.4,
λ2 = −1.08, λ3 = −0.03. Then we have arg(λ1) = π > ν π

2 , but any value of ν can verify

|λ1| <
(

2 cos | arg(λ1)|−π
2−ν

)ν
.

Theorem 3 The equilibrium point F1 of the fractional-order discrete system (15) is locally asymptotically
stable.
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Proof The Jacobian matrix of the system (15) evaluated at the equilibrium point (x, y, z) is given
by

J =

1 − 2x − (y + z)− b12y −(1 + b12)x −x
−(r + b22)y r(1 − (x + y + z))− ry − b22x − b23z −(r + b23)y

0 b31z b31y − b32

 . (18)

The eigenvalues of the matrix J at F1 are λ1 = −1, λ2 = −0.08, λ3 = −0.04. Using Theorem 2, the
equilibrium point F1 is asymptotically stable.

Bifurcation diagrams and maximum Lyapunov exponent

This part focuses on the investigation of the dynamics properties of the commensurate fractional-
order discrete HIV-1 model (15) and the influence of the parameters on the dynamic behavior
of system (15). Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04 and vary r in the
interval [2, 3.8] when ν = 0.4, then when ν = 0.92 under the initial conditions (x(0), y(0), z(0)) =
(0.1, 0.2, 0.25). The bifurcation diagrams of the discrete system (15) are shown in Figure 2. We
see that when ν = 0.4, the system is stable for r ∈ [2, 3.23], but when r increases, the system (15)
exhibits chaotic dynamics in the range r ∈ [3.23, 3.8]. For ν = 0.92, the dynamics of the system
are complex, and the chaotic behavior is dominated. Clearly, when r ∈ [2, 2.6], the system (15) is
periodic, but when r ∈ [2.6, 3.6], the system (15) exhibits chaotic behavior, but when r increases,
the chaotic behavior gradually disappears.

(a) for ν = 0.4 (b) for ν = 0.92

Figure 2. Bifurcation diagrams of the fractional-order system (15) as r varies

Now, we investigate the influence of the fractional order on the dynamics of the fractional-order
system (15). Figure 3 represents the bifurcation diagram of the commensurate fractional-order
discrete system (15) for the parameter values b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08,
b32 = 0.04, and r = 3.4. As can be observed, the system (15) is periodic at first, but if ν increases,
the dynamics of the system become unstable with the appearance of a chaotic state in the range
ν ∈ [0.14, 1].

We can also investigate the chaotic behavior in the system (15) by exploiting the maximum Lya-
punov exponent. It should be noted that the maximum Lyapunov exponent can be approximated
using the Jacobian matrix algorithm [39]. We set r0 = (x(0), y(0), z(0))T, the Lyapunov exponent
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Figure 3. Bifurcation diagram of the fractional-order system (15) as ν varies

is defined as

λi(r0) = lim
n→∞ 1

n
ln |λ

(n)
i |, i = 1, 2, 3, (19)

where λi (i = 1, 2, 3) are the eigenvalues of the tangent map Jn given by

Jn =

θ1(n) θ2(n) θ3(n)
θ4(n) θ5(n) θ6(n)
θ7(n) θ8(n) θ9(n)

 , (20)

where

θ1(n) = θ1(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ1(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ4(s − 1)(−x(s − 1)− b12x(s − 1))− θ7(s − 1)x(s − 1)),

θ2(n) = θ2(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ2(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ5(s − 1)(−x(s − 1)− b12x(s − 1))− θ8(s − 1)x(s − 1)),

θ3(n) = θ3(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ3(s − 1)(1 − 2x(s − 1)− y(s − 1)− z(s − 1)− b12y(s − 1))

+θ6(s − 1)(−x(s − 1)− b12x(s − 1))− θ9(s − 1)x(s − 1)),

θ4(n) = θ4(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ1(s − 1)(−ry(s − 1)− b22y(s − 1)) + θ4(s − 1)(r − rx(s − 1)

−2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1)) + θ7(s − 1)(−ry(s − 1)− b23y(s − 1)),

θ5(n) = θ5(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ2(s − 1)(−ry(s − 1)− b22y(s − 1)) + θ5(s − 1)(r − rx(s − 1)

−2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1)) + θ8(s − 1)(−ry(s − 1)− b23y(s − 1)),
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θ6(n) = θ6(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(θ3(s − 1)(−ry(s − 1)− b22y(s − 1))

+θ6(s − 1)(r − rx(s − 1)− 2ry(s − 1)− rz(s − 1)− b22x(s − 1)− b23z(s − 1))

+θ9(s − 1)(−ry(s − 1)− b23y(s − 1)),

θ7(n) = θ7(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ4(s − 1)z(s − 1) + θ7(s − 1)(b31y(s − 1)− b32),

θ8(n) = θ8(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ5(s − 1)z(s − 1) + θ8(s − 1)(b31y(s − 1)− b32),

θ9(n) = θ9(0) +
1

Γ(ν)

n∑
s=1

Γ(n − s + ν)

Γ(n − s + 1)
(b31θ6(s − 1)z(s − 1) + θ9(s − 1)(b31y(s − 1)− b32),

with θ1(0) = θ5(0) = θ9(0) = 1, θi(0) = 0 (i = 2, 3, 4, 6, 7, 8). Figure 4(a) and Figure 4(b) show
the maximum Lyapunov exponent of the fractional-order system (15) with respect to parameter
r under the parameter values b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, and the
fractional-orders ν = 0.4 and ν = 0.92 respectively. In Figure 4(a), when r ∈ [2, 3.8], we see that
the MLE is equal to zero when r ∈ [2, 3.22] and the system (15) is periodic, but when r increases,
the MLE has positive values, meaning that the discrete fractional-order system (15) transitions
from a periodic state to a chaotic state. In Figure 4(b), the MLE of the system (15) is negative at the
minimum values of r, then the system (15) is periodic. In addition, when r ∈ [2.6, 3.4], the MLE
is positive, then the system (15) is chaotic. As can be observed, when r increases, the MLE takes
positive and negative values, and then the appearance of periodic orbits in the chaotic regions
is confirmed. Now, we analyze the MLE of the discrete fractional-order system (15) when the

(a) for ν = 0.4 (b) for ν = 0.92

Figure 4. MLE spectrum of the fractional-order system (15) as r varies

fractional-order varies. Figure 5 represents the maximum Lyapunov exponent when ν ranges from
0 to 1. As can be observed, the MLE of system (15) is equal to zero when ν ∈ (0, 0.15], and then
the system (15) remains in periodic state, but when ν ≥ 0.15, the MLE is positive, and then the
system (15) exhibits chaotic behavior. The attractor of the fractional-order discrete system (15) for
various ν-values is depicted in Figure 6.
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Figure 5. MLE spectrum of the fractional-order system (15) as ν varies

Case2. Non-commensurate fractional-order

Now, we study the dynamic behavior of the system (15) in the non-commensurate fractional-order
case. Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, ν3 = 0.34,
and vary ν2 from 0 to 1. Figure 7 shows the bifurcation diagram and its corresponding MLE
spectrum. By examining the MLE and the bifurcation diagram displayed in Figure 7, we find that
the fractional-order discrete system (15) may experience two scenarios according to the values
of ν2. When ν2 ∈ [0, 0.18], the MLE is negative or equal to zero, then the state of system (15) is
periodic, but when ν2 ∈ [0.18, 0.91], the MLE is positive, then the system (15) exhibits robust
chaos across this parameter ν2 range. Finally, when ν2 > 0.91, the MLE is equal to zero once again,
meaning that the system (15) is periodic.

Now, we study the dynamics of the discrete incommensurate fractional-order system (15) when
ν1 varies. Figure 8 represents the bifurcation diagram and its corresponding MLE spectrum for
ν2 = 0.3, and ν3 = 0.4. We see that the MLE is positive when ν1 ∈ [0, 0.4], and then the system
(15) exhibits robust chaos, but when ν1 > 0.4, the chaotic state arises with the appearance of the
periodic state, as shown by the MLE’s oscillation between positive and negative values.

Moreover, to show the dynamic behavior of the non-commensurate fractional-order system (15),
we vary ν3 when ν1 = 0.5, and ν2 = 0.6. Figure 9 shows the bifurcation diagram and the MLE
spectrum of the fractional-order system (15). As we can see, at the minimum values of ν3, the
discrete non-commensurate fractional-order system (15) has a negative or zero MLE, but when ν3
increases, the MLE has strictly positive values, meaning that the system transitions from a periodic
state to a chaotic state.

To provide further clarification, the phase portrait of the non-commensurate fractional-order
system (15) is shown in Figure 10 for different values of (ν1, ν2, ν3).

5 0-1 test and complexity of the fractional-order system

Test 0-1 for Chaos

The 0-1 test is an efficient technique to detect chaos in discrete fractional-order systems. We review
the steps of this algorithm [40]. Based on the state x(n) in Eq. (16), we construct the translation
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(a) for ν = 0.12 (b) for ν = 0.24

(c) for ν = 0.36 (d) for ν = 0.75

(e) for ν = 0.89 (f) for ν = 0.96

Figure 6. Attractor of the fractional-order discrete system (15) for different values of ν

components pc and qc as follows

pc(n) =
n∑

k=1

x(k) cos(kc), qc(n) =
n∑

k=1

x(k) sin(kc), (21)
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(a) Bifurcation diagram as ν2 varies (b) The MLE spectrum as ν2 varies

Figure 7. Bifurcation and MLE spectrum diagrams for ν2

(a) Bifurcation diagram as ν1 varies (b) The MLE spectrum as ν1 varies

Figure 8. Bifurcation and MLE spectrum diagrams for ν1

where c is a random constant selected from (0, π). We can plot pc and qc to verify if the chaotic
behavior appears when the bounded motions of pc and qc imply regular dynamics, whereas the
asymptotic Brownian movement implies chaotic dynamics. Figure 11 shows the results.

C0 complexity

We can evaluate the complexity of a discrete chaotic system via the C0 algorithm. Assume that
x(j) (j = 0, 1, . . . , L − 1, where L ≥ 1 is a sequence of data selected from the discrete system (15).
The corresponding discrete Fourier transformation for this data set is given by

XL(k) =
L−1∑
j=0

x(j)exp
[
−2πijk

L

]
, (22)

where k = 0, 1, . . . , L − 1, and i is the imaginary unit. Next, the mean of XL is obtained as

ML =
1
L

L−1∑
k=0

|XL(k)|2. (23)
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(a) Bifurcation diagram as ν3 varies (b) The MLE spectrum as ν3 varies

Figure 9. Bifurcation and MLE spectrum diagrams for ν3

A control parameter υ is introduced as

X̃L(k) =
{

X(k) if |XL(k)|2 > υML,
0 if |XL(k)|2 ≤ υML.

(24)

The inverse discrete Fourier transformation of X̃L is given by

x̃(j) =
1
L

L−1∑
k=0

X̃L(k)exp[
2πijk

L
], (25)

where j = 0, 1, . . . , L − 1. Finally, the C0 complexity is defined as [41]

C0(x, υ, L) =

∑L−1
j=0 |x(j)− x̃(j)|2∑L−1

j=0 |x(j)|2
. (26)

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, ν3 = 0.34, the C0
complexity with respect to fractional-order ν2 is shown in Figure 12. As can be observed, the complexity of
the fractional-order system (15) changes as we vary ν2, which agrees well with the findings of the bifurcation
diagram and maximum Lyapunov exponent.

Approximate entropy

In the dynamical analysis of nonlinear chaotic systems, approximate entropy (ApEn) is an efficient technique
that allows us to measure the level of complexity in chaotic systems. In brief, we review the steps to
evaluate the approximate entropy for the fractional-order system (15). We select a sequence of data x(j) (j =
1, 2, . . . , N) from the system (15), then we construct a sequence of vectors µ(1), µ(2), . . . , µ(N − m + 1)
as: µ(j) = [x(j), x(j + 1), x(j + 2), . . . , x(j + m − 1)], and µ(i) = [x(i), x(i + 1), x(i + 2), . . . , x(i + m − 1)],
where m is a positive integer representing the embedding dimension. The distance between two vectors is
given by

d (µ(j), µ(i)) = max {|x(j + s − 1)− x(i + s − 1)|} , s = 1, 2, . . . , m. (27)

We take a non-negative number r and we denote by L the number of j where d (µ(j), µ(i)) ≤ r, the
approximate entropy is defined as [42]

ApEn = Λm(r)− Λm+1(r), (28)
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(a) for (ν1, ν2, ν3) = (0.3, 0.3, 0.4) (b) for (ν1, ν2, ν3) = (0.4, 0.55, 0.6)

(c) for (ν1, ν2, ν3) = (0.6, 0.96, 0.58) (d) for (ν1, ν2, ν3) = (0.4, 0.9, 0.4)

(e) for (ν1, ν2, ν3) = (0.6, 0.9, 0.4) (f) for (ν1, ν2, ν3) = (0.36, 0.98, 0.7)

Figure 10. Attractor of the non-commensurate fractional-order system (15)

where Λm(r) is determined as

Λm(r) =
1

N − m + 1

N−m+1∑
j=1

log Qm
j (r), (29)
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(a) for (ν1, ν2, ν3) = (0.3, 0.3, 0.4) (b) for (ν1, ν2, ν3) = (0.4, 0.9, 0.4)

(c) for (ν1, ν2, ν3) = (0.5, 0.5, 0.5) (d) for (ν1, ν2, ν3) = (0.5, 0.65, 0.3)

(e) for (ν1, ν2, ν3) = (0.38, 0.82, 0.6) (f) for (ν1, ν2, ν3) = (0.35, 0.98, 0.65)

Figure 11. Dynamics of the translation components pc and qc

and Qm
j (r) is given by

Qm
j (r) =

L
N − m + 1

. (30)
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Figure 12. C0 complexity of the fractional-order system (15) as ν2 varies

Fix b31 = 0.01, b22 = 0.08, b23 = 0.01, b12 = 0.08, b32 = 0.04, r = 3.4, ν1 = 0.21, and ν3 = 0.34, the
approximate entropy of the fractional-order system (15) with respect to ν2 is shown in Figure 13. As can be
observed, the approximate entropy of the system (15) changes when we vary ν2, which agrees well with the
findings derived in Section 4.

Figure 13. Approximate entropy of the fractional-order system (15) as ν2 varies
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6 Control scheme for the discrete fractional-order chaotic system

This section is devoted to the chaos control in the discrete commensurate fractional-order system (15) where
an active fractional-order controller is designed.
The fractional-order system (15) with the controller (u1, u2, u3)

T is described as

C∆ν
θ x(τ) = x(τ + ν − 1) (1 − (x(τ + ν − 1) + y(τ + ν − 1) + z(τ + ν − 1)))

− b12x(τ + ν − 1)y(τ + ν − 1) + u1(τ + ν − 1),
C∆ν

θ y(τ) = ry(τ + ν − 1) (1 − (x(τ + ν − 1) + y(τ + ν − 1) + z(τ + ν − 1)))

− b22x(τ + ν − 1)y(τ + ν − 1)− b23y(τ + ν − 1)z(τ + ν − 1) + u2(τ + ν − 1),
C∆ν

θ z(τ) = b31y(τ + ν − 1)z(τ + ν − 1)− b32z(τ + ν − 1) + u3(τ + ν − 1),

(31)

where τ ∈ N(α − ν) + 1. Our goal is to design a suitable control law that guarantees that all states of the
fractional-order system (15) converge towards zero asymptotically.

Theorem 4 The discrete fractional-order chaotic system (15) is stabilized under the following 3-D control law
u1(τ) = x(τ) (x(τ) + y(τ) + z(τ)− 2) + b12x(τ)y(τ),
u2(τ) = ry(τ) (x(τ) + y(τ) + z(τ))− 4y(τ) + b22x(τ)y(τ) + b23y(τ)z(τ),
u3(τ) = −0.96z(τ)− b31y(τ)z(τ).

(32)

Proof Substituting (32) into (31), we obtain
C∆γ

θ x(τ) = −x(τ + ν − 1),
C∆γ

θ y(τ) = (r − 4)y(τ + ν − 1),
C∆γ

θ z(τ) = −(b32 + 0.96)z(τ + ν − 1),
(33)

which can be expressed as

C∆ν
θ (x(τ), y(τ), z(τ))T = N (x(τ), y(τ), z(τ))T , (34)

where

N =

−1 0 0
0 r − 4 0
0 0 −(b32 + 0.96)

 . (35)

Then, the eigenvalues of the matrix N are λ1 = −1, λ2 = r − 4, λ3 = −(b32 + 0.96). It is easy to verify that
λj (j = 1, 2, 3) satisfy

| arg λj| = π > ν
π

2
, and |λj| <

(
2 cos

| arg λj|− π

2 − ν

)ν

, ν ∈ (0, 1). (36)

Therefore, using Theorem 2, we can conclude that the zero equilibrium of (34) is asymptotically stable.
Thus, the stabilization of the fractional-order discrete system (31) is achieved.

For numerical simulations, the parameter values are selected as b31 = 0.01, b22 = 0.08, b23 = 0.01,
b12 = 0.08, b32 = 0.04, r = 3.4, and the fractional-order as ν = 0.82, under the initial conditions
(x(0), y(0), z(0)) = (0.1, 0.2, 0.25). Figure 14 shows the time evolution of the controlled states of the
system (31). As we can see, the states x(n), y(n), and z(n) converge towards zero asymptotically. This
shows the accuracy and feasibility of the constructed control scheme.

7 Data analysis, results and discussion

We conclude our analysis using time-series plots in order to obtain a better comprehension of the pro-
posed fractional-order biological model. For the parameter values mentioned in Table 1, Figure 15(a)
and Figure 16(a) show the time evolution of cancer cells (C), healthy CD4+T lymphocyte cells (S), and
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(a) x(n) with n (b) y(n) with n

(c) z(n) with n (d) phase space

Figure 14. Evolution of the controlled states of the commensurate fractional-order system (31) for ν = 0.82
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(a) Continuous F-O model for ν1 = ν2 = ν3 = 0.69
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(b) Discrete F-O model for ν1 = ν2 = ν3 = 0.69

Figure 15. Time series of the fractional-order (F-O) models
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Table 3. The minimum and maximum numbers of biological cells in the commensurate case ν1 = ν2 = ν3 = 0.69

Biological cells
Continuous fractional-order

model (min,max)
Discrete fractional-order

model (min,max)
Average number of

biological cells
Cancer cells C (245, 678) (240, 678) 380
Healthy cells S (452, 784) (452, 787) 602
HIV-Infected (0, 37) (0, 38) 18

Cells R

HIV-infected cells (R) of the continuous fractional-order model (10) for ν1 = ν2 = ν3 = 0.69 (commensurate
fractional-order) and (ν1, ν2, ν3) = (0.91, 0.92, 0.93) (non-commensurate fractional-order), respectively,
while the time series plots obtained from the corresponding discrete fractional-order system constructed
using the Caputo-like delta difference operator are shown in Figure 15(b) and Figure 16(b), respectively.
By comparing the findings, we find that the results obtained from the continuous fractional-order system
are identical to the results of the discrete fractional system. Using the time series results, we expect the
population numbers of the three biological cells in sufficient time when the oscillations are stabilized for
commensurate and non-commensurate fractional orders. The results are shown in Table 3 and Table 4. The
average number of cell populations can help biologists collect statistical data to fight the disease.
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(a) Continuous model for (ν1, ν2, ν3) = (0.91, 0.92, 0.93)
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(b) Discrete model for (ν1, ν2, ν3) = (0.91, 0.92, 0.93)

Figure 16. Time series of the fractional-order models

Table 4. The numbers of biological cells in the non-commensurate case (ν1, ν2, ν3) = (0.91, 0.92, 0.93)

Biological cells
Continuous fractional-order

model (min,max)
Discrete fractional-order

model (min,max)
Average number of

biological cells
Cancer cells C (111, 678) (114, 678) 376
Healthy cells S (452, 907) (452, 918) 602
HIV-Infected (0, 99) (0, 110) 19

Cells R

8 Conclusion

In this paper, a 3-D discrete-time fractional-order chaotic system which is composed of cancer, healthy, and
HIV-infected cells is analyzed. We demonstrated that the biological system can exhibit chaotic behavior
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for some parameter values. The dynamical behaviors are analyzed using powerful nonlinear dynamic
analysis tools such as phase plots, bifurcation diagrams, and the maximum Lyapunov exponent, which
show that the discrete system constructed using the Caputo-like-delta difference operator has rich dynamic
behaviors. Furthermore, an efficient fractional-order controller is designed to stabilize the chaotic motions
of the discrete system states. In biological systems, chaos and bifurcation are common phenomena. The
biological implications of chaos and bifurcation in such a model involve studying population dynamics,
where bifurcation points represent critical transitions. When the parameters change, the system can shift
from a stable state to a chaotic state. Moreover, the chaotic dynamics can lead to population fluctuations,
and then the extinction risk increases. Stable equilibria in a dynamical system are essential for species
persistence, and bifurcation can lead to unstable fixed points. Thus, the transition to a chaotic state can lead
to complex and unpredictable behavior. Understanding bifurcation behavior allows us to suggest efficient
strategies to control chaotic dynamics in biological systems for the reasons stated above. Furthermore,
researchers and biologists can use these insights to explain many biologically observed HIV-cancer states,
including stable, periodic, quasiperiodic, and chaotic behaviors. Then, they can develop control techniques
for suppressing chaos in biological dynamical systems.
In the near future, we plan to work on this topic, since we believe that controlling or suppressing chaos in
fractional-order HIV-1 models involving AIDS-related cancer cells can help biologists and scientists in the
fight against AIDS and cancer.
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[18] Yapışkan, D. and Eroğlu, B.B.İ. Fractional-order brucellosis transmission model between interspecies
with a saturated incidence rate. Bulletin of Biomathematics, 2(1), 114-132, (2024). [CrossRef]

[19] Atede, A.O., Omame, A. and Inyama, S.C. A fractional order vaccination model for COVID-19
incorporating environmental transmission: a case study using Nigerian data. Bulletin of Biomathematics,
1(1), 78-110, (2023). [CrossRef]

[20] Omame, A., Onyenegecha, I.P., Raezah, A.A. and Rihan, F.A. Co-dynamics of COVID-19 and viral

https://doi.org/10.1007/s11075-017-0314-0
https://doi.org/10.1038/nrc797
https://doi.org/10.1038/nrc797
https://doi.org/10.1006/bulm.2001.0266
https://doi.org/10.1007/s11071-024-09653-1
https://doi.org/10.3390/math10101774
https://doi.org/10.3390/math9151736
http://dx.doi.org/10.12785/pfda/010201
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.1155/2022/5227503
https://doi.org/10.1016/j.chaos.2018.02.027
https://doi.org/10.53391/mmnsa.2022.01.004
https://doi.org/10.1140/epjp/s13360-020-00819-5
https://doi.org/10.1142/S1793524520500710
https://doi.org/10.59292/bulletinbiomath.2024005
https://doi.org/10.59292/bulletinbiomath.2023005


278 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 256–279

hepatitis B using a mathematical model of non-integer order: impact of vaccination. Fractal and
Fractional, 7(7), 544, (2023). [CrossRef]

[21] Nwajeri, U.K., Omame, A. and Onyenegecha, C.P. Analysis of a fractional order model for HPV and
CT co-infection. Results in Physics, 28, 104643, (2021). [CrossRef]

[22] Omame, A. and Zaman, F.D. Analytic solution of a fractional order mathematical model for tumour
with polyclonality and cell mutation. Partial Differential Equations in Applied Mathematics, 8, 100545,
(2023). [CrossRef]

[23] Munir, S., Omame, A. and Zaman, F.D. Mathematical analysis of a time-fractional coupled tumour
model using Laplace and finite Fourier transforms. Physica Scripta, 99(2), 025241, (2024). [CrossRef]

[24] Holm, M. The Theory of Discrete Fractional Calculus: Development and Application. Ph.D.
Thesis, Department of Mathematics, The University of Nebraska-Lincoln, (2011).
[https://digitalcommons.unl.edu/mathstudent/27/]

[25] Podlubny, I. Fractional Differential Equations (Vol. 198). Academic Press: San Diego, (1999).

[26] Diaz, J.B. and Osler, T.J. Differences of fractional order. Mathematics of Computation, 28(125), 185-202,
(1974). [CrossRef]

[27] Atici, F.M. and Eloe, P. Discrete fractional calculus with the nabla operator. Electronic Journal of Qualita-
tive Theory of Differential Equations, 3, 1-12, (2009). [CrossRef]

[28] Abdeljawad, T. On Riemann and Caputo fractional differences. Computers & Mathematics with Applica-
tions, 62(3), 1602-1611, (2011). [CrossRef]

[29] Abdeljawad, T., Baleanu, D., Jarad, F. and Agarwal, R.P. Fractional sums and differences with binomial
coefficients. Discrete Dynamics in Nature and Society, 2013, 104173, (2013). [CrossRef]

[30] Andreichenko, K.P., Smarun, A.B. and Andreichenko, D.K. Dynamical modelling of linear discrete-
continuous systems. Journal of Applied Mathematics and Mechanics, 64(2), 177-188, (2000). [CrossRef]

[31] Goodrich, C. and Peterson, A.C. Discrete Fractional Calculus. Springer Cham: Switzerland, (2015).
[CrossRef]

[32] Devaney, R. An Introduction to Chaotic Dynamical Systems. CRC Press: USA, (2003). [CrossRef]

[33] Strogatz, S.H. Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engi-
neering. CRC Press: USA, (2018). [CrossRef]

[34] Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Mathematical
and Computer Modelling, 52(3-4), 556-566, (2010). [CrossRef]

[35] Cermák, J., Gyori, I. and Nechvátal, L. On explicit stability conditions for a linear fractional difference
system. Fractional Calculus and Applied Analysis, 18, 651-672, (2015). [CrossRef]

[36] Lou, J., Ruggeri, T. and Tebaldi, C. Modeling cancer in HIV-1 infected individuals: equilibria, cycles
and chaotic behavior. Mathematical Biosciences and Engineering, 3(2), 313-324, (2006). [CrossRef]

[37] Naik, P.A., Owolabi, K.M., Yavuz, M. and Zu, J. Chaotic dynamics of a fractional order HIV-1 model
involving AIDS-related cancer cells. Chaos, Solitons & Fractals, 140, 110272, (2020). [CrossRef]

[38] Cafagna, D. and Grassi, G. Fractional-order systems without equilibria: the first example of hyperchaos
and its application to synchronization. Chinese Physics B, 24(8), 080502, (2015). [CrossRef]

[39] Wu, G.C. and Baleanu, D. Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional
maps. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 95-100, (2015). [CrossRef]

[40] Sun, K.H., Liu, X. and Zhu, C.X. The 0-1 test algorithm for chaos and its applications. Chinese Physics B,
19(11), 110510, (2010). [CrossRef]

[41] En-Hua, S., Zhi-Jie, C. and Fan-Ji, G. Mathematical foundation of a new complexity measure. Applied
Mathematics and Mechanics, 26, 1188-1196, (2005). [CrossRef]

[42] Pincus, S.M. Approximate entropy as a measure of system complexity. Proceedings of the National
Academy of Sciences, 88(6), 2297-2301, (1991). [CrossRef]

https://doi.org/10.3390/fractalfract7070544
https://doi.org/10.1016/j.rinp.2021.104643
https://doi.org/10.1016/j.padiff.2023.100545
http://dx.doi.org/10.1088/1402-4896/ad1cbc
https://digitalcommons.unl.edu/mathstudent/27/
https://doi.org/10.1090/S0025-5718-1974-0346352-5
https://doi.org/10.14232/ejqtde.2009.4.3
https://doi.org/10.1016/j.camwa.2011.03.036
https://doi.org/10.1155/2013/104173
https://doi.org/10.1016/S0021-8928(00)00040-X
https://doi.org/10.1007/978-3-319-25562-0
https://doi.org/10.4324/9780429502309
https://doi.org/10.1201/9780429492563
https://doi.org/10.1016/j.mcm.2010.03.055
https://doi.org/10.1515/fca-2015-0040
https://doi.org/10.3934/mbe.2006.3.313
https://doi.org/10.1016/j.chaos.2020.110272
http://dx.doi.org/10.1088/1674-1056/24/8/080502
https://doi.org/10.1016/j.cnsns.2014.06.042
http://dx.doi.org/10.1088/1674-1056/19/11/110510
https://doi.org/10.1007/BF02507729
https://doi.org/10.1073/pnas.88.6.2297


Nabil and Tayeb | 279

Mathematical Modelling and Numerical Simulation with Applications (MMNSA)
(https://dergipark.org.tr/en/pub/mmnsa)

Copyright: © 2024 by the authors. This work is licensed under a Creative Commons Attribution 4.0
(CC BY) International License. The authors retain ownership of the copyright for their article, but
they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in MMNSA,
so long as the original authors and source are credited. To see the complete license contents, please visit
(http://creativecommons.org/licenses/by/4.0/).

How to cite this article: Nabil, H. & Tayeb, H. (2024). A three-dimensional discrete fractional-order HIV-1
model related to cancer cells, dynamical analysis and chaos control. Mathematical Modelling and Numerical
Simulation with Applications, 4(3), 256-279. https://doi.org/10.53391/mmnsa.1484994

https://dergipark.org.tr/en/pub/mmnsa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/.


Mathematical Modelling and Numerical Simulation
with Applications, 2024, 4(3), 280–295

https://dergipark.org.tr/en/pub/mmnsa
ISSN Online: 2791-8564 / Open Access
https://doi.org/10.53391/mmnsa.1503948

R E S E A R C H PA P E R

Mathematical model for IP3 dependent calcium oscillations
and mitochondrial associate membranes in non-excitable
cells

Neeraj Manhas ID 1,*,‡

1Department of Mathematics, National Institute of Technology Raipur, Chhattisgarh, 492010, India
* Corresponding Author
‡ nmanhas.maths@nitrr.ac.in (Neeraj Manhas)

Abstract

Theoretical studies on calcium oscillations within the cytosolic [Ca2+], and mitochondria [Ca2+]mit
have been conducted using a mathematical model-based approach. The model incorporates the
mechanism of calcium-induced calcium release (CICR) through the activation of inositol-trisphosphate
receptors (IPR), with a focus on the endoplasmic reticulum (ER) as an internal calcium store. The
production of 1,4,5 inositol-trisphosphate (IP3) through the phospholipase C isoforms and its degrada-
tion via Ca2+ are considered, with IP3 playing a crucial role in modulating calcium release from the
ER. The model includes a simple kinetic mechanism for mitochondrial calcium uptake, release and
physical connections between the ER and mitochondria, known as mitochondrial associate membrane
complexes (MAMs), which influence cellular calcium homeostasis. Bifurcation analysis is used to
explore the different dynamic properties of the model, identifying various regimes of oscillatory
behavior and how these regimes change in response to different levels of stimulation, highlighting the
complex regulatory mechanisms governing intracellular calcium signaling.

Keywords: Mitochondria-associated membranes; Hopf bifurcation; periodic doubling bifurcation;
calcium oscillation

AMS 2020 Classification: 34C23; 92B99; 92-10

1 Introduction

Calcium (Ca2+) contributes to the vast array of various physiology and pathophysiology. The
extremely rapid increase in cytosolic Ca2+ leads to a multitude of cellular responses, such as release
of neurotransmitters, muscle contraction, gene transcription, and cell proliferation [1–4]. Although
the fluctuations observed in cytoplasmic Ca2+ provided valuable insights into the complexity of
Ca2+ signaling. However, the toolkit involved in these regulations has a very fine control over its
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components. However, non-excitable cells exhibit Ca2+ oscillations of different frequencies and
amplitudes on hormone stimulation [5–7]. These Ca2+ oscillations are meticulously controlled by
a network of receptors, pumps, exchangers, Ca2+-ATPase, etc. The ER has IPR on its membrane.
They released Ca2+ on activation. Intracellular IP3 binds to IPR with Ca2+ as a co-agonist and
opens them. Active IPR mediates the CICR process that enhances cytosolic Ca2+. Physiologically
low Ca2+ concentrations are required for cell function. Thus, Ca2+ is quickly pumped back into
the ER lumen through Ca2+ ATPase pumps from the sarco / endoplasmic reticulum (SERCA). It
is also sent to the extracellular medium by Ca2+ ATPase pumps (PMCA). Mitochondria uptakes
Ca2+ via uniporter (MCU). It releases Ca2+ into the cytosol via the Na+/Ca2+ exchanger (NCX).
Moreover, the direct flow of Ca2+ ions occurs from the ER to the mitochondria through MAMs
[8, 9].

Mathematical models are powerful tools for advancing scientific knowledge. However, models
have an attractive ability to make experimentally testable predictions. In the field of Ca2+ dy-
namics, researchers develop foundational models based on the available data, facilitating Ca2+

dynamics within cells. Initially, models were built that have the capability to produce Ca2+ os-
cillations at constant IP3. For example: to understand rhythmic Ca2+ fluctuations, a one-pool
model is developed. It includes IPR activation both by Ca2+ and constant IP3 [10]. Atri et al. [11]
constructed a biphasic form of the IPR channel, which produces Ca2+ oscillation at constant IP3.
Few advanced models of this kind are seen here [12–14]. However, several models pointed out
that the activation of IP3 metabolism by Ca2+ could lead to oscillations in IP3. These models
helped to clarify how changes in Ca2+ levels might affect the dynamics of IP3 and cause cells to
oscillate. Models of these types are shown here [15, 16]. Furthermore, theoretically, the modelling
approaches show that Ca2+ oscillations occur in different types of cells: like acinar cells [17–20],
hepatocytes [21–23], oocytes [24–26], cardiac myocytes [27–29], neuron [30, 31], fibroblast [32], etc.
Regardless of the cell type, mitochondria are necessary for cells to survive [33–35]. Specialized
subdomains or MAM, exist in the ER closest to mitochondria. It facilitates the entry of Ca2+ ions
and lipids into the mitochondria. The physical connection between mitochondria and the ER is
quantitatively investigated here [36]. Marhl et al., [37] model served as the framework for that one.
It is assumed that MCU perceives Ca2+ are thought to be the MAM and the cytosol. Moreover,
Moshkforoush et al., [38] Wacquier et al., [39], and Han and Periwal [40] developed models
demonstrating Ca2+ dynamics oscillations are influenced by ER mitochondrial micro-domains.

However, this article proposes a class II mathematical model for the Ca2+ exchange between
the cytosol and mitochondria. Experiments with exchangers, uniporters, pumps, Ca2+ ATPase,
IP3 dynamics, and IPR validate the model’s major components. The goal of this research is
to understand the role of MAMs in non-excitable cells. The deterministic modeling technique
utilized in this study gives information on the complex Ca2+ flow via MAMs and other Ca2+

compartments such as the cytosol, ER, and mitochondria, as well as how these routes influence
the Ca2+ response of each compartment individually. In short, modeling the physiology of non-
excitable cells is an effective tool for understanding the relationships outlined above. This study is
useful because it provides a comprehensive description of Ca2+ signaling in non-excitable cells
such as pancreatic acinar cells, hepatocytes, vascular endothelial cells, etc. Overall, this study
seeks to analyze the experimental patterns anticipated by the predictions, revealing the process
by which agonist concentration turns fundamental rhythmic patterns into complex oscillatory
patterns.

The format for the rest of the paper’s body is as follows: Following the introduction in Section 1,
Section 2 covers the Ca2+ toolkit’s primary components and describes how to construct the model
and create the mathematical equations. Section 3 presents the model’s numerical analysis and
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outcomes once it has been developed. The argument, conclusions drawn from the model’s results,
and any potential repercussions are then covered in Section 4.

2 The mathematical model of the problem

This paradigm explains Ca2+ release mechanisms in the cytosol, endoplasmic reticulum, and
mitochondria, using symbols [Ca2+], [Ca2+]er, and [Ca2+]mit. It considers fast Ca2+ absorption,
mitochondrial release, IP3 generation, degradation, fluxes, leaks, and direct Ca2+ exchange from
the ER to mitochondria. Then the nonlinear kinetic equations are shown as follows:

d[Ca2+]

dt
= (JIPR + JER)− JSERCA + δ(JIN − JPM) + JNCX − JMCU − JRaM,

d[Ca2+]er

dt
= γ(−(JIPR + JER) + JSERCA − JMAM), (1)

d[IP3]

dt
= JIP3 prod − JIP3deg,

d[Ca2+]mit
dt

= τ(JMCU + JRaM − JNCX + JMAM).

In this model, δ controls the overall calcium flow via plasma membrane, cytoplasm volume to
ER volume ratio is γ, and mitochondria volume to cytoplasm volume is τ. The model is solved
numerically and analyzed using AUTO [41] and MATLAB 2021b. Also, all the parameters’ values
are shown in Table 1.

The IPR

The IPR is divided into six states: resting (R), activated (A), shut (S), open (O), and two inactivated
(I1), and (I2) states. There are four components that make up the IPR. Two binding sites for Ca2+

activation, one for Ca2+ inactivation, and one for IP3 are present in each subunit. Ca2+ and IP3
mediate the shift between these states. Consequently, the model equations provided for all states
are given below. A thorough explanation of the model is here [42]

dR
dt

= ϕ−2O − ϕ2[IP3]R + (k−1 + l−2)I1 − ϕ1R,

dO
dt

= ϕ2[IP3]R − (ϕ−2 + ϕ4 + ϕ3)O + ϕ−4 A + k−3S,

dA
dt

= ϕ4O − ϕ−4 A − ϕ5 A + (k−1 + l−2)I2, (2)

dI1

dt
= ϕ1R − (k−1 + l−2)I1,

dI2

dt
= ϕ5 A − (k−1 + l−2)I2.

Here, R, O, A, I1, I2 denotes the fraction of receptors in the respective states, and R + S + O + A +

I1 + I2 = 1. All ϕ’s that are the functions of [Ca2+] are as follows:

ϕ1[Ca2+] =
(k1L1 + l2)[Ca2+]

L1 + [Ca2+](1 + L1
L3
)

,

ϕ2[Ca2+] =
k2L3 + l4[Ca2+]

L3 + [Ca2+](1 + L3
L1
)

,
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ϕ−2[Ca2+] =
k−2 + l−4[Ca2+]

(1 + Ca2+

L5
)

,

ϕ3[Ca2+] =
k3L5

L5 + [Ca2+]
, (3)

ϕ4[Ca2+] =
(k4L5 + l6)[Ca2+]

L5 + [Ca2+]
,

ϕ−4[Ca2+] =
L1(k−4 + l−6)

L1 + [Ca2+]
,

ϕ5[Ca2+] =
(k1L1 + l2)[Ca2+]

L1 + [Ca2+]
.

The open probability of the IPR is taken to be PIPR = (0.1O + 0.9A)4, thus, the calcium flux from
the IPR is given as:

JIPR = kIPRPIPR([Ca2+]er − [Ca2+]). (4)

The SERCA pump and Ca2+ ATPase pump (PMCA)

Calcium enters the ER via the SERCA pump, with the quasi-hill form model representing the
pump flux, influenced by the ER’s calcium content [43]

JSERCA = VSERCA
[Ca2+]

KSERCA + [Ca2+]
× 1

[Ca2+]er
. (5)

Here, VSERCA, KSERCA are the maximum permeability and half saturation constant of the SERCA
pump, respectively. Ca2+ is moved from the cytosol to the extracellular medium by the PMCA.
As a result, the flow from the cytosol to the extracellular pool is expressed as (4):

JPM = VPM
[Ca2+]2

K2
PM + [Ca2+]2

. (6)

Here, VPM is the permeability of the PMCA, and the KPM is a half-saturation constant. When
calcium reaches the cytosol, the intracellular calcium is altered. The JIN is modeled as a function of
increasing agonist concentration, with agonist-dependent inflow (α2VPLC) and constant leak (α1)

JIN = α1 + α2vPLC. (7)

Calcium leakage from the ER to the cytoplasmic JER is directly linked to the variation in calcium
concentrations.

The IP3 dynamics

PLC, whose activity is influenced by Ca2+ and agonist dosage, produces IP3. The expression
for the phospholipase C isoform production, also known as PLCβ, and its Ca2+ sensitivity is as
follows [44]

JIP3 prod = VPLC
[Ca2+]2

K2
PLC + [Ca2+]2

. (8)
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In this case, KPLC represents the sensitivity of PLC to calcium, while VPLC indicates the maximum
synthesis rate of PLC isoforms. Next, the following kinetic equation for IP3 degradation modulated
by [Ca2+] is given as

JIP3deg = kdeg

(
[Ca2+]2

K2
deg + [Ca2+]2

)
[IP3], (9)

where Kdeg is the IP3 half saturation constant, and kdeg describes the phosphorylation rate. The
rate of variation of the cytosolic concentration of (IP3) is therefore given as

d[IP3]

dt
= JIP3 prod − JIP3deg. (10)

The mitochondrial uptake and release

The exchange of Ca2+ between the cytosol and mitochondria occurs as the mitochondria absorb
Ca2+. The equation is as follows

JMCU = kmcu
[Ca2+]2

K2
mcu + [Ca2+]2

. (11)

The Kmcu is a half-activation constant, while the maximal permeability is kmcu. The fast mode also
removes Ca2+ from the cytosol, therefore this exchange is provided by

JRaM = kRaM
[Ca2+]8

K8
RaM + [Ca2+]8

. (12)

Here kRaM is the maximal permeability, and KRaM, is the half-activation constant for the rapid
mode.

The Na+/Ca2+ exchanger

Within the mitochondria, the Na+/Ca2+ exchanger facilitates the gradual release of Ca2+. The
exchanger for it is provided as

JNCX = vNCX
[Na+]3cyto

k3
Na + [Na+]3cyto

[Ca2+]mit

kNCX + [Ca2+]mit
. (13)

The Na+/Ca2+ exchanger’s activation constants are kNa and kNCX, with the cytosolic Na+ con-
centration being [Na+]cyto, and its maximal activity being VNCX.

Mitochondrial-Associated Membranes (MAMs)

The ER and mitochondria are physically connected to form stanch structural domains known as
mitochondria-associated ER membranes. It participates in fundamental biological Ca2+ home-
ostasis processes. Further, the evidence is, that there is a physical contact between ER Ca2+ release
sites and mitochondrial Ca2+ uptake sites [45]. Thus, the Ca2+ flux from ER to mitochondria
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directly is given by

JMAM = kMAM1

[Ca2+]2er

K2
MAM1

+ [Ca2+]2er
+ kMAM2

[Ca2+]8er

K8
MAM2

+ [Ca2+]8er
, (14)

where kMAM1 , kMAM2 are the maximal permeability and KMAM1 , KMAM2 are the half-activation
constants for the JMAM fluxes.

3 Results: model analysis

Nonlinear differential Eqs. (1)-(2) in the system determine the dynamic behavior of the model
and solve the system of equations numerically. A partial bifurcation analysis of the model is also
carried out. The maximum PLC isoform synthesis rate is represented by the parameter VPLC. This
parameter, thus, serves as the model’s bifurcation parameter.
The bifurcation diagram for [Ca2+] in Figure 1 illustrates how VPLC affects this. In this case, HB1
and HB2 represent the two Hopf Bifurcations. The stable periodic orbits are shown by dark black
lines, and the unstable ones are shown by dark blue lines. Period doubling bifurcation point is
depicted by PDs. TRs is an acronym for the tour’s split point. The inset shows the period of
oscillations. Steady-state stability decreases as VPLC rises. The steady state, for positive VPLC
values ≈ 2.344 to 34.4 µM/s, contains two Hopf bifurcation points: right-most Hopf bifurcation
(HB2) and left-most Hopf bifurcation (HB1). Hopf bifurcation arises when the steady state changes
the stability. It causes the appearance or disappearance of a periodic orbit.

Figure 1. The maximum values of the periodic orbits with respect to VPLC are shown on the bifurcation diagram

Thus, the model enables oscillations between two VPLC values, with stable and unstable periodic
oscillations. The steady state is the saddling node type. The stable branch b1 starts at HB2 at VPLC
= 34.4 µM/s and ends at PD1 at VPLC ≈ 9.449 µM/s, with oscillation periods ranging from 2.465
to 6.526 seconds.
Beginning at PD6, the tiny stable branch b3 stops at the point TR1 VPLC ≈ 3.267µM/s. The
oscillation period of this little branch is 6.526 to 6.245 seconds. After that, the new unstable branch
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Figure 2. The bifurcation diagram of [Ca2+]mit as a function of VPLC

b4 blue line begins at tour point TR1 (3.267 µM/s) and finishes at TR2 VPLC ≈ 2.777µM/s. In this
branch, oscillations occur approximately 6.245 to 5.447 seconds. Next, a little, stable branch called
b5 (a solid black line) emerged from TR2 and ended close to HB1. On this branch, the oscillation
period varies from approximately 5.853 to 5.447 seconds.
Starting at PD1 and ending at PD2, the new stable branch has a VPLC of roughly 13.05µM/s. At
PD5, at VPLC ≈ 3.854 µM/s, the elongation from PD2 (branch b7) comes to a halt. At VPLC ≈ 8.966
µM/s, branch b7 has the PD3. Starting at PD3, the branch b8 ends at PD5. This branch oscillates
at a period of roughly 26.07 to 26.11 seconds. The unstable branch b9 ends near PD5 and starts at
VPLC ≈ 8.816µM/s, originating from PD4. The oscillation period of this branch is 51.98 to 52.21
seconds.
Figure 2 displays the bifurcation diagram that forecasts how VPLC will affect [Ca2+]mit. The dotted
black lines are unstable equilibrium. The solid black lines represent the stable periodic orbits and
dark blue lines represent the unstable periodic orbits. The PDs are the period-doubling bifurcation
points. TRs represents the tours bifurcation point. Bifurcation points such as the Hopf bifurcation,
period doubling, and Tours points happen at the same VPLC values as they do in Figure 1. As a
result, both the stable and unstable branches in Figure 1 and Figure 2 correspond to oscillations
whose period and amplitude fall within a scientifically meaningful range. The function of VPLC
drives these complex dynamics both in cytosol and mitochondria. It should be mentioned that
IP3 fluctuations in this scenario are the cause of the [Ca2+] oscillations, that lead to [Ca2+]mit
oscillations.
Ca2+ oscillations are more than just a biological curiosity; they have a substantial impact on
cell function. Calcium signals indicate how cells can encode information in the frequency and
amplitude of oscillations generated by their oscillatory nature. Thus, it is important to understand
the dynamics of time series. Following that, the next several values of VPLC are displayed along
with the distinct dynamic profiles of [Ca2+], [Ca2+]mit, and [IP3] oscillations.
The time series is periodic at PD3, VPLC ≈ 8.853µM, with a period of 26.01 seconds. Figure 3A,
Figure 3C illustrates the oscillation of the [Ca2+] and [Ca2+]mit time series, which exhibit four
spikes in total: two large and two minor spikes. Furthermore, the [IP3] profile is displayed in
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Figure 3. The time series profiles of [Ca2+], [IP3], and [Ca2+]mit at VPLC = 8.853µM/s, and VPLC = 7µM/s, are
shown in Panels A, B, and C and Panels D, E, F, respectively

Figure 3B. Three distinct attractors can be found in phase space at VPLC ≈ 8.853µM, When the
stable periodic orbits reach the period-doubling bifurcation PD3, a powerful attractor is created.
Additionally, there are two additional period doubling bifurcations (PD2 and PD4) that form
complex attractors close to PD3. Consequently, there are variations in the amplitudes of the
oscillations in [IP3], [Ca2+], and [Ca2+]mit and. Figure 1 illustrates how it results from the merger
of various attractors in the phase plane. Moreover, branch b7 exhibits a two-peak oscillation of
[Ca2+] at VPLC = 7µM, with a huge spike coming first, and a smaller spike following, as depicted
in Panel D. In addition, the [Ca2+]mit oscillates, showing two peaks in Panel F. Panel E displays
the [IP3] pattern.
The predicted time series for [Ca2+] and [Ca2+]mit exhibit two abrupt spikes with different small
amplitudes at PD6, VPLC = 3.819 µM/s, as illustrated in Figure 4A and Figure 4C, respectively.
The unstable periodic orbits that merge into the stable periodic orbits, as seen in Figure 1 and
Figure 2, complicate the [Ca2+] profile. Moreover, two bifurcation points PD5 and TR1 (torus
point) exit near the PD6 area, which results in complex oscillations. TR1 occurs at VPLC = 3.267µM.
Figure 4D illustrates the smaller oscillations of [Ca2+] and [Ca2+]mit having multiple large and
small fluctuations having periods of around 6.245 seconds, respectively. When comparing the
Ca2+ profile in Figure 4E with Figure 4A, the Ca2+ oscillates with less amplitude.
Furthermore, steady oscillations develop when VPLC is increased (see branch b1 of Figure 1 and
Figure 2). When compared to unstable oscillations, stable oscillations have amplitudes that are
comparable. Figure 5A and Figure 5C show that the [Ca2+] and [Ca2+]mit oscillate with significant
amplitudes and identical spikes at VPLC = 20µM. Similar amplitude spikes are also shown in
Figure 5B of the [IP3]. Comparing Figure 5 panels Figure 5D, Figure 5E, and Figure 5F with
Figure 5A, Figure 5B, and Figure 5C for [Ca2+], [IP3], and [Ca2+]mit oscillations, respectively,
reveals sinusoidal oscillations at VPLC = 30µM, but the oscillations are also stable at this point.
Approximately 2.5 seconds make up the oscillation period. Calcium oscillations with varying
amplitudes at smaller frequencies are predicted by the model to be observed when VPLC is modest.
Higher VPLC causes higher frequency oscillations. The oscillations in the [IP3] concentration
are by Ca2+ induced IP3 production and degradation. However, the IP3 plays a key role in the
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Figure 4. Qualitative oscillation behavior at different agonist concentrations, presenting time series profiles of
[Ca2+], [IP3], and [Ca2+]mit at VPLC = 3.819 µM/s (Panels A, B, C) and 3.267 µM/s, (Panels D, E, F), respectively

Figure 5. Numerical integration of agonist VPLC at different concentrations, displaying time series profiles of
[Ca2+], [IP3], and [Ca2+]mit at 20µM/s (Panels A, B, and C) and 30µM/s (D, E, and F)

modulation of [Ca2+] oscillations.

4 Discussion and conclusions

The goal of this study is to comprehend sophisticated Ca2+ oscillations in the mitochondria and
the cytoplasm. Agonist stimulations that cause CICR through IPR entrenched in the ER membrane
elicit the calcium transients. Consideration is given to the cytosolic IP3 synthesis by PLC and
its degradation by Ca2+. Through uniporters and the rapid mode mechanism, Ca2+ is swiftly
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Table 1. Parameter values used in the model taken from [17, 18, 20, 46]

IPR Parameters values
k1 0.64 (µM)−1s−1 k−1 0.04 s−1 l2 1.7 s−1

k2 37.4 (µM)−1s−1 k−2 1.4 s−1 l4 1.7 s−1(µM)−1

k3 0.11 (µM)−1s−1 k−3 29.8 s−1 l6 4707 s−1

k4 4.0 s−1(µM)−1 k−4 0.54 s−1 L1 0.12 µM
L3 0.025 (µM) L5 54.7 µM
IP3 Parameters values
KPLC 0.2 µM kdeg 0.5 s−1 Kdeg 0.1 µM
Calcium Parameters
kIPR 0.71 s−1 JER 0.002 s−1 δ 0.1
γ 5.405 τ 1.64 VSERCA 120 (µM)−2s−1

KSERCA 0.18 µM VPM 28 µMs−1 KPM 0.425 µM
α1 0.2 (µM)s−1 α2 0.05 s−1

Mitochondrial Parameters
kmcu 15 (µM)s−1 Kmcu 20 µM kRaM 30 (µM)s−1

KRaM 0.8 µM VNCX 60 (µM)−1s−1 KNCX 35 µM
KNa 9.4 µM [Na+]cyto 10 µM kMaM1 0.03 (µM)s−1

KMaM1 20 µM kMaM2 0.12 (µM)s−1 KMaM2 1.8 µM

taken up by mitochondria and released slowly via an exchanger back into the cytosol. Cellular
organelles, including mitochondria and ER, play distinct biological roles, physically forming
MAMs and not being isolated entities, despite evidence suggesting otherwise [9]. MAMs are a
dynamic interface that connects the outer mitochondrial membrane (OMM), the ER subdomain,
and several proteins, serving as a link between the ER and mitochondria [47]. It helps the material
and information flow between the ER and the mitochondria including Ca2+ ions [45]. Thus,
a straightforward but reliable mathematical model is developed to comprehend the intricacy
of Ca2+ dynamics, which includes direct Ca2+ flow from the ER to the mitochondria, pumps,
standard Ca2+ fluxes, and the IP3 metabolism that is associated IPR controls over activation and
inactivation.

The bifurcation analysis is performed on the constructed model. The bifurcation analysis reveals
the dynamical structures, that govern the oscillations (Figure 1). The existence of such unstable
oscillations holds the fact that they exist for very small regions (blue dark lines) as shown in
Figure 1 and Figure 2. The stable Ca2+ oscillations exist for large regions (black dark lines)
discussed above in Figure 1 and Figure 2. As predicted the model shows transient from simple to
complex Ca2+ oscillations. The model suggests that even at low levels of stimulation, the Ca2+

response may exhibit erratic spikes. The Ca2+ oscillations remain at high frequency and low
amplitude even at large agonist dosages (Figure 2, Figure 3, Figure 4, Figure 5). Moreover, the
correlation between agonist and oscillations period indicates that the period sharply decreases as
stimulus concentration rises (see the inset in Figure 1). It is also observed that when the model is
simulated without MAMs and mitochondrial dynamics. Bifurcation’s dynamical structure ([Ca2+]
vs. VPLC) differs significantly (results not shown). With few stable and unstable branches, the
oscillations happen in the VPLC border range. These oscillations have large amplitudes. The
bifurcation diagram ([Ca2+] vs. VPLC) exhibits a complex dynamical structure with more unstable
and stable branches in relation to mitochondrial uptakes, releases, and MAM inclusions. The
structure is particularly challenging because of the cascade of PDs and TR bifurcations. The
dynamical structures are like these models [20, 36, 37, 48–50].

Nevertheless, by emphasizing ER-cytosolic exchange, SERCA pump, PMAC, external intakes as
well as mitochondrial uptake, release, and MAMs, this work explains calcium oscillations in non-
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excitable cells. Likewise, it addresses mixed IP3 metabolism that generates a range of morphologies,
such as baseline spikes, transient, sinusoidal, and simple to complex oscillations with low to high
periods and frequencies. Therefore, here findings are in keeping with previous experimental
research showing that agonists like acetylcholine (Ach), and vasopressin (VP) delivery lead in high
frequency, sinusoidal baseline spikes, while cholecystokinin (cch), phenylephrine (PE) application
results in low-frequency baseline spikes [5–7].
This model has few limitations. Here, we tried to develop a simple mathematical model that shows
Ca2+ dynamics physiologically accurate. This model is a well-mixed type, and the concentration
of each species is homogeneous throughout. However, the Ca2+ dynamics in non-excitable cells
vary with space and time both. Thus, this model is limited to show the propagating of Ca2+ waves
from one region to another region of the cells. Also, to investigate Ca2+ patterns through MAMs
in the non-excitable cells; we use the direct Ca2+ passage from the ER to the mitochondria. The
more accurate model is to consider the microdomains near the connecting sights of the ER and
the mitochondria. However, in the future, we will construct such kinds of models. This model is
deterministic in nature. It does not provide any information regarding the stochastic aspects of
Ca2+ dynamics in the non-excitable cells.
Cell viability is dependent on the production of ATP via mitochondrial oxidative phosphorylation
[51]. Moreover, the sustained rise of [Ca2+] is shown to cause oxidative stress leading to the
generation of excess ROS [52–56]. ROS are generated as byproducts of normal cellular respiration,
particularly during the electron transport chain in the mitochondria. During the electron transport
chain (ETC), electrons are transferred through Complex I, II, and III, and molecular oxygen O2
serves as the final electron acceptor. Sometimes, during this process, some electrons can prema-
turely interact with O2, leading to the formation of ROS. ROS includes molecules like superoxide
radicals (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Few mathematical
models to understand these mechanisms are seen here [57–61]. Thus, it is important to understand
the crosstalk between MAMs and ROS in non-excitable cells. But it is the avenue of future work.
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[46] Szopa, P., Dyzma, M. and Kaźmierczak, B. Membrane associated complexes in calcium
dynamics modelling. Physical Biology, 10(3), 035004, (2013). [CrossRef]

[47] Li, X., Zhang, S., Liu, X., Wang, X., Zhou, A. and Liu, P. Important role of MAMs in bifurcation
and coherence resonance of calcium oscillations. Chaos, Solitons & Fractals, 106, 131-140, (2018).

https://doi.org/10.59292/bulletinbiomath.2023002
 https://doi.org/10.1038/sj.embor.7400620
https://doi.org/10.1007/s00441-003-0741-1
https://doi.org/10.1093/emboj/18.18.4999
https://doi.org/10.1051/mmnp/20127608
https://doi.org/10.1016/S0301-4622(97)00139-7
https://doi.org/10.1038/s41598-019-53440-7
https://doi.org/10.1038/srep19316
https://doi.org/10.1371/journal.pcbi.1006661
https://doi.org/10.1073/pnas.032281999
https://doi.org/10.1529/biophysj.104.047357
https://doi.org/10.1529/biophysj.105.072249
https://doi.org/10.1016/j.molcel.2010.06.029
https://doi.org/10.1088/1478-3975/10/3/035004


294 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 280–295

[CrossRef]

[48] Cloete, I., Bartlett, P.J., Kirk, V., Thomas, A.P. and Sneyd, J. Dual mechanisms of Ca2+ oscilla-
tions in hepatocytes. Journal of Theoretical Biology, 503, 110390, (2020). [CrossRef]

[49] Ventura, A.C. and Sneyd, J. Calcium oscillations and waves generated by multiple release
mechanisms in pancreatic acinar cells. Bulletin of Mathematical Biology, 68, 2205-2231, (2006).
[CrossRef]

[50] LeBeau, A.P., Yule, D.I., Groblewski, G.E. and Sneyd, J. Agonist-dependent phosphorylation
of the inositol 1, 4, 5-trisphosphate receptor: a possible mechanism for agonist-specific calcium
oscillations in pancreatic acinar cells. The Journal of General Physiology, 113(6), 851-872, (1999).
[CrossRef]

[51] Heiske, M., Letellier, T. and Klipp, E. Comprehensive mathematical model of oxidative
phosphorylation valid for physiological and pathological conditions. The FEBS Journal, 284(17),
2802-2828, (2017). [CrossRef]

[52] Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. and Dong, W. ROS and ROS-mediated
cellular signaling. Oxidative Medicine and Cellular Longevity, 2016, 4350965, (2016). [CrossRef]

[53] Murphy, M.P. How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1),
1-13, (2009). [CrossRef]

[54] Criddle, D.N. Reactive oxygen species, Ca2+ stores and acute pancreatitis; a step closer to
therapy?. Cell Calcium, 60(3), 180-189, (2016). [CrossRef]

[55] Chouchani, E.T., Pell, V.R., James, A.M., Work, L.M., Saeb-Parsy, K., Frezza, C. et al. A
unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion
injury. Cell Metabolism, 23(2), 254-263, (2016). [CrossRef]

[56] Mazat, J.P., Devin, A. and Ransac, S. Modelling mitochondrial ROS production by the respira-
tory chain. Cellular and Molecular Life Sciences, 77, 455-465, (2020). [CrossRef]

[57] Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., Treberg, J.R., Ackrell, B.A. and Brand, M.D.
Mitochondrial complex II can generate reactive oxygen species at high rates in both the
forward and reverse reactions. Journal of Biological Chemistry, 287(32), 27255-27264, (2012).
[CrossRef]

[58] Duong, Q.V., Levitsky, Y., Dessinger, M.J., Strubbe-Rivera, J.O. and Bazil, J.N. Identifying
site-specific superoxide and hydrogen peroxide production rates from the mitochondrial
electron transport system using a computational strategy. Function, 2(6), zqab050, (2021).
[CrossRef]

[59] Manhas, N., Duong, Q.V., Lee, P., Richardson, J.D., Robertson, J.D., Moxley, M.A. and Bazil,
J.N. Computationally modeling mammalian succinate dehydrogenase kinetics identifies the
origins and primary determinants of ROS production. Journal of Biological Chemistry, 295(45),
15262-15279, (2020). [CrossRef]

[60] Manhas, N., Duong, Q.V., Lee, P. and Bazil, J.N. Analysis of mammalian succinate dehydro-
genase kinetics and reactive oxygen species production. bioRxiv, 870501, (2019). [CrossRef]

[61] Chenna, S., Koopman, W.J., Prehn, J.H. and Connolly, N.M. Mechanisms and mathematical
modeling of ROS production by the mitochondrial electron transport chain. American Journal
of Physiology-Cell Physiology, 323(1), C69-C83, (2022). [CrossRef]

https://doi.org/10.1016/j.chaos.2017.11.018
https://doi.org/10.1016/j.jtbi.2020.110390
 https://doi.org/10.1007/s11538-006-9101-0
https://doi.org/10.1085/jgp.113.6.851
https://doi.org/10.1111/febs.14151
https://doi.org/10.1155/2016/4350965
https://doi.org/10.1042/BJ20081386
https://doi.org/10.1016/j.ceca.2016.04.007
https://doi.org/10.1016/j.cmet.2015.12.009
https://doi.org/10.1007/s00018-019-03381-1
https://doi.org/10.1074/jbc.M112.374629
https://doi.org/10.1093/function/zqab050
https://doi.org/10.1074/jbc.RA120.014483
https://doi.org/10.1101/870501
https://doi.org/10.1152/ajpcell.00455.2021


Neeraj Manhas | 295

Mathematical Modelling and Numerical Simulation with Applications (MMNSA)
(https://dergipark.org.tr/en/pub/mmnsa)

Copyright: © 2024 by the authors. This work is licensed under a Creative Commons Attribution
4.0 (CC BY) International License. The authors retain ownership of the copyright for their article,
but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in
MMNSA, so long as the original authors and source are credited. To see the complete license
contents, please visit (http://creativecommons.org/licenses/by/4.0/).

How to cite this article: Manhas, N. (2024). Mathematical model for IP3 dependent calcium oscil-
lations and mitochondrial associate membranes in non-excitable cells. Mathematical Modelling and
Numerical Simulation with Applications, 4(3), 280-295. https://doi.org/10.53391/mmnsa.1503948

https://dergipark.org.tr/en/pub/mmnsa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/.


Mathematical Modelling and Numerical Simulation
with Applications, 2024, 4(3), 296–334

https://dergipark.org.tr/en/pub/mmnsa
ISSN Online: 2791-8564 / Open Access
https://doi.org/10.53391/mmnsa.1514196

R E S E A R C H PA P E R

Mathematical analysis of Ebola considering transmission at
treatment centres and survivor relapse using
fractal-fractional Caputo derivatives in Uganda

Isaac Kwasi Adu ID 1,*,‡, Fredrick Asenso Wireko ID 2,‡, Samuel Akwasi
Adarkwa ID 3,‡ and Gerald Ohene Agyekum ID 3,‡

1Department of Mathematical Sciences, Faculty of Applied Sciences and Technology, Kumasi Technical
University, 854, Kumasi, Ghana, 2Department of Mathematics, College of Science, Kwame Nkrumah
University of Science and Technology, 854, Kumasi, Ghana, 3Department of Statistical Sciences,
Faculty of Applied Sciences and Technology, Kumasi Technical University, 854, Kumasi, Ghana
* Corresponding Author
‡ isaac.kadu@kstu.edu.gh (Isaac Kwasi Adu); fredrick.wireko@knust.edu.gh (Fredrick Asenso Wireko);
saadarkwa@gmail.com (Samuel Akwasi Adarkwa); geraldagyekum45@gmail.com (Gerald Ohene Agyekum)

Abstract

In this article, we seek to formulate a robust mathematical model to study the Ebola disease through
fractal-fractional operators. The study thus incorporates the transmission rate in the treatment centers
and the relapse rate, since the Ebola virus persists or mostly hides in the immunologically protected
sites of survivors. The Ebola virus disease (EVD) is one of the infectious diseases that has recorded a
high death rate in countries where it is endemic, and Uganda is not an exception. The world at large
has suffered from this deadly disease since 1976 when it was declared epidemic by the World Health
Organization. The study employed fractal-fractional operators to identify the epidemiological patterns
of EVD, especially in treatment centers and relapse. Memory loss and relapse are mostly observed
in EVD survivors and this justifies the use of fractional operators to capture the true dynamics of the
disease. Through dynamical analysis, the model is proven to be positive and bounded in the region.
The model is further explicitly shown to have a solution that is unique and stable. The reproduction
number was duly computed by using the next-generation matrix approach. By taking EVD epidemic
cases in Uganda, the study fitted all parameters to real data. It has been shown through sensitivity
index analysis that the transmission rate outside treatment centers and relapse have a significant effect
on the endemic state of the disease, as they lead to an increase in the basic reproduction ratio.
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1 Introduction

The Ebola virus is the source of the highly infectious and often fatal disease known as Ebola virus
disease (EVD) [1]. The most typical ways of transmitting the Ebola virus to individuals are via
direct interaction with secretions, organs, blood, or additional body fluids of an infected person,
in addition to interaction with surfaces and items (clothes and bedding) stained with these fluids.
Wild animals, including fruit bats, porcupines, and nonhuman primates, are the main carriers of
the disease to people. On average, 50% of cases of EVD result in death. Case death rates have
varied from 25% to 90% in prior epidemics [1, 2]. Several epidemics of EVD are initiated by a
single overflow event and spread from person to person via intimate interactions, often in remote,
densely forested locations. Index cases are often associated with hunting, forest work, or land
modification.
Infected individuals can spread the virus to other individuals directly, but close contacts such as
family members, caregivers, or medical professionals are at more risk of contracting the disease
[3]. For instance, the 2014–2015 West Africa Ebola outbreak claimed 109 lives among healthcare
professionals in Guinea, sparking alarm worldwide and subsequent instances in Spain and the
US. Ebola Rehabilitation Facility for Medical Personnel in Conakry, Guinea, diagnoses and treats
healthcare professionals who are infected (either confirmed or suspected) with EVD and are
provided with comprehensive medical care, such as biologic monitoring and blood transfusions
[4]. The early symptoms of an Ebola infection are fever, myalgia, and asthenia, progressing to
gastrointestinal syndrome, including vomiting and diarrhoea. Subsequently, shock, hypoperfusion,
failure of several organs, such as serious kidney damage, and depletion of intravenous fluid
may occur. Haemorrhage syndrome, primarily gastrointestinal bleeding, may also occur [5].
Furthermore, an Ebola infection may result in several neurological problems. These comprise
tremors, migraines, loss of memory, epilepsy, and anomalies of the cranial nerves [6]. Studies
have shown that either waning of immunity or weak immunity can lead to virus reinfection in
Ebola victims. Some survivors’ immunity declines after recovery, while stronger immune systems
experience subclinical or asymptomatic sickness [7, 8]. In 2014, during the West African Ebola
outbreak, thousands of people survived. It has been reported that the Ebola virus may relapse
and cause a potentially fatal and spreadable illness since survivors can harbour the infection for
months in immune-privileged sites like the brain, the testes, the central nervous system, and the
eyes [6, 8].
In 1976, the world recorded two significant EVD epidemics in South Sudan and also DR Congo
(DRC), which led to the initial recognition of the disease worldwide. From that period, countries
like DR Congo (DRC) in 1994 and Uganda in 1995 experienced another Ebola outbreak. Ebola
outbreaks following this, outbreaks have been reported often and widely in Nigeria, Gabon, the
DR Congo, Guinea, Uganda, Liberia, and Sierra Leone. Additionally, rare outbreaks of EVD have
been reported from South Africa, the USA, Italy, and the United Kingdom [9].
Recently, mathematical modelling has come to be seen as an important and valuable instrument for
understanding the behaviour and cause of the spread of many prevalent infectious diseases, such
as diabetes mellitus [10], Ebola [1], measles [11], monkey pox [12], COVID-19 [13], diarrhoea [14],
and query fever [15] as stated in [1, 10]. It can also be employed to demonstrate the effective way
to mitigate disease propagation and assist in making decisions during an outbreak of disease [1].
For instance, [14] employed Ghana’s Ministry of Health data to validate an epidemiological model
for diarrhoea transmission dynamics from 2008-2018. They concluded that reducing transmission
rates and increasing treatment can significantly control or eradicate the disease. [16], analysed the
Hepatitis E model’s dynamics and optimal control analysis using the Atangana-Baleanu derivative.
When their reproduction number is below one, their model becomes locally asymptotically stable.
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They formulated an optimal control system using appropriate control strategies. Numerical
results suggest the proper application of control strategies for early Hepatitis E elimination. The
Atangana-Baleanu derivative allows for disease status monitoring and effective strategies. A
mathematical model predicting giardiasis spread that considers carriers, preventative measures,
and interaction between humans and the environment was proposed by [17].
The model uses the Lyapunov function, Metzler constancy hypothesis, and advanced next-
generation matrix. Implementing solutions in endemic areas effectively stops giardiasis spread.
[18], proposed an article to review malaria biology, mathematical modelling methods, uncertain-
ties, and controversies, and provides a timeline from Ross and MacDonald’s classical works to
recent climate-focused studies, contextualising mathematical work within the "million-murdering
death" of malaria. [19], conducted a pneumonia and HIV/AIDS deterministic co-infection model
and used it to assess the impact of these diseases on each other. Their model includes sub-models
and sensitivity analysis, revealing that the spreading rate of HIV and the treatment rates are
the most sensitive parameters. Their model incorporated intervention strategies and numerical
simulations, which shown that prevention and treatment of both diseases reduce the co-infection
burden. For more articles on the application of mathematical modelling to study infectious
diseases, see [20, 21].
Now, we concentrate on some mathematical models of EVD that have been published earlier
by different authors. A nonlinear mathematical model for Ebola was published in 2024 by [1],
with an emphasis on burial practices and environmental contamination. They determine the
reproduction number, Ebola-free, and Ebola-present equilibrium, as well as the boundedness,
positivity, and well-posedness of the model. The sensitivity analysis reveals forward bifurcation,
suggesting suppression of Ebola spread. Control strategies include reducing contact with infected
people, educating the public, vaccinating the susceptible, and promoting education against funeral
customs. Personal protection, vaccination, and safe burial are the most cost-effective methods. In
the research of [22], they presented an Ebola virus disease model built using a novel exponentially
nonlinear incidence function, which incorporates the curtailment in disease spread as a result
of human behaviour. The steady states of the model were determined, and the model’s global
stability was demonstrated using Lyapunov functions. Their results indicate a good fit when
effectiveness and the rate of change of behaviour are faster, after fitting the model to Liberia and
Sierra Leone’s Ebola data.
In another study, [23], developed an article to explore the dynamics of EVD in domestic and
wild animals. They employ an SEIR-type model developed to study the virus’s stability in the
human population. Their model comprises a nonlinear coupled differential equation, determining
Ebola-free and present equilibrium states. The model is asymptotically stable, and global stabilities
are carried out using Lyapunov functions theory. The Runge-Kutta method and non-standard
finite difference scheme are used for the SEIR model. They concluded that compared to RK4,
the NSFD numerical approach is more dependable, preserving non-negativity and boundedness
for different step sizes. State-variable simulations provided a numerical analysis of their disease
model.
Further, authors of [24] developed a SIR-type model to study Ebola virus disease (EVD) spread
using conformable derivatives. Their model incorporates direct and indirect transmission methods,
including funeral practices, tainted bush meat consumption, and environmental contamination.
The model also considers the possibility of infected individuals birthing and migrating to the
existing population. According to their research, the only state in which there is no sickness is
when there is no environmental spread of the Ebola virus. In addition, authors of [25] presented a
model on the Ebola virus disease. Their model employed mathematical models to understand the
spread of the virus validated a new model incorporating vaccination and applied optimal control
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analysis to study its impact on numerous shooting techniques with direct multiple shooting
methods. Their numerical simulations indicate that an optimal control strategy implemented
significantly reduces the number of people prone to Ebola and Ebola-infected people and increases
the number of people who recover.
Notwithstanding this, the Ebola virus disease is known to be deadly as it leaves the survivor
with severe neurological effects such as seizures, cranial nerve disorders, and memory loss.
Authors of [2] presented a mathematical model to explain the dynamics of Ebola transmission
between humans and dogs through fractional operators. Caputo-Fabrizio derivative served as the
foundation for their model. Fractional orders were shown to have a considerable influence on the
model when it was fitted to Uganda’s reported Ebola outbreak. According to them, Controlling the
spread of Ebola can be achieved by improving recovery rates and decreasing contact rates between
dog compartments. They concluded that it is advisable to implement quarantine procedures to
regulate encounters during outbreaks. In [26], the Grunwald-Letnikov fractional operator was
applied to study the Ebola disease physical patterns in the population, and in [27], the Atangana-
Baleanu Caputo operator was also applied to investigate the outbreak of the contagious Ebola
disease.
Our motivation for the current research is that all the related literature discussed considers Ebola
spreads and how to mitigate the infection. However, we observed that none of the articles
examined the following: transmission of Ebola virus disease at treatment centres; Ebola virus
persistent in the immunologically protected sites of survivors’ bodies and the associated relapse-
symptomatic infection; the application of susceptible, infected, treatment and recovered, SITR-type
model to investigate the dynamics of Ebola Virus Disease (EVD). Although the authors of [28]
employed SITR-type to examine their Ebola model, there are some limitations to their research.
These include the use of some parameter values based on assumptions and parameters from
existing literature instead of using real Ebola data to carry out their analysis. There are several
neurological side effects linked to Ebola. This includes seizures and loss of memory. The memory
effect is a crucial characteristic of biological systems. The use of fractional-order models allowed
for the realisation of this [6, 29–31]; however, the deterministic approach that was employed in
their research was unable to do that. The current research seeks to address these gaps by:

i. Studying the dynamics of EVD transmission at the treatment centres,
ii. Incorporating the dynamics of relapse in survivors due to virus persistence in their bodies
after recovery,

iii. Applying the least square estimation technique to fit all the model parameters to real data
from Uganda,

iv. Employing the novel fractal-fractional Caputo derivative to capture the exact dynamics of
EVD in the population.

The remaining sections of the article are categorised in this pattern. Section 2 deals with formu-
lating the Ebola model that incorporates transmission dynamics at the treatment centres and the
relapse patterns in survived individuals. The basic or preliminary results are presented in Section 3.
In Section 4, we investigate the positivity and boundedness of the Ebola model understudy. The
Ebola model is now studied through fractal-fractional Caputo operators in Section 5 where we
performed thorough existence and uniqueness analysis through the fixed point theorem. Also, the
Hyers-Ulam and Hyers-Ulam-Rassias stability criterion is used to establish that the Ebola model
is stable and is discussed here. Again, we subjected the Ebola model to real data to estimate all the
parameters of the study in Section 6, whereas Section 7 performs the local stability analysis and
also measures the fundamental reproduction number. In Section 8, the sensitivity analysis of the
model’s parameters to the R0 is discussed. Finally, the numerical simulations and conclusion of
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the research study are discussed in Section 9 and Section 10, respectively.

2 Ebola model formulation

We propose an integer Ebola transmission model in this section. The entire population is classified
into four classes: Susceptible S(t), these are people who are prone to contracting Ebola disease.
Infected I(t) are those actively infected with Ebola, show clinical symptoms, and can spread the
disease to other individuals. Treated T(t), these are individuals who have received treatment after
infection from Ebola. Some individuals of the treated class can still transmit Ebola diseases to
other people through direct or indirect means due to the waning of Ebola virus antibodies after a
few years of recovery [32]. People who have recovered from the Ebola infection are denoted by
R(t). The natural mortality rate is denoted by µ. β is the transmission rate from the infectious
class to the treatment class, δ1 is the Ebola-induced death rate of individuals, and k is the relapse
rate of individuals under treatment. The recruitment rate is given by ψ. α1 is the transfer rate of
susceptible to infectious class. α2 is the transmission rate of partially recovered individuals at
the treatment centres to caregivers, σ1 is the immunity loss rate, and σ2 denotes the recovery rate.
Hence, the entire populace is denoted by N = S + I + T + R. The assumptions below formed the
basis of the development of the Ebola model:

i. Ebola can spread to susceptible people via any of the following ways: having interpersonal
relationships with recovered Ebola victims, touching contaminated animals, or coming into
contact with the bodily fluids and clothing of an infected individual,
ii. Recovered individuals can become susceptible to Ebola infection after recovery,

iii. Recovered individuals can transmit Ebola to other people within a few years after recovery
due to waning immunity,

The following four (4) integer-order differential equations were developed using the assumptions
as basis. The model equations are therefore given by

dS
dt

=ψ + σ1R(t)− α1S(t)I(t)− µS(t),

dI
dt

=α1S(t)I(t) + kT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

dT
dt

=α2 I(t)R(t) + βI(t)− (µ + k + σ2)T(t),

dR
dt

=σ2T(t)− (σ1 + µ)R(t),

(1)

with initial conditions S(0) = S0> 0, I(0) = I0 ≥ 0,T(0) = T0 ≥ 0, and R(0) = R0 ≥ 0.

3 Preliminary results

In this section, the studies highlight some essential definitions regarding the dynamical analysis
to be carried out on the Caputo fractal-fractional Ebola disease model. The definitions are stated
below based on literature [33–35].

Definition 1 Let us suppose there is a continuous domain (A, E), and further assume that H has a
derivative existing in the fractal dimension range Φ2. Then, the Caputo fractal-fractional differential
operator of H with the fractional order Φ1 is given as

FFCDΦ1,Φ2
A,E H(E) = 1

Γ(q − Φ1)

d
dEΦ2

∫E
A
(E − k)q−Φ1−1H(k)dk, (q − 1 < Φ1, Φ2 ≤ q ∈ N),
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following differentiation results;

dH(k)
dkΦ2

= lim
E→k

H(E)−H(k)
EΦ2 − kΦ2

.

By supposing that Φ2 = 1, then the Caputo fractal-fractional derivative FFCDΦ1,Φ2
G,E yields Φth

1 -

Riemann-Liouville derivative RLD
Φ1
G,E .

Definition 2 If we further assume that the map H is unperturbed in the neighborhood of the open interval
(A, E ). Then, it is obvious that the Caputo fractal-fractional integral of H results in

FFCIΦ1,Φ2
A,E H(E) = Φ2

Γ(Φ1)

∫E
A

kΦ2−1(E − k)Φ1−1H(k)dk.

By classifying A t be a non-decreasing transformation, that is b : R≥0 → R≥0 with b(E) < E , ∀E > 0,

∞∑
u=1

au(E) < ∞.

Definition 3 Let us define the map H : V → V and ψ : V2 → R≥0, with V to be a normed linear space.
We then have

i. In the case where each x1, x2 ∈ V,

ϕ(x1, x2)d(Hx1,Hx2) < a(d(x1, x2)),

then H is ψ − a-contraction,
ii. Also, assuming ψ(x1, x2) ≥ 1 yields ψ(Hx1,Hx2) ≥ 1, we have that H is ψ - admissible.

4 Positivity and boundedness

This section establishes the positivity and boundedness of solutions to the proposed Ebola model.
By following a similar procedure as performed in literature [20], we obtain the positivity and
boundedness of the Ebola model in this manner.

Positivity of solutions

To establish the positivity of the model’s solutions, we show that the solutions to each equation of
the model are non-negative for any t > 0. Let us begin the proof by first supposing that S(t) and
I(t) possess the same signs and α1 > 0. In this manner, we suppose that the following inequality
holds for T(t) compartment,

T(t) ≥ T0e−(µ+k+σ2), ∀t > 0.

Noting from the above that T(t) is positive, it suffices that

I = α1SI + kT − α2 IR − (β + δ1 + µ)I

≥ −(β + δ1 + µ)I.



302 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 296–334

Thus, we have

I ≥ I0e−(β+δ1+µ).

Subsequently, by following the same approach, we have

R ≥ R0e−(σ1+µ).

Now, let us suppose that the I(t) and T(t) compartments are integrable, this implies that the
following inequality arises:

G(t) ≥ G0 +

∫
[δ1(I + T)]dt, ∀t > 0.

Importantly, we explicitly establish the positivity of the S(t) compartment by first supposing the
norm below exists: ||g|| = supt∈Dg

|g|. This suffices that for the susceptible compartment, S(t), we
have

Ṡ(t) = ψ + σ1R − α1SI − µS

≥ σ1R − (α1 I + µ)S ≥ −(α1|I|+ µ)S

≥ −(α1 sup
t∈Dg

|I|+ µ)S ≥ −(α1||I||∞ + µ)S

≥ −φS,

where we define

φ = (α1||I||∞ + µ).

Obviously, this yields

S(t) = S0e−φt.

We observe that these results hold for all other compartments. Hence, all the solutions of the Ebola
model are positive.

Boundedness of solutions

To prove the boundedness of solutions to the model, we first consider the total human population,

N(t) = S(t) + I(t) + T(t) + R(t). (2)

Substituting all equations of the model, we obtain,

dN(t)
dt

=
dS(t)

dt
+

dI(t)
dt

+
dT(t)

dt
+

dR(t)
dt

= ψ + σ1R(t)− α1S(t)I(t)− µS(t) + α1S(t)I(t) + kT(t)− α2 I(t)R(t) (3)

−(β + δ1 + µ)I(t) + α2 I(t)R(t) + βI(t)− (µ + k + σ2)T(t) + σ2T(t)− (µ + σ1)R(t)

= ψ − µN − δ1 I(t).
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In the absence of Ebola-related deaths, (δ1 = 0), we have

dN
dt

≤ ψ − µN. (4)

Now taking the Laplace transform of (4), we obtain

L{N ′(t)}+ µL{N(t)} ≤ L{ψ},

sN (s)− N(0) + µN (s) ≤ ψ

s
,

N (s) ≤ ψ

s(s + µ)
+

N(0)
s + µ

.

(5)

The inverse Laplace of (5) is

N(t) ≤ ψ

µ
(1 − e−µt) + N(0)e−µt. (6)

Taking the lim supt→∞ of the above equation, we get

N(t) ≤ ψ

µ
. (7)

Now, the solutions of the Ebola model are bounded and feasible in the region

V =

{
(S, I, T, R) ∈ R4

+|N ≤ ψ

µ

}
. (8)

5 Caputo fractal-fractional Ebola model

It has been reported in the literature that individuals who have suffered from the Ebola virus
disease mostly face severe neurological disorders such as cranial nerve disorders, memory loss,
recurring seizures, and others for about six months or more even after recovery [6]. As a result
of this, using integer order operator models to study the dynamics of the Ebola disease virus
may yield uncertain or unreliable conclusions. In addition, since there occurs mostly structural
variability in the dynamics of the Ebola disease, that is, the disease is influenced by physical
occurrences, a fractional analysis of the dynamics of the Ebola is the appropriate operator to
measure the physical dynamics of the disease [7]. The Caputo fractal-fractional derivative has
been chosen for this study due to its enormous advantages over the other fractional operators. For
instance, it has been reported in the literature that the Caputo fractal-fractional derivative presents
a better description of complex systems, such as biological processes, by accurately measuring
these systems’ inherent hereditary and memory properties.Again, the Caputo fractal-fractional
derivative is quite simplified as it allows the use of standard initial conditions compared to the
Riemann-Liouville derivative. As a result, the Caputo fractal-fractional derivative has a min-
imal computational complexity and requires a minimum storage space when its algorithm is
simulated [36–38]. In this study, the Ebola virus disease is thus investigated using the Caputo
fractal-fractional operator. From this knowledge, Eq. (1) is reformulated into a non-integer model
using Caputo operators in this manner:
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FFCDΦ1,Φ2
0,t S(t) = ψ + σ1R(t)− α1S(t)I(t)− µS(t),

FFCDΦ1,Φ2
0,t I(t) = α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

FFCDΦ1,Φ2
0,t T(t) = α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t),

FFCDΦ1,Φ2
0,t R(t) = σ2T(t)− (σ1 + µ)R(t),

(9)

with initial conditions S(0) = S0 > 0, I(0) = I0 ≥ 0, T(0) = T0 ≥ 0, and R(0) = R0 ≥ 0.

Existence and uniqueness of the Caputo fractal-fractional Ebola disease model

A key aspect of mathematical modelling is to examine if there exists a unique solution for the
model under study. To establish that model (9) is injective, a thorough existence and uniqueness
analysis is carried out using the fixed point theory as done in literature [39–42]. By supposing that
there exists the norm B(τ) which is defined to be a Banach space and further assumed to be a
continuous real-valued map defined in the domain τ(0, T) with a defined sub norm. Then we note
that there is G = B(τ1)× B(τ2)× B(τ3)× B(τ4) which is imposed on the norm ||(S, I, T, R)|| =
||S||+ ||I||+ ||T||+ |R||, where ||S|| = supt∈τ |S|, ||I|| = supt∈τ |I|, ||T|| = supt∈τ |T|, ||R|| = supt∈τ |R|.
From the suppositions above, the fractal-fractional Ebola disease model in the Caputo sense is
reconstructed as;

S(t)− S(0) = CDΦ1,Φ2
t [ψ + σ1R(t)− α1S(t)I(t)− µS(t)] ,

I(t)− I(0) = CDΦ1,Φ2
t [α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t)] , (10)

T(t)− T(0) = CDΦ1,Φ2
t [α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t)] ,

R(t)− R(0) = CDΦ1,Φ2
t [σ2T(t)− (σ1 + µ)R(t)] .

For convenient evaluations, the equations in (10) are redefined as,
J1(S, I, T, R) = ψ + σ1R(t)− α1S(t)I(t)− µS(t),

J2(S, I, T, R) = α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

J3(S, I, T, R) = α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t),

J4(S, I, T, R) = σ2T(t)− (σ1 + µ)R(t).

(11)

Now through the Riemann-Liouville integral operator, the fractal-fractional Ebola disease model
(9) suffices that;

RLDΦ1
t S(t) = Φ2∗ t∗Φ2−1J1(S, I, T, R),

RLDΦ1
t I(t) = Φ2∗ t∗Φ2−1J2(S, I, T, R),

RLDΦ1
t T(t) = Φ2∗ t∗Φ2−1J3(S, I, T, R),

RLDΦ1
t R(t) = Φ2∗ t∗Φ2−1J4(S, I, T, R).

(12)

Now in order to solve the model, Eq. (12) is reformulated as an initial value problem{
RLDΦ1

t Q(t∗) = Φ2∗ t∗Φ2−1J (t,Q(t))

Q(0) = Q0, Φ1, Φ2∗ ∈ (0, 1],
(13)
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where t∗ ∈ U , such that

Q(t∗) = (S(t∗), I(t∗), T(t∗), R(t∗)),

Q(0) = (S0, I0, T0, R0)
t.

(14)

Also,

J (t,Q(t)) =


J1(S(t∗), I(t∗), T(t∗), R(t∗)),

J2(S(t∗), I(t∗), T(t∗), R(t∗)),

J3(S(t∗), I(t∗), T(t∗), R(t∗)),

J4(S(t∗), I(t∗), T(t∗), R(t∗)).

(15)

Now by applying the fundamental theorem of calculus to (13), we obtain

Q(t∗) = Q(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1J (Ω∗Q(Ω∗))h∗Ω∗, (16)

thus, leading to the following relations:

S(t∗) = S(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J1

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

I(t∗) = I(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J2

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

T(t∗) = T(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J3

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

R(t∗) = R(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J4

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)].

(17)

Now model (9) is reconstructed as a fixed point problem by using the fixed point theory technique.
We initially suppose that the given dual function W = H∗ −→ H∗ be defined as

W [Q(t∗)] = Q(0) +
Φ2∗

Γ(Φ1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1J (Ω∗Q(Ω∗))h∗Ω∗. (18)

We explicitly define the fixed point theorem for Θ∗ − ψ∗ contractions to suffice our proof.

Theorem 1 ([35]) Let us suppose a complete metric space is stated such that ψ∗ ∈ B, Θ∗ : H∗2 −→ R,
and W : H∗ −→ H∗ which is an Θ∗ − ψ∗ contraction such that the following properties are valid:
a. W is θ∗ permissible.
b. We have h0, which is in the function H∗ such that Θ∗(ψ∗

0 ,Wψ∗
0) ≥ 1.

c. Supposing that for any h∗ψ∗ which is an improper subset of W∗ where h∗ψ∗ −→ h∗ and Θ∗(h∗ψ∗ , h∗ψ∗+1) ≥
1, ∀ψ∗ ≥ 1, then there exists Θ∗(h∗ψ∗ , h∗) ≥ 1 for every ψ∗ ≥ 1.
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The proof of the theorem is carried out through Θ∗ − ψ∗ contractions.

Theorem 2 Let us suppose that we have a φ∗ such that R×R −→ R and also there is an ψ∗ ∈ B for any
given operator J ∈ W(K×H∗,H∗). Also, B1 for any given J1,J2,J3,J4 ∈ H∗ and there is t∗ ∈ A,

|J (t∗,Q1(t∗)−J (t∗,Q2(t∗)| ≤ Θ∗ϑ∗(|Q1(t∗)−Q2(t∗)|),

also realising that χ∗(Q1(t∗),Q2(t∗)) ≥ 0 and also ϑ∗ =
Γ(Φ2∗+Φ1∗ )

Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗ )
.

G2 Also, for any given t∗ ∈ A there is a Q0 ∈ H∗ such that

a∗(Q0(t∗), C(Q0(t∗))) ≥ 0,

given further that

a∗(Q1(t∗),Q2(t∗)) ≥ 0 −→ a∗(C(Q0(t∗)), C(Q0(t∗))) ≥ 0.

G3 Supposing that {Qψ∗}ψ∗≥1 ⊆ H∗ for Qn∗ −→ Q, such that

a∗(Qψ∗(t∗),Qψ∗+1(t∗)) ≥ 0 −→ a∗(Qψ∗(t∗)), (Q(t∗)) ≥ 0,

with any given ψ∗ and t∗ ∈ A.
We hereby validate the Caputo fractal-fractional Ebola model to have a solution by the proof below.

Proof Let us suppose that there exists the functions J1,J2,J3,J4 ∈ H such that J1(t∗),J2(t∗),J3(t∗),
J4(t∗) are non-negative given any time dimension t∗ ∈ A. Applying some basic mathematical
ideas in addition to the beta function yields the following;

|W(Q1(t∗))−W(Q2(t∗))| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
Ω∗ϕ2∗−1(t∗ − Ω∗)Φ∗

1−1

×|J (Ω∗Q1(Ω∗))−J (Ω∗Q2(Ω∗))|d∗Ω∗

≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗η∗(|Q1(Ω∗)−Q2(Ω∗)|)d∗Ω∗

≤ Φ2∗η∗ηΦ2∗+Φ1∗−1B(Φ2∗ , Φ1∗)

Γ(Φ1∗)
Θ∗(||Q1 −Q2||H∗) (19)

≤ Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ1∗ + Φ1∗)
η∗Θ∗(||Q1 −Q2||H∗).

This suffices that

||W(Q1)−W(Q2)||H∗ ≤ Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ1∗ + Φ1∗)
η∗Θ∗(||Q1 −Q2||H∗) = Θ∗(||Q1 −Q2||H∗).

Supposing further that given any values for Q1,Q2H∗, we assume that Θ∗ is defined to be
H∗ ×H∗ −→ [0,∞) as stated in

Θ∗(Q1,Q2) =

{
1, if a∗(Q1(t∗) ≥ 0,

0, otherwise,
(20)
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which suffices that,

Q1,Q2 ∈ H∗(W(Q1),W(Q2)) ≤ (Q1,Q2),

for any Q1,Q2 ∈ H∗.

We hereby establish the function W to be Θ∗ − ψ∗ contraction. Whenever there are Q1,Q2 ∈
H∗, we observe that Q1,Q2 ∈ H∗ ≥ 1. Stating explicitly the properties of Θ∗, it implies that
a∗(Q1(t∗),Q2(t∗)) as non-negative. Then from (G2), we see that a∗(W(Q1(t∗)),W(Q2(t∗))) is
non-negative. Then we have Θ∗ implying that Θ∗(W(Q1(t∗)),W(Q2(t∗))) ≥ 1. This explicitly
suffices that the operator W is a Θ∗ admissible.

We then strongly see that (G2) implies that there exist an Q0 ∈ H∗. This then suffices that
t∗(Q0(t∗),W(Q0(t∗))) is non-negative for any given t∗ in the set H and

Θ∗(Q0,W(Q0)) ≥ 1.

We can further assume that Qψ∗>1 is an improper subset of the set H∗ such that Qψ∗ has a limit
point Q anytime Θ∗(Qψ∗ ,Qψ∗+1) ≥ 1. It is explicitly seen in Θ∗ that

a∗(Qψ∗(t∗),Qψ∗+1(t∗)) ≥ 0.

This then suffices from (G3) that a∗(Qψ∗(t∗),Q(t∗)) ≥ 0, implying further that Θ∗(Qψ∗(t∗),Q) ≥
1 for every given ψ∗. Now from Theorem 1, it is observed that there is an Q∗H∗ in a manner
that W(Q∗) = Q∗. This then suffices that Q∗ = (S∗, I∗, T∗, R∗)T is a solution to the Caputo
fractal-fractional Ebola disease model.

Theorem 3 ([43]) By assuming that H∗ is said to be a Banach space, which is a convex function O which
is bounded and closed in H∗, and we have α ∈ O which is an open set for 0 ∈ α. By defining P : α −→ O
to be continuous and compact, then it is either
a. There exists b∗∗ ∈ O such that P(b∗∗) = b∗∗, or
b. There is b∗ ∈ µO and ν∗ ∈ (0, 1) such that ν∗P(b∗) = b∗

should hold.

Remark 1 Let us define the relation

∆ = J0, (21)

and also

⊛ =
Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ2∗ + Φ1∗)
. (22)

Theorem 4 Assuming that the function J ∈ C(Q ×H∗,H∗). Then;
M1: we have Θ∗ ∈ N 1(Q, R+) and there have also a non decreasing monotonic function K ∈ C([0,∞), R+),
implying that for any t∗ ∈ Q and also Q ∈ H∗, we have

|J (t∗),Q(t∗)| ≤ Θ∗(t∗)G(|Q(t∗)|).
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M1: If there exists X that is positive and also

X
λ + ζΘ∗(t∗P(X ))

> 1,

where Θ∗∗ = supt∗∈Q |Θ∗t∗| and also λ, ζ are defined in Eq. (20) and Eq. (19). We then say that the
Caputo fractal-fractional Measles disease model’s solution exists.

Proof Let us consider W : H∗ −→ H∗ as defined in (18) and

Nν = {Q ∈ H∗ : ||Q||H∗ ≤ ν}, ∀δ > 0.

Consequently, the operator W is obtained from the continuous and limited operator J . Then for
Q ∈ Nν there is;

|W(Q(t∗))| ≤ |Q(0)|+
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1|J (Ω∗,Q(k∗))|dk∗

≤ Q0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗(k∗)G|J (Q(k∗))|dΩ∗

≤ Q0 +
Φ2∗η∗ηΦ2∗+Φ1∗−1B(Φ2∗ , Φ1∗)

Γ(Φ1∗)
Θ∗0∗A(||Q||H∗)

≤ λ + ζΘ∗0∗A(ν).

(23)

Implying further that

||WQ|| ≤ λ + ζΘ∗0∗A(ν) < ∞. (24)

We then obtain a complete continuous operator of W from H∗. Let us now suppose some arbitrary
values t∗, t∗∗ ∈ [0.T] such that t∗ ≤ t∗∗ and also Q ∈ Nν with the assumption that

sup
(t∗,Q)∈A×Nν

|J (Ω∗,Q(t∗))| = J ∗ < ∞.

It then suffices that

|W(Q(t∗∗))−W(Q(t∗))| = |
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
Ω∗Φ2∗−1(t∗∗ − Ω∗)Φ∗

1−1|J (Ω∗,Q(k∗))|dk∗

−
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗(k∗)J |J (Q(k∗))|dΩ∗

≤ ψ2∗P∗

Γ(ψ∗
1)

|

∫ ♭∗∗
0

Ω∗Φ2∗−1(t∗∗ − Ω∗)Φ∗
1−1dk∗ −

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1dk∗|

≤ Φ2∗B(Φ2∗ , Φ1)J ∗

Γ(Φ∗
1)

[t∗∗Φ2∗+Φ1∗−1 − t∗Φ2∗+Φ1∗−1] (25)

≤ Φ2∗Γ(Φ2∗)J ∗

Γ(Φ∗
1 + Φ1∗)

[(t∗∗)Φ2∗+Φ1∗−1 − t∗Φ2∗+Φ1∗−1],

we therefore observe that Q is independent of t∗∗ has a limit point in t∗, then the RHS of Eq. (25)
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is asymptotic to 0. This leads to

||W(Q(t∗∗))−W(Q(t∗))||H∗ −→ 0.

We then observe from the above that the function W is equi-continuous and we further show
the compactness of W on Nν through means of the Arzela and Ascoli theorem. It is observed in
furtherance that the assumptions given in Theorem 3 are explicitly valid on the function V . This
implies that either (a) or (b) is valid. From (M1), we formulate;

R = {Q ∈ H∗ : ||Q||H∗ < Z},

where we define the function Z to be positive through

λ + ζΘ∗0∗B(Z).

Now by applying (M1) on Eq. (25) we derive the relation

||WQ||H∗ ≤ λ + ζΘ∗0∗A(Q). (26)

Now from the existence of the operator Q ∈ βR and β ∈ (0, 1) in a manner that Q = ϱW(Q).
Now by the given function Q in the domain β, then from Eq. (26), we have,

Z = ||Q||H∗ = β||W(Q)||H∗ < λ + ζΘ∗0∗A(||Q||H∗) < λ + ζΘ∗0∗Z(R) < R.

From the above, we observe that we cannot validate it. This implies that (b) is invalid and the
operator W has a solution or a fixed point in the function R from Theorem 3. Then, the Caputo
fractal-fractional model has at least one solution.
Now we establish explicitly that the Caputo fractal-fractional model has only one solution. We
begin by stating the lemma below;

Lemma 1 Supposing that there exist the following functions:
(S, I, T, R, S∗, I∗, T∗, R∗) ∈ G = C(N ,Y) and there is the norm
(N1): ||S|| ≤ ℑ1, ||I|| ≤ ℑ2, ||T|| ≤ ℑ3, ||R|| ≤ ℑ4 where ℑ1, ℑ2, ℑ3, ℑ4 are positive, and the given norms
suffices the criteria of the least upper bound-norm regarding t∗. Now, further considering the case where,
J1,J2,J3,J4 in view that equation the individual components in (11) meets the Lipschitz criterion of
boundedness anytime there is K1,K2,K3,K4 > 0 where

K1 = α + µ,

K2 = (α − β + δ1 + µ),

K3 = (µ + κ + σ2),

K4 = σ1 + µ.

Proof Given the first operator P1, for the dual functions, S, S∗, we compute;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||ψ + σ1R(t)− α1S(t)I(t)− µS(t)|| ≤ −α(S − S∗)− µ(S − S∗)

≤ K1||S − S∗||.
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We observe from the above that the function J1 about the compartment S for the constant K1 is
positive and therefore bounded. Also, let us consider J2, for the dual functions, I, I∗, we obtain;

||J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t)||

≤ [−α − (β + δ1 + µ)](I − I∗)

≤ −[α − (β + δ1 + µ)]||I − I∗||

≤ (α − β + δ1 + µ)||I − I∗||

≤ K2||I − I∗||.

We further observe that the function J2 about the compartment I for the constant K2 is positive
and also bounded. Let us again consider J3, for the dual functions, T, T∗, we have;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t)||

≤ −(µ + κ + σ2)(T − T∗)

≤ (µ + κ + σ2)||T − T∗||

≤ K3||T − T∗||.

In addition, we see again that the function J3 about the compartment T for the constant K3 is
positive and therefore bounded. Let us finally consider J4, for the dual functions, R, R∗, we derive;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||σ2T(t)− (σ1 + µ)R(t)||

≤ −(σ1 + µ)(R − R∗)

≤ (σ1 + µ)β||R − R∗||

≤ (σ1 + µ)||R − R∗||

≤ K4||R − R∗||.

Finally, we observe that the function J4 about the state variable R for the constant K4 is positive
and therefore bounded. This suffices that the constants K1,K2,K3,K4 meets the Lipscitz criterion
for boundedness.
Let us finally state and prove the theorem below.

Theorem 5 By assuming further that the condition (N1) is true, it is obvious that the Caputo fractal-
fractional Ebola disease model admits only one solution whenever

⊛KΩ < 1, Ω ∈ {1, 2, 3, 4}, (27)

recalling the definition of ⊛ in Eq. (22).

Proof By recalling and applying the concept of proof by contradiction, the study posits that the
Caputo fractal-fractional Ebola model admits several solutions. We then commence the proof by
assuming that there exists another solution to the Caputo fractal-fractional Ebola model, which is
given as (S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)) with the following initial values; (S0, I0, T0, R0) such that
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Eq. (18) yields;

S∗(t∗) = S0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J1(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

I∗(t∗) = I0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J2(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

T∗(t∗) = T0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J3(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

R∗(t∗) = R0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J4(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗.

(28)

We then obtain the following results;

|S(t∗)− S∗(t∗)| ≤ S0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J1(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J1(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||S − S∗||g∗Ω∗

≤ ⊛K1||S − S∗||,

(29)

which in this case results in

(1 −⊛K1)||S − S∗|| ≤ 0.

It is therefore obvious from Eq. (29) the inequality above will be true if ||S − S∗|| = 0 or S being the
same as S∗.

Also considering the infected compartment, that is, I(t), we obtain;

|I(t∗)− I∗(t∗)| ≤ I0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J2(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J2(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||I − I∗||g∗Ω∗

≤ ⊛K2||I − I∗||,

(30)

which in this case results in

(1 −⊛K2)||V1 − V∗
1 || ≤ 0.
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It is then an obvious observation that from Eq. (30), the above inequality will be valid if ||I − I∗|| = 0
or I being the same as I∗.
Let us consider also the third compartment, that is, T(t), we have;

|T(t∗)− T∗(t∗)| ≤ T0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J3(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J3(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||T − T∗||g∗Ω∗

≤ ⊛K3||T − T∗||,

(31)

which also leads to

(1 −⊛K3)||T − T∗|| ≤ 0.

We also see that from Eq. (31) the above inequality will be correct if ||T − T∗|| = 0 or T being the
same as T∗.
Finally, considering the last state variable, that is, R(t), we obtain;

|R(t∗)− R∗(t∗)| ≤ R0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J4(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J4(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||R − R∗||g∗Ω∗

≤ ⊛K4||R − R∗||,

(32)

a similar result is obtained as

(1 −⊛K4)||R − R∗|| ≤ 0.

It is therefore obvious from Eq. (32) the inequality above will be true if ||R − R∗|| = 0 or R being
the same as R∗.
From the above results, it is implied that the current solution (S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)) and
the previous solution (S(t∗), I(t∗), T(t∗), R(t∗)) are the same. This suffices therefore that the
Caputo fractal-fractional Ebola disease model admits a single solution. This ends the proof.

Hyers-Ulam and Hyers-Ulam-Rassias stability of the Caputo fractal-fractional Ebola model

This section is dedicated to the stability analysis of the model in Eq. (9). Stability analysis is
carried out in this study to establish that the solutions of the model obtained are not absolutely
dependent on the changes that may occur in the neighbourhood. This is essential as biological
systems undergo changes sometimes and this may affect the nature of the solution obtained.
The stability studies are therefore carried out to find out if a small change in the neighbourhood
may exert the same small amount of change in the solution of the model. To conduct this study,
we employ the Hyers-Ulam (HU) stability criterion [44] and its extended form referred to as
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the Hyers-Ulam-Rassias stability (HUR) criterion [45]. Also, many models do not have exact
solutions therefore resulting in mostly reliance on numerical solutions which also come from
approximation algorithms. The HU and HUR stability criteria have shown enough strength in
studying instabilities that may occur. This section therefore deals with applying the HU and HUR
stability criteria to understand the stability patterns of the Caputo Ebola fractal-fractional model’s
solution.

Definition 4 Let us suppose that the Caputo fractal-fractional Ebola model meets the HU stability criterion
whenever there exist DJi > 0 ∈ R for i = 1, 2, 3, 4 such that ∀℘ > 0 and also for every S∗, I∗, T∗, R∗ in
the set S∗, then we have,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ S(t∗)−J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘1,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ I(t∗)−J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘2,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ T(t∗)−J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘3,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ R(t∗)−J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘4,

(33)

and noting also that there exists (S, I, T, R) ∈ S∗ then it is obvious that the Caputo fractal-fractional Ebola
disease model satisfy

|S∗(t∗)− S(t∗)| < DJ1℘1,

|I∗(t∗)− I(t∗)| < DJ2℘2,

|T∗(t∗)− T(t∗)| < DJ3℘3,

|R∗(t∗)− R(t∗)| < DJ4℘4.

(34)

Remark 2 We then suppose that (S∗, I∗, T∗, R∗) ∈ G∗ is a solution to the Caputo fractal-fractional Ebola
model whenever we have ℓ1, ℓ2, ℓ3, ℓ4 ∈ C([0, T], R) (based on (S∗, I∗, T∗, R∗) respectively) such that
∀t∗ ∈ (V, (Ω)).|ℓΩ(t∗)| < ℘Ω for Ω = 1, 2, 3, 4, given

FFCDΦ∗
1 ,Φ2∗

0,t∗ S∗(t∗) = J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘1(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ I∗(t∗) = J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘2(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ T∗(t∗) = J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘3(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ R∗(t∗) = J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘4(t∗).

(35)

Definition 5 We assume that the Caputo fractal-fractional Ebola model is HUR stable whenever we have
a function Φi for i = 1, 2, 3, 4 for DJi,Φi > 0 ∈ R for i = 1, 2, 3, 4 such that for every ℘i > 0 and also
anytime (S∗, I∗, T∗, R∗) ∈ S∗ satisfying

|FFCDΦ∗
1 ,Φ2∗

0,t∗ S(t∗)−J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘1Φ1(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ I(t∗)−J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘2Φ2(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ T(t∗)−J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘3Φ3(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ R(t∗)−J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘4Φ4(t∗),

(36)
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this implies that (S∗, I∗, T∗, R∗) ∈ U ∗ satisfying the Caputo fractal-fractional Ebola model as given in

|S∗(t∗)− S(t∗)| < DJ1Φ1℘1Φ1(t∗),

|I∗(t∗)− I(t∗)| < DJ2Φ2℘2Φ2(t∗),

|T∗(t∗)− T(t∗)| < DJ3Φ3℘3Φ3(t∗),

|R∗(t∗)− R(t∗)| < DJ4Φ4℘4Φ4(t∗).

(37)

Remark 3 We then assume further that (S∗, I∗, T∗, R∗) ∈ U ∗ is a solution to the Caputo fractal-fractional
Ebola model whenever we have ℓ1, ℓ2, ℓ3, ℓ4 ∈ C([0, T], R) (depending on (S∗, I∗, T∗, R∗) respectively)
such that ∀t∗ ∈ (M, (Ω)).|ℓΩ(t∗)| < Φi℘Ω for Ω = 1, 2, 3, 4, given that

FFCDΦ∗
1 ,Φ2∗

0,t∗ S∗(t∗) = J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘1(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ I∗(t∗) = J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘2(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ T∗(t∗) = J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘3(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ R∗(t∗) = J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘4(t∗).

(38)

Theorem 6 Let us suppose that the Caputo fractal-fractional Ebola model is HU stable and satisfies the
condition that U := [0, T] such that ⊛Ki for i = 1, 2, 3, 4, and ⊛ as defined in Eq. (22) and the axiom N1
is true.

Proof By assuming that ℘ > 0 and also we define S∗ ∈ G given further that

|FFCDΦ∗
1 ,Φ2∗

0,t S∗(t)−J1(S∗, I∗, T∗, R∗)| < ℘1,

we then have ℓ1 which is deduced from the condition in Remark 2, this then implies that;

FFCDΦ∗
1 ,Φ2∗

0,t S∗(t) = J1(S∗, I∗, T∗, R∗)

< ℓ1(t∗), (39)

where |ℓ1(t) ≤ ℘1|. This results in,

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
(t∗ − Θ∗)Φ2

1−1℘1(Θ∗)dΩ∗.
(40)

Now from Theorem 5, we let S ∈ G to be a unique solution of the measles disease model with
Caputo fractal-fractional operators. The function S(♭∗) in the form

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

×J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗,
(41)
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and this leads to,

|S∗(t∗)− S(t∗)| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1|℘1(Ω∗)|dΩ∗ +

Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

× |J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗ −A1(S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))dΩ∗

≤ ⊛℘1 +⊛K1||S∗ − S||.
(42)

We then have;

||S∗ − S|| ≤ ⊛℘1

1 −⊛K1
.

It is supposed that DJ1 = ⊛
1−⊛K1

, this then results in the norm ||S∗ − S|| ≤ DJ1,℘1 . By following
the same approach for the other state variables of the model, we obtain the norms below;

||I∗ − I|| ≤ DJ2,℘2 ,

||T∗ − T|| ≤ DJ3,℘3 ,

||R∗ − R|| ≤ DJ4,℘4 .

(43)

Since we have the results DJi,℘i =
⊛

1−⊛Ki
for i = 2, 3, 4, then the condition for stability is satisfied.

Hence we posit that the Caputo fractal-fractional Ebola model meets the Hyers-Ulam stability
criterion.

Theorem 7 By assuming further that (N1) is valid, and we have some non-decreasing maps Φi contained
in the set C([0, T], R) for i = 1, 2, 3, 4 and also there exist some ℓΦi > 0 such that ∀t∗ ∈ U, then we have

FFCDΦ∗
1 ,Φ2∗

0,t Φi(t∗) < ℓΦi Φi(t∗), i = 1, 2, 3, 4.

Whenever condition (N1) is satisfied, we say that the Caputo fractal-fractional Ebola model is Hyers-Ulam-
Rassias stable.

Proof Given that ℘ > 0 and also S∗ ∈ G, thius results in

|FFCDΦ∗
1 ,Φ2∗

0,t S∗(t∗)−J1S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)| < ℘1Φi(t∗).

Now assuming that there is ℓ1(t∗) such that;

FFCDΦ∗
1 ,Φ2∗

0,t S∗(t∗) = J1S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗) + ℓ(t∗),

noting that |ℓ1(t∗) ≤ ℘1Φ1(t∗)|, leading to,

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
(t∗ − Ω∗)Φ2

1−1ℓ1(Ω∗)dΩ∗.

(44)

In addition, we recall from Theorem 5 and suppose that there exists a unique solution to the
Caputo fractal-fractional Ebola model, relating to the state variable S ∈ G. We then obtain the



316 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 296–334

function S(t∗) in the form

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

×J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗,
(45)

which then leads to,

|S∗(t∗)− S(t∗)| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1|℘1(Ω∗)|dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

× |J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

−A1(S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))dΩ∗

≤ ℘1Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1Φ1(t∗) +⊛K1||S∗ − S||

≤ ℘1ℓΦ1 Φ1(t∗) +⊛K1||S∗ − S||.

(46)

It is observed that the state variable S is in the form;

||S∗ − S|| ≤
℘1ℓΦ1 Φ1(t∗)

1 −⊛K1
.

By concluding on this, from the above we define DJ1 =
ℓΦ1

1−⊛K1
, implying that the norm ||S∗ − S|| ≤

℘1DJ1,Φ1 Φ1(t∗) is satisfied. Applying the same procedures we obtain the norms for the remaining
state variables;

||I∗ − I|| ≤ ℘2DJ2,Φ2 Φ2(t∗),

||T∗ − T|| ≤ ℘3DJ3,Φ3 Φ3(t∗),

||R∗ − R|| ≤ ℘4DJ4,Φ4 Φ4(t∗).

(47)

Finally, we recall that DJi,Φi =
ℓΦi

1−⊛Ki
for i = 2, 3, 4. It is then easy to conclude that the Caputo

fractal-fractional Ebola model meets the Hyers-Ulam-Razzias stability criterion. This completes
the proof.

6 Estimation of parameters

In this section, the estimation of parameters from real Ebola data is done for the model which
is a crucial element of epidemiological modelling [46]. Future outcomes can be predicted using
the model and advance our comprehension of the factors that influence the transmission of
disease. Additionally, this method effectively finds the parameters that are very close to their
actual data while producing the appropriate curve generated from actual data [47, 48]. In this
study, the parameters of the model were obtained by applying the least-squares technique as
used in literature, see for instance [49–52] and this yields estimated parameters that have the
highest likelihood of being accurate, assuming certain crucial assumptions are met. Nonlinear
least-squares analysis is a collection of numerical methods used to determine the best value for
the parameters in a vector form based on experimental data. As a result, the model’s solution is
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accurately adjusted using the epidemic’s real data. Eq. (48) provides the method of least-squares
that we apply to investigate the model system. The method is to choose initial approximations
and pre-calculated model parameters that offer a good fit or incorporate all of the data points by
minimising the sum of the squared discrepancies between the model’s solution and the observed
data ⨿(g, m̃) [53, 54], such that:

⨿(m̃) =
n∑

g=1

(m̃g −⨿(g, m̃))2. (48)

Data from the Ebola cases that took place in Uganda between September 10, 2022, and November
2, 2022, were utilised for the model fitting, and it is displayed in Table 1. As mentioned in [55, 56],
the set of data was sourced from GitHub. In collaboration with the WHO Regional Office for
Africa (WHO AFRO), the Ministry of Health in Uganda, and the ECDC surveillance provided
the data. According to the data obtained from the Worldometer, the total population of Uganda
was estimated to be 47,249,585 in 2022 [57]. Therefore, we chose this number to represent the
entire population of Uganda, N(0) = 47249585. Initial populations of the state variables were
selected as follows: I(0) = 58, T(0) = 0, R(0) = 0, and the initial number of susceptible humans is
computed as S(0) = N(0)− (I(0)) + T(0) + R(0)) = 47249527. The incubation period, normally
lasts between 2 and 21 days, by the WHO [58]. As per [2], 64.06 years was Uganda’s life expectancy
in 2022. Thus, the natural mortality rate is estimated to be µ = 1

64.06×365 . Hence, the rate at which
people are recruited to join the susceptible class is computed as ψ = µ × N = 2020. Figure 1
displays the model fitting to the entire set of real data in Table 1. The data listed above and some
educated guesses regarding the parameters were used to accomplish this. Table 2 displays the
model parameters derived from the model calibration shown in Figure 1.

Table 1. Ebola disease human cases, from 10th October, 2022 to 2nd November, 2022

Day Cases Day Cases
10/15/2022 58 10/25/2022 109
10/16/2022 60 10/26/2022 115
10/17/2022 60 10/27/2022 121
10/18/2022 61 10/28/2022 126
10/19/2022 64 10/29/2022 128
10/20/2022 65 10/30/2022 129
10/21/2022 71 10/31/2022 130
10/22/2022 75 11/01/2022 131
10/23/2022 90 11/02/2022 131
10/24/2022 95

Table 2. Ebola model parameters

Parameter Value/day Source Parameter Value/day Source
ψ 2020 Estimated β 0.298548 Fitted
µ 1

64.06×365 Estimated σ2 0.004703 Fitted
α1 0.000019 × 10−3 Fitted δ1 0.603885 Fitted
σ1 0.002182 Fitted α2 0.023848 Fitted
κ 0.096099 Fitted
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Figure 1. Comparison of the real data (blue dots) for the number of Ebola-infected individuals with the model
under fractal-fractional Caputo derivative when Φ1 = 0.80 and Φ2 = 0.86 from 10th October, 2022 to 2nd
November, 2022

7 Equilibrium points, stability of equilibrium points, and basic reproduction number

Disease-free equilibrium

The disease-free equilibrium denotes a situation where there is no disease in the population. It can
be obtained in this model by setting S, I, T and R to zero in Eq. (1) and the resulting solution is
given as

E0 =

(
ψ

µ
, 0, 0, 0

)
. (49)

The fundamental reproduction number

The reproduction number(R0) is the mean number of subsequent infections introduced into a fully
susceptible population by a single infected individual [1]. In epidemiology, R0 is essential for
comprehending how infectious diseases spread, directing public health initiatives, and assessing
pathogen infectiousness for efficient disease control and prevention [28]. The R0 value below 1
signifies the end of a disease outbreak, while an R0 value above 1 suggests a potential epidemic.
A reduction in reproduction numbers due to vaccination, social isolation, or quarantine measures
indicates containment. Employing next-generation matrix approach, we derive the R0 of the
model (1) to be;

R0 =
1

(β + µ + δ1)

[
α1ψ

µ
+

βk
(µ + k + σ2)

]
. (50)
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Analysis of disease-free equilibrium

In this subsection, we prove the local stability of E0.

Theorem 8 The disease-free equilibrium is locally asymptotically stable if R0 < 1 and (β + µ + δ1) +

(µ + k + σ2) > α1
ψ
µ and unstable if R0 > 1.

Proof The corresponding Jacobian matrix of model (1) at E0 is given by

J(E0) =


−µ −α1

ψ

µ
0 σ1

0 α1
ψ

µ
− (β + µ + δ1) κ 0

0 β −(σ2 + κ + µ) 0
0 0 σ2 −(µ + σ1)

 . (51)

It is obvious that Eq. (51) has two negative roots ϵ1 = −µ and ϵ2 = −µ − σ1. The rest of the roots
would be obtained from the characteristic equation below

ϵ2 + [(β + µ + δ1) + (µ + κ + σ2)] ϵ + (β + µ + δ1) (µ + κ + σ2) (1 − R0). (52)

From Eq. (51),

det(ϵ3ϵ4) = (β + µ + δ1) (µ + κ + σ2) (1 − R0). (53)

Also,

tr(ϵ3 + ϵ4) = α1
ψ

µ
− (β + µ + δ1)− (µ + κ + σ2) . (54)

It is obvious that, since its trace is negative and its determinant is positive. det(ϵ3ϵ4) > 0 if R0 < 1.
If

(β + µ + δ1) + (µ + κ + σ2) > α1
ψ

µ
, (55)

then tr(ϵ3 + ϵ4) < 0, implying that model (1) is asymptotically stable.

Existence of endemic equilibrium

Here, we examine the requirements for model (1)’s endemic equilibrium. The endemic equilibrium
denoted by E∗∗

1 = (S∗∗, I∗∗, T∗∗, R∗∗) is obtained by substituting the derivatives in the left-hand
side of the model (1) and equate it to zero. We then solve the associated system of S∗∗, I∗∗, T∗∗,
and R∗∗, we obtain

S∗∗ =
ψ(µ + σ1)(µ + k + σ2) + σ2 I∗∗(ψα2 + σ1β)

(α1 I∗∗ + µ)[(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗]
,

T∗∗ =
β(µ + σ1)I∗∗

(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗
,

R∗∗ =
βα2σ2 I∗∗

(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗
.

(56)
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The endemic equilibrium (56) satisfies

P(I∗∗) = I∗∗(Q1 I∗∗)2 + Q2 I∗∗ + Q3) = 0, (57)

where

Q1 = α1α2σ2(µ + δ1),

Q2 = α2σ2[ψα1 + µ(µ + δ1)] + α1ησ2 + α1(η + µ)[kβ − (k + µ + σ2)(β + µ + δ1)],

Q3 = (k + µ + σ2)(β + µ + δ1)(η + µ)(R0 − 1).

The root I∗∗ = 0 of Eq. (57) corresponds to disease-free equilibrium. Thus, we regard the quadratic
equation

P(I∗∗) = Q1(I∗∗)2 + Q2 I∗∗ + Q3 = 0, (58)

in determining the existence of endemic equilibrium. It should be noted that the positive root of
the equation provides the endemic equilibrium (56).

One can easily see that Q1 > 0 whether R0 > 1 or not. If R0 > 1, Q3 > 0 and if Q2 < 0
when R0 > 1, then the graph of the polynomial (58) indicates that model (1) has one endemic
equilibrium. If R0 < 1, and Q3 < 0. Then model (1) has no endemic equilibrium. If R0 = 1,
Q2 > 0 and Q3 = 0, then Eq. (58) has no positive root. In conclusion, we arrive at the results
below.

Theorem 9 The model (1) has a unique endemic equilibrium if Q2 < 0 and R0 > 1, and no endemic
equilibrium when R0 ≤ 1.

Local stability of endemic equilibrium and bifurcation analysis

We examine the possibility of bifurcation and discuss the local stability of endemic equilibrium.
The bifurcation phenomenon is established in this section by using the centre manifold theory
as explained in Theorem 4.1 by both Carlos Castillo-Chavez et al. [59] and Buonomo et al. [60]
respectively as follows:

We consider the transmission rate of Ebola α1 as the bifurcation parameter so that R0 = 1 if and
only if

α1 = α∗1 =
µ(β + µ + δ1)(µ + k + σ2)− βkµ

ψ(µ + k + σ2)
.

Introducing S = x1, I = x2, T = x3, and R = x4, model (1) becomes

f1 = x ′
1 = ψ + σ1x4 − α1x1x2 − µx1,

f2 = x ′
2 = α1x1x2 + kx3 − α2x2x4 − (β + µ + δ1)x2,

f3 = x ′
3 = α2x2x4 + βx2 − (µ + k + σ2)x3,

f4 = x ′
4 = ϕx3 − (µ + σ1)x4.

(59)
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We know that the Ebola-free equilibrium is
[

x∗1 =
ψ

µ
, x∗2 = 0, x∗3 = 0, x∗4 = 0

]
. We linearised the

matrix of the model (59) around the disease-free equilibrium when α1 = α∗1 and obtained

J(E0
1) =


−µ −α1

ψ

µ
0 σ1

0 α1
ψ

µ
− (β + µ + δ1) κ 0

0 β −(σ2 + κ + µ) 0
0 0 σ2 −(µ + σ1)

 . (60)

The matrix J(E0
1) possesses a simple eigenvalue, with other eigenvalues endowed with negative

real parts. Therefore, the centre manifold theorem as performed in [2] can be applied. We therefore
need to derive the values of a and b. We begin this by calculating the right and left eigenvalues of
J(E0

1) denoted by

W = [w1, w2, w3, w4]
T and V = [v1, v2, v3, v4], respectively.

We obtain

w1 = −
ψα∗1(µ + k + σ2)(µ + σ1) + σ2σ1βµ

µ2βσ2
, w2 =

(µ + k + σ2)(µ + σ1)

βσ2
, w3 =

(µ + η)

σ2
,

w4 = 1,

and

v1 = 0, v2 =
(µ + k + σ2)

k
, v3 = 1, and v4 = 0.

Next, we compute the values of a and b. From model (59), all the associated partial derivatives of
F = ( f1, f2, f3, f4)

T in (59) are zero at the Ebola-free equilibrium (DFE) except the following:

∂2 f1

∂x1∂x2
=

∂ f1

∂x2∂x1
= −α∗1,

∂2 f2

∂x1∂x2
=

∂2 f2

∂x2∂x1
= α∗1,

∂2 f2

∂x2∂x4
=

∂2 f2

∂x4∂x2
= −α2,

∂2 f3

∂x2∂x4
=

∂2 f3

∂x4∂x2
= α2,

∂2 f2

∂x2∂α∗1
= α2,

∂2 f2

∂x3∂α∗1
=

ψ

µ
.

Substituting the above equations into a and b in

a =
n∑

k,i,j=1

vkωiωj
∂2 fk

∂xi∂xj(0, 0)
,

b =
n∑

k,i=1

vkωi
∂3 fk

∂xi∂ϕ
(0, 0),
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it follows that

a = 2v2w1w2
∂2 f2

∂x1∂x2
+ 2v2w2w4

∂2 f2

∂x2∂x4
+ 2v3w2w4

∂2 f3

∂x2∂x4

= 2v2w1w2α∗1 − 2v2w2w4α2 + 2v3w2w4α2

=
2(µ + k + σ2)

2(µ + σ1)

kβ2µ2σ2
2

[
α2

(µ + k + σ2)
−
(

ψα∗2
1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)

)]
> 0,

b = v2w2
∂2 f2

∂x2∂α∗1
+ v3w3

∂2 f2

∂x3∂α∗1

=
ψ(k + σ2 + µ)2(µ + σ1)

βµkσ2
> 0.

Here, it is obvious that the coefficient b > 0. It follows from the results given in [61], that model (1)
undergoes backward bifurcation whenever a > 0, that is α2

(µ+k+σ2)
>

(
ψα∗2

1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)
)

and would be a forward bifurcation whenever a < 0, that is
α2

(µ+k+σ2)
<

(
ψα∗2

1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)
)
. The endemic equilibrium, which ex-

ists whenever R0 > 1, is locally asymptotically stable whenever R0 > 1 and α∗1 < α1 with α1 close
to α∗1.

Theorem 10 The unique endemic equilibrium of model (59) is locally asymptotically stable when R0 > 1.

8 Sensitivity analysis of R0

In this subsection, we conduct a sensitivity analysis of some key parameters in support of the
graphs in Figure 6. The significance of conducting the sensitivity analysis is to identify parameters
influencing the R0. It is a useful tool for determining essential parameters to be considered while
developing intervention strategies [2, 62, 63]. The forward normalised sensitivity index of R0 is
employed in this section. It is therefore defined as:

χ
R0
ℓ =

∂R0

∂ℓ
× ℓ

R0
, (61)

where ℓ denotes the parameters in the R0. The resulting sensitivity indices utilising Eq. (4) and
the parameter values in Table 2 are given in Table 3 below.

Table 3. Sensitivity analysis of R0 to parameters for the Ebola model

Number Parameter Index
1 α1 +0.99968
2 ψ +0.99968
3 κ +1.49150 × 10−5

4 µ −0.99973
5 β −0.33049
6 δ1 −0.66914
7 σ2 −1.47801 × 10−5

Parameters with negative sensitivity indices lower R0 value as the values assigned to them are
increased. Parameters with positive indices increase R0 value as the values assigned to the
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(a) 3D plot of κ and σ2 on R0
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Figure 2. The effect of κ and σ2 on R0

parameters are increased. It can be seen from Table 3 that α1, κ and ψ are positive. Therefore,
increasing their values increases the value of R0. For instance, increasing α1 by 10% raises or
reduces the R0 value by 9.9968%. Figure 2 indicates the 3D and contour plots in support of the
impact of relapse rate, κ and the recovery rate, σ2 on R0. It can be seen in Figure 2a and Figure 2b
that the value of R0 increases as the values of κ increase. Also, the R0 value decreases as the value
of σ2 increases. This implies that Ebola transmission can be reduced if the values of κ are reduced
while increasing the value of σ2 so that the value of R0 would be less than unity. This can be
achieved by educating the susceptible to ensure personal protection against Ebola, disinfecting
the environment of the infectious and Ebola-related death victims, and advising the infectious
individuals to visit health centres for treatment and vaccination of susceptible individuals. Also,
β, δ1, σ2, and µ have negative values. Therefore, an increase in any of them decreases the R0. For
instance, raising or lowering β by 10% raises or lowers the R0 value by 3.3049%. This implies that
if infectious people are advised to visit treatment centres Ebola infection decreases. Moreover, the
rate of recovery of the infectious populace has been dominant. Thus, a reduction in R0 to less than
one will be possible if infected persons recover early from Ebola. However, the natural mortality
rate, the disease-related death rate, and the recruitment rate cannot be used as control measures to
eradicate the transmission of disease in our communities.

9 Numerical trajectories and discussion of results

In this subsection, the numerical results and the discussion of the outcomes of the analysis that
was conducted in this study are presented. Based on the fractal-fractional Caputo, our model of
the Ebola outbreak in Uganda may be numerically examined and utilised to predict the disease’s
trajectory. We used Newton’s polynomial numerical scheme to carry out extensive numerical
simulations, taking into consideration the estimated parameter values provided in Table 2. The
numerical simulations were carried out using these initial state variable values: S(0) = 47249527,
I(0) = 58, T(0) = 0, R(0) = 0, and the parameter values given in Table 2. Numerous simulations
were conducted to assess the influence of the parameters on the Ebola virus disease state variables.
Additionally, we performed sensitivity analyses on some of the key parameters to see how they
affect the possibility of Ebola disease transmission.
The graphical results for our model’s compartments, S, I, T, and R, utilising different fractal-
fractional order values are presented in Figure 3, Figure 4, and Figure 5 accordingly. It is observed



324 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 296–334

that all the state variables’ trajectories show a consistent pattern of convergence toward the precise
endemic equilibrium point. This portrays the real dynamics of the Ebola virus disease outbreak.
First, we show the numerical solution for both the integer order and the fractal-fractal Caputo
orders of model (2) in Figure 3. It is obvious from Figure 3a, Figure 3b, Figure 3c and Figure 3d
that integer model with Φ1 = Φ2 = 1 recorded a lower count of susceptible whiles infectious,
treatment and recovery classes recorded a higher count as compared to the fractal-fractional
order models. The integer order raises the impact of Ebola. An interesting result was observed
in Figure 3b. The number of individuals infected with the Ebola virus increases more quickly
as the fractional values get closer to unity, but after 18 days, it begins to decline sharply. The
disease’s trajectory seems to record a moderate growing pace, we record greater sensitivity to it at
Φ1 = Φ2 = 1. A similar result was obtained in Figure 4b and Figure 5b.
The simulation results in Figure 4 depict the impact of keeping the fractal dimension constant
at Φ1 = 1 while varying the fractional order value. It was observed in Figure 4a, Figure 4b,
Figure 4c, and Figure 4d that, individuals in the susceptible class increase as fractional order
values decrease. Also, individuals in the infectious, treatment, and recovery classes reduce
as the fractional value reduces. As shown in Figure 5a, Figure 5b, Figure 5c, and Figure 5d,
increasing the fractal dimension for a constant fractional order value produces dynamics that are
similar to those obtained by keeping the fractal dimension constant at Φ1 = 1 and varying the
fractional order. The findings underscore the significance of employing fractal-fractional models
modelling infectious diseases. Hidden patterns and structures in the natural phenomena of Ebola
transmission have been discovered by the application of fractal-fractional Caputo derivatives.
Additionally, we analysed the contribution of some key parameters to the Ebola transmission
and presented the results in Figure 6a, Figure 6b, Figure 6c and Figure 6d. We observed that, as
the values of transmission rate outside the treatment centres, α1, and the relapse rate, κ increase,
the number of Ebola infectious individuals increases as indicated in Figure 6a, and Figure 6d
respectively. This implies that α1, and κ significantly contribute to the endemic status of the disease
by increasing the value of the reproduction ratio. They are among the essential components that
need to be considered while developing intervention strategies to curb the Ebola outbreak. We
suggest that the provision of an immune booster vaccination after treatment could offer active,
long-term protection, lower relapse rates, and prevent fatal outcomes. Furthermore, implementing
control measures like quarantine, isolation, and disinfecting the environment in Ebola-affected
communities could potentially help many individuals recover from the disease. Moreover, we
considered the transmission rate at treatment centres, α2, and the rate of transfer from the treated
class to the infected class, β. We observed from Figure 6c and Figure 6b that recovery increases at
treatment centres as the transmission rate within treatment centres, α2 decreases in value. Also, as
the value of β increases, the rate of Ebola infection declines, as depicted in Figure 6b. This implies
if many infectious individuals are advised to visit treatment centres, Ebola transmission reduced,
in communities. This also implies that transmission of Ebola disease could be controlled if proper
measures are put in place at treatment centres. For instance, the implementation of clinical daily
surveillance or prophylaxis after exposure (PEP) with favipiravir, health care worker training, and
the provision of personal protective equipment (PPE) items may all contribute to the reduction of
infection rates within Ebola treatment centres. Again, Figure 7 indicates the effects of σ2 on the R0.
It is obvious that as the value of σ2 increases the number of Ebola infectious individuals decreases.
Hence reduction in its value increases recovery of the disease. This suggests that if the transmission
rate is lowered, the number of subsequent infections in the community can be decreased and
the relapse rate of Ebola is reduced. These can be achieved through personal protection against
the disease, vaccination, and treatment, and disinfecting the surroundings of the deceased Ebola
victims. Finally, it is obvious that the fractional model is essential to comprehend the vital factors
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and attain accuracy and consistency. Its memory effects are demonstrated through graphs, unlike
the integer-order models. According to the World Health Organisation (WHO), the Ebola virus
disease is severe and recorded a mortality rate of up to 90% in humans. Notwithstanding this, it
further reports that by carrying out effective treatment strategies, the mortality rate has decreased
drastically from 90% to 25% in current epidemics. This report is in line with the results from our
study since when proper precautions are put in place at the treatment centres we observed an
increase in the recovery compartment which implies a decline in the disease-induced mortality
rate.
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Figure 3. Effect of Fractal-Fractional order on the S(t), I(t), T(t), and R(t) respectively. Considering
Φ1 = Φ2 = 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88
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Figure 4. Effect of fractional order on the S(t), I(t), T(t), and R(t) respectively. Considering Φ1 = 1 and
Φ2 = 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88
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(a) Effect of Fractal order on the susceptible class, S(t)
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Figure 5. Effect of Fractal order on the S(t), I(t), T(t), and R(t) respectively. Considering Φ1 =
1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88 and Φ2 = 1
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Figure 6. Effect of α1,β,κ on the infectious class, I(t) and α2 on the recovery class, R(t) at Φ1 = Φ2 = 0.90
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Figure 7. Effect of σ2 on the infectious class, I(t) at Φ1 = Φ2 = 0.90
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10 Conclusion

In this paper, the dynamics of the Ebola virus disease are investigated with a keen focus on the
transmission of the Ebola virus disease at the treatment centres and also how the virus persists in
the immunological sites of the treated patient which mostly results in the relapse of the disease.
These dynamics of the Ebola virus disease are essential and contribute massively to the spread of
the disease in the population. Therefore a Caputo fractal-fractional Ebola model was formulated to
study how to control the disease in the population. The fractional operators were employed due to
their ability to capture the memory effect exhibited by the Ebola virus disease. Through the fixed
point theory, it was established that the Caputo fractal-fractional Ebola model possesses a unique
solution. The study further applied the HU and HUR stability criteria to establish that the model
was stable. In the studies, all parameters were fitted to real data from Uganda making the model’s
parameter values more reliable. It was observed from the sensitivity analysis that parameters
like α1, ψ and κ have a direct relationship with the spread of the disease whereas parameters like
µ, β, δ1 and σ2 are inversely related to the fundamental reproductive number. From the numerical
simulations, it was discovered that the hidden patterns or dynamics of the Ebola virus disease
are well captured using fractional operators. It was observed that the transmission rate outside
the treatment centres and relapse rate resulted in a high number of infections as compared to the
transmission rate at the treatment centres. The study therefore suggests that infected individuals
be sent to the treatment centres and proper treatment should also be carried out. The studies hence
suggest that transmission of Ebola disease could be mitigated if proper measures are carried out at
the treatment centres. Therefore, the implementation of clinical daily surveillance or prophylaxis
after exposure (PEP) with favipiravir, health care worker training, and the provision of personal
protective equipment (PPE) items may all contribute to the reduction of infection rates within
Ebola treatment centres. By doing this, the Ebola disease will gradually die from the population.
In the near future, the study will be extended to conduct an optimal control analysis into the Ebola
disease by considering the results reported in this current study.
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Abstract

In this study, the 1.5-dimensional cutting stock problem with technical constraints is considered. In the
literature, this problem is also defined as a strip packing or open dimension problem. When given a
strip of infinite length and bounded width, the problem is to define a packing of rectangular objects
into a strip that minimizes its final length. Technical constraints, such as the order type and the number
of strips, are indispensable in real life; however, they are often neglected in the literature because
they make the problem difficult to solve. Only one study was reached in the literature that took into
account technical constraints, but in that mentioned study, only a mathematical model was proposed
for the problem. In this context, our aim is to solve the problem with a more effective approach.
The research question in this study is the usability of the column generation technique to solve the
1.5-dimensional cutting stock problem. In this study, the column generation approach was proposed
for the first time for the considered problem. To demonstrate the performance of the proposed solution
method, randomly generated test problems were solved with GAMS/Cplex. As we report the results,
proposed column generation approach (CG) reaches very close (such as 1% and 2% error) solutions to
integrated mathematical model (IM) for small sized problems in a second. On the other hand, while
CG solved all the problems in a reasonable time, IM could not produce a feasible solution to some
problems. Numerical experiments showed that the column generation algorithm outperforms the
integrated mathematical model for the problem.

Keywords: 1.5-dimensional cutting problem; column generation; mixed-integer linear programming

AMS 2020 Classification: 90C06; 90C10; 90C11; 90C90

1 Introduction and literature survey

The essential characteristics to be considered to generate the cutting plans are the number of di-
mensions of the stock material and the order of pieces. Cutting items such as paper rolls and metal
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rods are one-dimensional. The problems, such as pallet placement and cutting small rectangular
order pieces from large rectangular stock materials, are two-dimensional, and problems such as
container insertion and packing into packing boxes, are three-dimensional. Four-dimensional
problems can arise when the time dimension is added to a three-dimensional problem.
One-and-a-half-dimensional problems are a particular case of two-dimensional problems. Such
problems arise when rectangular order pieces are to be placed on very long rolls. Although
rectangular order pieces are being cut, the problem is not two-dimensional because the side waste
along the stock material can be defined by one dimension.
Dyckhoff et al. (1985) made significant contributions to the literature on cutting problems
and named the one-dimensional cutting stock problem in continuous form as one plus half-
dimensional, 1.5-dimensional [1]. This definition in Dyckhoff’s classification has not been included
much in the literature. The related problems are defined as ’one-dimensional and various-sized
stock materials cut-off’ instead of the 1.5-dimensional problem [2]. Moreover, in the following
years, Dyckhoff grouped the problems according to their dimensions as one, two, three, and
N−dimensional (N > 3) problems. This classification does not include the 1.5- dimensional
problems [3].
Song et al. (2006) defined the 1.5-dimensional problem differently. Accordingly, the 1.5- dimen-
sional cutting stock problem is cutting smaller rectangular order pieces from large rectangular
stock materials. In this problem, the order piece requested by the customers can sometimes be
longer than the primary material. In this case, several stock materials are brought together so
that their total length matches the size of the order pieces. This problem is also defined as a
1.5-dimensional problem because of the assumption that the stock materials can be combined [4].
In the definitions above, the 1.5-dimensional problem is the placement of rectangular order pieces
to the stock material, which can be accepted as a fixed width and continuous form. Although this
problem is not mentioned as much as other cutting problems in the literature, it has a significant
area, especially in production environments with inputs such as paper, metal, sheet metal.
Saraç and Özdemir (2003) discussed the 1.5-dimensional cutting stock problem with the limited
number of strips, piece types, and stock material selection. They proposed a two-step approach to
solve the problem. The cutting plans are derived for the first stage, and complete enumeration is
considered under the constraints of the number of strips and the order of piece type. In the second
stage, a bi-objective, nonlinear, mixed-integer mathematical model is proposed to determine which
cutting plans and stock materials will be selected. A genetic algorithm has been developed because
a mathematical model cannot solve real-life problems [5]. Gasimov et al. (2007) developed a new
multi-objective mixed-integer linear mathematical model for the 1.5-dimensional cutting stock and
stock material selection problem. This model requires the cutting plans to be derived in advance
[6]. Kokten and Sel (2022) developed a nonlinear mixed-integer mathematical model for the
1.5-dimensional cutting stock and stock material selection problem. They used a decomposition
method in which the sub-models were solved sequentially to solve the problem [7]. Saraç and Sağır
(2021) developed a mixed-integer linear mathematical model for the 1.5-dimensional cutting stock
problem with limited part type and strip number that does not need to be derived in advance of
cutting plans [8]. Duysak et al. (2022) proposed a metaheuristic algorithm for the 1.5-dimensional
cutting and assortment problem. They considered the due dates of the cutting parts [9]. Vasilyev
et al. (2023) proposed a few mathematical models and two solution algorithms for the problem
[10]. Liu et al. (2023) dealt with two aspects of the problem: the uncertain demand for items and
the need for diverse types of strips to cater to varying customer needs. They proposed a robust
optimization model to cope with these difficulties [11].
The variations of the considered problem have also been referred to in the literature as strip
packing or open dimensional problems. The strip packing problem is defined as follows. Consider
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a set of n rectangular items with dimensions (wj, hj) where wj and hj represent the width and the
height of item j, respectively, and wj is an integer value. Let R be a rectangular object (strip) with
fixed width W and height H large enough (infinite height) to pack all items. The objective of the
strip packing problem is to pack all items without overlapping while minimizing the height of the
strip [12]. On the other hand, according to Wäscher et al. (2007), 2D strip packing corresponds to
the Two-Dimensional Rectangular Open Dimension Problem [13].
A few studies solve the strip packing problem with column generation. In their study, Sugi et
al. (2020) considered the rectangular strip packing problem with a three-stage guillotine cutting
constraint and the limitations of slitter blades. They propose a new algorithm based on the
column-generation technique for this problem [14]. While Cintra et al. (2008) and Bettinelli et al.
(2008) developed solution approaches based on the column generation technique for the classical
two-dimensional level strip packing problem [15, 16], respectively, Cui et al. (2017) suggested
it for the rectangular level strip packing problem [17]. When it comes to level, the structure of
the problem differs significantly from that of the classical problem since the cutting process is
done on a level basis. The problems addressed in these studies are different from our problems.
Order type and strip number constraints were not considered together in any of these studies. In
summary, we have reached only one study [8] in the literature that considers technical constraints.
Furthermore, when considering the 1.5-dimensional cutting problem literature, it becomes evident
that the column generation solution approach has not been applied to this problem previously. In
other words, in this study, the column generation approach was proposed for the first time for the
considered problem.
The following Section 2 presents the problem in detail and gives the mathematical model of
the problem. Section 3 proposes a column generation approach to solve the problem. Section 4
provides experimental results, Section 5 gives the discussion, and Section 6 presents the conclusion.

2 Problem definition and mathematical model

n rectangular order pieces of different dimensions are cut from G-width stock material. The length
(L) of the stock material is long enough to neglect the length restriction when creating cutting
plans. For this reason, cutting plans are created by considering only the ’width’ constraints. Then,
the total lengths are calculated separately for each order piece included in a cutting plan. The
largest of these determines the size of the cutting plan. The number of knives (t − 1) that can
cut the stock material into strips by cutting parallel to the length is limited. Therefore, the stock
material can be cut into a maximum of t strips. In other words, a maximum t order pieces can be
placed on the stock material. While cutting the order pieces, they cannot be rotated; that is, cutting
should be made so that the width of the order piece is parallel to the width and length of the stock
material. Also, the maximum number of order piece types (c) that can be included in a cutting
plan is limited.
An integrated mathematical model (IM) proposed by Saraç and Sağır (2021) generates and selects
cutting plans for 1.5-dimensional cutting stock problems with technical constraints [8]. Table 1
gives the indices of the mathematical model, Table 2 shows the parameters, and Table 3 shows the
decision variables.

Table 1. Indices

r Quantity index with the order piece at the width of the cutting plan r ∈
{

1, . . . , enbj
{

qj
}}

j Order piece index j ∈ {1, . . . , n}
k Cutting plan index k ∈ {1, . . . , m}
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Table 2. Parameters

n number of order pieces
m maximum number of cutting plans that can be derived
ej width of the order piece j (cm)
bj length of the order piece j (cm)
d the demand of the order piece

qj the quantity that the order piece j can fit in the width of the stock material qj =
⌊

G
ej

⌋
G width of the stock material (cm)
L length of the stock material (cm)
t maximum number of strips that can be included in a cutting plan
c maximum variety of order parts that can be included in a cutting plan

Table 3. Decision variables

µjk the total amount of order piece j included in the cutting plan k
yjk the quantity that the order piece j can fit in the width of the kth cutting pattern
zk 1, if kth cutting pattern is used, 0 otherwise

wjk 1, if jth order is included in the kth cutting pattern, 0 otherwise
xk Net amount to be used from the kth cutting pattern (cm)
sjkr 1, if there is an r row of the order j at the width of the cutting pattern k, 0 otherwise
∝jk the quantity of the order piece j can fit in the length of the cutting pattern k
σk amount to be used from the kth cutting pattern (Each cutting plan is assumed as 100 cm.

In the mathematical model, and σk decision variable shows how many times 100 cm cutting
patterns are used. Therefore, the number of uses of the cutting patterns also means how many

meters are used

M ′ a big positive number M ′ =
⌊

G
ej

⌋ ⌊
L
bj

⌋
M ′′ a big positive number M ′′ = max qj

The IM model is given below: ∑
k

µjk ≥ dj, ∀j, (1)∑
j

ejyjk ≤ Gzk, ∀k, (2)

∑
k

xk ≤ L, (3)

µjk ≤ yjk M ′, ∀j, k, (4)

µjk ≥ yjk, ∀j, k, (5)

∝jk ≤
100σk

bj
, ∀j, k, (6)

µjk ≤ r∝jk + (1 − sjkr)M ′, ∀j, k, r| r ≤ qj, (7)

yjk =
∑

r|r≤qj

rsjkr, ∀j, k, (8)

∑
r|r≤qj

sjkr ≤ 1, ∀j, k, (9)
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∑
j

∑
r|r≤qj

sjkr ≤ c, ∀k, (10)

∑
j

yjk ≤ t, ∀k, (11)

∑
j

yjk ≤ σk M ′′, ∀k, (12)

σk ≥ zk, ∀k, (13)

σk ≤ L zk, ∀k, (14)

xk ≥ bj ∝jk, ∀j, k, (15)

xk ≥ 0, ∀k, (16)

yjk ≥ 0 and integer, ∀j, k, (17)

µjk ≥ 0 and integer, ∀j, k, (18)

zk ∈ {0, 1} , ∀k, (19)

wjk ∈ {0, 1} , ∀j, k, (20)

sjkr ∈ {0, 1} , ∀j, k, r, (21)

σk ≥ 0 and integer, ∀k, (22)

∝jk ≥ 0 and integer, ∀j, k. (23)

Objective function

f = enk
∑

k

xk
L

+
∑

k

Zk
m

. (24)

Constraint (1) is the demand constraint. It is ensured by constraint (2) that the total width of
all order pieces placed in a cutting plan does not exceed the width of the stock material. The
constraint (3) is for the total amount of cutting plan used not to exceed the length of the stock
material. The constraints (4) and (5) are the relationship constraints between variables µjk and yjk.
If yjk is zero, they ensure that the variable µjk is also zero. Constraint (6) calculates how many
times the order pieces j are included in the cutting plan k considering only its length. Decision
variable σk indicates how many pieces of the cutting plan are used, and it is multiplied by 100 to
convert to cm. Constraint (7) calculates exactly how many pieces of order j are included in the
total amount of cutting plan k. Constraint (8) calculates how many pieces of order j are included
in a cutting plan considering only its width. Constraint (9) indicates that if an order piece is
used in a cutting plan, the amount that can fit in the end can be a single value. Constraint (10)
indicates that maximum c different order pieces can be included in the cutting plan. Constraint
(11) indicates that there may be no more than t order pieces that can be cut across a cutting plan.
The constraint number (12) is the relational constraint between yjk and σk. Constraints (13) and
(14) are the relational constraints between σk and zk. The constraint number (15) calculates the net
used amount of the cutting plan. (16) - (23) constraints are sign constraints. The objective function
(24) is to minimize the total length and type of cutting plan used. These terms are combined using
the weighted sum scalarization method.

3 Problem-solving with column generation

Although mathematical models are developed to give the best solution for t his problem, they
cannot be solved when the problem size increases. In addition, the problem has some special
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technical limitations that have not been included in the literature by now. Our motivation comes
from this need to solve the model more effectively and quickly by using the column generation
method, as well as to take into account more realistic constraints are aimed, as we explained before.
This section presents the column generation method.

Column generation method

Column Generation is a technique for solving linear programs where the numbers of variables
are hard to enumerate. According to this approach, only a few variables are needed to determine
the optimal solution, as most will assume a zero value [18]. In each step, the master model looks
for the best solution, considering only a certain number of variables (equivalent columns). The
sub-problem (knapsack problem) investigates whether new columns are added to the master
problem in the next increment, reducing the objective function. The objective function of the
knapsack problem is the reduced cost of the columns concerning the optimal dual variables
corresponding to the optimal solution of the current master problem. If there is a column with
a negative reduced cost, that column is added to the master problem and proceeded to the next
iteration; otherwise, optimality is achieved [18].
Figure 1 gives the flow chart of the column generation algorithm.

Figure 1. Main steps of the CG algorithm

According to the algorithm, initial cutting plans are derived. The master model is solved using
these cutting plans. If the dual price (σ) is negative, there is a better cutting pattern. From the
solution of the master model, the dual variable of the related constraint is sent to the knapsack
model. The knapsack model is solved, and the new cutting plan will be added to the master
model. Then, the loop continues until no better cutting plan is derived.
The complexity of column generation depends on the structure of the main problem and the
pricing sub-problems. Because the process involves solving a constrained main problem and a set
of sub-problems iteratively to create new columns, the computational burden is usually incurred
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by solving the sub-problems and can be complex and time-consuming, especially when these
problems involve combinational structures. For the problem considered in this study, a significant
reduction is observed in the complexity of the sub-problem compared to the complexity of the
integrated problem. The solution times given in Section 5 are an indicator of this reduction.
The column generation technique is used to solve many problems in the literature. Kamran et al.
(2020) used a column-generation-based heuristic algorithm and Benders’ decomposition technique
to schedule patients in operating rooms. With the growth in the number of patients, the feasible
sequencing plans grow exponentially. On the other hand, the CG method does not need to price
out all the columns, and this makes it beneficial [19].
Faiz et al. (2019) used a column generation framework to solve large-scale instances of vehicle
scheduling and routing problems. They first suggest various linear programming models for the
problem. According to the experimental results, the column-generation-based approach provides
better solutions in terms of solution time [20].
Changchun et al. (2018) developed a column generation-based distributed scheduling algorithm
for a constrained project scheduling problem. They decomposed the problem into two parts as:
production planning and vehicle scheduling [21].
Section 3 presents the proposed column generation algorithm’s main and sub (knapsack) problems
and the mathematical models developed to solve them.

Master and knapsack models

Master and knapsack models are developed as below, respectively. Since the indices, parameters,
and decision variables are explained in Section 2, only the newly defined ones are included here.
Master model
Parameters

y ′
jk : the quantity that the order piece j can fit in the width of the kth cutting pattern.

Constraints are given by the following equations including Eq. (3),

∝jk ≤ 100xk
bj

, ∀j, k, (25)∑
k

∝jky ′
jk ≥ dj, ∀j, (26)

xk ≥ zk, ∀k, (27)

xk ≤ L zk, ∀k, (28)

xk ≥ bj ∝jk, ∀j, k. (29)

Objective function

f = min
∑

k

xk. (30)

Constraint (25) calculates how many times order piece j is included in the cutting plan k consider-
ing only its length. Decision variable xk indicates how long cutting plans are used in meters, and
it is multiplied by 100 to convert to centimeters. Constraint (26) is demand constraint. Constraints
(27) and (28) are the relational constraints between xk and zk. Constraint (29) calculates the net
amount to be used from the kth cutting pattern (cm).
The objective function (30) minimizes the total net amount used from the cutting patterns.
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Knapsack Model
Parameters

yj : the quantity that the order piece j can fit in the width of the cutting pattern,
wj : 1, if jth order is included in the cutting pattern, 0 otherwise,
φj : dual variables of constraint (26) of main model.

yj ≤ twj, ∀j, (31)

yj ≥ wj, ∀j, (32)∑
j

ejyj ≤ G, (33)

∑
j

wj ≤ c, (34)

∑
j

yj ≤ t, (35)

yj ≥ 0, ∀j, (36)

wj ∈ {0, 1} , ∀j, (37)

f = min

1 −
∑

j

φj yj (
1
bj
)

 . (38)

Constraints (31) and (32) indicate that if an order piece is included in the cutting pattern, at least
one and no more than t order pieces can be cut across the cutting plan. It is ensured by constraint
(33) that the total width of all order pieces placed in a cutting plan does not exceed the width of the
stock material. Constraint (34) indicates that maximum c different order pieces can be included in
the cutting plan. Constraint (35) indicates that there may be no more than t order pieces that can
be cut across a cutting plan. (36) - (37) are sign constraints. The objective function is given in Eq.
(38).

4 Experimental results

An instance taken from the literature with different numbers of orders is solved both with MI and
CG. CPLEX solver of GAMS (version 24.0.2) is used on a PC with 3.60 GHz Intel Core i7 and 16
GB RAM. The time limit of 86,400 CPU seconds is applied for CPLEX runs.
The following section presents the test problems, followed by the toy problem and the test results,
which are introduced in the first and second subsection of Section 4, respectively.

Test problems

The first four samples (problem instances) are taken from [8]. The remaining are obtained by
adapting the examples generated for one-dimensional cutting problems by Kasımbeyli et al. (2011)
[22]. The widths of the order pieces in the one-dimensional problem are multiplied by a parameter,
and the length values are obtained. The parameter values of all samples are given below.

Sample 1.

n = 5, G = 110, e = (10, 20, 30, 40, 60), b = (13, 26, 39, 52, 78), d = (6, 11, 4, 20, 15).
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Sample 2.

n = 10, G = 120,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84),

d = (7, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 3.

n = 20, G = 130,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41),

d = (16, 11, 13, 20, 15, 15, 10, 13, 20, 15, 15, 11, 13, 20, 15, 15, 10, 13, 2, 15).

Sample 4.

n = 30, G = 280,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 51,

52, 53, 54),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41, 42, 44, 53, 54, 55, 57, 66,

67, 68, 70),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 5.

n = 40, G = 130,

e = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44, 51,

52, 53, 54, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71),

b = (13, 26, 39, 52, 78, 19, 32, 45, 58, 84, 14, 15, 16, 18, 27, 28, 29, 31, 40, 41, 42, 44, 53, 54, 55, 57, 66,

67, 68, 70, 79, 80, 81, 83, 85, 87, 88, 89, 91, 92),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15).

Sample 6.

n = 40, G = 10000,

e = (732, 1746, 1210, 290, 1212, 715, 1471, 1405, 1974, 344, 1699, 172, 351, 1227, 1739, 272, 1903,

1121, 1326, 107, 726, 1917, 1116, 501, 1599, 439, 821, 485, 361, 860, 1252, 562, 1131, 271, 1075,

987, 1171, 1979, 228, 1370),

b = (951, 2269, 1573, 377, 1575, 929, 1912, 1826, 2566, 447, 2208, 223, 456, 1595, 2260, 353, 2473,

1457, 1723, 139, 943, 2492, 1450, 651, 2078, 570, 1067, 630, 469, 1118, 1627, 730, 1470, 352,

1397, 1283, 1522, 2572, 296, 1781),
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d = (217, 232, 265, 249, 266, 269, 215, 215, 213, 267, 299, 259, 287, 284, 277, 223, 200, 255, 269, 226,

240, 209, 266, 254, 241, 264, 229, 257, 285, 204, 255, 257, 283, 222, 218, 289, 244, 214, 223, 290).

Sample 7.

n = 100, G = 800,

e = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100),

b = (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37,

39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72,

74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105,

106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17).

Sample 8.

n = 20, G = 110,

e = (50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 32, 33, 42, 44, 27, 19, 10, 40, 20, 30),

b = (65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 41, 42, 54, 57, 35, 24, 13, 52, 26, 39),

d = (273, 20, 27, 19, 32, 28, 100, 82, 55, 42, 48, 35, 29, 50, 35, 40, 23, 42, 51, 32).

Sample 9.

n = 200, G = 1400,

e = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,

149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,

169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,

189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200),

b = (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37,

39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72,

74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105,
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106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130, 131,

132, 133, 135, 136, 137, 139, 140, 141, 143, 144, 145, 146, 148, 149, 150, 152, 153, 154, 156, 157,

158, 159, 161, 162, 163, 165, 166, 167, 169, 170, 171, 172, 174, 175, 176, 178, 179, 180, 182, 183,

184, 185, 187, 188, 189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 202, 204, 205, 206, 208, 209,

210, 211, 213, 214, 215, 217, 218, 219, 221, 222, 223, 224, 226, 227, 228, 230, 231, 232, 234, 235,

236, 237, 239, 240, 241, 243, 244, 245, 247, 248, 249, 250, 252, 253, 254, 256, 257, 258, 260),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15,

5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,

17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,

18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,

21, 21, 21, 21, 22, 22, 22).

Two cases are considered for all samples: Cutting plans can be included (1) at most two kinds of
order pieces and eight strips (c = 2 and t = 8) and (2) at most three types of parts and sixteen
strips (c = 4 and t = 16).

Toy problem

Toy problem includes four order pieces, P1, P2, P3, P4, with sizes as 10×13, 20×26, 30×39, 40×52,
respectively. The stock material’s width is 50. Demands are 4, 5, 3, and 2, respectively.
The toy problem was solved with both CG and IM, and the same solution was obtained. However,
while CG achieved this solution in 0.48 seconds, MI runs to the time limit of 86400 seconds.
Obtained cutting plans are presented in the following Figure 2, Figure 3, and Figure 4.

Figure 2. Cutting Plane 1

Figure 3. Cutting Plane 2
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Figure 4. Cutting Plane 3

5 Test results and discussion

Samples have been solved both with IM and CG for two parameter sets: set 1 (c = 2 and t = 8)
and set 2 (c = 4 and t = 16). The results obtained with set 1 are given in Table 4 and set 2 in
Table 5. According to Table 4, IM obtains only the optimum solution for Samples 1 and 2. CG
reaches very close solutions (1% and 2% error) to IM in a second. IM could not achieve any feasible
solution for other problems in reasonable times. On the other hand, feasible solutions are achieved
in reasonable times with CG. For none of the instances in Table 5, an optimum solution is achieved
for IM, but feasible solutions are obtained for Samples 1, 2, and 8. For sample 1, both IM and CG
obtained the same solution. The solution time of CG is only one second, while the solution time of
IM is 86400 seconds (IM stopped by the time limit). For Sample 2, in a second, CG approaches
1% close to the solution obtained by MI in 31288 seconds. For sample 8, on the other hand, CG
achieved a more successful objective function value in a much shorter time than IM. CG obtained
feasible solutions in reasonable times for the rest of the instances. On the other hand, IM has not
obtained a solution within the time limit for these instances. Due to the difference in d values
(much bigger than the other instances’ d values), the zCG value in Sample 6 for CG is obtained
bigger than the other zCG values.

Table 4. Test results for c = 2 and t = 8

IM IM CG CG
zIM tIM zCG tCG

sample1 1248 6244 1261 1
sample2 2531 1181 2587 1
sample3 - 86400 3002 141
sample4 - 86400 2714 822
sample5 - 86400 10980 86400
sample6 - 86400 1672106 28561
sample7 - 86400 3240 1
sample8 - 86400 28239 3
sample9 - 86400 69514 86400
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Table 5. Test results for c = 4 and t = 16

IM IM CG CG
zIM tIM zCG tCG

sample1 1222 86400 1222 1
sample2 2510 31288* 2533 1
sample3 - 86400 2976 4322
sample4 - 86400 2754 288
sample5 - 86400 10948 86400
sample6 - 86400 1661374 86400
sample7 - 86400 9604 86400
sample8 28621 86400 28144 11777
sample9 - 86400 52265 86400

*out of memory.

When Table 4 and Table 5 are examined regarding the effects of different parameter sets on the
objective function and solution times, it is observed that when the c and t parameters are increased,
generally better objective function values can be obtained, but the solution time is prolonged.
When the experimental results are evaluated in general, it is observed that the mathematical
modeling method has some critical limitations for the 1.5-dimensional cutting stock problem with
technical constraints. In particular, it has been determined that as the problem size increases, the
solution times with traditional mathematical models increase dramatically, and even in some
cases, a feasible solution cannot be found. This situation shows that complex constraints and
high-dimensional problem structures are difficult to cope with only using classical mathematical
modeling techniques.
In this context, the proposed Column Generation (CG) solution method has emerged as an effective
alternative, especially for cutting stock problems with large-scale and complex constraints. The
CG method offers an approach that can divide the problem into smaller sub-problems and solve
each of them in reasonable times. In the numerical experiments, it has been observed that this
method produces faster and more successful solutions even for large-sized problems. In particular,
it has been concluded that it is successful in coping with technical constraints and therefore can be
used as a practical solution method in real-world applications.

6 Conclusion

In this study, the 1.5-dimensional cutting stock problem is considered. This problem covers
situations where materials of certain widths and lengths commonly encountered in industrial
production processes need to be cut with minimum waste. Unlike the studies in the literature,
technical constraints such as order type and number of strips are taken into account together
in this study. This approach allows obtaining results closer to real-world applications. In order
to solve the problem, a column generation technique, which has been proven to be effective in
large-scale and complex cutting stock problems, is proposed. This technique was developed to
increase the solution time and accuracy even in high-dimensional problems.
In order to test the accuracy and effectiveness of the study, the test problems and a linear integrated
mathematical model from the literature were used. The numerical experiments revealed that as
the problem size increases, the solution time of the mathematical model increases dramatically,
and even in some cases, a feasible solution cannot be found. However, the proposed column
generation approach produces faster and more successful solutions even for large-sized problems.
The column generation algorithm performed better than the mathematical model. The column
generation approach is not limited to the problem considered in this study but can also be applied
to other cutting stock problems in the future. This approach provides a valuable solution, especially
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for researchers dealing with large data sets and complex production processes.
The CG solution approach may be insufficient when the problem dimensions are very large, such
as in big data. Applying heuristic methods to solve the sub-problem may be a solution in this case.
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Abstract
Mathematically precise modeling is important to be established to accurately examine the quantitative
relationship between software testing and software reliability. Software testing process is complex
since it is concerned with various factors such as test case execution, defect debugging, tester expertise,
test case selection, and so forth. For this reason, it is required to be meticulous in formulating the
software testing process in a manner which is mathematically concise. The software release life cycle or
sequential release timeline, referring to the process related to the development, testing and distribution
of a software product comprises several critical stages, and the length of this particular life cycle reveals
variations depending on different factors like the type of product, the intended use of it, industry
security, general standards and compliance. One consideration software engineers have is related to
the release date of the software so that future commitments about the software’s release time can be
formulated beforehand. In view of these aspects, a multi-step strategy for predicting software release
dates is proposed in the current study along with the following stages: firstly, the proposed technique
selects the utmost reliability growth model that very well fits the observed test data halfway through
the testing period, and then employs it to forecast the probable date of release. This technique entails
approximating the unknown parameters of suitable Software Reliability Growth Models (SRGMs).
Finally, the chosen SRGM is used to forecast the release date of the software under test by fitting it
to available fault data. The proposed method is straightforward and applied to test on a total of ten
actual datasets collected from the literature. The results of the proposed technique reveal that in the
majority of the situations, nearly exact approximation of date of release can be made halfway through
the testing period. Moreover, the proposed method’s performance is also compared to that of a number
of previous strategies present in the literature. The outcomes obtained by our study demonstrate that
the proposed strategy may be used to forecast the release date of software in practical situations.

Keywords: Nonhomogeneous Poisson process; mathematical prediction modeling; software reliability
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1 Introduction

Mathematical modeling, describing a system by a set of equations and variables, is employed
for establishing relationships among them, and in control of the system, it has a critical value for
the accurate examination of the quantitative relationship between software testing and software
reliability. Software testing process, as a complex one, is concerned with various factors such as test
case execution, defect debugging, tester expertise, test case selection, and so on. For this reason,
it is required to be meticulous in formulating the software testing process in a reliable manner.
Computer software is used in practically every facet of human endeavor, and it is of utmost
significance to devise, build and test the software appropriately before being released. Software
development takes a long time and comes with a substantial amount of financial burden. When
software is developed, it is thoroughly tested before being released to ensure that it is bug-free
and hence trustworthy. In reality, reliability is the most crucial characteristic for a well-designed
software application. Accordingly, a software reliability model indicates the form of a random
process defining the behavior of software failures to time, and these models have emerged as more
understanding has become a requisite to examine the features of the way and reason software
fails, with an attempt to quantify software reliability. Musa and Okumoto [1] defined reliability of
any software application as the likelihood of operation with no failures in any given environment
for a specific amount of time. In practice, project managers find it challenging to assess software
reliability. A variety of Software Reliability Growth Models (SRGMs) has been proposed since
the early 1970s [1–4] for the evaluation of reliability growth of systems throughout software
developments specially during the completing and testing periods of the software concerned.
The number of expected failures within a certain time period is a widely accepted indicator
for assessing a product’s reliability. Failures are the result of software code faults, and even a
single flaw can result in several failures. Furthermore, software engineers are often interested
in projecting the software’s expected release date while it is still in development so that future
delivery commitments can be made timely. With this in mind, software engineers used specialized
development approaches to reduce the overall risk and support rapid change. As a result, there is
a significant issue in predicting the likely release date of software in development with sufficient
accuracy. Existing techniques, such as a cumulative flow methodology, release backlogs are used
in software development to anticipate and set release dates; however, because this does not take
software reliability into account when projecting release dates, there is a risk that software at the
predicted release date may be unreliable. Software system availability depends on reliability, and
SRGMs can be used to determine whether sufficient defects have been eliminated in order to
release the software.
A software economic policy was developed by Huang et al. [5] offering a thorough examination
of software based on test efficiency and cost. Project managers may also benefit from the strategy
by using it to assist them decide when to finish testing in preparation for market release. A
SRGM that takes into account the impact of imprecise fault debugging and error creation was
proposed by Kapur et al. [6]. The suggested model is used to define the release time problem,
which minimizes the estimated cost while meeting the minimal dependability level that must
be met by the release time. By creating a software cost model with a risk component, Singh
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and Kumar [7] provided a technique for determining when to conclude the testing phase and
deliver the program to the end user. They addressed the question of how to determine when to
finish testing and release the product. A method for building a software reliability growth model
based on the Non-Homogeneous Poisson Process was presented by Quadri et al. [8]. Despite the
fact that several testing-effort functions based on the non-homogeneous Poisson process (NHPP)
have been developed for the software reliability growth model. They examined the scenario in
which the Generalized Exponential Distribution (GED) describes the time-dependent behaviors of
testing-effort expenditures. The NHPP is used to create SRGMs, which include the (GED) testing-
effort spent during the software-testing phase. A mathematical modeling approach for numerous
software product releases is proposed by Kapur et al. [9]. Their suggested model uses a Cobb
Douglas production function to simulate the failure process using a software reliability growth
model, accounting for the combined effects of schedule pressure and resource constraints. A
technique for choosing SRGMs to forecast the overall amount of errors in software was suggested
by Panwar and Lal [10]. To assess how effectively the technique predicts the predicted total
number of software failures, it is used to a case study consisting of three datasets of defect reports
from system testing of three versions of a big medical record system. In order to offer more
accurate predictions, Choudhary and Baghel [11] provide an efficient software dependability
modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition, and
Autoregressive Integrated Moving Average (ARIMA) modeling of time series. Panwar and Kaur
[12] suggest a method for estimating the number of software defects that remain by utilizing both
perfect and imperfect software reliability growth models. A software metrics-based technique
for software reliability prediction is presented by Shi et al. [13]. Metric measurement outcomes
are linked to quantitative reliability forecasts by taking into account defect data and operational
conditions.

Although numerous models have been presented researched, and implemented, the majority
of them are failure count models that do not account for the many development scenarios like
developers team structure or a substantial reduction in development time. As a result, standard
models are unable to reliably estimate the release dates. Hence, in the present study, a method
for obtaining reliability estimations is proposed which can determine the product’s likely release
date during the product testing stage. Previously, only basic SRGMs were employed in the
studies, however the proposed method, as a novelty, suggests that NHPP SRGMs can model the
circumstances more practically. The objective of this study is to respond to the following questions:

• Is it possible to forecast software release dates using NHPP SRGMs?
• Is our proposed method more accurate than the previously proposed methods in terms of

predicting the release dates?

The following can be put forth among the contributions to the proposed work.

• A multi-step strategy for predicting software release time by dividing development time into
various degrees of testing.

• A method for estimating the release date forecast precision by specifying a desired level of
confidence.

• An evaluation result demonstrating that our prediction method outperforms previous models.

The following is a breakdown of the paper’s structure. Section 2 provides a basic introduction
to SRGMs. Section 3 describes the suggested strategy, which is then tested on 10 real datasets in
Section 4 to see how effective it is. Finally, in Section 5, conclusions based on the current study
along with the future directions are drawn and discussed.
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2 Non-homogeneous Poisson process software reliability growth models

NHPP class of SRGMs has been broadly used in the literature [14–18]. These models use test
data from failure history, predicting the software application’s projected total number of faults
and forthcoming reliability. This class of models can also be used to approximate the sum of
remaining software faults and the amount of time period it will take to identify these. Mean
value function is used is each model of this category, which is dependent on diverse conventions
about the equations of error content and the defect finding rate. The NHPP SRGMs models are
commonly categorized as follows based on the patterns of their mean value functions, which are
the concave models and S-shaped models.
The defect debugging process is depicted naturally in concave models, in which the faults discov-
ered accumulate as the testing activity proceeds, and the aggregated faults propagates at a gradual
pace before approaching asymptotic behaviour as the software behavior stabilizes. On the other
side, S-shaped curve models show a steady fault discovery at the beginning of the debugging
stage [19]. As testing progresses, the rate of defect identification increases, and the cumulative
defects curve finally approaches asymptotic behavior [20]. This class also distinguishes between
finite and infinite failure models. Finite failure models presume that a fault-free product may be
developed in the end, as well as an asymptotic methodology to a predictable value. The failure
models of infinite class, on the other hand, presume that the count of observed faults is inestimable,
implying that the function of mean value is unrestrained. Numerous models similarly imply that
whilst correcting existing issues, new bugs may be introduced inadvertently. These are denoted as
imperfect debugging models [21]. Five concave, nine S-shaped, and two more models that can
perform as a concave otherwise S-shaped are employed in our proposed study.

3 Multi-step mathematical model-based predictive strategy

In the literature, various methods and practices for selecting appropriate SRGM are suggested
[22–32]. However, the majority of those are dependent on the particular situation and may not
be applied with certainty in all situations. Present study proposes a method for selecting the
best SRGM along with using that one to forecast the likely date of release with the intention to
make required arrangements and revisions ahead of time to fulfil any deadlines. The procedure is
straightforward and has shown to be beneficial in the recent study. It entails choosing an SRGM
that almost fits the existing error content and then use it next to forecast the date of software
release. The proposed technique demands calculating the unknown variables/parameters of
applicable SRGMs before ordering these according to their behavior on observed failure data.
Finally, best chosen SRGM is utilized for forecasting the date of release of any software under test.
The strategy proposed is not scenario-specific and can be used to any situation. It works in the
way whose specific details are provided in the remaining parts of our study.

Estimation of model parameters

NHPP SRGM has some unknown parameters that must be determined from observed test failure
data. Maximum Likelihood Estimation (MLE) or Least Squares Estimate (LSE) are the two methods
which can be used on the currently available test data, to determine the value of these unknown
parameters [33, 34]. The MLE method estimate these parameters by solving a set of simultaneous
equations whereas LSE reduces the TSS (total sum of square of variation) between observed and
probable faults depending on the hypothetical chosen model. There are also a number of tools
available to estimate the value of these unknown parameters like Curve Fitting MATLAB [35]
which is based on the LSE technique. Moreover, our individual proficiency has also proved that
the LSE provides more appropriate parameter values as contrasted to MLE, allowing the model
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Figure 1. Estimation of unknown parameters by MATLAB curve fitting tool

to better fit the actual data. As a result, we chose to employ the LSE technique for parameter
estimation in using MATLAB’s curve fitting tool. After analyzing the existing test data, we first
determine which models appear to be more suitable for fitting this data, and then calculate the
values of RSq and RMSE for each of these SRGMs to determine which one best matches the data.
Figure 1 shows how the Curve Fitting tool fits the SRGM to the given test data and computes the
values of parameters that are unknown in nature.

Ranking of models

In the second step of proposed technique, a comparison criterion (1) is proposed to compare
models realistically in order to examine the efficiency of software reliability growth models
employed in the proposed study. Based on our experience, using a vast set of comparison criteria
is not necessary, and in most situations, it does not even assure trustworthy forecasts. Hence, we
discovered that the subsequent modest criterion may be implemented to rank rival models of
software reliability in order to choose an optimal SRGM for more accurate release date predictions.

Rank Index =
1
2

[
RSqj

maxn
j (RSqj)

+
minjn(RMSEj

RMSEj)

]
. (1)

The relative amount of variation in the actual test data and the test data estimated by the matching
SRGM is shown by RSq. The higher the RSq score, the greater variation there is in the actual and
estimated test data values. The RSq is computed as the proportion of the residuals sum of squares
(SSR) and the total sum of squares (SST). Here, j denotes the number of the SRGM as provided in
Table 1. Also, we have

RSq =
SSR
SSQ

, (2)

where SSR is defined as

SSR =

( n∑
i=1

m̂(ti)−
n∑

i=1

(m(ti))

n

)2

. (3)

The sum of squares about the mean, or SST, is defined as: In (3) and (4) i signifies the test period
and m(ti) the real number of faults discovered up to time ti. Next m(ti) represents the calculated
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value of cumulative failures until time ti as determined by SRGM under study and m(t) represent
the mean value of reported total failures. The regression’s fit standard error is denoted by RMSE
in (1). It is a calculation of the random component’s standard deviation, and it is defined as:

RMSE =
√

MSE. (4)

MSE = SSE/v is the “mean square error” or “the residual mean square” whereas SSE is the
aggregate divergence of the genuine measured faults from the approximated of faults using
SRGM. SSE can be calculated by using equation SSE =

∑n
i=1 (m(ti)− (mti)

2 and v is the degree
of freedom. The number of fitted coefficients m subtracted from the total count of response values
n is the degree of freedom. All competing models’ rank index values are obtained in (1), and next
they are ordered in increasing sequence of these values. The model with the highest rank index
value receives rank 1. If it results in a draw (any two or more models have identical values of
rank index), they are together regarded to be of same rank. The most appropriate model that best
captures the behavior of the test data is model ranked one.

Forecasting the release date

In the next step, using the chosen model and the error content function (a(t)) of the selected rank
1 SRGM, we estimate the total number of predicted errors in the software. The total number of
errors that may occur in software over its lifetime is the value of the error content function. The
error content function (a(t)) of each model is given in Table 1. The following equation is used
to measure the software’s reliability over time using the mean value function and error content
function stated in Table 1.

R(t) = m(t)/a(t). (5)

The conditional reliability (R(s|t)) in interval (t, t + s) is estimated using

R(s|t) = e[m(t+s)−m(t)]. (6)

The likelihood that the obtained reliability at any point of time t may not alter in this gap is given
by conditional reliability (t, t + s). By increasing the value of time t stepwise in Eq. (5) and Eq. (6)
the future prediction about reliability and conditional reliability is done. We increase the value
of t by 1 in each step and finally time of release t is considered the time when R(t) ≥ 0.960 and
R(s|t) ≥ 0.500 for s = 1 and R(s|t) ≥ 0.350 for s = 2.

The proposed method with its relevant stages

• Estimate the length of the testing period when the program is ready for testing and continue
testing until at least 50% of the testing time has passed.

• Choose the acceptable models from Table 1 that should fit the data into the best of your ability.
• Calculate the unknown parameters of the selected models using Section 3, Then use Section 3 to

choose the model with the highest rank.
• This model is then used to calculate R(t) and R(s|t).
• Take this as the time of release if R(t) which meets the necessary level of reliability and R(s|t)

for the next two-time units is acceptable. If the anticipated release date is to be met, adapt the
testing infrastructure accordingly. When around 75% of the expected release time has passed, it
is often recommended to update the estimations again.
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Table 1. SRGMs investigated

No Model Category Mean Value (m(t)) Equation Remarks

1 Goel-Okumoto
(GO) [2]

Concave m(t) = a(1 − e−bt),
a(t) = a, b(t) = b,

Known as the exponential growth
model

2 Generalized
Goel [2]

Concave m(t) = a(1 − e−btc
),

a(t) = a, b(t) = b,
Goodness-of-fit is better than the
GO-Model. For c = 1, the same as
the GO-Model

3 Modified Duane
[19]

Concave m(t) = a[1 − (b/(b + t))c],
a(t) = a, b(t) = b,

Assume independence of failure oc-
currences

4 Musa-Okumoto
[2]

Concave m(t) = a ln(1 + bt),
a(t) = a, b(t) = b,

Assumes that the severity of failure
decreases exponentially as the pre-
dicted number of errors increases

5 Yamada
Exponential [36]

Concave m(t) = a(1 − erα(1 − eβt)),
a(t) = a, b(t) = rαβe−βt,

Make an attempt to account for the
time spent testing

6 Gompert [37] S-Shaped m(t) = ake−bt,
a(t) = a,
b(t) = b,

Estimates the severity of software
errors. In addition, it forecasts de-
mand, economic growth, and fu-
ture population

7 Inflection
S-Shaped [38]

S-Shaped m(t) = (a(1 − ebt))/(1 + βe−bt),
a(t) = a,
b(t) = b/1 + βe−bt,

With the GO model, a technical
problem is solved. If k = 0, the
result is the same as GO-Model

8 Logistic
Growth [24]

S-Shaped m(t) = a/(1 + ke−bt), Calculates the amount of error in
software systems

9 Delayed
S-Shaped [36]

Concave m(t) = a(1 − (1 + bt)e−bt,
a(t) = a,
b(t) = (b2t)/(1 + bt),

The GO model has been modified
to become S-shaped

10 Yamada-
Imperfect-
Debugging
Model I [36]

S-Shaped m(t) = ab/(α + b)(eαt − ebt),
a(t) = aeαt,
b(t) = b,

Assumes a constant fault detection
rate and an exponential fault con-
tent function

11 Yamada-
Imperfect-
Debugging
Model II [36]

S-Shaped m(t) = a[1 − e−bt][1 − α/b]
+ αat,
a(t) = a(1 + αt),
b(t) = b,

Assumes constant rate of introduc-
tion α and a constant rate of fault
detection

12 Yamada-
Rayleigh [36]

S-Shaped m(t) = a(1 − e−rα(1−e(βt2/2))),
a(t) = a,
b(t) = rαβte−βt2/2,

Make an effort to report the time
spent testing

13 Pham-Zhang-
IFD [39]

S-Shaped m(t) = a − ae−bt(1 + (b + d)t
+ bdt2),
a(t) = a,
b(t) = b,

Maintains an initial constant func-
tion fault count and an imperfect
detection rate of fault considering
fault introduction phenomenon

14 Zhang-Teng-
Pham [40]
model
(ZT Pham)

S-Shaped m(t) = a/(p − β)[(1 − (1 +
α)e−bt/1 + αe−bt)(c/b(p−β))],
a(t) = β(t)m(t),
b(t) = c/(1 + αe−bt), β(t) = β,

Considers a constant rate of fault
introduction and a non-decreasing
function of fault detection rate

15 Pham-
Nordman-
Zhang [41]
(PNZ Model)

S-Shaped
&
Concave

m(t) = (a(1 − e−bt)(1 − α/b)
+ αat)/(1 + βe−bt),
a(t) = a(1 + αt),
b(t) = b/(1 + βe( − bt)),

Considers that the fault detection
rate is non-decreasing and the in-
troduction rate is a linear

16 Pham-Zhang
model
(PZ Model) [40]

S-Shaped
&
Concave

m(t) = 1/(1 + βe−bt)
((c + a)(1 − e−bt)
− ab/(b − α)(e−αt − e−bt)),
a(t) = c + a(1 − e−αt),
b(t) = b/(1 + βe−bt),

The exponential rate of introduc-
tion is and non-decreasing rate of
fault detection
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Table 2. Tandom computer software failure (dataset 1)

Time (in weeks) Processor hours Faults found Time (in weeks) Processor hours Faults found
1 519 16 11 6539 81
2 968 24 12 7083 86
3 1430 27 13 7487 90
4 1893 33 14 7846 93
5 2490 41 15 8205 96
6 3058 49 16 8564 98
7 3625 54 17 8923 99
8 4422 58 18 9282 100
9 5218 69 19 9641 100

10 5823 75 20 10000 100

4 Implementation on testing data

In this section, the suggested approach is applied on 10 real datasets from the literature [4, 22,
23, 25, 26, 42]. In this study, 16 NHPP SRGMs, which are given in Table 1 are applied on all the
datasets. In the same table, the characteristics of these SRGMs are also summarized. The proposed
strategy is used at three levels of testing, when 50% of the testing is finished, next after 75% of
the testing is ready, and lastly, once the testing of software finished. The presented technique’s
operation is described in more depth using various examples below.

Example 1 A dataset (DS1) with 100 observed faults was gathered from the public domain of literature for
examination; the dataset is listed in Table 2 and was acquired from a subsection of artifacts for four different
Tandem Computers Company software versions. The count of errors was normalized as 0 to 100 to eliminate
confidentiality concerns, and the amount of energy consumed was translated correspondingly into the scale
(0 to 10,000) [23, 25, 26].
To evaluate the unknown parameters of SRGMs, LSE approach was utilized for NHPP SRGMs considered
under study, with confidence bounds of 95%. The parameters were estimated using MATLAB at time
t = 10 weeks, as indicated in Section 3; this is when 50% of the testing is completed. Table 3 shows the
estimated values of the parameters for each of the 16 models. Following that, using Eqs. (2)-(5), the values
of the comparison criteria (RSq and RMSE) presented in this study paper were obtained. Table 4 shows the
estimated RSq and RMSE values for dataset 1 with t = 10 weeks (i.e. this is the time when almost half of
the testing is complete).
The rank index is then determined using (1). The models are next ranked accordingly in descending rank
index values based on the value of the derived rank index (i.e. model with the highest value of rank index is
allotted rank 1). Table 5 shows the predicted rank index values and model ranking of dataset 1 considering
the fault data of ten weeks.
Table 5 further demonstrates that at this stage of testing, when only half of the test data is available,
Gompertz has ranked one model. As a result, Gompertz is now utilized to predict software delivery dates
utilizing Eqs. (5) and (6). With the given level of reliability and conditional reliability, the projected release
time at this stage of testing is 35 weeks. Table 6 shows the estimated value of the release date, reliability, and
conditional reliability with this data.
The same process is repeated again when testing has been done up to 15 weeks (i.e., 75% test plan is
complete). At this point, the top-ranking model has been identified as logistic growth. Table 6 shows the
estimated time of release with conditional reliability and reliability which can be reached upon this day. The
method was again repeated using 20 weeks of full test data to get the conditional reliability and reliability
values at the factual date of release. Table 6 summarizes all the results. We may deduce from the outcomes of
this dataset that predicting the release is doable even when only 50% of the failure data is available. We
also tried to see if we could make accurate forecasts sooner than ten weeks. For this, we carried out the
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Table 3. Unknown parameter approximation of SRGMs for dataset 1

Model Name Values
Delayed S-Shaped a = 126.8, b = 0.2426
Generalized Goel a = 172.5, b = 0.04078, c = 1.235
Goel Okumoto a = 528, b = 0.01773
Gompertz a = 152.7, b = 0.08441, c = 0.8835
Inflection S-Shaped a = 127.3, b = 0.2412, β = 3.524
Logistic Growth a = 104, b = 0.2767, k = 6.371
Modified Duane a = 420.7, b = 27.19, c = 1.206
Musa Okumoto a = 497.8, b = 0.0188
Pham Zhang IFD a = 127.4, b = 0.2414, d = 0.22e − 14
Pham Nordman Zhang (PNZ Model) a = 9.163, α = 0.709, b = 21.89, β = 0.001809
Pham Zhang model (PZ Model) a = 0.001194, α = 3570, b = 0.2412, β = 3.524, c = 127.2
Yamada Exponential a = 300, α = 2.307, β = 0.006354, r = 2.361
Yamada Imperfect Debugging Model 1 a = 528.1, α = 1.595e − 08, b = 0.01773
Yamada Imperfect Debugging Model II a = 8.997, α = 0.7221, b = 49.81
Yamada Rayleigh a = 142.2, α = 1.198, β = 0.02026, r = 1.302
Zeng Teng Pham a = 29.91, α = 5.214, b = 0.2286, β = 0.6015, c = 0.841,

p = 0.8238

Table 4. Estimation of RSquare and RMSE using ten weeks failure data for dataset 1

Model Name RSq RMSE
Delayed S-Shaped 0.903 6.524
Generalized Goel 0.984 2.852
Goel Okumoto 0.972 3.529
Gompertz 0.994 1.707
Inflection S-Shaped 0.972 3.773
Logistic Growth 0.993 1.849
Modified Duane 0.984 2.849
Musa Okumoto 0.974 3.382
Pham Zhang IFD 0.903 6.524
Pham Nordman Zhang (PNZ Model) 0.993 2.001
Pham Zhang model (PZ Model) 0.991 2.515
Yamada Exponential 0.927 6.532
Yamada Imperfect Debugging Model 1 0.975 3.544
Yamada Imperfect Debugging Model II 0.993 1.853
Yamada Rayleigh 0.866 8.860
Zeng Teng Pham 0.995 2.204

computations at seven weeks (about 35% data) also but the results obtained at this stage were not compatible
with the later date of prediction.

Example 2 We used a separate dataset to assess the applicability of the suggested technique to diverse
datasets [23]. This failure dataset was compiled out of three versions of a big medical record software with
188 components. Numerous files are included in each component. The package originally comprised of
173 software components. All the three updates have improved the product’s functionality. A total of 15
components were added to the three releases. In each release, three to seven new components were included.
As a result of the increased capability, some other components were adjusted in all three editions. Table 7
shows the results of applying the proposed approach to release 1 of this dataset. The same step-by-step
process was used for this dataset as it was for the SRGM rating and release date prediction in Example 1.
Table 8 provides the results, which show that logistic growth is ranked first using the results acquired (1).
The same model of logistic growth is ranked 1 in all stages of testing for this dataset. At all three stages, the
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Table 5. SRGMs ranking using rank index for dataset 1 at t = 10 weeks

Model Name Rank Index Rank
Delayed S-Shaped 0.5848 14
Generalized Goel 0.7939 8
Goel Okumoto 0.7303 11
Gompertz 0.9999 1
Inflection S-Shaped 0.7147 12
Logistic Growth 0.9609 2
Modified Duane 0.7943 7
Musa Okumoto 0.7420 9
Pham Zhang IFD 0.5848 15
PNZ Model 0.9259 4
PZ Model 0.8376 6
Yamada Exponential 0.5968 13
Yamada Imperfect Debugging Model 1 0.7310 10
Yamada Imperfect Debugging Model II 0.9601 3
Yamada Rayleigh 0.5316 16
Zeng Teng Pham 0.8873 5

Table 6. SRGMs ranking using rank index for dataset 1 at t = 10 weeks

The dataset
as well as the
actual
release date

Testing data
used (in
weeks)

Model
chosen

Date of
expected
release (in
weeks)

Expected
level of
reliability
(R(t))

Conditional
reliability

(R(s|t)) to be
accom-

plished
For s = 1 For s = 2

10 Gompertz 35 0.970 0.570 0.350
(20 weeks) 15 Logistic

Growth
21 0.980 0.590 0.400

20 ZT Pham 18 0.980 0.580 0.400

Table 7. Data of a significant medical record system’s failures: release-1 (dataset 2)

Weeks Aggregated failures Weeks Aggregated failures
1 28 10 125
2 29 11 139
3 29 12 152
4 29 13 164
5 29 14 164
6 37 15 165
7 63 16 168
8 92 17 170
9 116 18 176

estimated release date is the same. As a result, it can be stated that if the selected model is the same at each
step of testing, more accurate predictions about the software release date can be made.

Similarly, eight more datasets from the available literature were used to assess the applicability of
the suggested approach. Table 9 shows the anticipated value of release time for all the datasets,
as well as to be expected value of conditional reliability and reliability. We have also evaluated
the anticipated date of release by our presented technique with the factual date of release and
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Figure 2. Comparison for dataset 1 using the models identified by presented methodology with the best model
considered in existing studies

Figure 3. Comparison for dataset 2 using the models identified by presented methodology with the best model
considered in existing studies

Figure 4. Comparison for dataset 3 using the models identified by presented methodology with the best model
considered in existing studies
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Figure 5. Comparison for dataset 4 using the models identified by presented methodology with the best model
considered in existing studies

Figure 6. Comparison for dataset 5 using the models identified by presented methodology with the best model
considered in existing studies

Figure 7. Comparison for dataset 6 using the models identified by presented methodology with the best model
considered in existing studies
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Figure 8. Comparison for dataset 7 using the models identified by presented methodology with the best model
considered in existing studies

Figure 9. Comparison for dataset 8 using the models identified by presented methodology with the best model
considered in existing studies

Figure 10. Comparison for dataset 9 using the models identified by presented methodology with the best model
considered in existing studies
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Table 8. Predicted dataset 2 release time, with expected values of conditional reliability and reliability

The dataset
as well as the
actual
release date

Testing data
used (in
weeks)

Model
chosen

Date of
expected
release (in
weeks)

Expected
level of
reliability
(R(t))

Conditional
reliability

(R(s|t)) to be
accom-

plished
For s = 1 For s = 2

Dataset 2
10 Logistic

Growth
24 0.990 0.550 0.350

(18 weeks) 15 Logistic
Growth

24 0.990 0.690 0.520

18 Logistic
Growth

22 0.990 0.610 0.430

Figure 11. Comparison for dataset 10 using the models identified by presented methodology with the best model
considered in existing studies

the estimated date of release by the best models identifies in existing studies for the datasets
utilised in current study to evaluate the performance of our proposed method. From Figure 2 to
Figure 11 depict the comparison. The findings shown in Figure 11 reveal that with the exception
of datasets 3 and 6, our suggested approach can forecast dependability early and timely virtually
in all circumstances.

5 Conclusions, outcomes and future directions

Formulating the software testing process in a mathematically rigorous manner is important in
software testing which acts as a major apparatus for software quality assurance, and this process
is known to be complex since it comprises many factors such as test case execution, test case
selection, defect debugging, tester’s knowledge and experience, and so forth. This study has
investigated how to choose the best software reliability model for predicting the most likely
release date. Section 3 outlines the proposed strategy, allowing the user to anticipate the expected
release date even after nearly half of the estimated test period has passed. We used the proposed
approach at various phases of testing (e.g., once 50% of the testing is done, 75% of the testing is
accomplished, at the actual release date). Our findings reveal that when the current technique is
employed to the test dataset 7 and 50% of the test plan period has passed, the proposed method’s
anticipated release date is nearly identical to the actual release date. In the case of datasets 1, 2, 4,
5, 7, 8, 9, and 10, the anticipated date of release based on 50% of the data is inside 1 to 2 weeks of
the factual release date. The expected date of release for dataset 3 is, however, significantly sooner
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Table 9. Anticipated time of release for datasets considered in present work with expected to be attained value of
conditional reliability and reliability

Factual date
of release
(in weeks and
dataset)

Prediction
time
(in weeks)

Selected model Release
date
(in
weeks)

Expected
level
of reliability

To be
attained con-
ditional relia-
bility
For s = 1 For s = 2

Dataset 1 10 Gompertz 35 0.970 0.570 0.350

(20 weeks) 15 Logistic Growth 21 0.980 0.590 0.400

20 ZT Pham 18 0.980 0.580 0.400

Dataset 2 10 Logistic Growth 24 0.990 0.550 0.350

(18 weeks) 15 Logistic Growth 24 0.990 0.690 0.520

18 Logistic Growth 22 0.990 0.610 0.430

Dataset 3 10 ZT Pham 10 1.000 0.900 0.860

(17 weeks) 15 Logistic Growth 11 0.990 0.540 0.370

17 Logistic Growth 12 0.990 0.640 0.480

Dataset 4 7 Logistic Growth 9 0.980 0.530 0.400

(13 weeks) 14 Gompertz 14 0.980 0.620 0.440

Dataset 5 10 Generalized
Goel

19 0.990 0.560 0.360

(21 weeks) 15 Generalized
Goel

27 0.980 0.580 0.370

21 Generalized
Goel

30 0.980 0.580 0.360

Dataset 6 55 Generalized
Goel

232 0.970 0.590 0.350

(111 weeks) 84 Generalized
Goel

90 0.980 0.600 0.370

111 Inflection
S-Shaped

85 0.980 0.620 0.390

Dataset 7 10 Logistic Growth 19 0.990 0.610 0.430

(19 weeks) 15 Logistic Growth 18 0.980 0.560 0.370

19 Logistic Growth 19 0.980 0.590 0.400

Dataset 8 7 Logistic Growth 14 0.980 0.600 0.440

(12 weeks) 12 ZT Pham 10 0.980 0.740 0.650

Dataset 9 10 Inflection
S-Shaped

15 0.980 0.750 0.620

(19 weeks) 15 Delayed
S-Shaped

26 0.970 0.770 0.620

19 Generalized
Goel

20 0.960 0.690 0.520

Dataset 10 13 Generalized
Goel

23 0.960 0.690 0.520

(25 weeks) 19 Gompertz 25 0.970 0.590 0.380

25 PZ Model 28 0.990 0.590 0.350
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Figure 12. Comparison of the expected release time of the datasets in the proposed study with the actual release
date, as well as the best models provided in the literature

than the actual release date. Interestingly, when 50% of the dataset is used to forecast the release
date, the estimated date is 232 weeks, which is substantially far ahead than the actual date of 111
weeks. When a likelihood is generated using around 75% of the data, the estimated date of release
is once again quite near to the factual release date, and it is dramatically lowered to 90 weeks.
Even if all available data is used, the estimated release timeframe is 85 weeks. This indicates that
testing may have been overdone, or that software adjustments were made in the interim. In all
situations, we also tried with lower than 50% of test plan data and found that estimates were
not reliable in common. Table 9 and Figure 11 show that when utilizing the proposed method,
the anticipated release dates with models picked by us, even when using midway test data, are
generally better than the similar outcomes achieved for these datasets when exploring the methods
given in literature. Since NHPP SRGMs cannot handle time-dependent variables, the suggested
approach is limited to software development circumstances that are time-independent. We intend
to change the time-dependence of these models in the future, which will allow us to more exactly
anticipate the number of faults found. We also intend to apply the proposed strategy to other
software development methodologies, such as agile development. The comparison of the results
with those available in literature shows that the proposed approach is able to select a model that
fits the present data closely. Therefore, the selected model can be used for future predictions, and
the selected models estimates by our proposed method are closer to the actual number of failures
found by that time in each case.
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Abstract

Accurately predicting earthquakes’ time, location and size is nearly impossible with today’s technology.
Severe earthquakes require prompt and effective mobilization of available resources, as the speed
of intervention has a direct impact on the number of people rescued alive. This, in turn, calls for a
strategic pre-disaster allocation of search and rescue (SAR) units, both teams and equipment, to make
the deployment of resources as quick and equitable as possible. In this paper, a seismic risk-based
framework is introduced that takes into account distance-based contingencies between cities. This
framework is then integrated into a mixed-integer non-linear programming (MINLP) problem for
the allocation of SAR units under uncertainty. The two minimization objectives considered are the
expected maximum deployment time of different SAR units and the expected mean absolute deviation
of the fulfillment rates. We recover the best vulnerability-adjusted routes for each size-location scenario
as input to the optimization model using the dynamic programming (DP) approach as part of the
broader area of reinforcement learning (RL). The results of the hypothetical example indicate that
the comprehensive model is feasible in various risk scenarios and can be used to make allocation-
deployment decisions under uncertainty. The results of the sensitivity analysis verify that the model
behaves reasonably against changes in selected parameters, namely the number of allowed facilities
and weights of individual objectives. Under the assumption that the two objectives are equally
important, the model achieves a total deviation of 3.5% from the objectives with an expected maximum
dispatch time of 1.1327 hours and an expected mean absolute deviation of 0.01%.

Keywords: Earthquake response; SAR units allocation; mixed-integer nonlinear programming (MINLP);
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1 Background

Disasters due to natural hazards rarely occur, but once they occur, they can cause extreme fatalities
and physical damages. World Health Organization (WHO) estimates that, between 1998-2017,
earthquakes claimed nearly 750,000 lives worldwide, which is more than 50% of all deaths related
to natural disasters [1]. Disaster risk from earthquakes can be mitigated by decreasing both the
exposure of the property to active fault zones and its fragility. On the other hand, the effects of
SAR on disaster fatality have long been recognised and explored (see, e.g., [2, 3]). That being
said, there is also a need for effective pre-disaster allocation of search-and-rescue (SAR) units
for the response to the earthquake to be timely and life-saving. It is a well-known fact that the
likelihood of finding survivors in any location is inversely related to time [4]. Research has shown
that many more victims could survive if medical care in SAR was provided quickly and effectively
[5]. With data collected from the China Earthquake Database for 51 earthquakes globally, Figure 1
aims to highlight the difference in SAR efficiency for earthquakes with different scales, where
the completion ratio denotes the ratio of cumulative death toll up to the current time to the
final death toll. It is clear that larger-scale earthquakes are associated with slower growth in the
percentage of victims reached, thus lower SAR efficiency, especially during the golden 72 hours into
the earthquake’s occurrence. This implies that there is an ample room for improving SAR efficiency
by making a better use of the available resources. The efficient planning of SAR operations has a
significant role in saving lives in the response phase to disasters [6]. To guarantee an adequate
and timely response, effective prepositioning of different SAR units to certain locations and in
certain quantities is crucial [7].

Figure 1. SAR completion ratio curves for the reported death tolls in earthquakes globally [8] (Groups A-D
represent earthquakes with death tools < 100, 100 − 1, 000, 1, 000 − 10, 000 and > 10, 000, respectively)

All in all, disaster risk management problems are strongly characterized by random outcomes,
which indicates the importance of using mathematical tools that can thoroughly take into account
the stochastic nature of these problems [9]. In this study, our primary focus is on the humanitarian
losses due to devastating earthquakes, and we classify the latter mainly into the following groups:

• Those captured under and lost lives immediately after the earthquake happens due to collapse
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of buildings,
• Those captured under and lost lives after a period since they could not be rescued on time,
• Those rescued from wreckage but could not been hospitalized timely.

As only the losses belonging to the second and third group are preventable with the collective
availability of rescue entities (i.e., rescue teams, ambulances, and heavy equipment), the present
study seeks to optimize the pre-disaster allocation of SAR units through minimizing two objectives,
namely, the expected maximum time it takes to dispatch all needed SAR units and the expected
mean percentage deviation of fulfillment rates across all cities.
In this regard, starting from a fault map, the present study focuses on designing a pre-disaster
framework for allocating disaster rescue teams and equipment with a view to minimizing both the
maximum of the average delivery times associated with each SAR unit type to entire earthquake
region and absolute deviation of fulfillment rates across cities. The first objective can be justified
by the reasonable assumption that entities will largely be dysfunctional without one another.
To give an example, rescue teams without excavators, ambulances without rescue teams, or
excavators without ambulances will not be able to perform their functions. Therefore, one entity
can start performing its rescue action only after other entity types arrive. This, in turn, calls for the
minimization of the longest time period it takes for a specific entity to arrive at the disaster site.
The second objective, on the other hand, will ensure that SAR units will not be clustered in one
location to prioritize only the city with highest conditional disaster risk.
The study aims to develop an integrated and flexible framework for SAR unit allocation and
deployment, combining a seismic risk framework similar to that in [10] with a MINLP model to
achieve the joint objective of minimizing the dispatch time of SAR units and variation between
response rates. Particularly, the incorporation of seismic risk components and consideration of
conditional damage on infrastructure to calculate shortest routes constitute significant research
gaps that the present study seeks to address. The rest of the study is organized as follows: Section 2
offers a summary of the related literature. Section 3 provides the details of the risk-based model,
including the seismic hazard framework as well as the DP model for recovering vulnerability-
adjusted shortest routes and the main MINLP model. Section 4 presents a numerical example on
the comprehensive model introduced in Section 3. In Section 5, we give results and the related
discussion. Section 6 then concludes.

2 Related literature

The literature on planning the allocation and displacement of earthquake SAR units is broad and
focuses on a variety of methods ranging from mixed integer programming (MIP) to stochastic
programming and meta-heuristics. Fairly comprehensive reviews of the literature on the use of
optimization methods in disaster response are presented, e.g., in [11–13]. We refer the interested
reader to these studies.

Stochastic programming

Authors such as, but not limited to, [14–18] presented stochastic programming (SP) models, some
of which are multi-stage. For example, [14] applied multi-stage SP for deploying urban search
and rescue teams with a view to maximizing the total expected number of people rescued. To
make the model more realistic, the likelihood of survival is assumed to diminish over time. Using
a two-stage model, [15] sought to minimize the total cost of facility location, inventory holding,
transportation and shortage in the context of a humanitarian relief problem. [18] proposed a
tri-objective model for pre-and post-earthquake decisions, whereas a novel multi-objective particle
swarm optimization (PSO) algorithm was used for solving the model. [17] introduced a stochastic
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multi-objective mixed-integer mathematical programming logistic distribution and evacuation
planning during earthquake. [19] used a stochastic modeling framework to incorporate various
uncertainties such as facility damage and casualty losses as a function of the magnitude of the
earthquake, and developed an evolutionary optimization heuristic aided by an innovative mixed
integer programming (MIP) model that was used to initialize the algorithm. The model was
showcased with an application to a region that is prone to earthquakes.

Integer programming

Some other authors like [20–22] opted for pure integer programming (IP) models −linear or
non-linear− to tackle the allocation problem. [21] proposed an integer nonlinear multi-objective,
multi-period, multi-commodity model to minimize the travel time and total cost and increases
reliability of the routes from distribution centers. [20] employed a multi-objective integer nonlinear
programming model for assigning rescue teams to disaster sites. The model aimed to minimize the
maximum arrival time of all rescue teams to the affected areas and, at the same time, maximize the
satisfaction of rescue teams for their assignments. Methods such as NSGA-II, C-METRIC and fuzzy
logic were then used to solve the model. The model was then applied to a real earthquake event.
[23] combined simulation with a two-phase IP model whereby the first phase aimed to minimize
the total distance to be covered for distributing relief supplies by determining the optimal amount
of these supplies each neighborhood sent and/or received and, the second phase, to minimize the
total number of facilities. [24] proposed a two-stage robust scenario-based optimization problem
to facilitate decisions regarding, inter alia, suitable locations for shelters, the optimal route for
evacuating people, total rescue time, required budget. NSGA-II was proposed as the solution
method. [25] designed a bi-objective robust mixed-integer linear programming (MILP) model
for rescue units’ allocation and scheduling also by considering the learning feature of rescue
units. [6] offered a robust decision support framework for post-earthquake planning SAR resource
deployment. In this regard, a two-stage MIP-based decomposition approach was proposed where
the first phase performs the allocation of SAR units for maximizing fair and effective demand
coverage and the second phase deals with the routing of resources with the aim of minimizing the
weighted sum of fulfillment times. [26] developed a decision support model, namely, a MINLP,
that minimizes the sum of completion times of incidents weighted by their severity and compared
several heuristics and meta-heuristics.

Other modelling approaches

In [27], a dynamic combinatorial optimization model was introduced to find the best assignment
of available resources to operational areas, thereby minimizing the total number of fatalities. First
three days after an earthquake takes place were considered to be essential to the success of relief
efforts. Heuristics, namely, Simulated Annealing (SA) and Tabu Search (TS), were used to solve
the model. [28] presented a simulation-based approach for probabilistic modelling to improve
post-disaster relief and recovery operations.

Incorporating a seismic-risk model

[10] presented a risk-based approach that incorporates hazard, exposure and vulnerability data, for
the pre-positioning of relief resources in appropriate locations. Again, a MILP model used in the
study aimed to allocate assets to the locations with the highest levels of risk and then minimize the
residual risk. Applying the model on 87 counties Wyoming and Colorado, US, authors reported an
at least 33% improvement in residual risk when compared to historical allocations. [7] proposed a
two-phase framework based on a compound stochastic process that models’ disaster attributes
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such as occurrence time, intensity and severity. [29] developed a machine learning framework to
predict the casualty rate and direct economic loss induced by earthquakes. They found earthquake
magnitude, position, and population density to be the leading indicators for loss prediction.
Table 1-Table 2 summarize the relevant literature in a tabular format and in comparison with the
present work. Against this background, methodological as well as managerial contributions of the
current study can be outlined as follows. Unlike the majority of the previous studies, this paper:

• Presents an integrated and flexible approach that can be adapted to various hazard / fragility /
exposure scenarios. Yet, the model’s ability to adapt is partly undermined by

• Links the resource allocation and dispatching problem to a seismic risk modelling framework.
This aspect is missing from a vast majority of the studies reviewed.

• Incorporates vulnerability-adjusted shortest routes into the problem for more realistic resource
allocation. This is achieved through identifying post-disaster optimal routes for each possible
scenario through dynamic programming.

• Helps policymakers make more equitable earthquake dispatchment decisions by understanding
its marginal impact on the speed of dispatchment. This aspect is also usually omitted in the
existing literature.

3 Model description

In this paper, we apply a seismic-risk-based stochastic bi-objective pre-disaster resource allocation
framework modelled as a mixed-integer non-linear programming (MINLP) model, starting from
the formulation of a seismic hazard framework and incorporating the vulnerability of cities
through fragility curves. The framework deals with the question of how the available SAR
resources should be located throughout an earthquake zone, with a view to minimizing not only
the expected maximum time it takes for each SAR unit type to be dispatched to the cities affected
but also the expected mean absolute deviation of fulfillment rates across cities.
More specifically, we present a stochastic resource allocation model that takes the map of existing
fault lines on an IxJ grid, with their hazard (i.e., probability) of producing an earthquake with a
certain demand parameter g in the planning period (e.g., 10 years) as input and decides on the
optimal allocation of SAR units to facilities and dispatch of these units to earthquake zones based
on the realized scenarios, and taking into account their post-earthquake accessibilities which will
be affected by potential damages in the transportation infrastructure.
SAR units considered in this study consist of 4 types: rescue teams, excavators or bulldozers,
trucks, and ambulances. These units are needed to make the first intervention in any earthquake
rescue operation. As explained later, the number of available units from each type k will be set
to the conditionally expected number of collapsed buildings (i.e., conditional risk of disaster)
provided that an earthquake occurs, multiplied by a factor αk that determines the quantity of
equipment needed per collapsed building.
We start by introducing fault zones z ∈ Z where fault zone z has nz fault segments, each with a city
on it. A fault segment will be activated during a seismic event and cause an earthquake with a peak
ground acceleration (PGA) value g ∈ G.1 Each segment on a fault zone is assumed to have even
probability of being epicenter to an earthquake. When an earthquake occurs, it is known that the
hazard of natural disaster is transformed into the risk of environmental / economic / social disaster
through vulnerability (or fragility) of cities and property stock’s level of exposure. Fragility curves,
in this regard, are widely used to associate the demand parameter of the earthquake with the

1 ground motion, of which PGA is a measure, is argued to be related more closely to the level of damage to buildings
and infrastructure in an earthquake, rather than the magnitude of the earthquake itself.
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conditional probability of a certain damage state (e.g., total damage or collapse) occurring.
As stated earlier, the objective of our model is to minimize the preventable humanitarian losses
through the optimal allocation of SAR units to have them timely and equitably dispatched to
disaster sites. As the preventable losses increases with time due to lack of SAR units and as
different types of units have to work together (inter-dependence), our objective of timeliness will be
based on shortening the arrival time of the latest-arriving SAR unit type.
Severe earthquakes are extremely rare events yet with huge conditional impact. One challenge
for policymakers is therefore to decide on the quantity of SAR units to be kept available at SAR
facilities. A conservative but unrealistic strategy is to make available the amount of equipment
that is adequate for the worst-case size-location scenario assuming that it will materialize. An
alternative yet opposite approach would be based on the unconditional risk of disaster. A flowchart
of the modelling methodology followed in this paper in presented in Figure 2. We first introduce a
seismic risk methodology based on hazard, vulnerability and exposure maps. This framework
provides conditional risk values (expected demand for SAR units) as an input to the bi-objective
optimization model, whereas the conditional shortest routes are served by the DP model for each
earthquake scenario and city pair. The optimization model is then solved using the weighted sum
approach and for different values of the selected parameters.

Figure 2. Methodology flowchart

Mathematical model

Model assumptions, sets and indices
Model assumptions that are made to avoid some undesired complexities can be stated as follows:

i. Each city will have at most one earthquake over the planning period,
ii. Earthquakes are independent among fault zones, i.e., they will not happen around the same
time,

iii. A break can occur at any segment of a fault zone with even probability,
iv. Each city can only be in a single fault zone,
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v. The Impact of an earthquake on a city is homogeneous,
vi. Distribution of the residential property stock in a city is homogeneous,

vii. Residential properties have an equal number of independent units each with an equal number
of residents,

viii. SAR facilities and units are not affected by the earthquake,
ix. There is no setup time or minimum batch size for SAR units to mobilize.

The sets, indices and parameters related to the model are given in Table 3 and Table 4.

Table 3. Sets and indices

i : Index of vertical coordinate (i ∈ I where I = {1, 2, . . . , I})
j : Index of horizontal coordinate (j ∈ J where J = {1, 2, . . . , J})
f : Index of facilities ( f ∈ F where F = { f1, f2, . . . })
c : Index of cities (c ∈ C where C = {c1, c2, . . . })
k : Index of equipment types (k ∈ K where K = {k1, k2, . . . })
s : Index of spatial states of earthquake (s ∈ S where S = {s1, s2, . . . })
g : Index of PGA states of an earthquake (g ∈ G where G = {g1, g2, . . . })
ξz : Sets of fault zones (z ∈ Z where Z = {1, 2, . . . , Z}) indicating cities in the fault zone

Table 4. Parameters

nz Number of cities located on fault zone ξz
nk

F Number of facilities allowed for SAR unit type k
Avk Number of available SAR units of type k
βc Current building stock in city c
αk The number of SAR unit type k needed for each collapsed building
υk Average velocity (in 100 mph) of SAR unit type k under normal conditions

Seismic risk framework

Let nz be the number of cities on the fault zone z. Assuming that the fault zone can fail in any
part of it with even probability, the hazard of city c on fault zone z for being the epicenter to a
devastating earthquake with a demand parameter g can be defined as

EPcg = I{c∈ξz}

pzg

nz
, ∀c ∈ C, g ∈ G, (1)

where pzg is the probability of fault zone z being activated and causing a PGA of g. However,
any city c will also be contingent on other cities geographically, which means that the hazard of
an earthquake in any city s will also add to the total hazard of city c by a factor relative to the
distance between them. We define the contingency between any two cities c and s in terms of their
proximity and using an arbitrary function of the Euclidean distance dcs as follows:

Cocs =
1

2dcs
, ∀c ∈ C, s ∈ S . (2)

Note that the choice of Cocs is not our primary concern and the framework can accommodate any
reasonable function. Further discussion on the relation between PGA and distance can be found in
[32] and the references therein. To illustrate; if the distance between two (not necessarily adjacent
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cities) is 200 miles, then an earthquake of demand parameter g in city s is assumed to be felt as
an earthquake of size 0.25g in city c. In other words, the hazard of city s being epicenter to an
earthquake of size g will contribute to the total hazard in city c for an earthquake of the same size
by 25%. The hazard in city c for being affected from an earthquake of size g in city s can then be
written as

Hcsg = CocsEPsg, ∀c ∈ C, s ∈ S , g ∈ G. (3)

Note that (3) boils down to EPcg for any city that hosts the eartquake. Integrating over all scenarios,
we can find the cumulative hazard in city c as

Hcg =
∑

s
Hcsg =

∑
s

CocsEPsg = EPcg +
∑
s ̸=c

CocsEPsg, ∀c ∈ C, s ∈ S , g ∈ G. (4)

Therefore, the cumulative hazard of city c is the probability that city c will be the epicenter of the
next devastating earthquake, plus the sum of the same probabilities for other cities in C adjusted
by a factor of geographical contingency.
As stated previously, the level of damage from an earthquake is determined collectively by its
hazard together with the vulnerability of infrastructure as well as exposure of property stock.
Given an earthquake of parameter g occurs in city c, the probabilistic vulnerability (i.e., conditional
probability that the building stock in city c will exceed the complete damage or collapse threshold d0)
is determined by a fragility curve [33] and can be stated as

VPcg = Pc(D > d0|G = g), ∀c ∈ C, g ∈ G. (5)

Therefore, given the building stock in city c is Sc, the expected number of buildings in city c
reaching the complete damage state (i.e., collapse) given a devastating earthquake occurs can be
computed as

Vcg = VPcgSc, ∀c ∈ C, g ∈ G, (6)

where, again, the conditional probability of collapse given the earthquake demand parameter g,
Vcg, is recovered from the vulnerability curve that is specific to city c. Figure 3 illustrates sample
curves which are constructed from log-normal CDFs with arbitrary µ values ranging from 0 to 1,
and σ = 0.5. A discussion of the calibration of these curves to real earthquake data is beyond the
scope of our work and can be found in [33] or [34]. Note that the fragility curves depicted here
reflect varying vulnerability levels only for a single damage state, i.e., complete damage, which
will be our focus in this study.2

Therefore, the risk of city c from a disaster due to an earthquake of size g in city s, that is, the
expected number of buildings in city c reaching the total damage state, can be expressed as

Rcsg = HcsgVcg, ∀c ∈ C, s ∈ S , g ∈ G. (7)

Summing over all possible size-location scenarios, we state the overall risk from an earthquake

2 In general, fragility curves are used to depict the conditional probability of exceeding certain damage levels for a
given vulnerability level.
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Figure 3. Probabilistic vulnerability curves (only the total damage state)

disaster in city c as

Rc =
∑
s,g

Rcsg, ∀c ∈ C. (8)

Note that the risk values already incorporate the contingencies through the hazard values H.
Given the seismic risk framework above, the expected demand of city c for SAR unit type k can be
determined by the equation

E [DMck] = αkRc, ∀c ∈ C, k ∈ K. (9)

Since devastating earthquakes are considered as low-probability events (although with extreme
conditional damage), one challenging task for the policymakers and relevant authorities is to
determine the appropriate number of SAR units to keep ready because it is not rational for
governments to ensure the availability of SAR units in an anticipation of the worst-case scenario
(vulnerability-based approach) by setting

Avk = max
s,g

{
αk
∑

c

(
Hcsg

EPsg

)
Vcg

}
= max

s,g

{
αk
∑

c
CoscVcg

}
, ∀k ∈ K. (10)

On the contrary, taking a solely risk-based approach such that

Avk = αk
∑

c
Rc =

∑
c

E [DMck] = E [DMk] , ∀k ∈ K, (11)

would again be unrealistic as it will overlook the devastating conditional impact of severe earth-
quakes. In this paper, acknowledging the fact that predicting the size and/or location of an
earthquake is much more difficult than predicting whether or not an earthquake will occur, we
suggest that countries with high risks of earthquake can take a conditional-risk-based approach by
assuming that there will be definitely an earthquake and basing their provision policies on the
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conditional risk of an earthquake (i.e., given one of the cities becomes an epicenter with certainty):

Avk = E [DMk|EP] = αk

∑
c Rc∑

s,g EPsg

= αk

∑
c,s,g CocsEPsgVcg∑

s,g EPsg
= αk

∑
c,s,g

CocsVcgEPsg|EP, ∀k ∈ K,

where we introduced the conditional probability of city s being an epicenter to an earthquake of
size g (given there is an earthquake) as

EPsg|EP :=
EPsg

EP
, ∀s ∈ S , g ∈ G, (12)

with EP =
∑

s,g EPsg. To summarize the three approaches,

i. Vulnerability-based approach: the worst-case scenario will happen with probability one.
ii. Risk-based approach: whether, where and at which size an earthquake will occur should be
handled as an expected value.

iii. Conditional-risk-based approach: an earthquake will definitely happen, but we don’t know
where it will happen and at which size.

Vulnerability-adjusted fastest routes via RL: a DP approach

As an input to the mathematical optimization model to be discussed in Section 3, we also recover
the fastest route between any two cities on the grid that takes into account accessibility during
an earthquake using a DP approach. The explicit enumeration approach offers a relatively poor
runtime performance on larger grids (e.g., it can take long hours to enumerate all paths on a 5x5
grid).

Given an earthquake of size g occurs in city s, the vulnerability-adjusted travel time of SAR unit
type k between two adjacent cities c and c ′ is introduced as

T̃cc ′ksg =
dcc ′

vk

(
1 −

HcsgVPcg+Hc ′sgVPc ′g
2

) =
dcc ′

ṽcc ′ksg
, ∀c, c ′ ∈ C, k ∈ K, s ∈ S , g ∈ G, (13)

where ṽcc ′ksg can be considered as the vulnerability-adjusted speed of unit type k between cities
c and c ′ should there be an earthquake of size g in city s. It is obvious from Eq. (13) that if the
probabilistic vulnerabilities of any pairs of cities (c, c ′) get closer to 1, then ṽcc ′ksg will get close to
0, meaning that the route will be unusable.

We formulate the fastest route problem using the DP approach [35]. A policy π is the probabilities
assigned to a certain set of actions a ∈ A (moves on the grid map in our case) for each state c ∈ C.
In particular, πsg(a|c) is the probability that the SAR entity will choose to make one of the eight
possible moves (↑ ↗→↘ ↓↙←↖) given it is currently in city c. The value of an action a in city
c under policy π (or the city-action value), denoted by vπ(a|c), is determined by the sum of the
immediate reward from transitioning to city c ′, denoted by r(c ′|c), and the continuation value
vπ(c ′)

vπ
sg(c, a) =

∑
c ′

p(c ′|c, a)
(

rsg(c ′|c) + vπ
sg(c

′)
)

, ∀s ∈ S , g ∈ G, (14)
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where p(c ′|c, a) is the probability of ending up in city c ′ by taking move a in city c (which
is obviously 1 for the city in the direction of the move and 0 for others in our case). We set
rsg(c ′|c) = −T̃cc ′ksg depending on the equipment type k. Integrating (14) over all possible actions
(each with appropriate probabilities π(a|c) yields the city value function

vπ
sg(c) =

∑
c ′

p(c ′|c)
(

rsg(c ′|c) + vπ
sg(c

′)
)

, ∀s ∈ S , g ∈ G, (15)

where p(c ′|c) =
∑

a∈A p(c ′|c, a)πsg(a|c). The optimal policy is then the one that maximizes the
value of being in each city:

π∗
sg = arg maxπvπ

sg(c), ∀c ∈ C, s ∈ S , g ∈ G. (16)

The search for π∗
sg involves two steps, namely, policy evaluation and policy iteration (improve-

ment). Evaluation of an arbitrary policy is a recursive operation that runs until the value of vπ(c)
stabilizes across all cities. At each step, the value of vπ(c)sg is calculated by evaluating all possible
actions for all cities through vπ

sg(c, a). At policy iteration step, the policy is updated based on the
re-calculated values of vπ

sg(c) and vπ
sg(c, a), ∀c ∈ C, a ∈ A.

As an example, the calculated values of the city value function as well as the corresponding
optimal routes and travel times on a 4x4 grid for various endpoints, SAR unit types, scenarios and
earthquake sizes are shown in Figure 4.
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Figure 4. Percentage vulnerabilities (left), optimal routes (middle) and shortest travel times (right) on a 4x4 grid
for different end-points and values of k, s, g
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MINLP model variables, objectives and constraints

Decision and non-decision variables of the MINLP model and their explanations are provided in
Table 5-Table 6.

Table 5. Decision variables defined in the MINLP model

Z f k ∈ {0, 1} whether a facility f for SAR unit type k is established or not
X f k ∈ Z+ amount of SAR unit type k to be allocated to facility f

Yf cksg ∈ Z+ amount of SAR unit type k to be dispatched from facility f to city c in an earthquake of size g
in city s

Table 6. Non-decision variables defined in the MINLP model

Tksg average dispatch time of SAR unit type k in an earthquake of size g in city s
Tmax

sg maximum average dispatch time across SAR unit types in an earthquake of size g in city
s

Tmax Expected maximum average dispatch time
Ful f illcksg ∈ [0, 1] proportion of demand by city c for SAR unit type k fulfilled given an earthquake of size

g occurs in city s
Ful f illck ∈ [0, 1] expected proportion of demand by city c for SAR unit type k fulfilled
Ful f illksg ∈ [0, 1] proportion of demand for SAR unit type k fulfilled given an earthquake of size g occurs

in city s
Ful f illk ∈ [0, 1] expected proportion of demand for SAR unit type k fulfilled

Our two main objectives in this model is to minimize (i) the expected upper bound for the
average dispatch time of SAR units taking into account all size-location scenarios, and (ii) the
expected mean absolute deviation across fulfillment rates of cities. This will also help us minimize
preventable humanitarian losses, as the survival rate is generally considered to be a decreasing
function of time. To this end, we define the average time it takes to dispatch SAR unit type k under
any scenario as the vulnerability-adjusted dispatch times between all facility-city pairs, T̃f cksg,
weighted by the percentage of flow:

Tksg =
∑
f ,c

T̃f cksg
Yf cksg∑
f ,c Yf cksg

, ∀k ∈ K, s ∈ S , g ∈ G. (17)

So, on average, all demand for SAR unit type k will have arrived at earthquake sites in Tksg
hours, should there be any earthquake of size g in city s. Since we assume that SAR units are
interdependent (e.g., rescue teams on excavators, excavators on ambulances, ambulances on
rescue teams), our aim is the minimize, in each scenario, the maximum of the average times across
all cities for equipment type k, which is defined as

Tmax
sg = max

{
Tksg : k ∈ K

}
, ∀s ∈ S , g ∈ G. (18)

Expected maximum dispatch time is then the average of the maximum dispatch times Tmax
sg

weighted by the possibility of a given scenario:

Tmax =
∑
s,g

Tmax
sg EPsg|EP. (19)
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Accordingly, we can state our first objective as

min θ1 = Tmax. (20)

Our second objective will ensure the fair distribution of SAR assets by minimizing the mean
absolute deviation of fulfillment rate for each city from the average fulfillment rate under each
size-location scenario. The rate of fulfillment of demand from each city for SAR unit type k under
scenario (s, g) is given by

Ful f illcksg =

∑
f Yf cksg

DMcksg
, ∀c ∈ C, k ∈ K, s ∈ S , g ∈ G, (21)

fulfillment of demand from each city for SAR unit type k is then the average of Ful f illcksg values
weighted by the conditional probability of each scenario:

Ful f illck =
∑
s,g

Ful f illcksgEPsg|EP, ∀c ∈ C, ∀k ∈ K. (22)

Similary, fulfillment of demand for SAR unit type k, both under each scenario and on average, can
be expressed as

Ful f illksg =

∑
f ,c Yf cksg∑

c DMcksg
, ∀k ∈ K, s ∈ S , g ∈ G, (23)

Ful f illk =
∑
s,g

Ful f illksgEPsg|EP, ∀k ∈ K. (24)

We then state mean absolute deviation for each size-location scenario and expected mean absolute
deviation as

Ful f illdev
ksg =

∑
c

∣∣∣Ful f illcksg − Ful f illksg

∣∣∣
|C |) , ∀k ∈ K, s ∈ S , g ∈ G, (25)

and

Ful f illdev
k =

∑
s,g

Ful f illdev
ksg EPsg|EP, ∀k ∈ K, (26)

respectively. Our second objective is therefore

min θ2 = Ful f illdev
k0sg. (27)

In Eq. (27), we were able to change k to k0 (i.e., SAR unit type 0) because availability of SAR units,
and deployment to cities under each scenario, namely, Avk and Yf cksg, are proportional among
SAR unit types (recall the interdependence argument).

On the other hand, we deal with the bi-objectiveness of the MINLP model by applying the
weighted sum over the deviations of objectives given in Eq. (20) and Eq. (27) from their respective



Nadi Serhan Aydın | 385

best possible values, scaled by the difference between their respective best and worst values θ and
θ:

min θ = w
(

θ1 − θ1

θ1 − θ1

)
+ (1 − w)

(
θ2 − θ2

θ2 − θ2

)
. (28)

Before implementing the objective (28), the model is first solved as single-objective for (20) to
obtain best and worst values for θ1 and θ2, respectively, and then for (27) to obtain the best and
worst values for θ2 and θ1, again, respectively.

Having defined the decision variables and objective functions, we can now express the constraints
of the model to be satisfied while achieving the objective (28). First, we require all T̄ksg values to
be less than or equal to their supremum Tmax

sg :

Tksg ≤ Tmax
sg , ∀k ∈ K, s ∈ S , g ∈ G. (29)

The total number of facilities for each SAR unit type should not exceed the allowed quantity:∑
f

Z f k ≤ nk
F, ∀k ∈ K. (30)

Furthermore, decision-makers need to make sure that all available equipment is allocated to the
facilities and, if allocated, that the facility is established:∑

f

X f k = Avk, ∀k ∈ K, (31)

X f k ≤ MZ f k, ∀ f ∈ F , k ∈ K, (32)

where M is a sufficiently large number. Amount of dispatch from facilities to earthquake sites
should not exceed the respective capacities of those facilities:∑

c
Yf cksg ≤ Z f kX f k, ∀ f ∈ F , k ∈ K, s ∈ S , g ∈ G. (33)

If the sum of equipment k allocated to facilities is less than or equal to the total demand under
any scenario, then the total amount of dispatch to earthquake sites should be equal to the amount
available (otherwise, it should be equal to the demand), namely,∑

f

X f k ≥
∑

c
DMcksg =⇒∑

f ,c

Yf cksg =
∑

c
DMcksg, ∀k ∈ K, s ∈ S , g ∈ G,

and ∑
f∈F

X f k <
∑
c∈C

DMcksg =⇒∑
f ,c

Yf cksg =
∑

f

X f k, ∀k ∈ K, s ∈ S , g ∈ G.

In other words, amount of total deployment of SAR unit type k under each scenario should be the
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minimum among the available and demanded amount of SAR units of type k:

∑
f ,c

Yf cksg = min

∑
f

X f k,
∑

c
DMcksg

 , ∀k ∈ K, s ∈ S , g ∈ G. (34)

We linearize Eq. (34) to improve runtime.3

Amount of SAR units dispatched to any city should not exceed its demand under any scenario:∑
f

Yf cksg ≤ DMcksg, ∀c ∈ C, k ∈ K, s ∈ S , g ∈ G. (35)

Finally, the deployment of SAR units should preserve proportionality since they are interdepen-
dent: ∑

f

Yf cksg = αk
∑

f

Yf ck0sg, ∀c ∈ C, k ∈ {K \ k0}, s ∈ S , g ∈ G. (36)

The allocation-dispatchment model described through Eqs. (28)-(36) is obviously non-linear,
with the non-linearity arising from the two objectives, namely, due to the maximum function in
Eq. (18) and ratio of decision variables in Eq. (27). The non-linearity in Eq. (18) is eliminated
through constraint (29). Handling Eq. (27) requires transformation of model variables, which is
not straightforward. A further non-linearity is imposed by Eq. (34), which is also substituted
with linear constraints. The remaining non-linearity, coupled with large number of constraints
and arbitrarily generated initial problem settings, manifests itself high computation times (see
Section 5). The comprehensive model presented throughout this section will be applied to a
hypothetical example in Section 4 where we will also present some analysis of results and policy
insights.

4 A numerical example

The numerical example presented in this section aims to illustrate the seismic-risk-based resource
allocation and dispatch framework through a minimal example but is flexible enough to extend to
cover higher-dimensional scenarios. Figure 5 (panels i-vi) displays the main components of the

3 This is done by representing Eq. (34) by the following constraints and restrictions:∑
f

X f k ≥
∑

c
DMcksg + M(uksg − 1), ∀k ∈ K, s ∈ S , g ∈ G,

∑
c

DMcksg + M(uksg − 1) ≤
∑
f ,c

Yf cksg ≤
∑

c
DMcksg + M(1 − uksg), ∀k ∈ K, s ∈ S , g ∈ G,

∑
f

X f k + ϵ ≤
∑

c
DMcksg + M(1 − u

′
ksg), ∀k ∈ K, s ∈ S , g ∈ G,

∑
f

X f k + M(u
′
ksg − 1) ≤

∑
f ,c

Yf cksg ≤
∑

f

X f k + M(1 − u
′
ksg), ∀k ∈ K, s ∈ S , g ∈ G,

uksg + u
′
ksg = 1, ∀k ∈ K, s ∈ S , g ∈ G,

uksg, u
′
ksg ∈ {0, 1}, ∀k ∈ K, s ∈ S , g ∈ G.
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seismic hazard framework based on expectations.4 There are 4 fault zones in the map (i-ii) and
these zones can trigger earthquakes with assigned probabilities (iii). Together with contingencies,
these probabilities constitute the overall hazard of earthquake (iv). Combined with percentage
vulnerabilities for different demand parameters derived from fragility curves given in Figure 3,
the level of exposure determines the risk of a disaster (vi).
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Figure 5. Main components of the seismic hazard framework

Figure 6, on the other hand, demonstrates a realized scenario, namely, s = s2 and g = 2.0 (that is,
an earthquake of size 2.0 occurs in city 2). Now, since the hazard is realized, the hazard map turns
into a realized hazard map where the impact propagates based on distances. From the realized
risk map (iv), we can see how many collapses this scenario can cause in different cities based on
their vulnerabilities (ii) and building stocks (iii).
The optimization model presented in Section 3 is implemented using Gurobi solver on a worksta-
tion with an Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz processor with a 64.0GB installed RAM.
Figure 7 displays the optimal allocation of equipment type k0 for nF = 7 (top left), as well
as conditional risk levels (top right), average dispatch times (bottom left) and fulfillment rates
(bottom right) for a single scenario (i.e., s = s6, g = 1.0) where we also arbitrarily set w = 0.5.
Figure 8 illustrates the deployment plan for the sample scenario. The overall fulfillment rate
for k0 under this allocation plan is calculated as 83.4%. Expected fulfillment rates across cities
for nk

F = 7 ∀k are depicted in Figure 9 where we observe a small variation (thanks to our second
objective function θ2). For w = 0.5 and nk

F = 7 ∀k, the optimal values of θ1 and θ2 are calculated
as 0.8281 hours and 0.025%. We present results for some more scenarios in Table 7.
We extend these results through a number sensitivity analyses based on two key model parameters,
namely, the maximum number of facilities for SAR unit type k, nk

F, and the objective weight factor,
w. Figure 10 displays the sensitivity of each objective function value with respect to these two
parameters whereas Table 7 presents these results in numerical format. As expected, optimal value

4 For reproducibility, we use seed 51 in Python’s NumPy library, which is chosen as it yielded a lower computation
time.
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Figure 6. Main components of the seismic hazard framework (a realized scenario with s = s2 and g = 2.0)
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dispatch times (bottom left) and fulfillment rates (bottom right) for s = s6, g = 1.0

of the expected maximum deployment time decreases with the number of allowed facilities (left).
The impact of the latter on mean absolute deviation of fulfillment rates is somewhat reverse (mid).
Increasing the number of facilities somehow worsens the optimal value of θ2, leading to a higher
deviation across fulfillment rates. As far as the main objective function θ is concerned (right), we
can observe that the total percentage deviation from the two goals peaks at (w, nF) = (0.75, 6)
with 6.98%. The sensitivity analyses can assist decision-makers in choosing the optimal number
of facilities and devising an allocation-dispatchment plan. For example, if the primary focus is
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on the speed of dispatchment, then the choice of (w, nF) = (1, 7) yields an expected maximum
deployment time of as low as 0.3514 hours, although with an expected mean deviation of 10.94%.
Or, if the policymakers are of the view that the deployment speed is three times as important as
having an equitable deployment, namely, (w, nF) = (0.75, 7), then a 0.67% expected deviation can
be achieved with an increase in expected maximum dispatch time to 0.6859 hours (again, Table 7).

5 Results and discussion

In real earthquake situations, survival rate is largely determined by the speed of intervention,
whereas poor planning can result in the clustering of available resources in a subset of affected
locations, resulting in an inequitable situation for victims. Recent big earthquakes, such as the
two that struck 11 cities in southern Turkey in 2023, has shown that it is not the abundance of
resources that matters for the well-functioning of disaster response but how these resources are
pre-positioned and deployed.

Results from hypothetical examples (including the one presented in Section 4) indicate that the
seismic-risk-based bi-objective MINLP model is feasible under various risk scenarios and can be
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Table 7. Optimal values for various w and nF

nF
w 3 4 5 6 7

0
θ1 8,0135 6,7374 7,5972 7,0617 8,0135
θ2 0,00% 0,00% 0,00% 0,00% 0,00%
θ -0,01% -0,01% 0,00% -0,01% -0,23%

0.25
θ1 1,7402 1,4128 1,1352 0,9547 0,8411
θ2 0,00% 0,00% 0,00% 0,00% 0,00%
θ 1,75% 1,88% 1,75% 2,63% 2,25%

0.5
θ1 1,7333 1,4084 1,1327 0,9363 0,8281
θ2 0,01% 0,01% 0,01% 0,04% 0,03%
θ 3,51% 3,78% 3,50% 5,23% 4,70%

0.75
θ1 1,6320 1,3171 1,0527 0,7811 0,6859
θ2 0,43% 0,32% 0,27% 0,80% 0,67%
θ 4,91% 5,33% 5,00% 6,98% 6,40%

1
θ1 1,2527 0,8765 0,6148 0,4470 0,3514
θ2 12,79% 12,24% 11,80% 11,30% 10,94%
θ -0,19% -0,05% -0,02% -0,01% -0,04%

applied to make allocation-deployment decisions when the size and location of earthquakes are
uncertain. With equal weights for two objectives, the model achieves a total of 3.5% deviation
from single-objective solutions (more precisely, the difference between negative and positive ideal
solutions) with an expected maximum dispatch time of 1.1327 hours and expected mean absolute
deviation of 0.01%. Sensitivity analysis results, on the other hand, verify that the model behaves
in accordance with our expectations as far as the changes in the number of allowed facilities and
weights of individual objectives are concerned.

Yet, the ability of the model to adapt to different problem sizes is hindered by rapidly growing
computational complexity and runtimes, which is illustrated in Table 8.

Table 8. DP and MINLP model runtimes for different problem sizes (random seed: 51)

Grid DP runtime DP runtime Number of MINLP model
size (sec, per scenario) (sec, total) constraints runtime (sec)
3x3 0.13 4.7 9,417 6.4
4x4 0.90 57.6 27,029 350
5x5 4.09 409 62,921 5,469
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6 Conclusion

This paper sought to develop an integrated and versatile framework for SAR unit pre-allocation
and deployment, incorporating a seismic risk component similar to the one discussed in [10] into
a MINLP model to minimize the dispatch time of SAR units and deviation between response rates.
The features of the model introduced in this paper are by no means exhaustive. In particular, the
seismic risk framework presented here offers a simple yet flexible approach that can be adapted to
various problem sizes and hazard maps, as well as vulnerability and exposure profiles. The bi-
objective MINLP model then linked the seismic hazard framework with the resource allocation and
dispatchment problem where the vulnerability-(or conditional-risk-)adjusted shortest routes were
recovered from the computationally efficient DP algorithm. The bi-objectiveness of the problem
under study is handled through derivation of a pareto optimality surface for the weighted sum of
percentage deviations from the individual objectives.
The model’s efficiency, however, is mainly limited by the runtime that is exponentially increasing
with the problem size. Moreover, lack of a real case study might be concealing the potential hassles
in representing real maps as simple grids (e.g., a single node might include multiple cities or vice
versa). Besides, various assumptions made in the study (e.g., contingency structure assumed
in Eq. (2), uniform distribution of property stock, even probability for any part of a fault line
being activated, etc.) might render the model difficult to apply in real life. Thus, as an outlook,
acquiring real seismic hazard and exposure data for model validation purposes, working with
fragility curves calibrated to observed vulnerabilities, a critical review of the assumptions made
through expert solicitations, integrating meta-heuristics for improving computational efficiency
for larger problem sizes can further enhance the applicability of the model to real-life situations.
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