Research Article
BibTex RIS Cite

Akarçay Havzası Hidrolojisinin SWAT Modeli ile Değerlendirilmesi

Year 2025, Volume: 13 Issue: 2, 680 - 691, 30.06.2025
https://doi.org/10.29109/gujsc.1658344

Abstract

Bu araştırma, Akarçay Havzası'ndaki su ve toprak kaynaklarının sürdürülebilir bir şekilde korunması ve yönetilmesi için SWAT (Toprak ve Su Değerlendirme Aracı) modelinin kullanımını ve bölgeye özgü su ve toprak kaynaklarının değerlendirilmesini tartışmaktadır. Akarçay Havzası, geniş tarım arazileri ve su kaynaklarının önemi nedeniyle Türkiye'nin stratejik öneme sahip havzalarından biridir. Ancak bölgedeki su ve toprak kaynaklarının sürdürülebilirliği; artan tarımsal faaliyetler, nüfus alanlarının büyümesi ve iklim değişikliği nedeniyle tehdit altındadır.

Çalışma kapsamında havzanın hidrolojik özelliklerini ve toprak-su dinamiklerinin modele tanımlanması amacıyla meteorolojik veriler, arazi kullanım haritaları, toprak yapısı ve hidrolojik parametreler ilgili kurum ve kuruluşlardan veriler temin edilerek hidrolojik süreçlerin simüle edildiği SWAT modeli oluşturulmuş ve söz konusu model ile su kaynakları yönetiminin etkileri incelenmiştir. Kalibrasyon ve doğrulama prosedürleri için SWAT-CUP yazılımı kullanılmış ve modelin doğruluğunu artırmak için performans metrikleri (NSE, RSR, vb.) değerlendirilmiştir.

Bulgular, havzanın tarımsal uygulamaların su kalitesini nasıl etkilediğini ve arazi kullanımındaki potansiyel değişikliklerin hidrolojik süreçleri nasıl etkileyebileceğini göstermiştir. Akarçay Havzası hassasiyet analizi sonucunda en duyarlı unsurların toprak profili parametreleri (SOL_Z, SOL_AWC), yeraltı suyu katsayısı (REWAPMN), toprak buharlaşma dengeleme faktörü (ESCO) ve yüzey suyu akış miktarını etkileyen eğri katsayısı (CN2) olduğu tespit edilmiştir. Bu çalışmanın ortaya koyduğu öneriler, ulusal ve bölgesel su yönetimi düzenlemelerinin oluşturulmasına yardımcı olacaktır. Sonuçlar, Akarçay Havzası'ndaki konut, ticari ve tarımsal faaliyetlerin daha sürdürülebilir bir şekilde yönetilmesi için bilimsel bir temel sunmaktadır.

References

  • [1] Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.
  • [2] Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.
  • [3] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool Theoretical Documentation. Texas Water Resources Institute.
  • [4] Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), 563–572.
  • [5] T.C. Tarım ve Orman Bakanlığı Devlet Su İşleri Genel Müdürlüğü, (2013). Akarçay Havzası Master Plan Çalışmaları Nihai Master Plan Raporu; Üçer Müşavir Mühendislik A.Ş., DSİ Raporu, Ankara, 61-1797.
  • [6] İnternet: Meteoroloji Genel Müdürlüğü, URL: https://usbs.tarimorman.gov.tr/, Erişim Tarihi:13.01.2025
  • [7] Korkmaz, M. (2014). Evaluation of SWAT performance for monthly streamflow simulation in the Gediz Basin. Turkish Journal of Water Science and Management, 1(1), 15–25.
  • [8] Özcan, M., Kocaman, S., & Yavuz, O. (2011). Use of SWAT Model for Hydrological Modeling in Seyhan Basin. International Journal of Water Resources Development, 27(4), 657–673.
  • [9] Behera, S., & Panda, R. K. (2006). Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process-based model. Agricultural Ecosystems & Environment, 113(1-4), 62-72.
  • [10] Abbaspour, K. C., Vaghefi, S., & Srinivasan, R. (2018). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 International SWAT Conference. Water, 10(1), 6.
  • [11] İnternet: Amerika Birleşik Devletleri Jeoloji Araştırmaları Kurumu, URL: https://earthexplorer.usgs.gov/, Erişim Tarihi:11.03.2024
  • [12] İnternet: Avrupa Çevre Ajansı, URL: https://land.copernicus.eu/en/products/corine-land-cover, Erişim Tarihi:21.08.2024
  • [13] Bossard, M., Feranec, J., Otahel, J., 2000. CORINE land cover technical guide – Addendum 2000. Technical report no 40, European Environmental Agency, Copenhagen.
  • [14] FAO/UNESCO (1990), Soil Map of the World, Revised Legend. World Soil Resources Report 60, Rome.
  • [15] FAO, 2015. World Reference Base for Soil Resources. İnternational Soil Classification System for Naming Soils and Creating Lagents for Soil Maps. Food and Agriculture Organization of the United Nations, Rome
  • [16] İnternet: Birleşmiş Milletler Gıda ve Tarım Örgütü, URL: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/, Erişim Tarihi:18.06.2024
  • [17] Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184-194.
  • [18] Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290.
  • [19] Legates, D. R., & McCabe Jr, G. J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241.
  • [20] Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  • [21] Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91.
  • [22] Abbaspour, K. C., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. MODSIM 2007 International Congress on Modelling and Simulation.
  • [23] Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), 563-572.
  • [24] Song, X., Zhang, J., Zhi, W., & Xie, H. (2015). Parameter sensitivity analysis of SWAT model based on SUFI-2 algorithm. Water Science and Engineering, 8(2), 107-117.
  • [25] Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • [26] Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams. 2002. Soil and Water Assessment Tool, User Manual, Version 2000. Temple, Tex.: Grassland, Soil and Water Research Laboratory.
  • [27] Kışlıoğlu, H,E., Kaplan Bekaroglu, ŞŞ., Dadaser-Celik, F., (2024). Güney Marmara Havzası’nda SWAT+ Modeli ile Hidrolojik Modelleme, Mühendislik Bilimleri ve Tasarım Dergisi, 12(3), 531-543.
  • [28] Probst, E., & Mauser, W. (2022). Ecological sustainability assessment of water distribution for the maintenance of ecosystems, their services, and biodiversity. Ecological Indicators, 142, 109217.

Evaluation of Akarçay Basin Hydrology with SWAT Model

Year 2025, Volume: 13 Issue: 2, 680 - 691, 30.06.2025
https://doi.org/10.29109/gujsc.1658344

Abstract

This research discusses the use of SWAT (Soil and Water Assessment Tool) model for sustainable conservation and management of water and soil resources in Akarçay Basin and the assessment of water and soil resources specific to the region. Akarçay Basin is one of the strategically important basins of Turkey due to its large agricultural lands and the importance of water resources. However, the sustainability of water and soil resources in the region is under threat due to increasing agricultural activities, population growth and climate change.

Within the scope of the study, meteorological data, land use maps, soil structure and hydrological parameters were obtained from relevant institutions and organizations in order to define the hydrological characteristics of the basin and soil-water dynamics to the model, and a SWAT model was created to simulate hydrological processes and the effects of water resources management were examined with the model. SWAT-CUP software was used for calibration and validation procedures and performance metrics (NSE, RSR, etc.) were evaluated to improve the accuracy of the model.

The findings showed how the basin's agricultural practices affect water quality and how potential changes in land use can affect hydrological processes. As a result of the sensitivity analysis of Akarçay Basin, it was determined that the most sensitive elements are soil profile parameters (SOL_Z, SOL_AWC), groundwater coefficient (REWAPMN), soil evaporation compensation factor (ESCO) and curve coefficient affecting the amount of surface water runoff (CN2). The recommendations of this study will help to establish national and regional water management regulations. The results provide a scientific basis for more sustainable management of residential, commercial and agricultural activities in the Akarçay Basin.

References

  • [1] Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.
  • [2] Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.
  • [3] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool Theoretical Documentation. Texas Water Resources Institute.
  • [4] Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), 563–572.
  • [5] T.C. Tarım ve Orman Bakanlığı Devlet Su İşleri Genel Müdürlüğü, (2013). Akarçay Havzası Master Plan Çalışmaları Nihai Master Plan Raporu; Üçer Müşavir Mühendislik A.Ş., DSİ Raporu, Ankara, 61-1797.
  • [6] İnternet: Meteoroloji Genel Müdürlüğü, URL: https://usbs.tarimorman.gov.tr/, Erişim Tarihi:13.01.2025
  • [7] Korkmaz, M. (2014). Evaluation of SWAT performance for monthly streamflow simulation in the Gediz Basin. Turkish Journal of Water Science and Management, 1(1), 15–25.
  • [8] Özcan, M., Kocaman, S., & Yavuz, O. (2011). Use of SWAT Model for Hydrological Modeling in Seyhan Basin. International Journal of Water Resources Development, 27(4), 657–673.
  • [9] Behera, S., & Panda, R. K. (2006). Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process-based model. Agricultural Ecosystems & Environment, 113(1-4), 62-72.
  • [10] Abbaspour, K. C., Vaghefi, S., & Srinivasan, R. (2018). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 International SWAT Conference. Water, 10(1), 6.
  • [11] İnternet: Amerika Birleşik Devletleri Jeoloji Araştırmaları Kurumu, URL: https://earthexplorer.usgs.gov/, Erişim Tarihi:11.03.2024
  • [12] İnternet: Avrupa Çevre Ajansı, URL: https://land.copernicus.eu/en/products/corine-land-cover, Erişim Tarihi:21.08.2024
  • [13] Bossard, M., Feranec, J., Otahel, J., 2000. CORINE land cover technical guide – Addendum 2000. Technical report no 40, European Environmental Agency, Copenhagen.
  • [14] FAO/UNESCO (1990), Soil Map of the World, Revised Legend. World Soil Resources Report 60, Rome.
  • [15] FAO, 2015. World Reference Base for Soil Resources. İnternational Soil Classification System for Naming Soils and Creating Lagents for Soil Maps. Food and Agriculture Organization of the United Nations, Rome
  • [16] İnternet: Birleşmiş Milletler Gıda ve Tarım Örgütü, URL: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/, Erişim Tarihi:18.06.2024
  • [17] Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184-194.
  • [18] Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290.
  • [19] Legates, D. R., & McCabe Jr, G. J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241.
  • [20] Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  • [21] Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91.
  • [22] Abbaspour, K. C., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. MODSIM 2007 International Congress on Modelling and Simulation.
  • [23] Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19(3), 563-572.
  • [24] Song, X., Zhang, J., Zhi, W., & Xie, H. (2015). Parameter sensitivity analysis of SWAT model based on SUFI-2 algorithm. Water Science and Engineering, 8(2), 107-117.
  • [25] Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • [26] Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams. 2002. Soil and Water Assessment Tool, User Manual, Version 2000. Temple, Tex.: Grassland, Soil and Water Research Laboratory.
  • [27] Kışlıoğlu, H,E., Kaplan Bekaroglu, ŞŞ., Dadaser-Celik, F., (2024). Güney Marmara Havzası’nda SWAT+ Modeli ile Hidrolojik Modelleme, Mühendislik Bilimleri ve Tasarım Dergisi, 12(3), 531-543.
  • [28] Probst, E., & Mauser, W. (2022). Ecological sustainability assessment of water distribution for the maintenance of ecosystems, their services, and biodiversity. Ecological Indicators, 142, 109217.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Water Resources and Water Structures
Journal Section Tasarım ve Teknoloji
Authors

Zeliha Selek 0000-0002-5593-5538

Cihangir Arslan 0000-0002-0353-3860

Early Pub Date June 16, 2025
Publication Date June 30, 2025
Submission Date March 15, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Selek, Z., & Arslan, C. (2025). Akarçay Havzası Hidrolojisinin SWAT Modeli ile Değerlendirilmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 680-691. https://doi.org/10.29109/gujsc.1658344

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526